Sato Hyperfunctions and Reproducing Kernels (佐藤超関数と再生核形式)

By

Kiyoomi KATAOKA*(片岡 清臣)

Abstract

We survey the theory of the microlocal energy method for hyperfunctions and microfunctions developed in [5, 6, 7]; in particular, we introduce the important notions, positivity and quasi-positivity for hermitian microkernels. The quasi-positivity is based on the good properties of Bergman's reproducing kernels for some conic domains in $T^*\mathbb{C}^n$. Further we introduce some recent result on the Sobolev type 2-forms of order 0 for microfunctions with real analytic parameters obtained by Kaito Yamasaki [11].

§ 1. What is an energy method in the theory of hyperfunctions?

For a Sato hyperfunction f(x), we cannot define $|f(x)|^p$ or L^p -norm $||f||_p$ in general. For p=2, however, we can consider a microfunction $f(x)\overline{f(u)}$ as the substitute of $|f(x)|^2$ as introduced in [5, 6]. Further, for a hyperfunction f(t,x) with real analytic parameters $t \in T$, we can consider a hyperfunction

$$E(x,u) := \int_{\overline{T}} f(t,x) \overline{f(t,u)} dt \left(= \int_{\mathbb{R}^m} \operatorname{ext}_{\overline{T}} (f(t,x) \overline{f(t,u)}) dt \right)$$

as the L^2 -energy form of f (the precise definition of real analytic parameters $t \in T$ and the meaning of the integration over \overline{T} will be given in the later section). At the same time, in energy arguments we use some inequality (an order relation)

$$k_1(x,u) \ll k_2(x,u)$$
 at $(\overset{\circ}{x},\overset{\circ}{x};i\overset{\circ}{\eta},-i\overset{\circ}{\eta})$

²⁰¹⁰ Mathematics Subject Classification(s): Primary 32A25; Secondary 35A27

Key Words: Bergman kernels, energy methods, hermitian positivity, hyperfunctions, microfunctions, pseudo-differential operators.

Supported by Grants-in-Aid for Scientific Research, JSPS (No.26400110).

^{*}Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba Meguro-Ku Tokyo 153-8914, Japan.

instead of the equality. In order to illustrate our energy method, we consider the following example: Let $\Omega \subset \mathbb{R}^n_x$ be a bounded domain with real analytic boundary $N = \partial \Omega$, and f(t,x) be a hyperfunction in $\{t \in \mathbb{R}; a < t < b\} \times \Omega$ satisfying the boundary value problem:

(1.1)
$$\begin{cases} (\partial_t - \Delta_x) f(t, x) = 0 & \text{in } (a, b) \times \Omega, \\ f(t, x) = 0 & \text{on } (a, b) \times \partial \Omega. \end{cases}$$

We remark here that, since $(a, b) \times \partial \Omega$ is non-characteristic to $\partial_t - \Delta_x$, the boundary value $f|_{(a,b)\times\partial\Omega}$ is well-defined for any hyperfunction solution f. Then, our conclusion is that $f \in \mathscr{A}((a,b)\times\overline{\Omega})$ (real analyticity of f up to the boundary). To prove this, we consider the energy form:

(1.2)
$$E(t,s) := \int_{\overline{\Omega}} f(t,x) \ \overline{f(s,x)} \ dx.$$

Indeed, this is a well-defined hyperfunction in (t,s) because we have not only an estimate

$$SS(f) \subset \{(t, x; i\tau, i\xi); x \in \Omega, \xi = 0\},\$$

but also the estimates up to the boundary:

$$SS(\operatorname{ext}_{\overline{\Omega}}(f(t,x))) \subset \{(t,x;i\tau,i\xi); x \in \overline{\Omega}, \xi = 0\} \cup \{(t,x;i\tau,i\lambda d\varphi(x)); \varphi(x) = 0\},$$

$$SS(\operatorname{ext}_{\overline{\Omega}}(f(t,x)\overline{f(s,x)})) \subset \{(t,s,x;i\tau_1,i\tau_2,i\xi); x \in \overline{\Omega}, \xi = 0\} \cup \{(t,s,x;i\tau_1,i\tau_2,i\lambda d\varphi(x)); \varphi(x) = 0\}.$$

Here, $\varphi(x) \in C^{\omega}(\overline{\Omega})$ satisfies $\Omega = \{\varphi(x) > 0\}, d\varphi(x) \neq 0$, and the boundary value theory of hyperfunction solutions permits the extension $\operatorname{ext}_{\overline{\Omega}}(f(t,x)\overline{f(s,x)})$ (roughly, $= \chi_{\overline{\Omega}}(x)f(t,x)\overline{f(s,x)}$) of $f(t,x)\overline{f(s,x)}$ satisfying the above estimates. Therefore (1.2) is a hyperfunction on $(a,b)^2$. Then, we have

$$\begin{split} \partial_t E(t,s) &= \int_{\mathbb{R}^n} \operatorname{ext}_{\overline{\Omega}}(\partial_t f(t,x) \cdot \overline{f(s,x)}) \, dx = \int_{\mathbb{R}^n} \operatorname{ext}_{\overline{\Omega}}(\Delta_x f(t,x) \cdot \overline{f(s,x)}) \, dx \\ &= -\int_{\mathbb{R}^n} \operatorname{ext}_{\overline{\Omega}}(\nabla_x f(t,x) \cdot \overline{\nabla_x f(s,x)}) \, dx = \partial_s E(t,s). \end{split}$$

Hence, $(\partial_t - \partial_s)E(t,s) = 0$. Since $\partial_t - \partial_s$ is an elliptic operator on

$$\Delta^{a}(\sqrt{-1}T^{*}\mathbb{R}) := \{(t, s; i\tau_{1}, i\tau_{2}); t = s, \tau_{1} = -\tau_{2}\},\$$

we get an estimate:

$$SS(E(t,s)) \cap \Delta^a(\sqrt{-1}T^*\mathbb{R}) \subset \{\tau_1 = \tau_2 = 0\}.$$

Then, some theorem on the integration of positive hermitian microkernels concludes the real analyticity of the integrand f(t,x) up to the boundary.

The plan of this article is the following: In Section 2, we give a brief introduction to positivity of analytic hermitian kernels. In Section 3 we show the importance of some Bergman reproducing kernels in our theory with respect to the definition of quasi-positivity. Section 4 is devoted to introduce the definition of positivity in microlocal analysis. In Section 5 we give the definition of quasi-positivity of hermitian microkernels by using positive hermitian pseudodifferential operators of infinite order. In Section 6 we introduce K. Yamasaki's result on Sobolev type 2-forms of order 0 for microfunctions with real analytic parameters $t \in T$.

Hereafter we consider hyperfunctions f(x) or f(t,x), where $t=(t_1,\ldots,t_m)$ are real analytic parameters. So the variables t,x change the roles from Section 2.

§ 2. Positive analytic hermitian kernels

Definition 2.1. Let X be a set. A \mathbb{C} -valued function K(x,y) on $X \times X$ is said to be a hermitian kernel on X if

$$K(y,x) = \overline{K(x,y)} \quad (\forall x, y \in X).$$

Further a hermitian kernel K(x,y) on X is said to be $K \gg 0$ (positive) \iff For $\forall N \in \mathbb{N}, \forall x_1, \ldots, \forall x_N \in X, \ \forall \xi_1, \ldots, \forall \xi_N \in \mathbb{C}$, we have

$$\sum_{j,k=1}^{N} K(x_j, x_k) \xi_j \overline{\xi_k} \ge 0.$$

Then, we define an order relation for hermitian kernels K_1, K_2 on X by

$$K_1 \gg K_2 \Longleftrightarrow K_1 - K_2 \gg 0.$$

It is easy to see that

$$K_1 \gg 0, K_2 \gg 0 \Longrightarrow K_1 + K_2 \gg 0, \quad K_1 \cdot K_2 \gg 0,$$

where $K_1 \cdot K_2$ is a product as functions on $X \times X$.

Definition 2.2. Let X be a domain of \mathbb{C}^n . Then, a hermitian kernel K(z, w) on X is said to be an analytic hermitian kernel on X if K(z, w) is holomorphic in variables (z, \overline{w}) on $X \times X^*$, where

$$X^* := \{ z \in \mathbb{C}^n; \overline{z} \in X \}.$$

Example 2.3. Put $X = \{z \in \mathbb{C}; \operatorname{Im} z > 0\}$, and $\alpha > -1$. Then we have a positive analytic hermitian kernel on X:

$$\left\{(z-\overline{w})/i\right\}^{-1-\alpha} = \frac{1}{\Gamma(\alpha+1)} \int_0^\infty e^{itz} \cdot \overline{e^{itw}} t^{\alpha} dt \gg 0.$$

The following theorem is the most important for our theory, which is due to several authors; the first statement is due to Krěin [8], Bremermann [2], Sommer-Mehring [10], Meschkowski [9], Donoghue [3, 4], and the second statement is due to Krěin [8], Donoghue [4], Meschkowski [9].

Theorem 2.4. Let X, X' be domains of \mathbb{C}^n such that $\emptyset \neq X' \subset X$. Let K_1, K_2 be analytic hermitian kernels on X. Then we have the following:

- i) $K_1 \ll K_2$ on $X' \times X' \Longrightarrow K_1 \ll K_2$ on $X \times X$.
- ii) Let K_3 be a hermitian kernel (not necessarily analytic) on X' satisfying $K_1 \ll K_3 \ll K_2$ on $X' \times X'$. Then there exists a unique analytic hermitian kernel $\widetilde{K_3}$ on X satisfying

$$K_1 \ll \widetilde{K_3} \ll K_2 \text{ on } X \times X, \quad \widetilde{K_3}|_{X' \times X'} = K_3.$$

Let T be a domain of \mathbb{R}^m , and X, X' be domains of \mathbb{C}^n such that $\emptyset \neq X' \subset X$.

Theorem 2.5. (Corollary 1.14 in [6]). Let K(z, w; t) be a C^{ω} -function (or C^{∞} -function) on $X' \times X' \times T$ satisfying the following i), ii):

- i) For $\forall t \in T$, K(z, w; t) is a positive analytic hermitian kernel on X'.
- ii) For any compact subset $L \subset X'$, K(z, w; t) is integrable on $L \times L \times T$.

If

$$E(z,w) := \int_T K(z,w;t) dt$$

extends to $X \times X^*$ analytically with respect to (z, \overline{w}) , then K(z, w; t) extends uniquely to $X \times X \times T$ as a positive analytic hermitian kernel on X with C^{ω} (or C^{∞} resp.) parameters $t \in T$.

§ 3. Quasi-positivity and Bergman reproducing kernels

Definition 3.1. For a domain $X \subset \mathbb{C}^n$, we set

$$A^2(X):=\{f(z)\in\mathscr{O}(X);\int_X|f(z)|^2dxdy<\infty\},$$

where z = x + iy. It is well-known that $A^2(X)$ is a Hilbert space (Bergman space). Let $\{\varphi_j(z)\}_{j=1}^{\infty}$ be any completely orthonormal system for $A^2(X)$. Then,

$$K_X(z,w) := \sum_{j=1}^{\infty} \varphi_j(z) \overline{\varphi_j(w)}$$

is said to be a Bergman kernel of X. Indeed, it is well-known that this series converges locally uniformly on $X \times X$, and that K_X does not depend on the choice of $\{\varphi_j(z)\}_{j=1}^{\infty}$. It is clear that K_X is a positive analytic hermitian kernel on X.

The importance of Bergman kernels is based on the following proposition ([6]). For the reader's convenience, we will give a proof.

Proposition 3.2. Let K(z, w) be an analytic hermitian kernel on X such that

$$||K||_{X\times X} := \sqrt{\iint_{X\times X} |K(z,w)|^2 dx dy du dv} < \infty.$$

Then we have an inequality on $X \times X$: $-\|K\|_{X \times X} \cdot K_X \ll K \ll \|K\|_{X \times X} \cdot K_X$.

Proof. Define a linear operator $T:A^2(X)\ni f\mapsto \int_X K(z,w)f(w)dudv\in A^2(X)$, where w=u+iv. Then this is an integral operator of Hilbert-Schmidt type. Therefore there exist a completely orthonormal system $\{\varphi_j\}_{j=1}^\infty$ of $A^2(X)$, and real numbers $\lambda_j\in\mathbb{R}$ $(j=1,2,\ldots)$ such that

$$K(z, w) = \sum_{j=1}^{\infty} \lambda_j \varphi_j(z) \overline{\varphi_j(w)}.$$

Hence we have

$$\sum_{j=1}^{\infty} \lambda_j^2 = \iint_{X \times X} |K(z, w)|^2 dx dy du dv < \infty.$$

In particular, $|\lambda_j| \leq ||K(z, w)||_{L^2(X \times X)}$ ($\forall j$). Therefore,

$$-\|K\|_{L^2(X\times X)}K_X\ll K\ll \|K\|_{L^2(X\times X)}K_X.$$

Let X,Y be domains of \mathbb{C}^n such that $Y\subset X$, and T be a domain of \mathbb{R}^m . Let p(t,z) and f(t,z) be holomorphic functions defined in some neighborhoods of $T\times X$, and $T\times Y$ ($\subset \mathbb{C}^{m+n}$), respectively. Assume that for some constant M>0 we have

$$\operatorname{Re} p(t,z) > 0$$
, and $\|\log \left(p(t,z) + \overline{p(t,w)}\right)\|_{X \times X} \le M \ (\forall t \in T)$.

Then the analytic hermitian kernel on Y

$$E(z,w) := \int_T (p(t,z) + \overline{p(t,w)}) f(t,z) \overline{f(t,w)} \, dt$$

is not positive, but the energy argument in Theorem 2.5 is applicable to this E(z, w). This is because we can write $p(t, z) + \overline{p(t, w)} = e^{\log \left(p(t, z) + \overline{p(t, w)}\right)}$, and so we have

$$e^{M\cdot K_X(z,w)}(p(t,z)+\overline{p(t,w)})\gg 0\;(\forall t\in T).$$

Hence, if E(z, w) extends to an analytic hermitian kernel on X, then f(t, z) extends to a holomorphic function defined in a neighborhood of $T \times X$. Since $e^{M \cdot K_X(z,w)}$ is positive and invertible, we can generalize this argument by introducing a weaker order relation, quasi-positivity " $\gg_q 0$ ", than hermitian positivity:

$$K_1 \gg_q K_2 \iff \exists M > 0 \text{ such that } e^{M \cdot K_X} (K_1 - K_2) \gg 0.$$

It is easy to see that " \gg_q 0" is an order relation for analytic hermitian kernels on X. However, in the most applications to partial differential equations, we must consider 2-forms of the following type:

$$(3.1) E(z,w) := \int_T (P(t,z,\partial_z) + \overline{P(t,w,\partial_w)}) f(t,z) \overline{f(t,w)} \, dt,$$

where $P(t, z, \partial_z)$ is an elliptic differential operator with parameters t. Therefore we must consider Bergman kernels in the symbol spaces of analytic pseudo-differential operators. A symbol $P(z, \xi)$ of an analytic pseudo-differential operator $P(z, \partial_z)$ at $(z, \xi) \in T^*\mathbb{C}^n$ is a holomorphic function defined in some unbounded domain

$$\Omega_{\delta}(\overset{\circ}{z};\overset{\circ}{\xi}) := \{(z;\xi) \in T^*\mathbb{C}^n; |z - \overset{\circ}{z}| < \delta, |\xi/|\xi| - \overset{\circ}{\xi}/|\overset{\circ}{\xi}|| < \delta, |\xi| > \delta^{-1}\}$$

satisfying the following condition for some positive numbers δ, C , and some $\mu \in \mathbb{R}$:

$$|P(z,\xi)| \le C|\xi|^{\mu} \quad \text{in } \Omega_{\delta}(\overset{\circ}{z};\overset{\circ}{\xi}).$$

Since $\mu > 0$ in general, $P(z,\xi)$ is not in $L^2(\Omega; dv(z,\xi))$, where $dv(z,\xi)$ is the Lebesgue measure on $\mathbb{C}^n_z \times \mathbb{C}^n_\xi \simeq \mathbb{R}^{4n}$. So we must consider Bergman kernels with some weight, for example, $(|\xi|+1)^{-\beta}$ $(\beta>0)$. Though it is difficult to calculate the Bergman kernel for $\Omega_\delta(\mathring{z};\mathring{\xi})$ with such a weight, we can find some Bergman kernel satisfying the equivalent conditions. For that purpose, we have the following procedure:

Step1. Take a real *n*-dimensional vector subspace L of \mathbb{C}^n such that $\overset{\circ}{\xi} \in L \subset L + \sqrt{-1}L = \mathbb{C}^n$.

Step2. Choose \mathbb{R} -linearly independent n elements ξ^1, \ldots, ξ^n of $L \cap \{\xi \in \mathbb{C}^n; |\xi/|\xi| - \mathring{\xi}/|\mathring{\xi}|| < \delta\}$ such that

$$\stackrel{\circ}{\xi} \in \{s_1 \xi^1 + \dots + s_n \xi^n; s_1, \dots, s_n > 0\}.$$

Step3. Take $\theta^1, \ldots, \theta^n \in \mathbb{C}^n$ such that $\langle \xi^k, \theta^\ell \rangle := \sum_{j=1}^n \xi_j^k \theta_j^\ell = \delta_{k\ell}$.

Step 4. Choose a large integer N > 0 such that for a large $\lambda > 0$ we have

$$\lambda \overset{\circ}{\xi} \in U_N := \bigcap_{j=1}^n \{ \xi \in \mathbb{C}^n; |\arg(\langle \xi, \theta^j \rangle - N)| < \pi/(2N) \}$$
$$\subset \{ \xi \in \mathbb{C}^n; |\xi/|\xi| - \overset{\circ}{\xi}/|\overset{\circ}{\xi}|| < \delta, |\xi| > \delta^{-1} \}.$$

Hereafter, we use z^* instead of \overline{z} . Put $\rho(\xi) := |1 + \langle \xi, \overset{\circ}{\xi^*} \rangle|^{-2n-\sigma}$ ($\sigma < 1$), and

$$\Omega := \{ z \in \mathbb{C}^n; |z - \overset{\circ}{z}| < r \} \times U_N.$$

Then, the Bergman kernel of Ω with respect to $\rho(\xi)dzdz^*d\xi d\xi^*$ is given by

$$K_{\Omega}^{\rho}(z,\xi,w,\eta) = C_{1} \left(1 - \frac{\langle z - \mathring{z}, w^{*} - \mathring{z}^{*} \rangle}{r^{2}} \right)^{-n-1} \times \prod_{j=1}^{n} \left[\frac{(\xi'_{j}\eta'_{j}^{*})^{N-1} \{ (1 + \langle \xi, \mathring{\xi}^{*} \rangle)(1 + \langle \eta^{*}, \mathring{\xi} \rangle) \}^{1+\sigma/(2n)}}{(\xi'_{j}^{N} + \eta'_{j}^{*N})^{2}} \right],$$

where $\xi'_j = \langle \xi, \theta^j \rangle - N$, $\eta'_j = \langle \eta, \theta^j \rangle - N$ (see Theorem 3.11 in [6]). The most important property of this kernel is the following growth order estimate which is a key for our definition of quasi-positivity for micro hermitian kernels:

$$\begin{split} &|\partial_{(z,w^*)}K_{\Omega}^{\rho}| \leq C_2 \min\{|\xi|^{\sigma}, |\eta|^{\sigma}\} \ (0 \leq \sigma < 1), \\ &|\partial_{(z,w^*)}K_{\Omega}^{\rho}| \leq C_2 (|\xi| + |\eta|)^{\sigma} \quad (\sigma < 0), \\ &|\partial_{(\xi,\eta^*)}K_{\Omega}^{\rho}| \leq C_3 (|\xi| + |\eta|)^{\sigma - 1} \quad (\sigma < 1). \end{split}$$

Indeed, such a growth order property is indispensable to prove the exponential calculus of pseudo-differential operators with symbol $\exp\left(M\cdot K_{\Omega}^{\rho}(z,\xi,w^{*},\eta^{*})\right)$ (cf. Aoki [1]).

§ 4. Positivity for hermitian microkernels

We consider hermitian kernels K(x, u) as microfunctions on the anti-diagonal set:

$$\Delta^{a}(\sqrt{-1}T^{*}\mathbb{R}^{n}_{x}) = \{(x, u; i\xi, i\eta) \in \sqrt{-1}T^{*}(\mathbb{R}^{n}_{x} \times \mathbb{R}^{n}_{y}); x = u, \xi + \eta = 0\}.$$

Definition 4.1. Let k(x, u) be a germ at $p = (x, x; i\xi, -i\xi)$ $(\xi \neq 0)$ of microfunctions in $(x, u) \in \mathbb{R}^n_x \times \mathbb{R}^n_u$. Then, k(x, u) is said to be a hermitian microkernel at p if

$$k(x, u) = \overline{k(u, x)}$$
.

Further, $k(x, u) \gg 0$ at p (positive as a hermitian microkernel at p) if there exist a small r > 0, some open convex cones $\Gamma_1, \ldots, \Gamma_N$ in \mathbb{R}^n , and some positive analytic hermitian kernel $K_j(z, w)$ on

$$D_j := \{ z \in \mathbb{C}^n; |z - \overset{\circ}{x}| < r, \text{ Im } z \in \Gamma_j \}$$

for j = 1, ..., N such that

$$k(x, u) = \sum_{j=1}^{N} \left[K_j(x + i0\Gamma_j, \overline{u - i0\Gamma_j}) \right]$$
 at $\stackrel{\circ}{p}$.

Here, we used the notation $K_j(z, \overline{w})$ because $K_j(z, \overline{w})$ is holomorphic in (z, w) on $D_j \times D_j^*$. Further, for two hermitian microkernels $k_1(x, u), k_2(x, u)$ we define an order relation:

$$k_1(x,u) \gg k_2(x,u)$$
 at $\stackrel{\circ}{p} \iff k_1(x,u) - k_2(x,u) \gg 0$ at $\stackrel{\circ}{p}$.

Theorem 4.2. The relation $k_1 \gg k_2$ at \hat{p} satisfies the axioms of order relations; in particular, " $k \gg 0$ at \hat{p} and $-k \gg 0$ at \hat{p} " implies "k = 0 at \hat{p} ".

Example 4.3.

$$\delta(x-u) \gg 0$$
 on $\Delta^a(\sqrt{-1}T^*\mathbb{R}^n_x)$.

Definition 4.4. Let $T \subset \mathbb{R}^m$ be a bounded domain, and $\varphi(t) \in C^{\omega}(\overline{T})$ be a real-valued function satisfying

$$T = \{\varphi(t) > 0\}, \quad \text{and } \varphi(t) = 0, \ \nabla \varphi(t) \neq 0 \text{ on } \partial T.$$

Let $(\overset{\circ}{t},\overset{\circ}{x})$ be a point of $\overline{T} \times \mathbb{R}^n$. For a small r > 0, a hyperfunction f(t,x) defined on $\{(t,x) \in T \times \mathbb{R}^n; |t-\overset{\circ}{t}| < r, |x-\overset{\circ}{x}| < r\}$ is said to have real analytic parameters $t \in T$ at $(\overset{\circ}{t},\overset{\circ}{x})$ if the following i) and ii) are satisfied (also see the remark below):

- i) When $t \in \partial T$, f is mild on $\partial T \times \mathbb{R}^n$ from $T \times \mathbb{R}^n$. When $t \in T$, $\{|t t| < r\} \subset T$.
- ii) The extension $\operatorname{ext}_{\overline{T}}(f)$ of f to $\{|t \overset{\circ}{t}| < r, |x \overset{\circ}{x}| < r\}$ with support in \overline{T} satisfies

$$SS(\operatorname{ext}_{\overline{T}}(f)) \cap \{(t, x; i\tau, i\xi); \xi = 0, |t - \mathring{t}| < r, |x - \mathring{x}| < r\}$$

$$\subset \sqrt{-1} T^*_{\partial T \times \mathbb{R}^n}(\mathbb{R}^{m+n}) := \{(t, x; i\lambda \nabla \varphi(t), 0); t \in \partial T, \lambda \in \mathbb{R}\}.$$

Remark. The above definition for f(t,x) is equivalent to the following condition: There exist some r'>0, some open convex cones Γ_1,\ldots,Γ_N in \mathbb{R}^n , and some holomorphic function $F_j(\tilde{t},z)$ defined in

$$\left\{ (\tilde{t}, z) \in \mathbb{C}^{m+n}; \operatorname{dis}(\tilde{t}, T) < r', |z - \hat{x}| < r', \operatorname{Im} z \in \Gamma_j, \\ (-\varphi(\operatorname{Re} \tilde{t}))_+ + |\operatorname{Im} \tilde{t}| < r' |\operatorname{Im} z| \right\}$$

 $(j=1,\ldots,N)$ such that

$$f(t,x) = \sum_{j=1}^{N} F_j(t, x + i0\Gamma_j)$$
 in $\{t \in T, |x - \hat{x}| < r'\}$.

Here, $(s)_+ = s$ $(s \ge 0)_+ = 0$ $(s < 0)_+$. Further, let $Y(s)_+$ be the Heaviside function. Then,

$$\operatorname{ext}_{\overline{T}}(f(t,x)) = \sum_{j=1}^{N} F_j(t,z) Y(\varphi(t))|_{\operatorname{Im} z \to 0 \cdot \Gamma_j}.$$

§ 5. Positive hermitian pseudodifferential operators and quasi-positivity

We denote by z, w the complexifications of x, u, and by ξ, η the symbols for ∂_z, ∂_w . Further, we use the notation z^*, ξ^* for the complex conjugate of z, ξ ; for example, $\overset{\circ}{z}^*$. Therefore, the coordinates of $T^*(\mathbb{C}^n_z \times C^n_w)$ are given as $(z, w; \xi, \eta)$, and the hermitian pseudo-differential operators are defined on the hermitian diagonal set of $T^*(\mathbb{C}^n_z \times C^n_w)$:

$$\varDelta^h(T^*\mathbb{C}^n):=\{(z,w;\xi,\eta)\in T^*(\mathbb{C}^n_z\times C^n_w); w=z^*,\eta=\xi^*\}.$$

Definition 5.1. Let $\overset{\circ}{p} = (\overset{\circ}{z}, \overset{\circ}{z}^*; \overset{\circ}{\xi}, \overset{\circ}{\xi}^*)$ be a point of $\Delta^h(T^*\mathbb{C}^n)$ ($|\overset{\circ}{\xi}| = 1$). Then,

$$P = \sum_{j,k=0}^{\infty} P_{jk}(z, w, \xi, \eta)$$

is said to be a formal symbol at $\stackrel{\circ}{p}$ of product hermitian pseudo-differential operators if there exist some positive numbers $r,\ d,\ A\ (0 < A < 1)$ such that conditions i)~iii) hold for any j,k:

i) P_{jk} is holomorphic on $V_j \times V_k^*$, where

$$V_j := \{ (z; \xi) \in \mathbb{C}^n; |z - \mathring{z}| < r, |(\xi/|\xi|) - \mathring{\xi}| < r, |(j+1)d| < |\xi| \}.$$

ii) For any $\varepsilon > 0$, there exists a $C_{\varepsilon} > 0$ (independent of j, k) such that

$$|P_{jk}(z, w, \xi, \eta)| \le C_{\varepsilon} A^{j+k} e^{\varepsilon(|\xi| + |\eta|)}$$
 on $V_j \times V_k^*$.

iii) $P_{jk}(z, w, \xi, \eta) = \overline{P_{kj}(w^*, z^*, \eta^*, \xi^*)}$ on $V_j \times V_k^*$.

Concerning 0-equivalence class, we have the following definition: $\sum_{j,k} P_{jk} \sim 0$ if

$$\left| \sum_{j=0}^{s} \sum_{k=0}^{t} P_{jk}(z, w, \xi, \eta) \right| \le C'_{\epsilon} \exp\left(-\alpha \min\{s, t\} + \epsilon(|\xi| + |\eta|)\right)$$

holds on $V_s \times V_t^*$ for some $\alpha > 0$, every $s, t \ge 0$, and any $\epsilon > 0$ with some $C'_{\epsilon} > 0$.

Further, $P = \sum_{j,k=0}^{\infty} P_{jk}(z, w, \xi, \eta) \gg 0$ at $\hat{p} \iff$

For $\forall S (\geq 1), \forall J (\geq 0), \forall (z_{s,j}, \xi_{s,j}; \lambda_{s,j}) \in V_j \times \mathbb{C} \ (s = 1, \ldots, S, \ j = 0, 1, \ldots, J)$, we have

$$\sum_{s,t=1}^{S} \sum_{j,k=0}^{J} P_{jk}(z_{s,j}, z_{t,k}^*, \xi_{s,j}, \xi_{t,k}^*) \lambda_{s,j} \lambda_{t,k}^* \ge 0.$$

Proposition 5.2. Any formal symbol $\sum_{j,k} P_{jk}$ of product hermitian pseudo-

differential operators is equivalent to some simple symbol $P' = P'_{00}$ ($P'_{jk} = 0$ for $\forall (j,k) \neq (0,0)$) of product hermitian pseudo-differential operator. In particular, $\sum_{j,k} P_{jk}$ is iden-

tified with a usual pseudo-differential operator $P(w, z, \partial_z, \partial_w)$ at $\overset{\circ}{p} = (\overset{\circ}{z}, \overset{\circ}{z}^*; \overset{\circ}{\xi}, \overset{\circ}{\xi}^*) \in \Delta^h(T^*\mathbb{C}^n)$. Further, the operator product $P \circ Q$ of $P = \sum_{j,k} P_{jk}$ and $Q = \sum_{j,k} Q_{jk}$ is defined by

$$(P \circ Q)_{jk} := \sum_{\substack{j=|\alpha|+\ell+\ell'\\k=|\beta|+m+m'}} \frac{1}{\alpha! \ \beta!} \ \partial_{\xi}^{\alpha} \partial_{\eta}^{\beta} P_{\ell m} \cdot \partial_{z}^{\alpha} \partial_{w}^{\beta} Q_{\ell' m'}.$$

In particular, the product of two formal symbols of product hermitian pseudo-differential operators is a formal symbol of product hermitian pseudo-differential operators. Further, if $P = \sum_{j,k=0}^{\infty} P_{jk}(z, w, \xi, \eta) \gg 0$ at p and $Q = \sum_{j,k=0}^{\infty} Q_{jk}(z, w, \xi, \eta) \gg 0$ at p, then $P \circ Q \gg 0$ at p.

Example 5.3. Let $P(z,\xi)$ be a symbol at $(\mathring{z}; \mathring{\xi}) \in T^*\mathbb{C}^n$ of analytic pseudo-differential operator. Put

$$P^*(w,\eta) := \overline{P(w^*,\eta^*)}$$

Then,

$$P(z,\xi) + P^*(w,\eta), \quad P(z,\xi)P^*(w,\eta)$$

are examples of symbols at $p = (\mathring{z}, \mathring{z}^*; \mathring{\xi}, \mathring{\xi}^*) \in \Delta^h(T^*\mathbb{C}^n)$ of product hermitian pseudo-differential operators. Further, $P(z, \xi)P^*(w, \eta) \gg 0$ at p. Another non-trivial example of positive product hermitian pseudo-differential operators is

$$Q(z, w, \partial_z, \partial_w) := (P(z, \partial_z) + P^*(w, \partial_w))^{-1} \gg 0,$$

where $P(z,\xi)$ is a simple symbol of analytic pseudo-differential operators satisfying the following estimate for some m>0 and some C>0:

$$C^{-1}|\xi|^m \le \text{Re}\,P(z,\xi) \le |P(z,\xi)| \le C|\xi|^m \quad (|\xi| \to \infty)$$

in a conic neighborhood of $(\overset{\circ}{z};\overset{\circ}{\xi}) \in T^*\mathbb{C}^n$.

As we explained in Section 3, in order to treat an operator $P(t, x, \partial_x) + P^*(t, u, \partial_u)$ we must introduce a special type of positive product hermitian pseudo-differential operators; for example, $\exp\left(M \cdot K_{\Omega}^{\rho}(z, \xi, w^*, \eta^*)\right)$ in Section 3.

Definition 5.4. Let $\overset{\circ}{p} = (\overset{\circ}{t}, \overset{\circ}{z}, \overset{\circ}{\xi}, \overset{\circ}{\xi}^*)$ be a point $\mathbb{R}^m \times \Delta^h(T^*\mathbb{C}^n)$ $(|\overset{\circ}{\xi}| = 1)$. A simple symbol $P(t, z, w, \xi, \eta)$ is said to be a symbol at $\overset{\circ}{p}$ with real analytic parameters t of restricted hermitian pseudo-differential operators with growth order σ if P is holomorphic in

$$\begin{split} V(r) := & \{ (t, z, w, \xi, \eta) \in \mathbb{C}^{m+4n}; |t - \overset{\circ}{t}| < r, |z - \overset{\circ}{z}| < r, |w - \overset{\circ}{z}^*| < r, \\ & |(\xi/|\xi|) - \overset{\circ}{\xi}| < r, |(\eta/|\eta|) - \overset{\circ}{\xi}^*| < r, |\xi| > r^{-1}, |\eta| > r^{-1} \} \end{split}$$

such that $P(t, z, w, \xi, \eta) = \overline{P(t^*, w^*, z^*, \eta^*, \xi^*)}$ and

(5.1)
$$\begin{cases} |\nabla_{(z,w)}P| \le C \cdot \min\{|\xi|^{\sigma}, |\eta|^{\sigma}\}, \\ |\nabla_{(\xi,\eta)}P| \le C \cdot (|\xi| + |\eta|)^{\sigma-1}. \end{cases}$$

Here, $0 < \sigma < 1/2$, and C, r are some positive constants. Further, a symbol

$$\exp(P(t, z, w, \xi, \eta))$$

with a restricted hermitian symbol P is said to be a simple symbol at $\stackrel{\circ}{p}$ with real analytic parameters t of exponential restricted hermitian pseudo-differential operators with growth order σ . Indeed, it is easy from (5.1) to obtain an estimate

$$|P(t,z,w,\xi,\eta)| \le M(|\xi|^{\sigma} + |\eta|^{\sigma})$$
 on $V(r)$

with some M > 0. Hence, $\exp(P)$ is a symbol of product hermitian pseudo-differential operators.

Example 5.5.

$$P:=A(t,z,w)\cdotrac{(\xi_1\eta_1)^{1+(\sigma/2)}}{\xi_1^2+\eta_1^2} \ \ ext{at} \ \ (\overset{\circ}{t},\overset{\circ}{z},\overset{\circ}{z}^*;dz_1+dw_1),$$

is a symbol of positive restricted hermitian pseudo-differential operators with growth order σ , where A(t,z,w) is a holomorphic function in a neighborhood of $(\overset{\circ}{t},\overset{\circ}{z},\overset{\circ}{z}^*)$ such that for any real fixed t, $A(t,z,w^*)$ is a positive analytic hermitian kernel in z,w.

Definition 5.6. Let $\stackrel{\circ}{p} = (\stackrel{\circ}{x}, \stackrel{\circ}{x}; i\stackrel{\circ}{\xi}, -i\stackrel{\circ}{\xi})$ be a point of $\Delta^a(\sqrt{-1}T^*\mathbb{R}^n)$ $(|\stackrel{\circ}{\xi}| = 1)$. Then a hermitian microkernel k(x,u) is said to be quasi-positive, $k(x,u) \gg_q 0$ at $\stackrel{\circ}{p}$, if there exists a symbol $P(z, w, \xi, \eta)$ at $\stackrel{\circ}{p}$ of positive restricted hermitian pseudo-differential operators with growth order $\sigma < 1/2$ such that $\exp(P(z, w, \xi, \eta)) : k(x, u) \gg 0$ at $\stackrel{\circ}{p}$. Namely,

$$k(x,u)\gg_q 0\iff \exists P \text{ (restricted, positive) s. t.}: \exp(P(z,w,\xi,\eta)): k(x,u)\gg 0.$$

Here, : Q : means the pseudo-differential operator defined by the symbol Q. It is known that the quasi-positivity satisfies the axioms of order relations for hermitian microkernels (Theorem 2.7 in [7]).

§ 6. K. Yamasaki's Sobolev type 2-form of order 0

Let $T \subset \mathbb{R}^m$ be a bounded domain with real analytic boundary ∂T . Let f(t,x) be a hyperfunction on $T \times \{|x - \mathring{x}| < r\}$, which have real analytic parameters $t \in T$ at any point of $\overline{T} \times \{\mathring{x}\}$. For $\mu > 0$, a hermitian microkernel

$$\int_{\mathbb{R}^m} ((-\Delta_x)^{\mu} + (-\Delta_u)^{\mu}) \operatorname{ext}_{\overline{T}}(f(t,x)\overline{f(t,u)}) dt,$$

in (x, u) is almost identified with Sobolev type 2-form of order μ with respect to x, u. However, concerning t, it is only an L^2 -form. Though we can treat a more general 2-form like (3.1) by using quasi-positivity, we cannot treat the following type 2-form:

(6.1)
$$E(x,u) := \int_T (P(t,x,\partial_t,\partial_x) + \overline{P(s,u,\partial_s,\partial_u)}) f(t,x) \overline{f(s,u)}|_{t=s} dt,$$

where $P(t, x, \partial_t, \partial_x)$ is a pseudo-differential operator including ∂_t . Even in such a case, if P is of finite order with respect to ∂_t , we treat E by using microlocal energy methods for vector-valued functions developed in [7]. Indeed, in that case, we consider all the derivatives $\partial_t^{\alpha} f(t, x)$ as independent hyperfunctions. However, such a method cannot be applied to the case:

$$P = 1 + \sum_{\ell=1}^{\infty} \partial_t^{\ell} \partial_x^{-\ell}$$

at $(0,0;0,i) \in \sqrt{-1}T^*(\mathbb{R}_t \times \mathbb{R}_x)$ because P is not of finite order concerning ∂_t . To overcome this difficulty, K. Yamasaki [11] introduced a Sobolev-type 2-form of order 0.

Definition 6.1. Let s, u be the copies of t, x, respectively. For positive numbers C_1, C_2 , and constants $p, q \geq 0$, we define a micro-differential operator Λ (a fundamental

microdifferential operator) in the variables $(t, x, s, u) \in \mathbb{R}^{m+n+m+n}$ of order 0 (consider in $\{\xi_n \neq 0, \eta_n \neq 0\}$):

$$\Lambda(\partial_t, \partial_{x_n}, \partial_s, \partial_{u_n}) := \sum_{j \geq 0, I \geq 0} \left(\frac{\Gamma((p+1)j + q|I| + 1)}{\Gamma(pj + q|I| + 1)} \right)^2 C_1^{2j} C_2^{2|I|} \partial_t^I \partial_{x_n}^{-j - |I|} \partial_s^I \partial_{u_n}^{-j - |I|},$$

where
$$j \in \mathbb{N}_+, I = (i_1, \dots, i_m) \in \mathbb{N}_+^m \ (\mathbb{N}_+ = \{0, 1, 2, \dots\}).$$

Definition 6.2. Let f(t,x) and g(t,x) be hyperfunctions on $T \times \{|x - \mathring{x}| < r\}$, which have real analytic parameters $t \in T$ at any point of $\overline{T} \times \{\mathring{x}\}$. Then, we can introduce an inner product form of f, g as follows:

$$E[f,g](x,u) := \int_{\mathbb{R}^m} \operatorname{ext}_{\overline{T}} \left[\Lambda(\partial_t, \partial_{x_n}, \partial_s, \partial_{u_n}) \left(f(t,x) \overline{g(s,u)} \right) \Big|_{t=s} \right] dt.$$

Hence, our order 0 Sobolev type 2-form over \overline{T} of f(t,x) is defined as

Let $A(t, x, \partial_t, \partial_x)$ be any 0-th order analytic pseudo-differential operator. Then, our aim is to get the following inequality:

(6.2)
$$E[Af, g](x, u) + E[g, Af](x, u) \ll_q C_A (E[f, f](x, u) + E[g, g](x, u))$$

with a positive constant C_A depending only on A. Kaito Yamasaki's main result [11] is the following:

Theorem 6.3. Put $C_1 = C_2 C_3$, and

(6.3)
$$\begin{cases} p \ge 0, & q \ge 1, \quad p - q \ge -1, \\ C_2 > \frac{2^{m+2}}{\lambda}, & C_3 > \frac{2^{m+3}}{\lambda}, \quad C_2 C_3 > \max\{\frac{8}{\lambda}, \frac{16(m+n)}{\lambda^2}\}. \end{cases}$$

Then, for

$$C_A = 2^{2m+1}N(A;\lambda)$$

we have an inequality (6.2), where $N(A; \lambda)$ is the formal norm of A due to Boutet de Monvel. Namely, $N(A; \lambda)$ is a formal power series of λ , and so $\lambda > 0$ should be taken small enough such that $N(A; \lambda)$ is convergent. Further, the condition for p, q is the necessary and sufficient to get (6.2).

Remark. In the definition of E[f,g], we need some stronger assumption on the singular spectrum of f,g for a given C_2 than the assumption ii) in Definition 4.4. Such a condition is fulfilled if C_2 is sufficiently small.

References

- [1] Aoki, T., Calcul exponentiel des opérateurs microdifférentiels d'ordre infini, I, Ann. Inst. Fourier, Grenoble 33(1983), 227-250.
- [2] Bremermann, H., Holomorphic continuation of the kernel function and the Bergman metric in several complex variables, Lectures on Functions of a Complex Variable, Ann Arbor, Mich., 1955, pp. 349-383.
- [3] Donoghue, W. F. Jr., Monotone Matrix Functions and Analytic Continuation, Die Grundlehren der mathematischen Wissenschaften, Band 207. Berlin, Heidelberg, New York: Springer 1974.
- [4] _____, Reproducing kernel spaces and analytic continuation, Rocky Mt. J. Math. 10-1(1980), 85-97.
- [5] Kataoka, K., Quasi-positivity for pseudodifferential operators and microlocal energy methods, in Proceedings of Taniguchi Symp. HERT, KATATA 1984, 125-141.
- [6] _____, Microlocal energy methods and pseudo-differential operators, Invent. math. 81(1985), 305-340.
- [7] _____, Some applications of microlocal energy methods to analytic hypoellipticity, Prospect of Algebraic Analysis, Vol. 1 (1988), 287-303.
- [8] Krěin, M.G., Hermitian positive kernels on homogeneous spaces I, Ukrain. Mat. Žurnal 1(4)(1949), 64-98: Am. Math. Soc. Transl. Ser.(2) 34(1963), 69-108.
- [9] Meschkowski, H., Hilbertsche Räume mit Kernfunktion, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 113, Berlin-Heidelberg-New York, Springer 1973.
- [10] Sommer, F., and Mehring, J., Kernfunktion und Hüllenbildung in der Funktionentheorie mehrerer Veränderlichen, Math. Ann. 131(1956), 1-16.
- [11] Yamasaki, K, A Sobolev type norm of order 0 for microfunctions with real analytic parameters, and microlocal energy methods, Master course thesis, March 2015, Graduate School of Mathematical Sciences, the University of Tokyo.