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Sato Hyperfunctions and Reproducing Kernels

(B & BAERE)

By

Kiyoomi KATAOKA * (R {&k)

Abstract

We survey the theory of the microlocal energy method for hyperfunctions and microfunc-
tions developed in [5, 6, 7]; in particular, we introduce the important notions, positivity and
quasi-positivity for hermitian microkernels. The quasi-positivity is based on the good proper-
ties of Bergman’s reproducing kernels for some conic domains in T*C". Further we introduce
some recent result on the Sobolev type 2-forms of order 0 for microfunctions with real analytic
parameters obtained by Kaito Yamasaki [11].

§1. What is an energy method in the theory of hyperfunctions?

For a Sato hyperfunction f(z), we cannot define |f(z)|? or LP-norm || f||, in general.
For p = 2, however, we can consider a microfunction f(z)f(u) as the substitute of
|f(z)|? as introduced in [5, 6]. Further, for a hyperfunction f(t,z) with real analytic
parameters ¢ € T', we can consider a hyperfunction

B = /T_ F(t, o) )t (: / extr(f(t,2) f(t,u))dt)

as the L2-energy form of f ( the precise definition of real analytic parameters t € T and
the meaning of the integration over T will be given in the later section). At the same
time, in energy arguments we use some inequality (an order relation)

ki(z,u) < ko(z,u) at (z,z;97, —in)
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instead of the equality. In order to illustrate our energy method, we consider the
following example: Let @ C R} be a bounded domain with real analytic boundary
N = 09, and f(t,z) be a hyperfunction in {t € R;ja < t < b} x Q satisfying the
boundary value problem:

(1.1) {(8t — Az)f(t,x) =0 in (a,b) x Q,

flt,z)=0 on (a,b) x 0N.

We remark here that, since (a,b) x 09 is non-characteristic to 0; — A, the boundary
value f|(4,5)x00 is well-defined for any hyperfunction solution f. Then, our conclusion
is that f € &/((a,b) x Q) (real analyticity of f up to the boundary). To prove this, we
consider the energy form:

12) E(t,s) = /ﬁ f(t,2) F(5,2) de.

Indeed, this is a well-defined hyperfunction in (¢, s) because we have not only an estimate
SS(f) C {(t,z;iT,i€); x € Q,€ =0},

but also the estimates up to the boundary: |

SS(extg(f(t,z))) C {(t, z;97,i€);z € Q,€ = 0} U {(t, z; 7, iAdp(z)); () = 0},
SS(extg(f(t 2)f(s,))) C
{(ta $,T; iTlviT2a l&)a T € Q-ag = O} U {(t$ S, T; iTla iTZ, 2/\d(P(-T)), QO(ZL') = 0}

Here, p(z) € C¥(Q) satisfies 2 = {p(z) > 0},dp(z) # 0, and the boundary value
theory of hyperfunction solutions permits the extension extg(f(t,x)f(s,z)) (roughly,
= xg(@)f(t,z)f(s,x) ) of f(t,z)f(s,x) satisfying the above estimates. Therefore (1.2)

is a hyperfunction on (a,b)?. Then, we have

n

OE(t,s) =/ extg (0, f(t, x) - f(s,x))dz :/ extg(Az f(t,z) - f(s,z))dx

= —/ extg(Vzf(t,z) - Vo f(s,x)) dx = 0:E(t, s).

n

Hence, (8; — 95)E(t,s) = 0. Since 8; — 0s is an elliptic operator on
Aa(‘/—lT*R) = {(t, S; 1:7'1, ’1:7'2); t = 8,71 = -—7'2}’
we get an estimate:

SS(E(t,s)) N A%*(vV—=1T*R) C {11 = 7 = 0}.



Then, some theorem on the integration of positive hermitian microkernels concludes the
real analyticity of the integrand f(¢, ) up to the boundary.

The plan of this article is the following: In Section 2, we give a brief introduction
to positivity of analytic hermitian kernels. In Section 3 we show the importance of
some Bergman reproducing kernels in our theory with respect to the definition of quasi-
positivity. Section 4 is devoted to introduce the definition of positivity in microlocal
analysis. In Section 5 we give the definition of quasi-positivity of hermitian microkernels
by using positive hermitian pseudodifferential operators of infinite order. In Section 6
we introduce K. Yamasaki’s result on Sobolev type 2-forms of order 0 for microfunctions
with real analytic parameters t € T'. ‘

Hereafter we consider hyperfunctions f(z) or f(t,z), where t = (¢1,...,t,,) are real
analytic parameters. So the variables ¢, x change the roles from Section 2.

§ 2. Positive analytic hermitian kernels

Definition 2.1. Let X be a set. A C-valued function K(z,y) on X x X is said to
be a hermitian kernel on X if

K(y,z) = K(z,y) (Vz,y € X).
Further a hermitian kernel K(z,y) on X is said to be K > 0 (positive)<=>

For VN € N,Vx,y,...,Vany € X, V&1,...,VEn € C, we have

N
> K(zj,zk)¢& > 0.
jk=1
Then, we define an order relation for hermitian kernels K;, K on X by
Ki>» Ky <= K1 — K> 0.
It is easy to see that
K1>>0,K2>>0=>K1+K2>>O, K, K, >0,

where K, - K5 is a product as functions on X x X.

Definition 2.2. Let X be a domain of C™. Then, a hermitian kernel K (z,w) on X
is said to be an analytic hermitian kernel on X if K(z,w) is holomorphic in variables
(z,w) on X x X*, where

X*:={zeC%z e X}.
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Example 2.3. Put X = {z € C;Imz > 0}, and a > —1. Then we have a positive
analytic hermitian kernel on X:

1 o N
/ e? . eitwi®dt > (.
(87 + 1) 0

{c-2/i} " = 7

The following theorem is the most important for our theory, which is due to several
authors; the first statement is due to Kréin [8], Bremermann [2], Sommer-Mehring
[10], Meschkowski [9], Donoghue [3, 4], and the second statement is due to Kréin [8],
Donoghue [4], Meschkowski [9].

Theorem 2.4. Let X, X' be domains of C" such that § # X' ¢ X. Let K;, K> be
analytic hermitian kernels on X. Then we have the following:
i) Ki < Koon X' x X' = K; < Kpon X xX.
ii) Let K3 be a hermitian kernel (not necessarily analytic) on X' satisfying K1 <
K3 < Ky on X' x X'. Then there exists a unique analytic hermitian kernel I?; on
X satisfying
Ki < K3 <K,onXxX, Ks|xxx =Ks

Let T be a domain of R™, and X, X’ be domains of C" such that § # X' C X.

Theorem 2.5. (Corollary 1.14 in [6]). Let K(z,w;t) be a C¥-function (or C*°-
function) on X' x X' x T satisfying the following i), ii):

i) ForVt € T, K(z,w;t) is a positive analytic hermitian kernel on X'.
i) For any compact subset L C X', K(z,w;t) is integrable on L x L x T,

If
E(z,w) ::/K(z,w;t)dt
T

extends to X x X* analytically with respect to (z,W), then K(z,w;t) extends uniquely
to X x X x T as a positive analytic hermitian kernel on X with C¥ (or C* resp.)
parameterst € T'.

§3. Quasi-positivity and Bergman reproducing kernels
Definition 3.1. For a domain X C C", we set

A2(X) = {f(2) € O(X); /X £ (2)Pddy < oo},
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where z = z +éy. It is well-known that A%(X) is a Hilbert space (Bergman space). Let
{p;(2)}52, be any completely orthonormal system for A%(X). Then,

Kx(z,w) = Z%’(z)%‘ (w)

is said to be a Bergman kernel of X. Indeed, it is well-known that this series converges
locally uniformly on X x X, and that Kx does not depend on the choice of {;(2)}32,.
It is clear that Kx is a positive analytic hermitian kernel on X.

The importance of Bergman kernels is based on the following proposition ([6]). For

the reader’s convenience, we will give a proof.

Proposition 3.2. Let K(z,w) be an analytic hermitian kernel on X such that

K| xxx = \///XXX | K (2, w)|?dzdydudv < oo.

Then we have an inequality on X x X: ~|K|lxxx - Kx < K < ||K||xxx - Kx-

Proof. Define a linear operator T' : A*(X) 3> f — [, K(z,w)f(w)dudv € A%*(X),
where w = u +4v. Then this is an integral operator of Hilbert-Schmidt type. Therefore
there exist a completely orthonormal system {i;}52, of A%(X), and real numbers \; €
R (7 =1,2,...) such that

K(z,w) = Z/\j%(Z)%(W)-

Hence we have -
Z/\? = // |K (2, w)|2dzdydudv < oo.
In particular, |A;| < [|K (2, w)||z2(xxx) (Vj). Therefore,
— K lL2(xxx) Kx < K < ||K]|L2(xxx)Kx-
O

Let X,Y be domains of C™ such that Y C X, and T be a domain of R™. Let
p(t,z) and f(t, z) be holomorphic functions defined in some neighborhoods of T x X,
and T' x Y (C C™*™), respectively. Assume that for some constant M > 0 we have

Rep(t,2) > 0, and ||log (p(t, 2) + p(t, w)) || xxx < M (Vt € T).
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Then the analytic hermitian kernel on Y

E(z,w) = /T (p(t,2) + P 0)) £ (t, 2) F 6y w) dt

is not positive, but the energy argument in Theorem 2.5 is applicable to this E(z,w).

This is because we can write p(t, z) + p(t,w) = e°8 (p(t’z)“’(t’w)), and so we have

M Ex(0) (p(t, 2) + p(t, w)) > 0 (Vt € T).

Hence, if E(z, w) extends to an analytic hermitian kernel on X, then f(t, z) extends to a
holomorphic function defined in a neighborhood of T x X. Since eM&x (2w) s positive
and invertible, we can generalize this argument by introducing a weaker order relation,
quasi-positivity “>, 0”, than hermitian positivity:

K, >, Ky <= 3M > Osuch that eM 5¥ (K; — K3) > 0.

It is easy to see that “>, 0” is an order relation for analytic hermitian kernels on X.
However, in the most applications to partial differential equations, we must consider

2-forms of the following type:
(3.1) E(z,w) := / (P(t,2,0:) + P(t,w,00))f(t, 2) f(t,w) dt,
T

where P(t, z,d,) is an elliptic differential operator with parameters ¢. Therefore we must
consider Bergman kernels in the symbol spaces of analytic pseudo-differential operators.

A symbol P(z,€) of an analytic pseudo-differential operator P(z,8,) at (2;€) € T*C™
is a holomorphic function defined in some unbounded domain

26(2;€) = {(2:€) € T"C™; |2 ~ 2| < 6, [¢/1€] - &/I€ll < 6,)¢] > 677}
satisfying the following condition for some positive numbers 6, C, and some p € R:
|P(z,6)] < Clgl*  in 26(2€).

Since 4 > 0 in general, P(z,£) is not in L2(£2;dv(z,£)), where dv(z,€) is the Lebesgue
measure on C7 x C¢ =~ R4". So we must consider Bergman kernels with some weight, for
example, (|¢] 4+ 1)7? (8 > 0). Though it is difficult to calculate the Bergman kernel for

o]
25 (g, ¢) with such a weight, we can find some Bergman kernel satisfying the equivalent
conditions. For that purpose, we have the following procedure:

Stepl. Take a real n-dimensional vector subspace L of C" such that £ € L C L +

v—1L =C".



Step2. Choose R-linearly independent n elements £1,...,&" of
LO{€ € T le/l¢] — £/I€]] < 6} such that

£e€{s16h + - +5,8"81,...,8, > 0}
Step3. Take 6*,...,60™ € C™ such that (¢*, %) .= PRy ER05 = Ore.

Step4. Choose a large integer N > 0 such that for a large A > 0 we have

M € Uy = [{€ € T arg((&,6%) — N)| < n/(2N)}

Jj=1

C {& €T le/le] —£/I€] < 8,1¢] > 571

Hereafter, we use 2* instead of Z. Put p(£) := |1 + (£,£*)|72"° (0 < 1), and
Q:={zeC%|z-2 <1} x Uy.

Then, the Bergman kernel of {2 with respect to p(§)dzdz*dédE* is given by

° * 0, —n—1
Kg(z,ﬁ,w,n) =C (1__ <Z—z,w — 2 >)

y I"I Em N =1{(L + (£, €))L + (7, €))} e/ m)

€N+ |

where & = (£,67) — N, nj = (n,67) — N (see Theorem 3.11 in [6]). The most important
property of this kernel is the following growth order estimate which is a key for our

definition of quasi-positivity for micro hermitian kernels:
|0z K| < Cominf[¢]7, 9|7} (0 <o < 1),

102, um KB < Co(J] + [n))7 (0 <0),
10 Kol < Ca(lE] +1m))7 ! (o< 1).

Indeed, such a growth order property is indispensable to prove the exponential calculus
of pseudo-differential operators with symbol exp (M - K3 (z,&, w*,n*)) (cf. Aoki [1]).

§4. Positivity for hermitian microkernels

We consider hermitian kernels K(z,u) as microfunctions on the anti-diagonal set:

A (V=IT'RY) = {(2, w; i€, in) € V=1T* (R} x RY);z = u, £ + 7 = 0}.
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[e] o] o
Definition 4.1. Let k(z, u) be agerm at p = (z, z; i€, —i€) (€ # 0) of microfunctions
in (z,u) € R? x R*. Then, k(z,u) is said to be a hermitian microkernel at pif

k(z,u) = k(u, ).

Further, k(z, ) > 0 at p (positive as a hermitian microkernel at p) if there exist a small
r > 0, some open convex cones I1,...,I'y in R", and some positive analytic hermitian
kernel K;(z,w) on |

Dj:={z¢€ Clz—z| <r Imz € I}}

for j =1,..., N such that

k(z,u) = (z+i00,u —0I;)] atp.

||'Mz

Here, we used the notation K;(z,W) because K,;(z,W) is holomorphic in (z,w) on
D; x D}. Further, for two hermitian microkernels ki (z, u), k2 (z,u) we define an or-

der relation:
ky(z,u) > ko(z,u) at p <= ki(z,u) — ka(z,u) > 0 at p.

Theorem 4.2. The relation k1 > ko at 10) satisfies the axioms of order relations; in

particular, “k > 0 at 109 and —k > 0 at ;)” implies “k =0 at 5”.

Example 4.3.
5(zx—u)>0 on A*(vV-1T*RY).

Definition 4.4. Let T C R™ be a bounded domain, and ¢(t) € C*(T) be a real-
valued function satisfying

T = {p(t) > 0}, and p(t) =0, Vy(t) # 0 on oT.

Let (2, z) be a point of T x R™. For a small 7 > 0, a hyperfunction f(t,z) defined on
{(t,z) e T x R™; |t — 2] < r,|z — 2| < r} is said to have real analytic parameters t € T
at (;, z) if the following i) and ii) are satisfied (also see the remark below):
i) When ¢ € 8T, f is mild on T x R™ from T x R*. When t € T, {|t —t| <7} C T.
ii) The extension extz(f) of f to {|t — §| < r, |z —z| < r} with support in T satisfies

SS(extm(£)) N {(¢, 2397, i€);€ = O, |t — £| < r, ]z — 3| < r}
C V—=1T5p g (R™*") 1= {(t, 2;iAV(¢),0);t € 0T, X € R}.



Remark. The above definition for f(t,z) is equivalent to the following condition:
There exist some r’ > 0, some open convex cones I7,..., 'y in R”, and some holomor-
phic function Fj(%,z) defined in

{(#,2) e C™"; dis(f,T) < v/, |z — 2| < ', Imz € I},
(—pRet))s + | Imi] < r'|Imz| }

(j=1,...,N) such that
N
=Y Fi(t,z+i0I}) in{teT,|z—z|<r'}.
j=1
Here, (s)+ = s (s > 0),=0 (s < 0). Further, let Y(s) be the Heaviside function. Then,

exty(f ZF (t,2) Y(o(t))|1m z—0-1; -

§ 5. Positive hermitian pseudodifferential operators and quasi-positivity

We denote by z,w the complexifications of x,u, and by &,n the symbols for 9,,0,,.
Further, we use the notation z*,£* for the complex conjugate of z,&; for example, 2*.
Therefore, the coordinates of T*(C7? x C2) are given as (z,w;&,n), and the hermitian
pseudo-differential operators are defined on the hermitian diagonal set of T*(C? x CZ):

AMTC") = {(2,w;€,m) € TH(Cy x Cplyw = 2", =€"}.

Definition 5.1. Let p = (2, 2*; 2,2*) be a point of AR(T*C") (I &l =1). Then,

Zngzw§77)

7,k=0

P

is said to be a formal symbol at p of product hermitian pseudo-differential operators if
there exist some positive numbers 7, d, A (0 < A < 1) such that conditions i)~ iii) hold
for any j,k :

i) Pjj is holomorphic on V; x V;*, where

Vi i={(2:€) € C%lz— 2| <m, |(€/L€]) — &l <7, (G +1)d < [¢]}.
ii) For any € > 0, there exists a Cz > 0 (independent of j, k) such that

|Pj(z,w,&,m)| < CeATThes(EIHID on v, x V2.
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lll) ij(Z,U),f,n) = ij(w*7Z*7n*7€*) on V] X Vk:*'
Concerning 0-equivalence class, we have the following definition: ) Pjx ~ 0 if
Jk

t

SN Pik(z,w,&,m)| < Clexp (— amin{s, t} + €([¢] + [n]))

=0 k=0

holds on V; x V;* for some a > 0, every s,t > 0, and any € > 0 with some Cl > 0.
Further, P = ka:o Pji(z,w,§,m) >0 at;J —
For VS(Z 1),VJ(Z 0),v(zs,j,£s,j;/\s,j) € VJ x C (S = 1,...,5, ] - 0,1,...,J), we

have
J

S
Z Z Pji(2s,5, 2 k> 5,55 E1,6) Asg At 2 0-
t=1 k:
Proposition 5.2. Any formal symbol > Pji, of product hermitian pseudo-
J.k
differential operators is equivalent to some simple symbol P' = Py, (P}, = 0 forV(j, k) #
(0,0)) of product hermitian pseudo-differential operator. In particular, ) Pjx is iden-
Tk

tified with a usual pseudo-differential operator P(w,z,0;,0,) at p = (z,g*; £,£%) €
AR(T*C™). Further, the operator product P o @ of P = 3 Pjx and Q = Zka is
J.k j

defined by

1
(PoQr= Y, a,—@agaﬁpem-agam,m,.
j=lal+e+e T
k=|8|+m+m/

In particular, the product of two formal symbols of product hermitian pseudo-differential
operators is a formal symbol of product hermitian pseudo-differential operators. Further,

if P =350 Pirlz,w,6,m) > 0 at p and Q = 3550 Qj(2,w,£,n) > 0 at p, then
PoQ >0 atp.

Example 5.3. Let P(z,£) be a symbol at (2,2) € T*C" of analytic pseudo-
differential operator. Put
P*(w,n) := P(w*,n*)
Then,
P(z,6) + P*(w,n), P(z,§)P"(w,n)

o O
are examples of symbols at p = (2, 2*; £,&%) € AM(T*C") of product hermitian pseudo-
differential operators. Further, P(z,&)P*(w,n) > 0 at p. Another non-trivial example
of positive product hermitian pseudo-differential operators is

Q(z,w,8s,0y) 1= (P(2,8.) + P*(w,8,)) " >0,



where P(z,£) is a simple symbol of analytic pseudo-differential operators satisfying the
following estimate for some m > 0 and some C' > 0:

CHEI™ < Re P(2,€) < [P(2,€)| < ClEI™  (|§] — o0)
in a conic neighborhood of (Z; 2) eT*C".

As we explained in Section 3, in order to treat an operator P(t,z, ;) + P*(t,u,d,)
we must introduce a special type of positive product hermitian pseudo-differential op-
erators; for example, exp (M - Kf(z,&,w*,7*)) in Section 3.

Definition 5.4. Let p = (2,2,2*;2,2*) be a point R™ x A*(T*C") ([2{ =1). A
simple symbol P(t,z,w,&,n) is said to be a symbol at p with real analytic parame-
ters t of restricted hermitian pseudo-differential operators with growth order o if P is
holomorphic in

V(r) ={(t, z,w,&n) € C™H" |t — ;| <rlz— Zl <7 w— §*| <,
1€/1€]) = &l <ml(n/In)) = €1 <r, [l >~ Inl >r '}
such that P(t,z,w,&,n) = P(t*,w*, z*,n*,£*) and

IV(zw) Pl < C - min{[¢]7, 7|7},

(5.1)
IViemPl < C-(I€]+ Inl)7 2.

Here, 0 < 0 < 1/2, and C,r are some positive constants. Further, a symbol

eXp(P(t, z? w’ é-’ 77))

with a restricted hermitian symbol P is said to be a simple symbol at ;?) with real
analytic parameters ¢ of exponential restricted hermitian pseudo-differential operators
with growth order o. Indeed, it is easy from (5.1) to obtain an estimate

|P(t,z,w,§,m)| < M([]7 + |n|7) on V(r)

with some M > 0. Hence, exp(P) is a symbol of product hermitian pseudo-differential
operators.

Example 5.5.
(51771)1+(”/2)
& +n?

is a symbol of positive restricted hermitian pseudo-differential operators with growth

P = At z,w) - at (t,2, 5% dz + dwy),

9 o0 o
order o, where A(t, z,w) is a holomorphic function in a neighborhood of (¢, z, 2*) such
that for any real fixed t, A(t, z,w*) is a positive analytic hermitian kernel in z, w.
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Definition 5.6. Let p = (z, :%;iz, —22) be a point of A?(/—1T*R") (]2[ =1). Then
a hermitian microkernel k(z,u) is said to be quasi-positive, k(z,u) >, 0 at _f), if there
exists a symbol P(z,w,&,n) at p of positive restricted hermitian pseudo-differential
operators with growth order o < 1/2 such that : exp(P(z,w,&,7)) : k(z,u) >0 at p.
Namely,

k(z,u) >0 <= 3P (restricted, positive) s. t. : exp(P(z,w,§,7)) : k(z,u) > 0.

Here, : @) : means the pseudo-differential operator defined by the symbol Q. It
is known that the quasi-positivity satisfies the axioms of order relations for hermitian
microkernels (Theorem 2.7 in [7]).

§6. K. Yamasaki’s Sobolev type 2-form of order 0

Let T C R™ be a bounded domain with real analytic boundary 8T. Let f(t,z) be a
hyperfunction on T x {|z — :%| < r}, which have real analytic parameters ¢t € T at any
point of T x {z}. For s > 0, a hermitian microkernel

[ (a0 + (A extr(f(t o)

in (z,u) is almost identified with Sobolev type 2-form of order p with respect to z,u.
However, concerning t, it is only an L2-form. Though we can treat a more general
2-form like (3.1) by using quasi-positivity, we cannot treat the following type 2-form:

6.1)  E(zu) = /T (P(t,, 0, 8) + P(5,1, 35, 0)) £ (t, 2) F (5,0 [ss dt,

where P(t,z,0;,0,) is a pseudo-differential operator including 8;. Even in such a case,
if P is of finite order with respect to 0;, we treat E by using microlocal energy methods
for vector-valued functions developed in [7]. Indeed, in that case, we consider all the
derivatives 0¢ f(t,z) as independent hyperfunctions. However, such a method cannot
be applied to the case :

oo
P=1+) 0{;*
(=1

at (0,0;0,7) € v/—1T*(R; x R;) because P is not of finite order concerning d;. To
overcome this difficulty, K. Yamasaki [11] introduced a Sobolev-type 2-form of order 0.

Definition 6.1. Let s,u be the copies of t,z, respectively. For positive numbers
C1,C5, and constants p, ¢ > 0, we define a micro-differential operator A (a fundamental
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microdifferential operator) in the variables (t,z,s,u) € R™t"T™+% of order 0 (consider

in {&n # 0,nn # 0}):

F((p+l)j+Q]I]+1) 2 2j 2111 oI a—i—|I| I a—j—|1|
A(ataal‘njas7aun) = Z < B - 01'702 8t 8137‘17 asau: y
iseteo \ Lpi+dll+1)

where j € N, I = (i1,...,im) € NP (Ny ={0,1,2,...}).

Definition 6.2. Let f(¢,) and g(t, z) be hyperfunctions on T'x {|z—z| < r}, which
have real analytic parameters ¢ € T' at any point of T x {:%} Then, we can introduce
an inner product form of f, g as follows:

E[f,g](ﬂf,u) ::/ eXtT[A(ataa:cn,asa6un)(f(t7x)g(8’u))‘ ]dt

m t=s

Hence, our order 0 Sobolev type 2-form over T of f(t,z) is defined as

E[f, fl(z,u).

Let A(t,z, 0, 0,) be any 0-th order analytic pseudo-differential operator. Then, our
aim is to get the following inequality:

(6.2)  E[Af,g)(z, ) + Elg, Afl(z,u) <q Ca (E[f, fl(z,u) + Elg, 9(z,u))

with a positive constant C4 depending only on A. Kaito Yamasaki’s main result [11} is
the following:

Theorem 6.3. Put C; = Cy Cs, and

p=>0, ¢>1, p—q>-1,

2m+2 2m+3

(6.3)
Co> 55—, (O3> 5y, 0203>max{§,ﬁt{—’gﬂ}.

Then, for

Ca =22"TIN(A; )
we have an inequality (6.2), where N(A;\) is the formal norm of A due to Boutet de
Monvel. Namely, N(A; ) is a formal power series of A, and so A > 0 should be taken
small enough such that N(A;\) is convergent. Further, the condition for p,q is the
necessary and sufficient to get (6.2).

Remark. In the definition of E[f, g], we need some stronger assumption on the sin-
gular spectrum of f, g for a given Cy than the assumption ii) in Definition 4.4. Such a
condition is fulfilled if Cs is sufficiently small.
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