Some starlikeness conditions concerned with the second coefficient

Kazuo Kuroki

Abstract

Let \mathcal{A} be the class of analytic functions $f(z)=z+a_2z^2+\cdots$ in the open unit disk \mathbb{U} . Some starlikeness conditions for $f(z)\in\mathcal{A}$ missing the second coefficient a_2 were given by V. Singh (Math. Math. Sci. **23** (2000), 855-857). By considering starlikeness of order α for $f(z)\in\mathcal{A}$ with $a_2\neq 0$, some starlikeness conditions concerned with the second coefficient a_2 are discussed.

1 Introduction

Let \mathcal{H} denote the class of functions f(z) which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. For a positive integer n, let \mathcal{A}_n be the class of functions $f(z) \in \mathcal{H}$ of the form

$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k$$

with $\mathcal{A}_1 = \mathcal{A}$. The subclass of \mathcal{A} consisting of all univalent functions f(z) in \mathbb{U} is denoted by \mathcal{S} . In 1972, Ozaki and Nunokawa [4] proved a univalence criterion for $f(z) \in \mathcal{A}$ as follows.

Lemma 1.1 If $f(z) \in A$ satisfies

$$\left| \frac{z^2 f'(z)}{(f(z))^2} - 1 \right| < 1 \qquad (z \in \mathbb{U}),$$

then f(z) is univalent in \mathbb{U} , which means that $f(z) \in \mathcal{S}$.

Moreover, let $\mathcal{T}_n(\mu)$ denote the class of functions $f(z) \in \mathcal{A}_n$ which satisfy the inequality

$$\left| \frac{z^2 f'(z)}{\left(f(z) \right)^2} - 1 \right| < \mu \qquad (z \in \mathbb{U})$$

for some real number μ with $0 < \mu \le 1$ and $\mathcal{T}_n(1) = \mathcal{T}_n$. The assertion in Lemma 1.1 gives us that $\mathcal{T}_n(\mu) \subset \mathcal{T}_n \subset \mathcal{S}$.

A function $f(z) \in \mathcal{A}$ is said to be starlike of order α in \mathbb{U} if it satisfies

2000 Mathematics Subject Classification: Primary 30C45.

Keywords and Phrases: Schwarz's lemma, analytic function, univalent function, starlike of order α .

(1.1)
$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha \qquad (z \in \mathbb{U})$$

for some real number α with $0 \le \alpha < 1$. This class is denoted by $\mathcal{S}^*(\alpha)$ and $\mathcal{S}^*(0) = \mathcal{S}^*$. It is well-known that $\mathcal{S}^*(\alpha) \subset \mathcal{S}^* \subset \mathcal{S}$.

For a positive integer n, we define by \mathcal{B}_n the class of functions $w(z) \in \mathcal{H}$ of the form

$$w(z) = \sum_{k=n}^{\infty} c_k z^k$$

which satisfy the inequality |w(z)| < 1 $(z \in \mathbb{U})$. The following lemma is well-known as Schwarz's lemma (see [1]).

Lemma 1.2 If $w(z) \in \mathcal{B}_n$, then

$$(1.2) |w(z)| \le |z|^n$$

for each point $z \in \mathbb{U}$. The equality in (1.2) is attended for $w(z) = e^{i\varphi} z^n$ $(\varphi \in \mathbb{R})$.

Applying Lemma 1.2 with n=2, Singh [5] discussed starlikeness for $f(z) \in \mathcal{T}_2(\mu)$.

Lemma 1.3 If $f(z) \in A_2$ satisfies

$$\left| \frac{z^2 f'(z)}{\left(f(z) \right)^2} - 1 \right| < \frac{1}{\sqrt{2}} \qquad (z \in \mathbb{U}),$$

then $f(z) \in \mathcal{S}^*$. This means that $\mathcal{T}_2(\mu)$ is a subclass of \mathcal{S}^* for $0 < \mu \leq \frac{1}{\sqrt{2}}$.

Furthermore, Kuroki, Hayami, Uyanik and Owa [3] deduced some sufficient condition for $f(z) \in \mathcal{A}_n$ to be starlike of order α in \mathbb{U} .

Lemma 1.4 If $f(z) \in A_n$ with $n \neq 1$ satisfies

$$\left| \frac{z^2 f'(z)}{(f(z))^2} - 1 \right| < \frac{(n-1)(1-\alpha)}{\sqrt{(n-1+\alpha)^2 + (1-\alpha)^2}} \qquad (z \in \mathbb{U})$$

for some real number α with $0 \leq \alpha < 1$, then $f(z) \in \mathcal{S}^*(\alpha)$.

In view of Lemma 1.3, Singh [5] discussed some starlikeness condition for $f(z) \in \mathcal{A}$ missing the second coefficient a_2 . In the present paper, we consider starlikeness of order α for $f(z) \in \mathcal{A}$ with $a_2 \neq 0$.

2 Main result 1

By using a certain method of the proof of Lemma 1.4 which was discussed by Kuroki, Hayami, Uyanik and Owa [3], we deduce some sufficient condition for $f(z) \in \mathcal{A}$ to be starlike of order α in \mathbb{U} (see [2]).

Theorem 2.1 If $f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in \mathcal{A}$ satisfies

$$\left| \frac{z^2 f'(z)}{\left(f(z)\right)^2} - 1 \right| < \frac{(1-\alpha)\sqrt{2(1+\alpha^2) - |a_2|^2 - (1-\alpha+2\alpha^2)|a_2|}}{2(1+\alpha^2)} \qquad (z \in \mathbb{U})$$

for some real number α with $0 \leq \alpha < 1$, then $f(z) \in \mathcal{S}^*(\alpha)$.

Remark 2.1 If we take $a_2 = 0$ in Theorem 2.1, then we obtain the assertion of Lemma 1.4 with n = 2.

Letting $\alpha = 0$ in Theorem 2.1, we obtain

Corollary 2.1 If $f(z) = z + a_2 z^2 + \cdots \in A$ satisfies

then $f(z) \in \mathcal{S}^*$.

Example 2.1 Noting that

$$\frac{\sqrt{2-|a_2|^2}-|a_2|}{2} = \frac{1}{2} \quad \text{when} \quad a_2 = \frac{\sqrt{3}-1}{2},$$

let us consider the function f(z) given by

(2.2)
$$f(z) = \frac{z}{1 - \frac{\sqrt{3} - 1}{2}z - \frac{1}{2}z^2} = z + \frac{\sqrt{3} - 1}{2}z^2 + \frac{3 - \sqrt{3}}{2}z^3 + \dots \qquad (z \in \mathbb{U})$$

in Corollary 2.1. It follows from (2.2) that

$$\left| \frac{z^2 f(z)}{\left(f(z) \right)^2} - 1 \right| = \left| \frac{1}{2} z^2 \right| < \frac{1}{2} \qquad (z \in \mathbb{U}).$$

Thus, we find that f(z) given by (2.2) satisfies the inequality (2.1) with $a_2 = \frac{\sqrt{3}-1}{2}$. On the other hand, a simple check gives us that

Re
$$\left(\frac{zf'(z)}{f(z)}\right)$$
 = Re $\left(\frac{1 + \frac{1}{2}z^2}{1 - \frac{\sqrt{3}-1}{2}z - \frac{1}{2}z^2}\right)$

$$> \frac{33 + (5\sqrt{3} - 3)\sqrt{12\sqrt{3} - 6}}{198} = 0.2765 \dots > 0 \qquad (z \in \mathbb{U}).$$

This leads that f(z) given by (2.2) belongs to the class S^* .

Furthermore, putting $\alpha = \frac{1}{2}$ in Theorem 2.1, we have

Corollary 2.2 If $f(z) = z + a_2 z^2 + \cdots \in A$ satisfies

then
$$f(z) \in \mathcal{S}^*\left(\frac{1}{2}\right)$$
.

Example 2.2 Noting that

$$\frac{\sqrt{\frac{5}{2} - |a_2|^2} - 2|a_2|}{5} = \frac{1}{10} \quad \text{when} \quad a_2 = \frac{1}{2},$$

let us consider the function f(z) given by

(2.4)
$$f(z) = \frac{z}{1 - \frac{1}{2}z - \frac{1}{10}z^2} = z + \frac{1}{2}z^2 + \frac{1}{20}z^3 + \cdots \qquad (z \in \mathbb{U})$$

in Corollary 2.2. It is easy to check that

$$\left| \frac{z^2 f(z)}{\left(f(z) \right)^2} - 1 \right| = \left| \frac{1}{10} z^2 \right| < \frac{1}{10} \qquad (z \in \mathbb{U}).$$

Then, we see that f(z) given by (2.4) satisfies the inequality (2.3) with $a_2 = \frac{1}{2}$. Moreover, we can observe that

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) = \operatorname{Re}\left(\frac{1 + \frac{1}{10}z^2}{1 - \frac{1}{2}z - \frac{1}{10}z^2}\right)$$
$$> \frac{10153 + 792\sqrt{71}}{24534} = 0.6858\dots > \frac{1}{2} \qquad (z \in \mathbb{U}),$$

which implies that f(z) given by (2.4) belongs to the class $\mathcal{S}^*\left(\frac{1}{2}\right)$.

3 Main result 2

Suppose that $f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in \mathcal{T}_1(\mu)$. It is easy to see that

$$\frac{z^2 f'(z)}{(f(z))^2} - 1 = (a_3 - a_2^2) z^2 + 2(a_4 - 2a_2 a_3 + a_2^3) z^3 + \cdots \qquad (z \in \mathbb{U}).$$

If we define the function w(z) by

(3.1)
$$w(z) = \frac{1}{\mu} \left(\frac{z^2 f'(z)}{(f(z))^2} - 1 \right) \qquad (z \in \mathbb{U}),$$

then since $f(z) \in \mathcal{T}_1(\mu)$, we see that $w(z) \in \mathcal{B}_2$. On the other hand, let us consider the function f(z) given by

(3.2)
$$f(z) = z + \sum_{k=2}^{n} a_2^{k-1} z^k + \sum_{k=n+1}^{\infty} a_k z^k \qquad (z \in \mathbb{U}),$$

where n is positive integer with $n \neq 1$. Noting that

$$\frac{f(z)}{z} = \frac{1 - (a_2 z)^n}{1 - a_2 z} + \sum_{k=n}^{\infty} a_{k+1} z^k \qquad (z \in \mathbb{U}),$$

we have

$$\frac{z}{f(z)} = \frac{1 - a_2 z}{1 - (a_2 z)^n + (1 - a_2 z) \sum_{k=n}^{\infty} a_{k+1} z^k}$$

$$= \frac{1 - a_2 z}{1 - (a_2^n - a_{n+1}) z^n - \sum_{k=n+1}^{\infty} (a_2 a_k - a_{k+1}) z^k}$$

$$= \frac{1 - a_2 z}{1 - \sum_{k=n}^{\infty} (a_2 a_k - a_{k+1}) z^k} \qquad (a_n = a_2^{n-1})$$

$$= (1 - a_2 z) + (1 - a_2 z) \left\{ \sum_{k=n}^{\infty} (a_2 a_k - a_{k+1}) z^k \right\}$$

$$+ (1 - a_2 z) \left\{ \sum_{k=n}^{\infty} (a_2 a_k - a_{k+1}) z^k \right\}^2 + \cdots$$

$$= 1 - a_2 z + (a_2^n - a_{n+1}) z^n + (2a_2 a_{n+1} - a_2^{n+1} - a_{n+2}) z^{n+1} + (2a_2 a_{n+2} - a_2^2 a_{n+1} - a_{n+3}) z^{n+2} + \cdots$$

for $z \in \mathbb{U}$. Therefore, we obtain that

$$\frac{z^2 f'(z)}{(f(z))^2} - 1 = \frac{z}{f(z)} - z \left(\frac{z}{f(z)}\right)' - 1$$

$$= (n-1)(a_{n+1} - a_2^n)z^n + n(a_{n+2} - 2a_2a_{n+1} + a_2^{n+1})z^{n+1} + \cdots$$

for $z \in \mathbb{U}$. This gives that w(z) defined by (3.1) belongs to the class \mathcal{B}_n if $f(z) \in \mathcal{T}_1(\mu)$. Hence by applying Lemma 1.2, we deduce some sufficient condition for f(z) given by (3.2) to be starlike of order α in \mathbb{U} .

Theorem 3.1 Let n be a positive integer with $n \neq 1$. If $f(z) = z + \sum_{k=2}^{n} a_2^{k-1} z^k + \sum_{k=n+1}^{\infty} a_k z^k \in \mathcal{A}$ satisfies

$$\left| \frac{z^2 f'(z)}{(f(z))^2} - 1 \right| < \mu_n(\alpha) \qquad (z \in \mathbb{U})$$

for some real number α with $0 \leq \alpha < 1$, where

$$\mu_n(\alpha) = \frac{(n-1)\left[(1-\alpha)\sqrt{A - (n-1)^2 |a_2|^2} - \left\{ A - (n-1)(n-1+\alpha) \right\} |a_2| \right]}{A} \left(A = (1-\alpha)^2 + (n-1+\alpha)^2 \right),$$

then $f(z) \in \mathcal{S}^*(\alpha)$.

Remark 3.1 If we take $a_2 = 0$ in Theorem 3.1, then we obtain Lemma 1.4 proven by Kuroki, Hayami, Uyanik and Owa [3].

Remark 3.2 Setting n = 2 in Theorem 3.1, we find the assertion of Theorem 2.1.

Letting n = 3 in Theorem 3.1, we obtain

Corollary 3.1 If
$$f(z) = z + a_2 z^2 + a_2^2 z^3 + \sum_{k=4}^{\infty} a_k z^k \in \mathcal{A}$$
 satisfies
$$\left| \frac{z^2 f'(z)}{(f(z))^2} - 1 \right| < \mu_3(\alpha) \qquad (z \in \mathbb{U})$$

for some real number α with $0 \leq \alpha < 1$, where

$$\mu_3(\alpha) = \frac{2\left[(1-\alpha)\sqrt{(1-\alpha)^2 + (2+\alpha)^2 - 4|a_2|^2} - \left\{ (1-\alpha)^2 + \alpha(2+\alpha) \right\} |a_2| \right]}{(1-\alpha)^2 + (2+\alpha)^2},$$

then $f(z) \in \mathcal{S}^*(\alpha)$.

Furthermore, taking $\alpha = 0$ in Corollary 3.1, we get

Corollary 3.2 If $f(z) = z + a_2 z^2 + a_2^2 z^3 + \sum_{k=4}^{\infty} a_k z^k \in \mathcal{A}$ satisfies

then $f(z) \in \mathcal{S}^*$.

Example 3.1 Noting that

$$\frac{2\sqrt{5-4|a_2|^2}-2|a_2|}{5} = \frac{3}{5} \quad \text{when} \quad a_2 = \frac{1}{2},$$

let us consider the function f(z) given by

(3.4)
$$f(z) = \frac{z}{1 - \frac{1}{2}z - \frac{3}{10}z^3} = z + \frac{1}{2}z^2 + \left(\frac{1}{2}\right)^2 z^3 + \frac{17}{40}z^4 + \cdots \qquad (z \in \mathbb{U})$$

in Corollary 3.2. It follows from (3.4) that

$$\left| \frac{z^2 f'(z)}{\left(f(z)\right)^2} - 1 \right| = \left| \frac{3}{5} z^3 \right| < \frac{3}{5} \qquad (z \in \mathbb{U}).$$

Thus, we find that f(z) given by (3.4) satisfies the inequality (3.3) with $a_2 = \frac{1}{2}$. On the other hand, a simple check gives us that

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) = \operatorname{Re}\left(\frac{1 + \frac{3}{5}z^3}{1 - \frac{1}{2}z - \frac{3}{10}z^3}\right) > \frac{2}{9} > 0 \qquad (z \in \mathbb{U}).$$

This leads that f(z) given by (3.4) belongs to the class S^* .

References

- [1] A.W. Goodman, Univalent Functions, Vol. I and II, Mariner, Tampa, Florida, 1983.
- [2] K. Kuroki, Some starlikeness conditions concerned with the second coefficient, Advances. Math. Sci. J. 3 (2014), 127–132.
- [3] K. Kuroki, T. Hayami, N. Uyanik and S. Owa, Some properties for a certain class concerned with univalent functions, Comp. Math. Appl. 63 (2012), 1425–1432.
- [4] S. Ozaki and M. Nunokawa, *The Schwarzian derivative and univalent functions*, Proc. Amer. Math. Soc. **33** (1972), 392–394.
- [5] V. Singh, On a class of univalent functions, Internat. J. Math. Math. Sci. 23 (12) (2000), 855–857.

Department of Mathematics

Kinki University

Higashi-Osaka, Osaka 577-8502

JAPAN

E-mail address: freedom@sakai.zaq.ne.jp