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1 Introduction

This is a brief report of my joint work [6] with Professor Masato Kimura (Kanazawa
University). » ‘

Let {I'(£)}:>0 be a family of compact hypersurfaces in R". We say this family is a
curvature-dependent motion (CDM for short) if I'(¢) moves by the following equation:

(1.1) ' V=k+(bn)+g onI(t), te(0,T).

Here T' > 0, n = n(t, z) is the inner unit normal vector field on I'(t), V = V(¢,z) is the
velocity of I'(t) in the direction of n, k& = k(t,z)(:= —divn(¢, z)) is the ((N — 1)-times)
mean curvature of ['(t), b = b(t,z) = (b'(¢,z),--- ,b"(t,z)) denotes a given vector field
in RV, g = g(t,z) is a forcing term and (-,-) denotes the inner product in RV. As well
known, the case of b = 0 and g = 0 is the mean curvature flow (MCF for short). The
CDM arises in various fields such as two-phase Stefan problems, phase transitions, image
processing, two-phase fluid flows and so on.

From the viewpoints of the above applications, many people have studied numerical
methods for CDM. Among them, we treat the following algorithm: Let Cy be a compact
set in RY and fix a time step h > 0. For k = 0,1,2,..., set bg(t,z) := b(t + kh,z) and
gk(t,z) = g(t+kh, x). Let wo = wo(t, ) be a unique solution of the initial value problem
for the linear parabolic equation with k& = 0:

(1.2) w; — Aw + (bg, Dw) + g =0 in (0,h] x RY,
(1.3) w(0,z) = d(z,Cy) for z € RY.

Here d(x, D) is the signed distance function to 0D defined by

| dist(z,0D) forxz € D,
(1.4) d(z, D) := { —dist (z,0D) for z ¢ D,
for each closed subset D(# @) of RY. We then set
(1.5) Cy = {wo(h,-) > 0}.

Let w; be a unique solution of (1.2) - (1.3) with £ = 1. Again we define C, as the set
in (1.5) with w; replacing wo. Repeating this process, we have a sequence {Cr};29 of
compact subsets of RY. We set

(1.6) C"t) :==Cy fort € [kh,(k+1)R), k=0,1,2,...



Letting o — 0, we formally obtain a limit flow {C(¢)}s>o of compact sets in RV and
observe that dC(t) moves by (1.1) with the initial data 9Cj.

The above algorithm was numerically studied by Kimura - Notsu [7] and Esedoglu -
Ruuth - Tsai [3]. In [7] Kimura and Notsu proposed a fully discrete finite element scheme
based on the above level set method of the signed distance function. In [7, Section 4]
they gave some numerical examples for MCF with a forcing term. In [3] Esedoglu, Ruuth
and Tsai considered various geometric motions with using the signed distance function,
including CDM, MCF with triple junctions and the motion by surface diffusion. The
extension of the signed distance approach to vector setting for numerical computation of
multiphase problems was addressed in Mohammand - Svadlenka [9]. Our algorithm is
also regarded as a variant of the Bence - Merriman - Osher (BMO for short) algorithm
to MCF (cf. Bence - Merriman - Osher [1]), which utilizes the solutions of the usual
heat equation, continually reinitialized after short time steps. The BMO algorithm and
its generalizations are studied by many people. Among them Vivier [10] and Leoni [§]
generalized the BMO algorithm with using the linear/semilinear parabolic equations and
proved the convergence of their scheme to the anisotropic CDM’s associated with these
equations. Our algorithm is quite similar to theirs on the point that we use the linear
parabolic equation (1.2) to construct the approximate sequence for CDM. However, the
choice of the initial data is the main difference between the (generalized) BMO algorithm
and ours. In the (generalized) BMO algorithm they choose the initial data

w.a)={ 1) 2200 (= sgu(dle, o)
instead of (1.3), where sgn*(r) := 1 for r > 0, := —1 for r < 0.

The main purpose of this article is to present the optimal rate of convergence of this
algorithm to the smooth and compact CDM.

The strategy is direct calculations for the distance between CDM and the approximate
motion. For this purpose the estimate of Dwy plays an important role. Then we obtain
that for any € > 0, there are constants L1, hy > 0 such that

(1.7) sup dy(C*(t),C(t)) < Lih for all h € (0, hy).

te(0,T—e€]

The optimality of this estimate is obtained by precise calculations in the case of a circle
evolving by curvature.

In the following of this article, to simplify the description we set b = 0 and g = 0,
that is, we treat the MCF {I'(t)}+cp0.1):

(1.8) V=k onl(t), te(0,T).

and instead of (1.2) - (1.3), we solve the initial value problem for the usual heat equation:
(1.9) w, —Aw =0 1in (0,h] x RY,

(1.10) w(0,z) = d(z,Cy) for z € RY.

This article is organized as follows. In section 2 we state our assumptions and briefly
explain the notions of the generalized MCF. Section 3 is devoted to some estimates on
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solutions {wk}g:/é’]'of (1.2) - (1.3) and {C"(t)}seo,1),n>0- In section 4 we obtain (1.7) in
the case of the smooth and compact MCF and show its optimality.

We use the following notations: For m € NU {0}, a« € (0,1), @ C [0,T) x RY,
f:Q —R,

Df =D.f = (0f/0zy,---,0f/0xy), Dif = f;:=0,f,
DLf:=dMf/oah - 0a¥ |l =l + -+ Iy for = (L, - ,Iy) € (NU{O}DV
sz = (azf/6$i6$j)15i,j51v.
Foru:RY — R, v:[0,7) x RY — R and u € R,
{u>p}:={z €RY | u(z) > p},
{v2p}:={(t,z) €[0,T) xRV | v(t,z) 2 u},
{v(t,") > p} :={z € RY | v(t,z) > u} etc.

Let U be a metric space and V a dense subset of .
UC(U) := the set of all uniformly continuous functions.
For @ C [0,T) x RY,

f(t,z) = O(g(t, 2)) <= |f(t,z)| < Kyg(t,x)
for some K > 0 independent of (¢,z) € Q.

Besides we use the following symbols.

(p, q) = the inner product between p,q € RY,

cl A = the closure of A,
N

P(z,0) := I_I(alcz —b,z;+0) forz = (z1,--- ,2y) €RYN and 6 > 0
i=1
= N-dimensional open cube centered at z,
[r] = Gauss symbol for r € R, ‘
SY = the set of all N x N-real symmetric matrices,
tr X = the trace of X € S¥,

du(A, B) :== max {sup dist (z, B), sup dist (x,A)} for A, B C RN
’ z€A T€EB

= Hausdorff distance between the sets A and B.

2 Preliminaries

2.1 Assumption

For a given compact hypersurface I'y C RY, assume that

(2.1) Iy € C5**  for some a € (0,1).



Then there uniquely exists a smooth and compact MCF {I'(t)}+cjo,z) with T'(0) = T for
some T > 0. Define the signed distance function p(¢, z) to I'(¢) by

(2.2) p(t, z) := d(z, D(t))

where D(t) denotes the compact set such that D(t) = I'(t) and d(x, D(t)) is defined by
(1.4) with D = D(t) for each t € [0,Tp). Then for each € > 0 there exists § > 0 such that

(2.3) pe CBrIREFINL05), Negos = {(t,z) € [0,Tp — €] x RN | |p(t, z)| < 105}.

and the derivatives DI*D!p (2m + |I| < 5) are bounded on A 105. See Evans - Spruck [4].

2.2 Level set equation and generalized MCF
The level set equation to (1.1) is given by

(2.4) uy + F(Du,D*u) =0 in (0,T) x RY,
F(p, X) = —trX + Q‘(;’I;p) for (p, X) € (R¥\{0}) x SV.

Since (2.4) has a singularity at p = 0, we adopt the notion of viscosity solutions to consider
weak solutions of (2.4). Here we only give the definition and the well-definedness of the
generalized MCF. See [2] and [5] for the detail.

Definition 2.1. Let u € UC([0,T) x RY) be a viscosity solution of (2.4). Set
(25)  Tr(t):={ult,) =0}, Qf(t) = {u(t,) >0}, Qz(t) := {u(t,") <0}
for each t € [0,T). We call the family (T(t), 2 (t), QL (t))iepor) @ generalized MCF.

Theorem 2.1. Let (1(t), % (t), QL (t))tcior) be defined by (2.5). Here u € UC([0,T) x
RY) is a unique viscosity solution of (2.4) with the initial data uy € UC(RN). Then
this family is determined independently of the choice of up € UC(RYN) satisfying T'1(0) =
{uo = 0}, 25(0) = {up > 0} and Q7 (0) = {up < 0}.

3 Estimates on {wk}gg;/g] and {Ch(t)}te[o’T),h>0

Let {wk}gcTz/g ! be the sequence of classical solutions of (1.9) - (1.10) and let C*(t) be given
by (1.6). In this section we derive some estimates for {wk}g:/g I and {C"() }repo,1),n>0-

3.1 Basic estimates

First, we show the uniform boundedness of {C* ) hepor) h>0-

Proposition 3.1. Let Cy C RN be compact and take Ry > 0 so that Cy C c1B(0, Rp).
Then C"(t) C c1B(0, Ry) for-allt € [0,T) and h > 0.
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Proof. For any zo € 0B(0,Ry) set Dy(zq) := {z € RN | (z — z9,70) < 0}. Let
d(-, Dy(zo)) be the signed distance function given by (1.4) with D = Dy(x) and Wy =
Wo(t,z) = d(z, D(x0)). Noting that AWy, = Ad(-, Do(zo)) = 0 in RY since Dgy(zq)
is a hyperplane, we easily see that @, is a classical supersolution of (1.9) satisfying
d(-,Co) < wp(0,-) in RY. Hence we use the maximum principle to have wo(t, z) < Wo(t, z)
for (t,z) € [0,h] x RN. Thus C; C Dy(xo).

Repeating the above argument, we get C, C Dy(zo) for k = 0,1,2,...,[T/h]. As
zo € 0B(0, Ry) is arbitrary, we have the desired result. ‘ O

We have some global bounds of {wk}gz/g ! uniformly in h > 0.

Proposition 3.2. We get ——\/.|:r|2 + 2Nt — Ry < wi(t,z) < —|z| + Ry for all (t,z) €
[0,h] xRN k=0,1,2,...,[T/h] and h > 0, where Ry is given in Proposition 3.1.

Proof. Fix h >0 and k£ =0,1,2,...,[T/h]. As for the upper estimate, we see from the
proof of Proposition 3.1 that for all A > 0, k =0,1,2,...,[(T/h] and (t,z) € [0,h] x RY,

wi(t, ) < d(z,cl B(zg, Ry)) < —|z| + Ro.

Next we show the lower estimate. Set k¥ = 0 for simplicity. Define w = w(t,z) :=
—+/|z|2 + 2Nt — Ry. Then we easily observe that w is a classical subsolution of (1.9) with
k =0 and that w(0,-) < d(-,Cy) in R¥ . We obtain the lower estimate by the maximum
principle. ' O

Proposition 3.3. |Dwy(t,z)| < 1 for all (t,z) € [0,h] xRN, k =0,1,2,...,[T/h] and
h > 0.

Proof. Fix h > 0, k = 0,1,2,...,[T/h]. Since vy := |Dwy|? is a classical subsolution
of (1.9) satisfying v;(0,z) = 1 for a.e. £ € R¥, the result follows from the maximum
principle. O
3.2 Local estimates for {wy LTZ/S ]

Let p = p(t, =) be the signed distance function to a smooth and compact CDM {I'(¢) }+c(o,r)

given by (2.2). This subsection is devoted to some local estimates for {wk}LT:/: ) under (2.3).
The solution wy, of (1.9) - (1.10) is given by

(3.1) wi(t, ) = /R Btz —y)p(kh,y)dy,

where E = E(t, z) is the heat kernel. We use this formula and (2.3) to get the following.
Proposition 3.4. The solution wy, of (1.9) - (1.10) with Cy := {p(kh,-) > 0} satisfies

(3.2) sup || D Diwkllco.nx{lotn,yi<ssy) =: K1 < +oo.
k=0,1,2,...,[T/h]
h>0,2m+{1|<5

We need an estimate for {Dwk}g:/é’ ! to obtain the rate of convergence of our algorithm
to a smooth and compact MCF.



Proposition 3.5. For eachk =0,1,2,...,[T/h], let wy, be a solution of (1.2) - (1.3) with
Cy, = {p(kh,-) > 0}. There are constants K2 > 0 and t; > 0 such that

(3.3) - (Dwy, Dd(kh,-)) > 1 - Kyt(>0) on [0,h] x {|p(kh,")| < 58}
forallk=0,1,2,...,[T/h} and h € (0, ).

Proof. We consider only the case k = 0 since the other ones are similarly proved. Recall
that p(0,-) € C5*({|p(0,-)| < 106}) by (2.3). By (3.1) and the smoothness of p(0,-), we
get

Wou(t,2) = /R By (ty - 2)p(0,y)dy = /P( . E(t,y — 2)pz, (0, y)dy + O(e™®)"/%)

-

=1 I} + O(e”®V"/%),

We estimate I;. It is observed by the change of variables y — z + y and Taylor’s
theorem that for some 6 € (0,1) and small ¢ > 0, ~

: 1
5L = /P( 5)E(t> y){pxi(O,x) + (Dpz;(0,2),y) +-2-(D2pzi(0, )y, y)
0,’ \

WANEF AN \ -
+a (; yzgi:) pm(O,:c—i—Hy)}dy.

By virtue of

. | »
/ E(t, y)yidy = / E(t,y)yiy;dy = 0, / E(t,y)y2dy = 2t + O(e~ /8%
P(0,6") J P(0,6") P(0,5")

foralli,j=1,2,...,N (i # j), we get
I = {pz,(0,7) + tAps, (0,2)}| < Kp1t*/?.

for all (t,z) € [0,t11] x {|p| < 56} and some K, t;; > 0. Hence Choosing K> > Kz
and ¢, < t1,1, we obtain the desired result. ‘ O

Remark 3.1. It follows from Propositions 3.4 and 3.5 that
(Dwg, Dd) > 1 — Kst  on [0, k] x {|p(kh,-)| < 56}

forall k=0,1,2,...,[T/h] and h € (0,t,) and some K3 > 0.

4 Convergence

4.1 Convergé'nce to generalized MCF

The convergence of our algorithm can be obtained by the estimates in Propositions 3.1 -
3.3 and the method due to [8].
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Theorem 4.1. Let u € UC([0,T) x RY) be a unique viscosity solution of (2.4) satisfying
w(0,-) = d(-,Co) in RN. Let (Tr(t),Q}(t), QL (t))ecor) be a generalized MCF' given by
(2.5). Let {C’k}[T/ " be the discrete evolution by our algorithm. Assume that

(4.1) TL(t) =0Qf(t) =00 (t) forallt€[0,T).
Then we have

lim di(Ciyny, €11 () = 0 locally uniformly in [0,T).
N

Remark 4.1. The condition (4.1) roughly means that for each t € [0,T), I'(t) is a
hypersurface in RV. It is called the non-fattening condition. '

4.2 Rate of convergence

Based on Theorem 4.1, we derive the rate of convergence of our algorithm to the smooth
and compact MCF. For this purpose we reformulate our algorithm in the following way:
Let CO be a compact subset of RY whose boundary is of class C®**. For each h > 0 let
{w be a sequence of solutions of (1.2) - (1.3) with setting Cy := {wi_1(h,-) > 0}
(k = ,[To/h]). Define w"(t,z) := wi(t — kh,z) for t € [kh,(k + 1)h), z € RV,
k=0,1,2,...,[To/h] and h > 0 and Ch(t) as '

(4.2) CMt) == {wh(t,-) >0} forte[0,Tp) and h>0

instead of (1.6). Notice that C"*(kh) = Cj for k =0,1,2,...,[To/h] and A > 0. We then
obtain the following theorem.

Theorem 4.2. Assume (2.1). Let {I'(t)}scpom) be a smooth and compact MCF with
I'(0) = 0Cy and let p = p(t,z) be defined by (2.2). Set Ch(t) as (4.2) and C(t) :=
{p(t,-) > 0} for each t € [0,Tp) and h > 0. For any e > 0, there exist Ly and hg > 0
depending on (2.3) such that

sup dg(C*(t),C(t)) < Lih for all h € (0, ko).

te[0,To—¢]

Since T'(t) is a hypersurface for every t € [0,T;), Theorem 4.1 yields that for any € > 0,
no € (0,56), there exists hg; > 0 such that

(4.3) sup dy(C™(t),C(t)) <mo forall h € (0, hoy).
t€[0,To—¢] :

Here § > 0 is the constant in (2.3). Theorem 4.2 is deduced from the following lemma.

Lemma 4.1. Under the conditions in Theorem 4.2, if dg(C*(kh), C(kh)) < 5 for small
n € [0,70), then for some Ky, t; > 0 depending on (2.3),

n+ K4Z2/2

5 - -
< =
dg(C"(kh +1),C(kh +1)) < 1K

for allt € [0,h] and h € (0,t5).
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Outline of the proof. Assume that (0 <)dg(C"(kh),C(kh)) <n. Let W be a solution
of (1.9) satisfying W(0,-) = d(-,C(kh)) in RN and set DE(?) := {W(t,-) > £n} and
Qf(kh +1) == {p(kh +1,-) > £n}.

We easily get W —n < wp < W +1non [0,h] x RY from the maximum principle since
W(0,-) —n < wi(0,") < W(0,-) +n in RY. Hence we have D} (t) C C*(kh +1%) C D; (%)
for all £ € [0, h]. Since Qf (kh +1) C C(kh+1) C QF(kh +1), we have

Q) (kh +1) N D} (F) C C(kh+1),C"kh+1) C Q; (kh+%)U D, (f) foriel[0,h]
Therefore we observe that for all ¢ € [0, A,

(44)  du(C™(kh+7),C™kh +1)) < max{du(Q} (kh +T) N D ?), C"(kh +1)),
’ dr((Q (kh+1T) U D, (8),C*(kh + 1))}
We estimate the right-hand side of (4.4). It is easily seen that
dy (O (kh+1) N DY (t),C*(kh + 1))
< dg (D ?), C"(kh +1)) + du(Q, (kh + 1), D} (),
du (9, (kb +1) U D; (T), C*(kh + 7))
< du(D;; (7), C*(kh + 1)) + du(Q; (kh + ), D; (2)).

As W satisfies Proposition 3.5, we get from some calculations

du(DF @), CM(kh +7)) < 1 "K - forall ¥ € [0,4] and h > 0.
- 1

Step 1. We derive an estimate for sup,¢ ps ) dist (z, Q (kh + 7).

Fix t € [0,h] and z € D} (f). We may assume that = € 0D, (£)\Q}(kh + 7). Set
p(t,z) := p(kh +1,z). Notice that for s € [0, h] the point 2(s,z) =z — p(s,z)Dp(s,x) €
O} (kh+ s) satisfies |z — 2(s, z)| = |p(s, x)| = dist (z, O} (kh + s)). Tedious calculations
yields that

sup W (s, 2(5,2)) - 1] < Kaas®,

s€[0,h],zE D (),
k=0,1,2,...,[Tg/h],A>0

n=W( ) =W 2@ 2) + 5 2)(DWE 2°(F ), Dp(E, ),
(1, z)) ==z — 05, z)Dp(t, ), 6 € (0,1).

Combining these formulae, we get

Kyt
1—- Kst’

sup dist(z, D, (?)) = sup [5(f, )| <
zeD() zeD(?)

Here and in the sequel K4; > 0 (j € N) is a constant depending on (2.3) and (3.2).

Step 2. We estimate Sup, ot 3 dist (z, Dy (7).

Fix T € [0,h] and = € Q] (kh + ). We may assume that € dQ;} (kh +)\D;} (). Let
p(%, ) be the signed distance function given by (2.2) with I'(f) = dD;} (f). For s € [0, Al
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the point 2(s,z) := = — p(s,x)Dp(s,z) € OD}(s) satisfies |z — Z(s,z)| = |p(s,2)| =
dist (z, 8D} (s)). Similar calculations to those in the previous step yield that
sup  |p(kh+1,2(,7)) — 0| < Kaob,

t€[0,h},z€8C (kh+s)
k=0,1,...,[T/h},h>0

n = p(kh +t,z) = p(kh +1,2(t, z)) + p(t, :c)(Dp(kh +%,z — 0p(t,z)Dp(t, z)), Dp(t, x)).

Therefore we have by using Propositions 3.3 and 3.5

-2
sup  dist (z, D,“;(f)) = sup |p(t,x)| < Kaat _.
zeQ} (kh+1), : <€ (khtB) 1 - Kst
Combining the estimates in Step 1, 2 and setting K; := max{K3, K41, K42} and
ty = t1, we obtain
N v Kt _
du (4 (kh +1), D} (%)) < = forallf € [0,h] and h € [0,1,].

1— Kyt
The estimate of dy(Q; (kh + %), D, (%)) is obtained by the same way. Therefore we get
the desired result. ' O
Proof of Theorem 4.2. In the case k =0, we apply Lemma 4.1 with 7 := 0 to have
o Kh2
sup dg(C"(t),C (1)) < .
T€[0,h] 1-Ksh
In the case k = 1, it follows from Lemma 4.1 with n := K h?/{1 — K,h} to obtain
K4h? Kh?
sup d(C*(h +1),C(h+1 + :
Sy (OO = gy Y T K
Repeating this process, we see that for k = 2,3,...,[To/h]
‘ k+1 K h2
h 4 KTy
zi}fﬁ] dg(CMkh +1),C(kh +1)) < E (e < (4T — 1)h.
Letting L; := X470 — 1, we get the desired result. O

4.3 Optimality

This subsection is devoted to the optimality of the estimate in Theorem 4.2. For this
purpose we consider the radial case. For simplicity, we set N = 2, R(t) := /1 -2t
To :=1/2 and C(t) := {z € R? | || < R(t)}. Since it suffices to con31der the radial
solution, the initial value problem (1.9) - (1.10) and the definition of {Ck}k ! turn to

(4.5) Wit = Wk rr + E—:’—T, Wp = wk(t,r) in (0, +OO> X (0, +OO),
(4.6) wir(t,0) =0 fort >0,
4.7 wg(0,7) = Ry —r for r € [0, +00),

Cy := {z € R? | wi(h, |z]) > 0}, Cy:=clB(0, 1),
Rk := radius of Ck, R() = 1.



For t € [kh, (k+1)h), k=0,1,2,...,[T/h] and h > 0, set
CMt) == {z € R? | wy(t — kh, |z|) > 0}, R"(t) := radius of C*(¢).
The following proposition says that for each h > 0, C*(t) evolves faster than C(t).
Proposition 4.1. C*(t) C C(t) for all t € [0,T) and h > 0.

Proof. Let Vo = Vo(t,r) := 1 — v/r2+2t. Then C(t) = {Vo(¢,|-|) > 0} for t € [0, A]
and Vp is a classical supersolution of (4.5) satisfying (4.6) and (4.7). Hence it follows
from the maximum principle that wg < V; on [0, A] x [0, +00). This inequality yield that
C"(t) C C(t) for all t € [0, h)]. '

Set Vi = Vi(t,r) == 1— /r2+2(t+h). Then C(t + h) = {Vi(t,|-|) > 0} for
t € [0,h] and V; is a classical supersolution of (4.5) satisfying (4.6) and V;(0,-) > w (0, -)
on [0, +00). Thus we get w; < V; on [0, A] x [0, +00) by the maximum principle. Therefore
C"(t) C C(t) for all t € [h,2h]. We have the result by induction. O

We need an estimate for wy,,.

Proposition 4.2. For any ¢ € (0,1/8), there are constants K5 > 0 and h; > 0 depending

on ¢ such that
- t
wk,r(t, ’I‘) - -1 + 7’_2

for allt € [0,h], r € [§,+00) and h € (0, hy).

(4.8) < K;F.

Proof. Some calculations yield that

< Kl

'Dwk(f, |z|) — <~— +t' E )

]

for small > 0 and z € R¥\B(0,6). Noting the formula wy, = (Dw, z/|z|), we get the
desired result. a

Since we see by Proposition 4.1 and Theorem 4.2 that for any e € (0,1/4)
(4.9) dr(C*(1),C(t) = R(t) - RM(t) < Lih, R'(t) 2 ve

for all t € [0,1/2 — €] and h € (0, h;), we consider the lower bound of R(t) — R*(t) for
small A > 0 to prove the optimality of Theorem 4.2. -

Theorem 4.3. Set C(t) := {|z| < R(t)} (R(t) = v/1 — 2t) and C"(t) = {wy(t—kh, |z]) >
0}. Let RM(t) be the radius of C*(t). Then for any e € (0,1/4) there exists hy > 0 such
that for all h € (0, hy)

L 0,h
(410) - R(t) - R"1) > ! for?e[’ )
Zth fO’I"t € [h,TO —E].
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The strategy of the proof of Theorem 4.3 is similar to that of Theorem 4.2.
Lemma 4.2. Fiz € € (0,1/4). If R(kh) — R"kh) > n for small n > 0, then for some
Kg = Kﬁ(s) > Oa

52

=3
®ERE

(4.11) R(kh+7%) — RMkh+1) > n+

for allt € [0,h] and small h > 0.

Proof. The argument is quite similar to that in the proof of Theorem 4.2.

Assume that R(kh) — R"(kh) > n for small n > 0. Let wy be a solution of (4.5) -
(4.6) - (4.7). Set £(t) := wi(t, R(kh +1)) for t € [0, h]. Then we observe by (4.5) and the
regularity of wy near r = R(kh)

3t 3
4.12 t h+1t) <—-n—- ———+ K¢t

for all ¢ € [0, k] and small h-> 0.
On the other hand, we see by the mean value theorem that
wi(f, R(kh +1)) = wi(t, R"kh+1))
+wi . (E, R(kh +7) + 8)(R(kh + ) — R*(kh +7))
= wi, (T, R(kh + ) + 0)(R(kh +T) — R*(kh + 1)),

where 6 := 8(R(kh + ) — R(kh +))(< 0) and 8 € (0,1). Hence we obtain

—wi(®, R(kh + 1))

N o
(4.13) R(kh +t) — R*(kh +1t) o G RH D) 4 D)

It follows from (4.8) that —1 < wy, (£, R(kh+%)+6) < ~1/2. Hence 1/2 < —wy (%, R(kh+
t) +6) < 1. Using (4.12) and this inequality, we obtain (4.11). O

Proof of Theorem 4.3. Take h; > 0 so small that 1 — K¢t > 1/2 for all ¢ € [0,h] and
h € (0,h;). In the case k = 0, as R(0) = R*(0) = 1, we apply Lemma 4.2 with n = 0 to

have
22 -2
3 7

- >
0 I O)E
In the case k = 1, we use Lemma 4.2 with = h%/2(R(0))? to obtain

R - R'?) 2

R(h+1) — RMh+1) >n+ 3 —Kf‘°’>l h + r
ST RERE Y T2 \(R0)? T (R(A)?
for all # € [0,h]. Here we have used the fact that v2¢ < R(t) < R(0) = 1 for all
t € [0, Ty — €]. Hence we are able to prove by induction that

z2

k
R(kh+%) — R (kh +1) ; 2(R(lh T ARER)?




for all t € [0,h), k=0,1,2,...,[T/h] and h > 0.
For any € € (0,T5/2), choosing a small hy > 0 we get
1 2’“: B 7 >kh2+Z2>(kh+Z)h
(R(lh))? B

R(kh +1t) — R"(kh +7) 25 2 TR(h) (R{ER)) 5 2 1

for all £ € [0,h), k =1,2,...,[T/h] and h € (0, hy). Hence the proof is comple’ced. O
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