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1. INTRODUCTION
We consider the following initial-value problem for the drift-diffusion equation:

Bou+ (~AYu =V - (uVy) =0, t>0, z € RY,
(1.1) —-AyY =u, t>0, z€eR"
' u(0, z) = uo(z), z € R",

wheren > 2, 1 < 0 < 2, 8, = 9/0t, (-A)"%p = FY|EIPF[¢]l, V = (&,...,0h), 0; =
0/0z; (1<j<n), A=09}+---+ 02 and up : R® — R is a given initial data. If we put

ux(t,z) = Mu(Mt,Az),  a(t,7) = X2 (A%, Ax)

for A > 0 and solutions (u,) to the drift-diffusion equation, then (uy,,) fulfill the equation,
. and

sup [|ua(t) || Lrve(gny = sup [[w(t)|| /o @n)
£>0 £>0
for A > 0. Particularly, when 1 < 6 < n, it follows that
sup || Vipa(t) || poso-v @ny = sup |V (E) || prrco-v meny
t>0 t>0

for A > 0, and Hardy-Littlewood-Sobolev’s inequality leads that
(1.2) V()] rro-nrny < Cllw(®)l| prso @en)-
Therefore, we can treat solutions on the scale-invariant class

C (0,T), L™ (RY))

whenever 1 < § < n. But we call the case # = 1 the critical since (1.2) does not work. Though
well-posedness in several classes, and global in time existence of solutions of (1.1) for 1 <6 < 2
were proved (see [10, 11, 12, 13, 15, 18]). Moreover, the solution satisfies

(1.3) u € C*((0,00), C*(R™)),

and

(14) Ju(®)lzome) < C1+)78075)

for 1 < p < co. The purpose here is to establish large—time behavior of the solution. When
1 < @ < 2, the LP-theory for a parabolic equation yields the asymptotic expansion of the

solution as the time variable tends to infinity (cf. [1, 9, 17]). The similar argument as in the
above preceding works is effective on the several problems (see for example [2, 3, 4, 5, 7, 8, 16]).
However, for (1.1) with § = 1, the LP-theory for a parabolic equation does not work since
the dissipation balances the nonlinearity. Thus the drift-diffusion equation with 6 = 1 is an
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equation of elliptic type. Throughout this paper, we study (1.1) with § = 1. Before stating our
main theorems, we refer to the following generalized Burgers equation of elliptic type:

(1.5) Ow + (—=0)YV?w +wo,w =0, t>0, z €R,

' w(0,z) = wy(z), zeR
For global solutions of (1.5), Iwabuchi [6] established the asymptotic expansion by employing
the corresponding Besov spaces (see Section 4). To discuss large-time behavior of the solution
of (1.1), we introduce the following integral equation associated with (1.1):

t
(1.6) u(t) = P(t) x up +/ P(t—s)x V- (uV(=A)"tu)(s)ds,
0
where the Poisson kernel
P(t,z) = w_nTHI‘("TH t —
(2 +|z|?) 2~

is the fundamental solution to d,u + (—A)%2u = 0, and * denotes the convolution for z. The
solution of (1.6) is called the mild solution and solves (1.1).

Theorem 1.1 ([20]). Letn >3, 6 =1, ug € L'(R", /1 + |z|2dx), and the solution u of (1.1)
satisfy (1.3) and (1.4). Then 4

lu(t) — MuP(t) = my - VP(t) ]| poqgeny = 0(t"47)7)
as t — oo for any 1 < p < oo, where My = [g. uo(y)dy and my = [o.(—y)uo(y)dy.

In the two-dimensional case, we introduce the following function:
t
(1.7) J(t,z) = / P(t - s)* V- (PV(=A)"P)(s)ds.
0

This function is well-defined, and satisfies
J € C((0,00), L'(R?) N L®(R?)),
and
17 Ollome) = 20D (W) ey

for 1 <p < oo andt > 0. We remark that this decay rate is same as one of VP(t). Then we
obtain the asymptotic expansion for (1.1) with n = 2.

Theorem 1.2 ([20]). Letn =2, § =1, uo € L}(R?, \/1 + |z|2dx), and the solution u of (1.1)
satisfy (1.3) and (1.4). Then
_ 0@—2(1—%)—1)

|[u(t) = MuP(t) = my - VP(t) = MgJ(8)]] 1y ge)

ast — oo for any 1 < p < oo, where My = [z, uo(y)dy and my = [o(—y)uo(y)dy.

Since J(t) corrects the asymptotic expansion, we call this function the correction term. The
proofs of Theorems 1.1 and 1.2 are based on the LP-L? type estimate for (1.6) with the aid of
the energy method.
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2. PRELIMINARIES

Hardy—Littlewood—Sobolév’s inequality yields the following inequality.

Lemma 2.1. Letn>2, 1<o<n, 1<p<Z and ;1: =1_ 2. Then there exists a positive

constant C such that ’
H('A)_U/Q‘/DHLP*(R’I) < CH‘p”Lp(R")
for any-@ € LP(R™).
It follows that
21) [9(=8) ] ey < C (1 + Dlpllzrgan) + 1+ ol 13w)
for any € L}(R") N L>®(R") and ¢ > 0. Indeed

[V=8)" (=) SO(/Jz—mgm " /|z—y|>1+t) %dy

immediately gives (2.1). Since the Poisson kernel fulfills

|6k (—A) 2Pt

1

ooy =777 [0EVEPQ)| o oy

forkeZ,, 0 >0, 1<p<ocoandt>0, we obtain the following lemmas.

Lemma 2.2. Letn > 1, 1 <p < q’ < o0, k € Zy and 0 > 0. Then there exists a positive
constant C such that

(A1) ko
Halc(_A)a/QP(t) * (p”Lq(Rn) < Ct (p q) k ”SOHLP(R")
for any p € LP(R™) and t > 0. ’
Lemma 2.3. Letn > 1, k € Z; and ¢ € LY(R", (1 + |z|?)*?dz). Then
VeP(t o —n(1—1)—
lPore- S TIO [ Corptmay| ot

lo|<k Lr@®™)

ast — oo for any 1 < p < oo. In addition, if |z|**'p € LY(R™), then

Piyeo- 3 TEO [ coratay

: < Ot k(1 4 )1
i<k ¥

LP(R™)

Joranyl <p<ooandt>0.

Proposition 2.4. Letn > 2, 8 = 1, and the solution u of (1.1) satisfy (1.3) and (1.4). Then
there exist positive constants C and T such that

(2:2) | [H(=2)"4u(®)]| 2 gny < CEV2A+ )2
foranyt>T.
Proof. We multiply (1.1) by t9(—A)Y2y for sufficiently large g > 0, and have
d L2 2
it (tq“(_A)l/‘l““Lﬂ(mn)) + 2tq’|("A)1/2““L2(Rn)
(2.3) =—t [ Vu V(A u(-A)Y2udz + 12 / u?(=A)Y2udzx
R

n

+qt" | (—A)lﬂulﬁz(mn)'
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By using (2.1) and (1.4), we see that

Vu - V(=A)u(=8)"?udz| <C||V(=A) " w(E)]| o g | (—2) 20 32 gy

(2.4) R? i
Sgtq“(_A)l/zu”Lz(]R")
and
o [ - ] <l |80
(2.5) ke

-3n 1/2,,1|12
<Ct(1+t)7" + §t‘l||(—A) " 2 gy
for large t > 0. Gagliardo-Nirenberg’s inequality and (1.4) lead that

9t (=) ulfa gy SO [ull e | (=800 2y

(2.6) <CtH(1+1) 72|~ 1/2uHL2(]R")

1
_ -n T _ /
<CH2(14+t)™ + 3tq“( A 2u|’L2(R")‘

By applying (2.4), (2.5) and (2.6) to (2.3), we complete the proof. O

3. OUTLINE OF THE PROOF OF MAIN RESULTS

In this section, we outline the proof of our main theorem. The detailed proofs will appear in
[20]. Before proving Theorem 1.2, we prepare the following two propositions.

Proposition 3.1. Letn = 2, § = 1, uy € L(R?, /1 + |z|2dz), and the solution u of (1.1)
satisfy (1.3) and (1.4). Assume that 1 < p < co. Then

(3.1) lu(t) = MuP(t)|| o2y < Cct™ 2091 + t)" log(2 + 1)

for any t > 0.

Proposition 3.2. Letn = 2, § = 1, uy € L*(R%,\/1 + |z|2dz), and the solution u of (1.1)
satisfy (1.3) and (1.4). Assume that 1 < p < oo and 0 < 0 < %p. Then there ezist positive
constants C and T such that

[(=A)72 (u(t) — M P(t < Ot 2079791 4+ t)log(2 + 1)

”LP(JRZ)
foranyt>T.

The above propositions are proved by the LP-19 estimate for (1.6) together with (1.4) and
(2.2).
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Outline of Theorem 1.2. From (1.6) and (1.7), we see

u(t) — MyP(t) —m, - VP(t) — M2J(t)
=P(t) *x ug — M P(t) — my - VP(2)

t/2
52) +/ VP(t - s) % (uV(=A)u)(s) — MZ(PV(-A)"'P)(1+s)) ds
3.2 0
+ M3/0 VP(t—s) * (PV(=A)"'P)(1+s) — (PV(-A)"'P)(s)) ds

+ //2 P(t—s)* V- ((uV(~A)"tu)(s) — M2(PV(-A)"'P)(s)) ds

Lemma 2.3 giVes that
(3-3) ”P(t) * U — Mup(t) -VP(t ”LP(RZ) o (t_z(l_%)_l)

as t — oo. The second term on the right-hand side is rewritten by
/ VP(t —s) % (uV(=A) " u)(s) — MZ(PV(-A)"'P)(1+s)) ds
o :
t/2
=/ (VP(t—s,x—y)— VP(t—s,2))
0o Jr?

. ((uV(—A)_lu)(s,‘y) — M2(PV(-A)'P)(1+ s,y)) dyds

since [po (uV(=A)"'u)(s,y) — MZ(PV(=A)"'P)(1 + s,y))dy = 0 for s > 0. We introduce
R(t) = o(t) as t — oo, then, by Taylor’s theorem, we see that

/ (VP(t—-s,z—y)—VP(t—s,z))
]Rz
W) (s,y) — ME(PV(-A)~ 1P)(l + s, y)) dyds

/W/ / —y-V)VP({t—s,z—y+\y)
yKR(t)
Lu)(s,y) — M2(PV(=A)"'P)(1+ s,y)) dAdyds
t/2
+/ /‘be(t) (VP(t — s,z —y) — VP(t — s,1))
(@Y (-A)M)(s,y) ~ MAPV(-A)P)(1+ 5,3) dyds.

By employing Lemma 2.2 together with (1.4), Lemma 2.1 and Proposition 3.1, we have that

t/2
/ / / —y - V)VPt—sx—y+)\y)
lyI<R(2)

AWV (=) ) (s,y) — MA(PV(=A)""P)(1 + s,y)) dAdyds

Lr(R2)
t/2 .

SCR(t)/ (t— )"0 9 2(1 4 5)2ds = ot 72075 7Y)
0



148

as t — oo. Similarly, we obtain that

¢/2
H/O [ (VP(t=s,0~y) = VPt~ 5,2)

((WV(=A)Tu)(s,y) — MZ(PV(=A)"'P)(1 +s,y)) dyds

Lr(R2)
:O(t—2(1—%)—1)
as t — oo. Hence Lebesgue’s monotone theorem yields that

t/2

((uV(=2)"u)(s,y) — ME(PV(=A)"2P)(1 +s,y)) dyds

L»(R2?)
:o(t—Q(l—%)—l)

as t = o0o. Therefore, it follows that

P TP - )+ (T(-8)u)(s) - MAPV(-A)P)(1 +5)) ds
(3.4) 0 LP(R2)
zo(t—2(1—%)—l)
as t — co. We see at once that
t/2 . ~ -
(35) /0 VP(t—s)* (PV(=A)'P)(1+s) — (PV(-=A)"'P)(s)) ds .
=o(t—2(1—lp)—1)
as t — oco. We represent the last term on the right-hand side of (3.2) by
t Pt —s)*x V- ((uV(-A)"u)(s) — MZ(PV(-A)"'P)(s)) ds
t/2
= V(=A)2P(t — s) % (—A)°"? (uV(-A) ) (s) — MZ(PV(-A)'P)(s)) ds

for some small ¢ > 0. Thus, by employing Lemma 2.2 together with Lemma 2.1, (2.2) and
Proposition 3.2, we conclude that

/t Pt —s)* V- ((uV(-A)tu)(s) — MZ(PV(-A)"'P)(s)) ds

(36) /i 2
<C (t— S)—(l—a)S—Q(l—%)—2—ads _ O(t—Z(l—%)——l)
= 2
as t — oo. By applying (3.3), (3.4), (3.5) and (3.6) to (3.2), we complete the outline. - O

Theorem 1.1 is proved in the similar way.



4. THE DRIFT-DIFFUSION EQUATION AND THE BURGERS EQUATION

We expect that the solution of the two dimensional drift-diffusion equation and one of the
Burgers equation have a similar decay structure since those nonlinear terms decay with same
order. Namely

@ (®)]| pa gy = O()

and
[u¥V (=2) ()| ;1 gy = O()

as t — 0o0. To discuss an asymptotic expansion for (1.5) we make the following definition:
1 t/2 .
Julta) =7 / / (B.P(t — 5,7 — ) — B, P(t, ) Ps, y)?dyds
o Jr

(4.1)

- /t P(t — s) x (PO, P)(s)ds.
t/2

This function is well-defined in C((0, 00), L*(R) N L*°(R)), and satisfies
—(-1)-
”Jw(,t)HLp(R) =1 . p) 1”‘]“"(I)HLP(]R)

for any 1 < p < oo and ¢t > 0. Then, for 1 < p < oo, the decaying solution w(t) of (1.5) fulfills

Hw(t) — M,,P(t) + %MfﬁzP(t) log(2 + t) — M2J,(t)

A\ lf / (w(s,0)? ~ MEP(L+ 5,)") duds + 3-M2log 2 ) 8.P (1)
2 /o Jr 4

o (170-5)

as t — oo, where M,, = [ wo(y)dy and m, = [G(—y)wo(y)dy (cf. [6, 20]). The logarithmic
term on this is derived from the following procedure: The mild solution of (1.5) is given by

Lr(R)

1 [t2 ¢
(4.2) w(t) =P(t) * wp — 3 0. P(t — s) * (wW)(s)ds — /t/2 P(t — s) x (wOyw)(s)ds.

We rewrite the nonlinear term by
t/2
O P(t — 8) * (w?)(s)ds
0
t/2 , t/2 .
=/ B P(t — s) * (w(s)? — M2P(1+5)%) ds + Mf,/ 0:P(t — s) x (P?*)(1 + s)ds
0 0

) : t/2
=8,P(t) / / (w(s)* — M2P(1 + s,9)?) dyds + M28,P(t) / / P(1 + s,y)%dyds
0 R 0 R

t/2 |
M2 / / (BuP(t — 5,2 — y) — 8 P(t,)) P(s,y)dyds + pa(£) + palt) + ps(t),
0 R

149
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where
t/2
p1(t) =/0 /R(GZP(t — 5,2 —y) — 0, P(t, 1)) (w(s,y)? — MEP(1+ s,y)*) dyds,

pal) == 0.P(6) [ [ (.0 = MEP(L+ 5,9)) s

t/2
ps(t) =Mu2,/0 /R(BIP(t — 5,z —y) — O, P(t,2)) (P(1 + s,y)* — P(s,)?) dyds.

The third term on the right-hand side is a part of J,(¢), and the second term will lead the
logarithmic term. Indeed we see that fotﬂ Jo P +s,y)*dyds = fot/z(l +s)7tds [ P(1,y)%dy =
5= (log(2 + t) — log 2). Since w(t) converges to M, P(t), we can confirm that

—(1—-1y_
o1 ()l Loy, |02 () | oy, 1| 23(8) || Lo r) = O(2 (=p)=1)

as t — oo. In the study for (1.1), the similar logarithmic term as above appears seemingly.
Namely, in the same manner as above, the nonlinear term on (1.6) provides

)2
M2VP(t) - /0 /m (PY(=A)P)(1 + 5,)dyds
t/2

=M,’;’VP(t)-/ (1—+—s)‘lds/]RQ(PV(—A)‘lP)(l,y)dy

0

into the asymptotic expansion. However, since [3,(PV(—A)7'P)(1,y)dy = 0, this term is
vanishing.
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