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Abstract

The holomorphic discrete series representations is realized on the space of vector-
valued holomorphic functions on the complex bounded symmetric domains. When the
parameter is sufficiently large, then its norm is given by the converging integral, but
when the parameter becomes small, then the integral does not converge. However, if
once we compute the norm explicitly, then we can consider its analytic continuation,
and can discuss its properties, such as unitarizability. In this article we treat the
results on explicit norm computation.

1 Introduction: Holomorphic discrete series of SU(1,1)

Let D :={w € C: |w| < 1}, G := SU(1,1), and A € C. Then the universal covering group
G acts on O(D) by

" (( fl)_l> ) = e+ ) (22

This action preserves the sesquilinear form
A-1 ok _
(o= 2= [ )R ).

If ReA > 1, then for any polynomial f,h, we have |(f, h)x| < co. Thus 7 is a unitary
representation of G if A > 1. This is called the holomorphic discrete series representation.
On the other hand, if Re A < 1, then (f, h)» does not converge if f, h # 0.-However, when
ReA>1land f=3,° ,amw™, we can compute the norm explicitly as

”f”g\: Z (%n)%n—mml? where WVm=AA+1)---A+m—1).

This expression is available even when Re A < 1, and is positive definite for A > 0. That is,
75 defines a unitary representation of G when A > 0. This example shows that if once the

norm is explicitly computed, we can treat the analytic continuation of the holomorphic
discrete series representation.

m=0
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2 Holomorphic discrete series of general Hermitian Lie group

From now on, we let G be a general simple Lie group, and K C G be its maximal compact
subgroup. We denote the Cartan involution of G corresponding to K by 9, and extend
anti-holomorphically on G€. We assume that K has a non-discrete center. In this case,
(G, K) is called of Hermitian type. Also we assume that G has a complexification GC. We
denote the corresponding Lie algebras of G, K, GC by g, ¢, and g€. Then we can take an
element z € 3(¥) (the center of £) such that the eigenvalues of ad(z) are ++/—1, 0, —v/—1.
Let g€ = p* @ ¥C @ p~ be the corresponding eigenspace decomposition. Then there exists
a domain D C p* which is diffeomorphic to G/K via the following diagram.

G/K — GS/KCp-
|
: e
Y
De— . pt

Let (7, V) be a holomorphic representation of KC, and x be a suitable character of K c
the universal covering group of KC. Then the space of holomorphic sections of the vector
bundle on G/K with fiber V ® x~ is isomorphic to the space of V-valued holomorphic

functions on D. B
To(G/K,G x 3z (V®x™) ~0O(D,V).

Via this identification, the universal covering group G acts on O(D,V) by the form
(9)f (w) = x(s(g™! w)) 1 (u(g™" w) " (g7 w)

(9 € G, w € D), using some smooth map & : G x D — KC. This action preserves the
sesquilinear form

(e =2 [ ((B@) 1) gw), xB@)-Pdv

(f,9 € O(D,V)), where n = dimp™, p is an integer determined from g which we will
define later, and B : pt > D — K€ is some smooth map. Also we determine the constant
¢ so that ||v|)x - = vl holds for any constant function v. Then this norm converges for
any nonzero polynomial if Re A is sufficiently large.

Example 2.1. Let
3 ({0 L\, (0 I 0 L\ [0 IL\._
which is isomorphic to Sp(r,R). Then G/K is diffeomorphic to

D = {w € Sym(r,C) : I — ww" is positive definite.}.
Let (7,V) be a representation of K¢ = GL(r,C). Then G acts on O(D,V) by
A B\
(5 ((C D) ) f(w) := det(Cw + D)™ *7 ({Cw + D)) f ((Aw + B)(Cw + D)™1).
This preserves the sesquilinear form

(frghar = ﬁ%—)ﬁ /D (T((I — ww*) ™) f(w), g(w)), det(I — ww*)*~+Ddy,



We return to the general case. Our goal is to compute the G-invariant inner product
(*y*)a,r- In order to achieve this, we want to compare this inner product with another fixed
inner product on each K-type, instead of using Taylor expansion. So we define another
inner product on O(p*, V).

Vhr = W_In/ (F(w), gw))re ™ dw  (f,9€ O(™, V),
p+

where |w| is a suitable K-invariant norm on p*. Let

O(D,V)k =P(p*,V) @W

be an irreducible decomposition under K such that each subspace is orthogonal to other
subspaces with respect to (-,)r,r. Then since ||- |3 . and |- ||}, are both K-invariant, the
ratio of two norms are constant on W;. We denote this ratio by R;(\). Moreover, if we
assume that “W; L W; with respect to (-,-)r, implies W; L W; with respect to ()5 "
(for example, if P(p*, V) is K-multiplicity free), then we have

1713, = Z R filk,  (f € O(D,V))

where f; is the orthogonal projection of f onto W;. Accordingly, the reproducing kernel
is expanded as

Ky (z,w) = ZRL(/\ 1K;(z,w) € O(D x D,End(V))

where K;(z,w) is the reproducing kernel of W; with respect to {-,-)rr. Then R;(}),
initially defined when Re A is sufficiently large, is meromorphically continued on A € C.
Moreover, there exists a unitary subrepresentation H,(D,V) C O(D,V) if and only if
Ri(A)~1 > 0 holds for all 4. In this case, the underlying (g, K )-module is given by

HA(D,V)k = @ W;.
8:Ri(\) =170

As mentioned above, this argument is available only if “W; L W; with respect to (-,-)p,
implies W; L W; with respect to (-,-)»,” holds (e.g., if P(p™,V) is K-multiplicity free).
Therefore the goal of this talk is to calculate this ratio R;()) for the cases in the following
table.

G K %4
Sp(r,R) U(r) ASCT)Y (0<k<r-1)
SU(q,s) S(U(g) x U(s)) "CXRV’ (V. any irrep of U(s))
) Sk(cs)v
SO*(2s) U(s) SE(C*) @ det ™2 (ke N)
(Spin(2)x C_x®Vi, kxky (k€ 3zN) (n: even)
Sping(2,n) | Spin(n))/Zs | C_xRVy..py (k€{0,3}) (n: odd)
(Eg(-14) | (SO(2) x Spin(10)) (Cre®H'RY) (keN))
(Er(—25)) (50(2) x E) ©)

Here, when G = Eg(_14), we only state the conjecture later, and when G = Eqas),
this assumption holds only when scalar type case, and in this case the norm is already
computed by Faraut-Korényi [6].
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Remark 2.2. (1) The question of when the analytic continuation of the holomorphic
discrete series representation is unitarizable is studied by e.g. Berezin [1], Clerc
[2], Vergne-Rossi [22], and Wallach [23], and completely classified by Enright-Howe-
Wallach [3] and Jakobsen [12] by different methods.

(2) The results on norm computation are already proved for several settings.

e B. Orsted (1980) [16] for G = SU(r,r), scalar type.

e J. Faraut and A. Kordnyi (1990) [5] for G any Hermitian Lie group, scalar
type.

s B. Orsted and G. Zhang (1994, 1995) (17, 18] for G = Sp(,R), V = (C")V,
G =S8U(r,r), V=CRC", G = S0*(4r), V = (C*¥)V.

e S. Hwang, Y. Liu and G. Zhang (2004) [10] for G = SU(n,1), V = AP(C")VK
C, NIC"RC.

3 Main results

First we state the theorem on the norm computation for Sp(r,R).
Theorem 3.1. When (G, K,V) = (Sp(r,R),U(r), AF(C")V) 0 < k <r—1), |- ”,2\,1-
converges if Re A > r, the K-type decomposition of O(D,V )k is given by

+ _ \%
P(p ’ V) - @ @ V(2m1+k1,2m2+k2,...,2mr+k,-)’
meN™ ke{01), [ki=k

mi22me20  mitki<m; oy
and for f € V(\2/m1+lc1,...,2mr+lcr)’ the ratio of norms is given by
k .
193, Ile (A= 3G-1)
171 ~ e O - 36 - D),y

1
nf:l ()‘ - %(J - 1) + l)mj+k,»-1 H;=k+1 (’\ - %(] - 1))m,-+k,~

From this result we can determine when the analytic continuation of the holomorphic
discrete series representation becomes unitarizable.

Corollary 3.2. When (G, K,V) = (Sp(r,R),U(r), AF(C™)V) (0 < k < r—1), (1, O(D,V)),
originally unitarizable if A > r, has a unitary subrepresentation Hx(D,V) C O(D,V) if

and only if
k kE+1 r—1 r—1
v bR om0
and when A =1/2 (I =k,...,r — 1), the underlying (g, K)-module is given by

H’\(D’ V) = @ . V(\2/m1+k1,2m2+k2,...,2mr+kr)‘

mk: mgy1+kgp1==mr+kr=0

Proof. This is because the reproducing kernel is given by

(A -G
det(I,- _ Z’LU*)—/\T(IT _ zw*) — Z J;Ilk( (/\2_(‘71(] i);n)j)-}-kj
m.k j=1 2

and is positive definite if and only if A is as above. O

m,k(z’w)l
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For other classical groups, similar results also holds.

Theorem 3.3. When (G, K,V) = (U(g,s),U(q) x U(s),CR V) (k e N", kg > --- >
ks >0), |- ]l?\T converges if Re A+ ks > q+s— 1, the K-type decomposition of O(D,V )k
s given by

Ppt,V) = ) VAV R (V5 o v

meNmin{q,s}
mM12 2Mpin{q,s} 20

— P P G ERY,

meNmin{g.s} neN"
M2 2Migingg 4320 M2 2nr20

and for f € V,Sf)v X V.Es), the ratio of norms is given by
IF8, T (=G = D)y, 1

IflE: T O =G =), TG O =G =1+ ki), s,

Theorem 3.4. When (G, K, V) = (SO*(2s),U(s), S¥(C*)V) (k € N), |
Re A > 2s — 3, the K-type decomposition of O(D,V )k is given by

2 .
“|Ix,, converges if

v
@ @ V(m1+k1,ml.m2+k2,m2,~--,mr+knmr)
im0 KN, Jki=k
P(p+, V) — t=ra s ml'."i"kjgmj—l . (3 = 21“)7
@ @ V(m1+k1,ml,mz+k2,M2,..-,mr+kT,mr,kr+1)
meN” keN™1, |k|=k

M2 2Me20 ok <myy (s=2r+1),

and for f € VJn1 e the ratio of norms is given by

m1g~~-:mr+kr:mm(kr+l))’

M .
M I N =20 — 1))y 4, (s =2r),
P (M s=2r
' It =20 = D)y, X = 2k (s=2r+1).

Theorem 3.5. When (G, K,V) = (SO*(2s),U(s), S*(C*) ® det™*/%) (k € N), || - |},
converges if Re A > 2s — 3, the K-type decomposition of O(D,V )k is given by

VV
@ EB (ml7m1—k1,m2,m2—kz,u-,mr,mr—kr)+(§,---,%)
S
mi2-2mey> —ki>ms .
Pt V) = T mahEmin (s =2r),
’ D D v
(mlxml_kl:m2,m2’kz,---ymmmr"kr;—kr+l)+(%,--wg)
meN” keNT+1, ki=k

>Sme>
M2 2me20 ki >miy (s=2r+1),

and for f e VY

(ml PUSY _kl1--~,mr,mr—kr,(‘k'r+1))+(%

T2 (A —2(5 - 1),
I3 _ ) TG 3 =20 = 1), 14
Tz, ~ [T=1 A =20 - 1)),
H;=1 A—2(- 1))mj—kj+k A=2r+ Dk—kpp

k) the ratio of norms is given by

(s = 2r),

(s=2r+1).
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Theorem 3.6. When (G, K) = (Sping(2,n), (Spin(2) x Spin(n))/Z3) and

v C_x BV, kxk)y (k€ 3Zs0) (n: even),
C_x BV, k) (k=0,3) (n:odd),

Il - ]|§y., converges if Re A > n — 1, the K-type decomposition of O(D,V )k is given by

PeHeV= P B Comitmotk) B Vimymmattih,oktl (1] resp.))s

mezl, —k<ISk
my—mo+I>k

and for Cony ymy+k B Vimy —mo+ik, ..k +1 (I] resp.))s the Tatio of norms is given by

I1£13 - (Vg 1

2 - — = n— .
P T ) N O 1 W S

From these results, we can also determine when they are unitarizable, but we omit the
detail.

4 Proof of main results

4.1 Preliminaries

Before starting the proof, we prepare some more notations. Let G be a Hermitian simple
Lie group, with rankg G = r. We denote its complexified Lie algebra by g€ = p* 0t op~
as before. We take a Cartan subalgebra hC c £C. Then it automatically becomes a Cartan
subalgebra of g€. Let A = A(gc, BC) be the root system, and decompose this into a union
of subsets A = Ay+ U A U Ap- in the obvious way. We take a suitable maximal set
of mutually strongly orthogonal roots {vi,...,7} C Ay+, and fix e; € p_‘YFJ_ such that
—[lej, Ve;], e5] = 2e; holds for each j. We define

T
hj = —[ej,ﬁej] € f)C,‘ ag = @th C bc,
j=1
T T
e:=Zejep+, h:=Zhj=—[e,ﬂe]€a[.
j=1 j=1

Then ad(h)|,+ has eigenvalues 2 and 1. We define

pr={z ep*:[h 2] =2z}, pr = 9(pt),
G :=[phpr), tr=tine gfi=ptetfepr, sr:=sfns.

Let KS, KT, Gt be the connected subgroups of G€ corresponding to %, ¥, gr respec-
tively, and we define

°Gr :=Int(e* NGy, L:=°GrnKS,  Kp:=LnKr.



These groups are related as follows.

R e

C
T

Also we define the integers

— C
d:=dimcg %(vlwz)}ul’

b=

LI
Lk
2N
N

1
—di Cc
5 mecgi

g’

Kp

p:=24+(r—1)d+b.

Then dimg pT is equal to n := r + %r(r — 1)d + br. These Lie algebras and integers are
given as follows.

g ¢ p* g1 [ b pr N °gr
sp(r, R) u(r) Sym(r,C) | sp(r,R) gi(r,R) o(r) Sym(r, R)
su(g,5) (¢ > 5) | 5(a(g) @ u(z)) | M(g,5:C) | su(s,5) | (s, C)u(D) | wu(s) | Horm(s,C)
50" (2s) u(s) Skew(s,C) | s0*(4[3]) | g!([3],H) sp(L3]) | Herm(| 3] H)
s0(2,n) 50(2) @ so(n) cn 50(2,n) | R®so(l,n—1) | so(n - 1) RLT
e6(~14) 50(2) @50(10) | M(2,1;0)c | s0(2,8) R®so0(1,7) 50(7) RL7
7(_25) 50(2) P eg Herm(3,0)¢ e7(—25) R D eg(_26) fa Herm(3, Q)
g T n d b D
sp(r,R) r [ zr(r+1) 1 0 T+ 1
su(g,s) (g>s) | s gs 2 qg—s q+s
50*(2s) [3) [ 35(s—1) | 4 |0 (s:even) / 2 (s:0dd) | 2(s — 1)
50(2,n) 2 n n—2 0 n
¢6(__14) 2 16 6 4 12
er(_2s) 3 27 8 0 18
4.2 Proof for tube type case
In this subsection we deal with the following cases.
G K |4
Sp(r, R) U(r) AF(CT)Y  (0<k<r—1)
SU(q, s)
(g > s) S(U(g) x U(s)) CRV’' (V' any irrep of U(s))
Sk(C2T)V
SO*(4r) U(2r) Sk(C?) ® det™™? (ke N)
(Spin(2)x Cx ¥ Vg, kxr) (kK€3N) (n: even)
Sping(2,n) | Spin(n))/Z; | Cx B Vi..ky (k€{0,1}) (n: odd)
(Er(-25)) (S0(2) x Ee) ©
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These G, except for SU(q, s) (¢ > ), are of tube type, that is, G = Gt holds. Though
SU(q, s) (g > s) is of non-tube type, the same proof is available. For these cases, each V
remains irreducible even if restricted to K, = O(r), SU(s), Sp(r), Pin(n—1) respectively,
and this property is essentially used. For a K%-module V, we denote by V the conjugate
representation of KS with respect to the real form L C K.‘l;. Then the following theorem
holds.

Theorem 4.1. Let (7,V) be an irreducible representation of K€. Suppose (1,V) has a
restricted lowest weight — (52171 +-+ %ﬂ’yr) . Let W C P(p*,V) be a KC-irreducible
ar

subspace. We assume

(A1) (1,V)|k, still remains irreducible.

(A2) All the K -spherical irreducible subspaces in W/| Kg ® WK% have the same lowest
weight — (nmay1 + -+ + neyr).

Then the integral ”f||,2\1- converges for any f € W if Re(A) + k, > p — 1, and for any

f € W, we have
1713, Tz (A - 3G - D),

12, " M (- 4G - 1),

Example 4.2. We apply this theorem for G = Sp(r,R). We fix a Cartan subalgebra
h C u(r) C sp(r,R), and take a basis {e1,...,&r} C (V—=1b)V such that AL (g%, HC) =
Agc  UAy+ is given by

A¢c1+={8j—€k:1Sj<k§1‘},
Ap+={5j+6k21SjSk§1‘}.

Then we have y; = 2¢;, g = v/—1b. For any K€ = GL(r,C)-module V, its conjugate
representation V with respect to the real form L = GL(r,R) is isomorphic to the original
V. Form € Z" with my > --- > m,, we denote by V,, the irreducible K¢ = GL(r,C)-
module with lowest weight —mqe1 — ... — MeEr.

Let V := V(\l’ 10,..0) = AF(CT)V. Then this remains irreducible when restrected to

k
K1 = O(r), that is, the assumption (A1) holds. The K -type decomposition of O(D,V )k =
P(p*, V) is given by

k
P, V) =PEymr,C), AC)M) = P Vom® V(\{,.\;i,o,...,())

meNF
mi 2 2me20 ,

= @ @ V2\:n+k'

meN" ke{0,1}7, |kj=k
m122me20  mitki<mj_y

For each K-type V! .\, the only Ky-spherical submodule in Voraik ®V = Vol L, @V
is Voo rowr because an irreducible GL(r,C)-module is O(r)-spherical if and only if each
component of its lowest weight is even. That is, the assumption (A2) holds with n = m+k.
By the theorem, for f € Vo, .\ we have

113, _ TG (A -3G-1D)
TS VAR O TV )
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From now we prove the key theorem for G = Sp(r, R) case. Let (7, V) be an irreducible
representation of K€ = GL(r,C), and let W C P(p*, V) be an irreducible subrepresenta-
tion of KC. Assume

(1) V has the lowest weight —k = (—k1,..., —k.).
(2) Vlk, = Vlo(r still remains irreducible.

(3) All the K1 = O(r)-spherical irreducible subspaces in W&V ~ W ® V have the same
lowest weight —2n = (—2n4,...,—2n,).

Our aim is to compute, for f € W,
2y A (r(( - ww*)—l)f(w),f(w))T det(I — ww*)*~ gy

7-rn
= [, 1fw)e
il p+

k)

Rw(X) =

where p* := Sym(r,C), D ={we p* : I, — ww* is positive definite.}.
Let Kw(z,w) € P(p* x pt,End(V)) be the reproducing kernel of . Then we have

Cx /DTrV (T((I - ww*)*l)KW(w, w)) det(I — ww*)*—(rﬂ)dw

Rw(A) =
/TrV(KW(w,w))e_"(ww*)dw
p+

Let @ := {z € Sym(r,R) : z is positive definite.}, and recall K = U(r), p* = Sym(r,C).
Then we can consider the polar coordinate K x @ — pT, (k,z) — kz'/2%. By the
KC-covariance of K. w(z, w), we have

Ky (kz/2 %, kx'/? k) = (k) Kw (x~ Y 4zz~ 14, 4 IV (k)
= T(k)T(I—%)Kw(I, I)T(x%)f(k‘l).

Thus we have

Try (1((I = kak*) ™) K (k2'/? %, kx'/? %)) = Try (r((I — ) "D Kw(z, 1)),
Try (Kw (k2'/2 %, kz'/? %)) = Try (Kw (z,1)),

and hence we can show

C/\/ Try (r((I — )" Kw(z, I)) det(I — 2)*~+Ddz
an(I-9)

Rw() =
" / Try (K (2, I))e~ @ dz
19]

Now we regard Kw(z,I) € P(p*,End(V)) as a function of z. We define the action 7 of
K€ on P(p*,End(V)) by

(F(k)F)(z) == 1(k)F(k 'z, )7 (k) (k€ K€, F € P(p*,End(V)), « € pH).
Then we have the isomorphism

P(pt,End(V)) = P(p*, V)R V.
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Ky (z,I) is K = O(r)-invariant under 7, i.e., Kw (-, 1) € (W®V)XL. By the assumption,
we have .
Kw (1) € (W V) r ~ ()Ke.

Let F(z) € Vo, C P(p*,End(V)) be the lowest weight vector. Then by averaging F(x)
on Kp, we get Ky (-,I), and thus we have

c,\/ Try (7(( - z)—l)F(x)) det(I — z),\—(r+1)dx
Qn(I-Q)

Rw(}) =
/Q Try (F(z))e~ @ dz

We define
Bw(\) = / Try (r((I - 2)"Y)F(z)) det(I — 2)*~ Dz,
Qn(I-Q)
T'w = / Try (F(z))e” "®dx
Q
so that Ry (\) = cxBw()\)/Tw holds. Also, we recall the generalized Gamma function
which was introduced by Gindikin [7] (see also [6, Chapter VII]), which is defined as, for

seCr,
Fa(s) = / Ag(z) det(z)~F e (@ dg
Q

where .
Ag(z) := H det((zij)lgi,jg)s‘_"‘“ det(z)°r.
=1
We want to show (ko T
By = O R

Fa(A+n)
where ) is the abbreviation of (},...,\), so that

Bw()) _ Ta(A+k-=)

Bw () =ex T'w A Fo(A+n)

This is an analogue of the well-known formula

T(a)T'(b)

Ba,) = T r5)

where

1 o0
B(a,b) = / 11—t tdt, T(a)= / %" le~tdt.
0 0

In order to compute By (), we compute

7= / o= tr() Try (7((y — 2) " )F()) det(y — 2)*~"Ddzdy
yeN z€QN(y—N)



in two ways. First, by taking the lower triangular matrix b such that y = 5% and letting
x = bz'h, we get

J= e~ ) / Try (r((b(I — 2)%) 1) F(bz')) det(b(I — 2)%)*~+1)
yeN zeQﬂ(I—ﬂ) r+1
x det(b)" " dzdy

=/ e / Try (((1 = 2)7Y)r (5™ F(b2tb)r(%61)) det(I — 2+
yeN zeQN(I-Q) 22— (r+1)
x det()** "t dzdy

:/ Try (r((I - 2) ™) F(2)) det(I — 2)*~ Dz
zeQN(I-Q)
b / e_“(y)Azn(b) det(b)r‘)'\_(’"“)dzdy
ye

—Bw(\) /ﬂ ¢ U@ AL (y) det(y)* 5 dy = By (\Ta(r + n).

Here we used
Aon(b) = An(b) = An(y).

Second, by putting y — z =: z, we get
J=Try (/Q e~ @7 () det(z)’\"(”“)dz/ﬂe"t’(z)F(x)dm) .
Since V is irreducible under Kj, = O(r) by assumption, arid the integral
/ﬂe'tr(z)T(z'l)det(z)’\“(’+1)dz

commutes with O(r)-action, this is proportionai to the identity map Iy. Moreover, for
the lowest weight vector v € V, by taking the lower triangular matrix b such that z = b'b,
we get

(70, 0)y = (75 )0,0)r = (6™l = A(b)v]2 = Ax(2) ol

from the assumption that V has the lowest weight —k, and hence
(/ e_tr(Z)T(z"l)det(z)’\”(rﬂ)dzv, v) =/ e~ T AL (2) det(2)*~ D dz|v)2
0 Q

1
—Tq </\+k—r; >|U|3.

That is, we have

/ ¢ " (271 det(2)* D4z = I'g <A +k-TF 1) Iy.
Q .

Thus we have

J=Tq </\+k~ T;I)/e‘“(x)TrV(F(z))dwzfn (/\—f—k— r—;—l) I'w.
Q

Comparing two expressions of J, we get the desired formula

FQ(/\+k—I211) __Bw(\) FQ()\+k~L:£"—1-)
——Wrw, Rw(A\) =cy =C)

Bw(A) = C'w La(A+n)
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By normalization assumption, the constant ¢y is determined as

Ta(A+k)

N T k=)
and therefore Ta (A + k)
_loA+
Rw()) = Fa(A+n)’

The value of I'q(s) is well-known (see {6, Theorem VII.1.1]), and finally we get

()05,

Ry (X) = arr—1)/4 H;j=1]j‘ ()\+nj - %1') - ;=1 (/\ - L;_l)n ,
3

and this completes the proof. (]

4.3 Proof for non-tube type: Easy case

For following-cases, we cannot apply the previous arguments.

G K 1%
SU(q,s) (g<s) | SWU(q)x U(s)) | CRV' (V' any irrep of U(s))
SO*(4r + 2) U@r+1) SECT+H)Y (ke N)
SO*(4r + 2) U2r+1) Sk(C2+1l) @ det™*? (k€ N)

However, for (G,V) = (S’U(q, s),C® V') or (SO*(4r + 2),8%(C¥*1)V), we can easily
compute the norm by using the embedding

Up) x Ulg,s) > Ulp+a,9), VP BP(M(g,5,0), %) = P(M(p+4g,5,0)),
SO*(25) = SO*(2s + 2), P(Skew(s, C), P(C*)) = P(Skew(s + 1,C)).
On the other hand, for (G, V) = (SO*(4r + 2), S¥(C?r+1) @ det ~*/2), computing the norm

is more difficult, and we postpone this case to the next subsection. In this section we deal
with G = U(q, s) case. We set

G= U(Qv s)v K= U(Q) X U(S)9 P+ = M(qas; C);
G'=U(p)xUlg,s), K =U(p)xU(q) xU(s),
G" = U(p+ q, 8), K'= U(p+ Q) X U(s)v p+” = M(p +4q¢,8; C)

Then G/K = G'/K', G" /K" are diffeomorphic to some bounded domains D C p*, D" C -

p*” respectively. We set V :=CK Vk(s), and consider the representation (7 x, O(D,C ®
Vk(’))) of G. We assume p is greater than or equal to the leg length of k. Then we
can embed the representation Vlfp VR Vk(s) of U(p) x U(s) into the polynomial space
P(M(p,s,C)). Accordingly, we can embed the representation Vlfp VR O(D,CR Vlfs)) of
G' into O(D x M(p, s;C)). We denote this embedding by ¢. Then under this embedding
the action of G’ on ¢ (Vk(p)v XO(D,CK Vlfs))) C O(D x M(p,s;C)) is given by

5 (u, (Z 2) —1) Fw, 2) := det(cw + d) ™ f ((aw + d)(cw + d) }, u™ 2(cw + d) 1) .
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We embed G’ into G” block diagonally, and identify p™ & M(p,s;C) = M(p,s;C) @
M(q,s;C) with p*” = M(p + q,5;C) in a standard way. Then we can show that the
restriction of the scalar type holomorphic discrete series representation (75, O(D")) of G”
to G coincides with 74, and the embedding

L VPV ROGT,CRVY) 5 0p™)

preserves the norm || - ||r. Now we consider the K’-type decomposition of O(D")gn =
P(p*") and P R O(D,CR V) )k = VP R(P(pT) ® (CRVY)).

Pip™)| o =P W RV

n
=P P VRV,

n k/,m

VOV R (PE*) @ (CRYY) = PUPY RV R (il e 1Y)
m

=PP PRI RVE.
m n

Therefore we have
(P RV RV?) c Y RS,

Thus, for f € Vk(p V) V,.(f)v X V,Es) , using the result for the scalar type case, we have

Ao 1D 1
Mo MBe  TaG-G-Dn
Since the norm of the tensor product representation of Vk(p)v and O(D,CX Vk(s)) is given
by the product of each norm, and the norm is normalized so that || - || and || - ||F-

coincide for constant functions, we get, for f € V,—E?)v X V,,(s)7
”f“/z\,‘r;G' _ Hj=1(>‘ - (.7 - 1))’Cj
1fl3re  TaG =G =1,

and this proves the result on G = U(g,s) case. The result for (G,V) = (SO*(4r +
2), S¥(C?r+1)V) case is also proved similarly.

4.4 Proof for non-tube type: Difficult case

In this subsection we deal with the remaining case.

G K v
SO*(4r+2) |U@r+1) | S¥Ct) @ det™*? (ke N)

We compute the norm by combining

e The argument parallel to the proof for tube type cases.
e Embedding
SU(2r,1) — SO*(4r +2),
P(C, P(Skew(2r, C)) ® (S5(C*) ® det ™))
—P(Skew(2r + 1,C), S¥(C¥+1)  det™*/2).
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First we try to compute the norm by the argument parallel the tube type cases. The
K-type decomposition of O(D, V) is given by

P(p*, V) = P(Skew(2r + 1,C), S¥(CT+1) ® det ~*/?)

—_ \'
- @ @ ‘/(mliml_kl9m2ym2_k2v~ymr1mr_kr,—kr+1)+(k/2,...,k/2)'

eNT kENr+lv |k|=k
m12e2me20 g gi>myi,

3 \% —
We write ‘/(m1,m.1—k1,m2,’m2—kz,u.,mr,mr—kr,—kr+1)+(k/2,.--,k/2) =: Vmk for short. Let Ky (z, w) €

P(p* x p+,End(V)) be the reproducing kernel of Vinx. Then for f € Vink, Rmk(A) :=
I£13,, /1715, is equal to

CA/ Trv (T((I - ww*)_l)Kmk(w, 'LU)) det(I - ww*)%(’\—‘*"')dw
D .

Rmk(A) = .
/ Try (Kenk(w, w))e ™2 0% gy
pt

Next, by using the K = U(2r + 1)-invariance of Kk (2, w), we can reduce the integral on
pt = Sym(2r + 1,C) to the integral on pf = Sym(2r,C). Let rest : P(p*,V) = P(pf,V)
be the restriction map. Then we can show

k
; T
rest(Vmk) C @ @ Vi ma—t1 i =14k 2,k /2)0
I=k—kr+1  1ENT, |I|=l
kj<tj<mjpr—m;
where VIV is the Kt = U(2r)-module. Accordingly, there exist @mi; > 0 such that the
restriction of the reproducing kernel is expanded as

k
~ T
Kani(z,0)ly 5= 3 > GmaKm(zw).
l=k—kr+1 IGN", |l|=l
kj<li<mjyi—m;
Accordingly, we can show that there exist amy; > 0 such that the ratio of norm is given
by (we omit the detail)

k
Simkky 2 deN, =t Cmk R (M)
kj<li<myp1—my

&
Dlkekrp1 2o 1N, = Gmikl
kj<ljsmjpi—m;

Rmk()\) =C)

where
[T\ +k—(@r+2—1)T(A+k— |l - (4r - 1))

;=1I’(z\+k+mj—lj—2(j— 1))
By normalization assumption, we can show

. ZLO(dimS‘(Czr))Rg’(o)myovl)()\)
A= dim SF(C?H1)

REl(/\) =

1
IOk = (2r +25 — D))araa(A —4r + Do (A + k= 2r + 1)
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Substituting cy, we get

1 Z amki{A — 4r + 1)y

Rk() = T O+ k=20 — 1))my—t; (A — 2r + 1),

a
21 Gmid I=k—kpy1 1N, 1=l
kj<tj<mj1-m;

It is difficult to know the values of amy, but at least we have proved

Lemma 4.3.
(monic polynomial of degree kyy1)
;zl()\ + k=20 = 1)m;—k; (A= 2r + 1)
Second, we consider the embedding of a smaller subgroup into SO*(4r + 2). We set
Ga = S8U(2r,1), Ka:=8U(2r)xU(1)), p}:=C?.

Rmk()‘) =

Also we set
Va :=(S¥(C*) ® det*) R C =~ (S¥(C¥) ® det /%) RC_; o
CV =8%(C¥*1) @ det ™*/?,
and consider the (non-irreducible) representation
O(Da, (P(Skew(2r,C)) R C) ® Vy)

of Ga, where Dp C pX is the unit circle, which is diffeomorphic to Go/Ka. Then we can
show that the embedding

L: O(Da, ((P(Skew(2r,C)) K C) ® V) —» O(D, V)
which corresponds to the decomposition of the base space
pt = Skew(2r + 1,C) = C* @ Skew(2r,C) = p} @ Skew(2r,C)

intertwines the G z-action, and is an isometry with respect to Il - lF,r- Next we define

.__1/AV
Fm) '—V(mhml“11,mz,mz—l2,---,mr,mr—lﬁo)*’(kw,k;o)

AV AV
c V(ml S ,M2,M2 M, T3 0) ® V(kw-,k,o:o)

C(P(Skew(2r,C)) R C) ® Va,

so that
(P(Skew(2r,C))RC)®Va= P P  Fu,
meN” 1€Z5 4, 1=k
my1>-2>me 20 OSljg—'f'nj—mj+1
O(Da, (P(Skew(2r,C))RC)©Va) = P P  ODa,Fu),

meN” 1628, |l|=k
iz 2me20 00y S —mjan

and we also define

Wk =VAY

(mi1—k1,m2,me—k2,m3,...Mr_1~kr—1,Mr,Mr—kr,—kry1;m1)+(k,....k;0)
AV AV
Cv(ml,mz,mz,ms,~~-,mr-1,mr,mr,0;7n1) ® V(k,--.,k,O;O)

.....

CP(C”) @ (P(Skew(2r,C)) BC) ® VY ;00

Then Vink, Fim1 and Wiy are related as follows.



Lemma 4.4. (1) t(Wmnk) C Vink.

(2) Wik C @ O(Da, Fim,,...m.0)1)-

IE(Zzo)r, “,:k
li<kjt1, lr>krya

(3) «(Fm) C &P Venn.-
n€(Zyo)™!, Inj=k
ni<lj, nrp12lr—me
For the proof of this Lemma see [15, Lemma 5.7). Using Lemma 4.3 and 4.4, we want

to show
1

by induction on min{j : m; = 0}. When m = O, i.e., for Ry o) this is clear

by normalization assumption. So we assume this holds when m; = 0, and prove when

m;j+1 = 0. By Lemma 4.4 (1), it suffices to compute ||L(f)|]§‘,T/|IL(f)|]%~,T for f € Wik.
By Lemma 4.4 (2), we can write

f= > A (h€ODaFuy)), m'=(m...,m:,0.)  (41)

1€(Zy0)" =k
Ui<kjyr, lr ket

Rmk(A) =

Let v be any non-zero element in the minimal Ka-type Fpy ;. Then by the result on

SU(2r,1),
(IR /@)l -
Ne(WE7 7 Mool
is computable. Moreover, By Lemma 4.4 (3), we can write

L('vl) = Z Uln ('Uln € Vm’,n)’ (4'2)

n€(Zxo)", [n|=k
njsl,-, nr_>_l,~

and by the induction hypothesis, )|v|n|},2\,, /”vlﬂ”%‘,‘r is also computable. Also, by (4.1) and
(4.2), there exist numbers by, cin > 0 such that [|e(f)||%, = blle(F)l%, and v, =

cinllt(v)]%, holds. By these data we can show, for f € Wi,

(I3 -

(%
(monic polynomial of degree k2 + - -+ + k)

T O k=20 1D)my—k, LLma (A h+m;— ki — (25 = 3))k; A—2r F Dg—ryy
On the other hand, by Lemma 4.3 we have

lle(f )H,?\,T (monic polynomial of degree kr11)

le(OIE — IO+ k=20 = 1))m,—k, (A= 2r + 1
Combining these two formulas, we get

I(HIR,- 1

[DIFr IO+ k=20 = 1)my—ie; (A = 27 + 1y

and the induction continues. Thus we have proved the result for (G,V) = (SO*(4r +
2), 8k (C2r+1) @ det%/2).
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5 Conjecture on exceptional case

In this section we set (G, K, V) = (Eg(_14), SO(2) x Spin(10), X% X #*(R1%)). Then the
K-type decomposition of O(D, V) is given by

+ — ~3(mi+mg)—%
POt V)= D P e EV(—Lu IM2 kg —hg, TAGTE 4 kg, TAZT2
2 g T
meN?2 k€N4, |k|=l€ my—mg _mj-mgy
my2ma20 ko+ka<ma, L 2 L 2 +k3)
k3<mi—~mg

—3(m1+ma)-%
Then for f € x4 XV ML gy RIS g, Moy mmy myomy +k3), we can

show by the method similar to Lemma 4.3 that the ratio of norms is given by

If ”i,r (monic polynomial of degree 2k1 + k2 + k3)

1%, O+ B)mytkytka kA + & = )y kg kg k(A — k(A = )i

So the author conjectures that

3 k
Conjecture 5.1. For —i(mitme) -3 Ry - - - -
\ fex TUEMZ |y kg, AR kAT MM mima )

the ratio of norms is given by

1713, (e~ 3);
H.f“%‘,q- ()‘)m1+k1+k2 (A= 3)m2+k1+k3()\ - 4)k2+k3+k4 (A= 7)k:4
1

- ()‘ + k)m1+k1+k2—k(/\ +k— 3)m2+k1+k3—k()‘ - 4)k2+k3+k4 (’\ - 7)k4 .

We note that mi+ k1 +ke > mo+k1+ks > ko +ks+ kg > k4 holds since k3 < m1—ma
and kg + k4 < ms holds.
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