A NOTE ON MULTIVALENT FUNCTIONS

MAMORU NUNOKAWA, JANUSZ SOKÓŁ

ABSTRACT. The Noshiro-Warschawski Theorem [1], [5] provides a simple and useful sufficient condition: $\Re \{f'(z)\} > 0$ in D, for the univalence of analytic function f(z) in a convex domain D. In this paper we prove some related results to this theorem. The applications of main results are also presented.

1. Introduction

The Noshiro-Warschawski Theorem [1], [5] can be used to give a simple and useful condition that is sufficient for the univalence of function f(z) which is analytic in a convex domain D and satisfies the condition $\Re \{f'(z)\} > 0$ in D. Ozaki [6] extended the above result to the following: if f(z) is analytic in a convex domain D and

$$\Re \left\{ f^{(p)}(z) \right\} > 0 \quad \text{in} \quad D,$$

then f(z) is at most p-valent in D.

Furthermore, Nunokawa [2] has shown the following result.

Theorem 1.1. Let $p \geq 2$. If

$$(1.1) f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n$$

is analytic in |z| < 1 and

$$\left| \arg \left\{ f^{(p)}(z) \right\} \right| < \frac{3\pi}{4},$$

then f(z) is p-valent in |z| < 1.

It is the purpose of the present paper to improve Theorem 1.1.

2. Main results

Theorem 2.1. If $p \geq 2$ and

$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n \quad in \quad |z| < 1$$

satisfies the condition

(2.1)
$$\left| \arg \left\{ f^{(p)}(z) \right\} \right| < \frac{\alpha \pi}{2} \quad in \quad |z| < 1,$$

where $\alpha = 1/\beta_0 = 1.7897771...$,

$$\beta_0 = 1 - \frac{\log 4}{\pi} = \frac{2}{\pi} \int_0^1 \sin^{-1} \frac{2\varrho}{1 + \varrho^2} d\varrho,$$

then f(z) is p-valent in |z| < 1.

²⁰⁰⁰ Mathematics Subject Classification. Primary 30C45, Secondary 30C80.

Key words and phrases. Noshiro-Warschawski Theorem; univalence criteria; univalent functions; p-valent functions; convex functions; subordination.

Proof. Let us put

$$q(z) = \frac{1}{p!} z f^{(p-1)}(z), \quad q(0) = 1.$$

Then it follows that

$$q(z) + zq'(z) = \frac{f^{(p)}(z)}{p!}$$

and then, from hypothesis (2.1), we have

(2.2)
$$|\arg\{q(z) + zq'(z)\}| < \frac{\alpha\pi}{2}.$$

Following the same idea as in the proof of the main theorem in [4, p. 1292-1293] we obtain

$$q(z) = \frac{zq(z)}{z}$$

$$= \frac{zf^{(p-1)}(z)}{p! z}$$

$$= \frac{1}{p! re^{i\theta}} \int_0^z (q(t) + tq'(t)) dt$$

$$= \frac{1}{p! re^{i\theta}} \int_0^r (q(\varrho e^{i\theta}) + \varrho e^{i\theta} q'(\varrho e^{i\theta})) e^{i\theta} d\varrho.$$

Applying (2.2) and the principle of subordination, we get that $\left[q(\varrho e^{i\theta}) + \varrho e^{i\theta}q'(\varrho e^{i\theta})\right]^{1/\alpha}$ lies in the disc $Q(|z| < \varrho)$ for all $0 < \varrho < 1$, $0 \le \theta < 2\pi$, where Q(z) = (1+z)/(1-z). Because $Q(|z| < \varrho)$ is the disc with the center $(1+\varrho^2)/(1-\varrho^2)$ and the radius $2\varrho/(1-\varrho^2)$, by some geometric observation, we can see that $\left[q(\varrho e^{i\theta}) + \varrho e^{i\theta}q'(\varrho e^{i\theta})\right]^{1/\alpha}$ lies in the sector $|\arg\{w\}| < \gamma$, where $\gamma = \sin^{-1}\{(2\varrho)/(1+\varrho^2)\}$. Thus, we have

$$\begin{aligned} &|\arg\{q(z)\}| \\ &= \left|\arg\left\{\frac{1}{p!} \frac{1}{re^{i\theta}} \int_0^r \left(e^{i\theta} q(\varrho e^{i\theta}) + \varrho e^{2i\theta} q'(\varrho e^{i\theta})\right) \, \mathrm{d}\varrho\right\}\right| \\ &\leq \int_0^r \left|\arg\left\{q(\varrho e^{i\theta}) + \varrho e^{i\theta} q'(\varrho e^{i\theta})\right\}\right| \, \mathrm{d}\varrho \\ &\leq \alpha \int_0^r \left|\arg\left\{q(\varrho e^{i\theta}) + \varrho e^{i\theta} q'(\varrho e^{i\theta})\right\}^{1/\alpha}\right| \, \mathrm{d}\varrho \\ &\leq \alpha \int_0^1 \sin^{-1} \frac{2\varrho}{1 + \varrho^2} \, \mathrm{d}\varrho \\ &= \alpha(\sin^{-1} 1 - \log 2) \\ &= \alpha(\pi/2 - \log 2) \\ &= \frac{\pi}{2} \alpha \beta_0 = \frac{\pi}{2}. \end{aligned}$$

Hence, we have

$$\Re e\left\{rac{f^{(p-1)}(z)}{z}
ight\}=\Re e\left\{rac{zf^{(p-1)}(z)}{z^2}
ight\}>0$$

in |z| < 1. For the same reason as in the proof of the main theorem in [2, p. 454], we obtain that f(z) is p-valent in |z| < 1.

Theorem 2.2. If q(z) is analytic in |z| < 1, with q(0) = 1 and satisfies there the condition

(2.3)
$$\left| \arg \left\{ q(z) + zq'(z) - \beta \right\} \right| < \frac{\alpha \pi}{2},$$

where $0 < \alpha$ and $0 < \beta < 1$, then we have

$$\left|\arg\left\{q(z)\right\}\right| < \alpha\left(\frac{\pi}{2} - \log 2\right) \quad in \quad |z| < 1.$$

Fig.1.

Proof. We have

$$zq(z) = \int_0^z (tq(t))' dt$$

and so

$$egin{aligned} q(z) &= rac{1}{re^{i heta}} \int_0^r \left(arrho e^{i heta} q(arrho e^{i heta})
ight)' e^{i heta} \mathrm{d}arrho \ &= rac{1}{r} \int_0^r \left(arrho e^{i heta} q(arrho e^{i heta})
ight)' \mathrm{d}arrho. \end{aligned}$$

Following the same idea as in the proof of the main theorem in [4, p. 1292-1293] we have

$$\begin{aligned} & \left| \arg \left\{ q(z) \right\} \right| \\ &= \left| \arg \left\{ \frac{1}{r} \int_0^r \left(q(\varrho e^{i\theta}) + \varrho e^{i\theta} q'(\varrho e^{i\theta}) \right) \, \mathrm{d}\varrho \right\} \right| \\ &\leq \int_0^r \left| \arg \left\{ q(\varrho e^{i\theta}) + \varrho e^{i\theta} q'(\varrho e^{i\theta}) \right\} \right| \, \mathrm{d}\varrho \\ &\leq \int_0^r \left| \arg \left\{ q(\varrho e^{i\theta}) + \varrho e^{i\theta} q'(\varrho e^{i\theta}) \right\} - \beta + \beta \right| \, \mathrm{d}\varrho \\ &\leq \int_0^r \left| \arg \left\{ q(\varrho e^{i\theta}) + \varrho e^{i\theta} q'(\varrho e^{i\theta}) \right\} - \beta \right| \, \mathrm{d}\varrho \\ &+ \int_0^r \left| \arg \beta \right| \, \mathrm{d}\varrho. \end{aligned}$$

Applying (2.3) and the principle of subordination we get that $q(\varrho e^{i\theta}) + \varrho e^{i\theta} q'(\varrho e^{i\theta})$ lies in the sector $\beta + Q^{\alpha}(|z| < \varrho)$ for all $0 < \varrho < 1, \ 0 \le \theta < 2\pi$, where Q(z) = (1+z)/(1-z), Fig. 1. Therefore, and because $Q(|z| < \varrho)$ is the disc with the center $(1+\varrho^2)/(1-\varrho^2)$

and the radius $2\varrho/(1-\varrho^2)$, by some geometric observation we obtain

$$\begin{aligned} &|\arg\{q(z)\}| \\ &\leq \int_0^r \left| \arg\left\{ \left(\frac{1 + \varrho e^{i\theta}}{1 - \varrho e^{i\theta}} \right)^{\alpha} \right\} \right| \, \mathrm{d}\varrho \\ &\leq \alpha \int_0^r \left| \arg\left\{ \left(\frac{1 + \varrho e^{i\theta}}{1 - \varrho e^{i\theta}} \right) \right\} \right| \, \mathrm{d}\varrho \\ &\leq \alpha \int_0^r \sin^{-1} \frac{2\varrho}{1 + \varrho^2} \, \mathrm{d}\varrho \\ &\leq \alpha \int_0^1 \sin^{-1} \frac{2\varrho}{1 + \varrho^2} \, \mathrm{d}\varrho \\ &= \alpha (\pi/2 - \log 2). \end{aligned}$$

This completes the proof.

Remark 2.3.

$$\int_0^1 \sin^{-1} \frac{2\varrho}{1 + \varrho^2} d\varrho$$

$$= \left[\varrho \sin^{-1} \frac{2\varrho}{1 + \varrho^2} - \log(1 + \varrho^2) \right]_{\varrho=0}^{\varrho=1}$$

$$= \pi/2 - \log 2$$

$$= 0.877649147....$$

Applying the same method as in the proof of Theorem 2.2, we can get the following corollaries.

Corollary 2.4. If q(z) is analytic in |z| < 1, with q(0) = 1 and satisfies the condition

$$|\arg\{q(z) + zq'(z) - \beta\}| < \frac{\alpha\pi}{2}$$
 in $|z| < 1$,

where $0 < \alpha$ and $0 < \beta < 1$, then we have

$$\left|\arg\left\{q(z)-\beta\right\}\right|< \alpha\left(\frac{\pi}{2}-\log 2\right) \quad in \quad |z|<1.$$

Corollary 2.5. If q(z) is analytic in |z| < 1, with q(0) = 1 and satisfies the condition

$$|\arg\{q(z) + zq'(z) - \beta\}| < \frac{\alpha\pi}{2}$$
 in $|z| < 1$,

where $0 < \alpha$ and $\beta \leq 0$, then we have

$$\left| \operatorname{arg} \left\{ q(z) - \beta \right\} \right| \ < lpha \left(rac{\pi}{2} - \log 2
ight) \quad in \quad |z| < 1,$$

Corollary 2.6. If q(z) is analytic in |z| < 1, with q(0) = 1 and satisfies the condition

$$|\arg\{q(z) + zq'(z) - \beta\}| < \frac{\pi^2}{2(\pi - \log 4)}$$

for |z| < 1, then

$$\Re \{q(z)\} > \beta$$
 in $|z| < 1$.

From Corollary 2.5 we can get the following improvement of the main theorem in [3].

Theorem 2.7. If $p \geq 2$ and

$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n \quad in \quad |z| < 1$$

satisfies the condition

$$\left| \arg \left\{ \frac{f^{(p)}(z)}{p!} + \frac{\log 4 - 1}{2 - \log 2} \right\} \right| < \frac{\pi^2}{2(\pi - \log 4)} \quad in \quad |z| < 1,$$

then f(z) is p-valent in |z| < 1.

Proof. Let us put

$$q(z) = \frac{f^{(p-1)}(z)}{p! \ z}, \quad q(0) = 1.$$

Then it follows that

$$q(z) + zq'(z) = \frac{f^{(p)}(z)}{p!}$$

and therefore, we have

$$\left| \arg \left\{ q(z) + zq'(z) + \frac{\log 4 - 1}{2 - \log 2} \right\} \right|$$

$$= \left| \arg \left\{ \frac{f^{(p)}(z)}{p!} + \frac{\log 4 - 1}{2 - \log 2} \right\} \right|$$

$$< \frac{\pi^2}{2(\pi - \log 4)} \quad \text{in} \quad |z| < 1.$$

Taking into account Corollary 2.5, we have

$$\begin{split} &\Re \mathfrak{e} \left\{ \frac{f^{(p-1)}(z)}{z} \right\} > 0 \quad \text{in} \quad |z| < 1 \\ &\Leftrightarrow \Re \mathfrak{e} \left\{ \frac{z f^{(p-1)}(z)}{z^2} \right\} > 0 \quad \text{in} \quad |z| < 1. \end{split}$$

For the same reason as in the proof of the main theorem in [3], we get that f(z) is p-valent in |z| < 1.

Remark 2.8. We have

$$\frac{\log 4 - 1}{2 - \log 2} = 0.29 \dots, \quad \frac{\pi^2}{2(\pi - \log 4)} = \pi \cdot 0.89 \dots$$

Theorem 2.7 shows that if the image of |z| < 1 under the mapping $w = f^{(p)}(z)/p!$ is contained in the indicated domain on the Fig.2, then f(z) is p-valent in |z| < 1, whenever $p \ge 2$.

REFERENCES

- [1] K. Noshiro, On the theory of schlicht functions, J. Fac. Sci. Hokkaido Univ., (1)2(1934-1935) 129-135.
- [2] M. Nunokawa, A note on multivalent functions, Tsukuba J. Math., Vol. 13 No. 2(1989) 453-455.
- [3] M. Nunokawa, Differential inequalities and Carathéodory functions, Proc. Japan Acad. 65, Ser. A, 10(1989) 326–328.
- [4] M. Nunokawa, S. Owa, E. Yavuz Duman and M. Aydogan, Some properties of analytic functions relating to the Miller and Mocanu results, Comp. Math. Appl., 61(2011) 1291–1295.
- [5] S. Warschawski, On the higer derivatives of the boundary in conformal mapping, Trans. Amer. Math. Soc., 38(1935) 310–340.
- [6] S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku A, 2(1935) 167-188.

University of Gunma, Hoshikuki-cho 798-8, Chuou-Ward, Chiba, 260-0808, Japan *E-mail address*: mamoru_nuno@doctor.nifty.jp

Department of Mathematics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland

E-mail address: jsokol@prz.edu.pl