The invertible Toeplitz operators on the Bergman spaces
(General topics on applications of reproducing kernels)

Author(s)
米田 力生

Citation
数理解析研究所講究録 数理解析研究所講究録

Issue Date
2016-01

URL
http://hdl.handle.net/2433/224443

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
The invertible Toeplitz operators on the Bergman spaces

小樽商科大学 (Otaru University)
米田 力生 (Rikio Yoneda)

Abstract

In this paper, we study the invertible (and Fredholm) Toeplitz operators T_{φ} on the Bergman spaces with harmonic symbol.

Key Words and Phrases : Bergman spaces, Toeplitz operator, closed range, invertible operator, Fredholm operator.

Let D be the open unit disk in complex plane C. For $z, w \in D, 0 < r < 1$, let $\varphi_w(z) = \frac{w - z}{1 - \overline{w}z}$ and $\rho(z, w) = \left| \frac{w - z}{1 - \overline{w}z} \right|$ and $D(w, r) = \{ z \in D, \rho(w, z) < r \}.$

Let $H(D)$ be the space of all analytic functions on D. The space $L^2(dA(z))$ is defined to be the space of Lebesgue measurable functions f on D such that

$$\| f \|_{L^2(dA(z))} = \left\{ \int_{D} |f(z)|^2 dA(z) \right\}^{\frac{1}{2}} < +\infty,$$

where $dA(z)$ denote the area measure on D. The Bergman space $L^2_a(dA(z))$ is defined by

$$L^2_a(dA(z)) = H(D) \cap L^2(dA(z)).$$

For $\varphi \in L^2(dA(z))$, the Toeplitz operator T_{φ} with symbol φ is defined on $L^2_a(dA(z))$ by

$$T_{\varphi}f = P(\varphi f),$$
where \(P(f)(z) = \int_D \frac{f(w)}{(1 - \overline{w}z)^2} dA(w). \)

Let \(X, Y \) be Banach spaces and let \(T \) be a linear operator from \(X \) into \(Y \). Then \(T \) is called to be bounded below from \(X \) to \(Y \) if there exists a positive constant \(C > 0 \) such that \(\| Tf \|_Y \geq C \| f \|_X \) for all \(f \in X \), where \(\| * \|_X, \| * \|_Y \) be the norm of \(X, Y \), respectively.

The Berezin transform of \(T_\varphi \) is given by \(\tilde{\varphi}(z) = T_\varphi(z) = <T_\varphi k_z, k_z> \), where \(k_z(w) = \overline{(1 - zw)^2} \).

If \(H \) is a Hilbert space, then a bounded operator \(T \) is a Fredholm operator if and only if the range of \(T \) is closed, \(\dim \ker T \), and \(\dim \ker T^* \) is finite.

For \(a, b \in C, \varphi, \psi \in L^\infty(D) \), then
\[(a) \quad T_{a\varphi + b\psi} = aT_\varphi + bT_\psi,\]
\[(b) \quad T_\overline{\varphi} = T^{*}_\varphi,\]
\[(c) \quad T_\varphi \geq 0 (\varphi \geq 0).\]

For \(\varphi \in H^\infty \), then
\[(d) \quad T_\psi T_\varphi = T_{\psi\varphi},\]
\[(e) \quad T_\overline{\varphi} T_\psi = T_{\overline{\varphi}\psi}\]

Let \(\tilde{\varphi} \) denote the harmonic extension of the function \(\varphi \) to the open unit disk \(D \). In [8], Douglas posed the following problem:
If \(\varphi \) is a function in \(L^\infty \) for which \(|\varphi| \geq \delta > 0, z \in D \), then is \(T_\varphi \) invertible?

And V.A. Tolokonnikov gave the following:
If \(|\tilde{\varphi}(z)| \geq \delta > \frac{45}{46} \), then \(T_\varphi \) is invertible.
In [18], N.K.Nikolskii gave the following:
If \(|\tilde{\varphi}(z)| \geq \delta > \frac{23}{24} \), then \(T_\varphi \) is invertible.
In [20], T.H.Wolff gave the following:
If \(\inf_D |\tilde{\varphi}(z)| > 0 \) and then \(T_\varphi \) is not invertible.

The study of Toeplitz operators on the Bergman spaces and Hardy space have been studied by many authors. In this paper, we study when the Toeplitz operators \(T_\varphi \) on the Bergman spaces with harmonic symbol is invertible or Fredholm.

In [14], the following theorem are well-known.

Theorem A. Suppose \(\varphi \) is a bounded and nonnegative function. Then the following conditions are equivalent:
(1) T_φ is bounded below.

(2) There is a constant $C > 0$ such that
\[\int_D |f(z)|^2 \varphi(z) dA(z) \geq C \int_D |f(z)|^2 dA(z), \]
for all $f \in L^2_\alpha(dA(z))$.

In [14], D. Leucking proved the following results.

Theorem B. Let $\alpha > -1$ and $p > 0$. Then the following are equivalent:

1. There is a constant $C > 0$ such that
 \[\int_D |f(z)|^p dA(z) \leq C \int_G |f(z)|^p dA(z) \]
 for all $f \in L^p_\alpha(dA(z))$

2. There is a constant $C > 0$ such that
 \[\int_D |f(z)|^p (1 - |z|^2)^\alpha dA(z) \leq C \int_G |f(z)|^p (1 - |z|^2)^\alpha dA(z) \]
 for all $f \in L^p_\alpha((1 - |z|^2)^\alpha dA(z))$

3. For any $a \in D$ a subset G of D satisfy the condition that there exist $\delta > 0$ and $r > 0$ such that $\delta |D(a, r)| \leq |D(a, r) \cap G|$, where $|D(a, r)|$ is the (normalized) area of $D(a, r)$.

Theorem C. Let φ be a bounded measurable function on D. Then there is a constant $\epsilon > 0$ such that
\[\int_D |\varphi(z)f(z)|^p dA(z) \geq \epsilon \int_D |f(z)|^p dA(z) \]
for all $f \in L^p_\alpha(dA(z))$ if and only if there exists $r > 0$ such that the set $\{z \in D : |\varphi(z)| > r\}$ satisfies condition (3) of Theorem 3.
Theorem D. Let \(\varphi \) be a bounded positive measurable function on \(D \). Then \(T_\varphi \) is invertible if and only if there exists \(r > 0 \) such that the set \(\{ z \in D : |\varphi(z)| > r \} \) satisfies condition (3) of Theorem 3.

The following theorem is well-known (see [21]).

Theorem E. Suppose that \(\varphi \in C(\overline{D}) \). Then the following conditions are equivalent:

1. \(T_\varphi \) is Fredholm.
2. \(\varphi \) is nonvanishing on the unit circle.

Theorem 1. Let \(g \in H^\infty \). Then the following are equivalent:

1. \(T_{\overline{g}} \) is invertible operator on \(L^2_a(dA(z)) \)
2. \(T_g \) is invertible operator on \(L^2_a(dA(z)) \)
3. \(\inf_{z \in D} |\overline{T_g}(z)| = \inf_{z \in D} |g(z)| > 0 \)

The problem which we must consider next is following.

Problem. Let \(g, h \in H^\infty \) and \(g, h \in C(\overline{D}) \). Then the following are equivalent:

1. \(T_{g+h} \) is invertible operator on \(L^2_a(dA(z)) \)
2. \(\inf_{z \in D} |\overline{T_{g+h}}(z)| = \inf_{z \in D} |g(z) + \overline{h(z)}| > 0 \)

At first, we can prove the following.

Theorem 2. Let \(g \in H^\infty \) and \(g \in C(\overline{D}) \). Then the following are equivalent:

1. \(T_{g+\overline{g}} \) is bounded below on \(L^2_a(dA(z)) \)
2. \(T_{g+\overline{g}} \) is invertible operator on \(L^2_a(dA(z)) \)
3. \(\inf_{z \in D} |\overline{T_{g+\overline{g}}}(z)| = \inf_{z \in D} |g(z) + \overline{g(z)}| > 0 \)

Next, we can prove the following.

Theorem 3. Let \(g \in H^\infty \) and a constant \(c > 1 \). Then the following are equivalent:
(1) T_g is bounded below on $L^2_a(dA(z))$
(2) $T_{cg+\overline{g}}$ is bounded below on $L^2_a(dA(z))$

Using Theorem 3, we prove the following main result.

Theorem 4. Let $g \in H^\infty$ and $g \in C(\overline{D})$. Then the following are equivalent:

1. T_g is invertible operator on $L^2_a(dA(z))$
2. T_g is invertible operator on $L^2_a(dA(z))$
3. $T_{cg+\overline{g}}$ is invertible operator on $L^2_a(dA(z))(c > 0, c \neq 1)$
4. \[
\inf_{z \in D} \left| T_{cg+\overline{g}}(z) \right| = \inf_{z \in D} \left| cg(z) + \overline{g(z)} \right| > 0 (c > 0, c \neq 1)
\]
5. \[
\inf_{z \in D} \left| \overline{T_g}(z) \right| = \inf_{z \in D} \left| \overline{T_{\overline{g}}}(z) \right| = \inf_{z \in D} \left| g(z) \right| > 0
\]

Moreover, we can prove the following.

Theorem 5. Let $g, h \in H^\infty$ with $\inf_{z \in D} |h(z)| - \sup_{z \in D} |g(z)| > 0$.
If $\inf_{z \in D} \left| T_{g+h}(z) \right| > 0$, then T_{g+h} is invertible on $L^p_a(dA(z))$, and $T_{h+\overline{g}}$ is invertible on $L^p_a(dA(z))$.

Theorem 6. Suppose that $g \in H^\infty$ and $g \in C(\overline{D})$. Then the following conditions are equivalent:

(1) T_g is Fredholm.
(2) $T_{cg+\overline{g}}$ is Fredholm $(c > 0, c \neq 1)$.
(3) g is nonvanishing on the unit circle.

References