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Solvability of heat equations with hysteresis coupled
with Navier-Stokes equations in 2D and 3D

Yutaka Tsuzuki
Department of Mathematics, Tokyo University of Science

This is a prompt report of the author [33)].

1 Introduction

1.1 Problem and related works

Let T > 0 and Q@ C RY (N = 2,3) be a bounded domain with smooth boundary T.
We consider the following problem (P):

(1,(8) < w < 92(8) in Q= (0,T) x Q.
dw/0t = 0 in Qr(6) < w < ¥ (6),
Ow/dt > 0 in Qw = v1()],
ow/dt < 0 in Q[w = 12(0)],
(P) 0860/6t — A0 +v-VO+w=f inQ,
v/t —Av+(v-Vv=g(#)—Vr inQ,
dive = 0 in Q,
=0, v=0 in (0,T) x T,
w0 =, B0 =t v0)=v nQ,

where w : Q - R, 0:Q - R, v:Q — RY and 7 : Q — R stand for the hysteresis
term, the temperature, the velocity and the pressure, respectively, and these are unknown
functions; 1,92 : R 2> R, f: Q > R, g: R > RY, wy: Q - R, 6 : Q@ - R and
vy : Q= RY are given functions.

From a view point of physics the problem (P) describes the temperature 6, the velocity
v and the pressure 7w of incompressible fluid in a bounded region 2 on a time period
[0, T]. It is especially peculiar that the temperature will be controlled by the heat source
—w. which is fluctuated by the present temperature. Such phenomenon comes from the
temperature-dependent constraint on w:

¥1(0) < w < (6).

Typical examples of 1,1, are non-decreasing functions. Then such model represents
e.g., phenomenon by thermostat devices. For more details, if the temperature 8 rises
(falls), then the heat source —w will fall (rise), influenced by the obstacle functions v, 2.
This means that thermostat devices cool (heat) the fluid, responding to too high (low)
temperature.



Mathematically, the problem (P) is the Boussinesq system with hysteresis formu-
lated in a quasi-variational inequality, which represents the phenomenon by thermostat
devices. Boussinesq systems are dealt with in many works such as Morimoto [25], Fukao-
Kenmochi [8], Kubo [20], Fukao-Kubo [10], [11], Sobajima-the author-Yokota [28], Larios-
Lunasin-Titi [21], Li-Xu [22], Miao-Zheng [23], Fukao-Kenmochi [9] and the author [31].
Thermostat models for hysteresis formulated in a quasi-variational inequality are stud-
ied in e.g., Kenmochi-Koyama-Meyer [17], and other models for such hysteresis are also
studied in, Kubo [19], Colli-Kenmochi-Kubo [4] and so on. Thermostat models with relay
hysteresis are studied by many authors such as Glashoff-Sprekels [12], [13], Visintin [34],
Kopfové-Kopf [18], Gurevich-Jager-Skubachevskii [15] and Gurevich-Tikhomirov [16].

Recently, the author [32] showed existence for the problem (P) in the 2D case with the
Navier-Stokes equation in a weak sense. That is, (P) has at least one solution (w,8,v)
satisfying

(1.1) v € HY(0,T;(H(Q))*) N L>(0,T; L:(Q)) N L*(0, T; HL(Q))

with the condition
v € L%(Q) = D(AY),

where L2(Q) and H.(Q) are roughly sets of Lebesgue and Sobolev functions satisfying
divergence freeness, respectively (see Section 1.2), and

A:D(A) = HXQ) N HL(Q) C LX(Q) - L3(Q)

is the Stokes operator, which is defined as roughly —A (see Section 1.2). However this
result does not assert uniqueness for (P). When we try to attain uniqueness for (P), we
would put (w;, 6;,v;) as a solution of (P) (¢ = 1,2). In this case, |jw1 — wa||Leo(0,1;L0(02))
is required to be estimated, and hence so is ||6; — 03]|ze(0,r;L0(02))- Then we need an
appropriate estimate for

(12) 91 4 V('Ul - 'Ug) and (01 - 02) . V'UQ.

This breaks down in [32] because of low regularity for solutions of the Navier-Stokes
equation (see (1.1)). :

The purpose of this paper is to establish existence and uniqueness for (P) with v more
regular than the class (1.1). In order to decide height of regularity for » so that (1.2) can

be appropriately estimated, we introduce the fractional power of the Stokes operator and

its domain D(A%) (0 < a < 1) (such operator A® is dealt with by e.g., Fujiwara [7], Fujita-
Morimoto [6], Otani [26], Mitrea-Monniaux [24], and Guermond-Salgado [14]). In fact,
we will establish existence and uniqueness for (P) in a N-dimensional domain (N = 2, 3),
where the solution of the Navier-Stokes equation belongs the next class:

v € H(0,T; D(A™=*)*) N L=(0,T; D(A%)) N L*(0,T; D(A™%%))

with the condition
3(N —2)
4

Here D(A?) is roughly a set of a-order differentiable functions Satisfying divergence free.

v € D(A%), <a<l.

65



66

1.2 Main results

First we introduce notation, starting with H := L3(Q), V := H}(Q), H := L%(Q) and
V := H!(Q) with the standard inner products, respectively, where L2(Q) and HJ(f)
are the closure of D,(Q) := {v € D(Q) = CP(Q) | dive = 0} on L*(Q) and H'(N),
respectively. Here the dense and compact imbeddings V — H and V — H < V™ hold.

To formulate the equation for hysteresis we define the closed and convex set K (6) and
the indicator function Iy, which are depending on # € H, as

K(0) :={we H | ¢1(0) < w < 1(0) a.e. on N}, 6€H,

[0 wekK(@),
Ig(w).—{oo 'wEH\K(()), e H.

Then we introduce the subdifferential operator of 0ly, which is characterized by ¢ €
Olp(w) & (=&, w —2)g <0 (z € K(0)) for 6 € H and w € D(81y) = K(6). For details
on subdifferential operators we can refer to e,g., Barbu [1], [2].

On the other hand. for formulation of the Navier-Stokes equation, we define the Stokes
operator A : D(A) C H — H as A := —PA, where D(A) := H*(Q)NV and P : L*(Q) =
H is the Helmholtz projection. It is well-known the operator A can be extended to the
following form:

N
Ov; 0z;
A V>V A . :=§ —21d V.
- V7, (Av, 2)yn v id:l/naxiami'w’ v,z €

Here we introduce the fractional power of the Stokes operator A* (—1 < « < 1), which is
linear, unbounded and self-adjoint operator on H. Moreover we define the Hilbert space
Voaas V, := D(A%) for 0 < @ € 2 and V, := V*_ for —2 < a < 0 with the inner
product (u,v)yv, = (A%u, AZv)y, u,v € V, for -2 < a < 2, where A%u € H for
—2<a<0and u €V, means that (A2u,2)y.= (u,A22)y, v_, for all z € H. Then
V. is a set of a-order differentiable functions as follows:

HYQ)NH, 0<a<i,
Vo=¢H;(QNH, 1<a<l,
H*Q)NV, 1<a<2

Here H* and HY are the fractional Sobolev spaces (see e.g., Demengel-Demengel [5]). In-
deed, e.g., [14, Corollary 2.1] read the above characterization. For details on the fractional
powers of the Stokes operator, we can refer to 7], [6] and [24]. Moreover note Vo = H,
V1 = V and the compact and dense imbeddings V, -+ H >V _,for 0 < a < 1. In
this paper, we regard A as the following form for all 0 < a < 1: '

A: V1+a — V—-1+aa

(s

1-a
<A"’vz>v_1+a,vl-a = v,A2 z)H, VEViiy, 2€V_,.
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Moreover we define the operator B as for all 0 < a < 1,

B: Va X Vl-l-a - V—1+a,

N
B2y v, = [ Tw)zdz=Y [ugls e,
Q Q i

ij=1
(u,v) E Vo X Vigy, 2€ Vi,

Here (3.3) in Lemma 3.1 in Section 3 guarantees B operates Vi, x Vi, 0on V_j,,.
Under the above setting we provide a definition of solutions.

Definition 1.1. A triplet (w, 8,v) is called a solution to (P) if the followings hold:

(D1) w € Ci(T;6) := {w € HY(0,T; H) | w(t) € K(8(t)) for all ¢ € [0, TT},
8 € Co(T) := H'(0, T; H) N L=(0,T; V) N L2(0, T; H2(Q2)) N L>(0, T; L=(1)),
v €C3(T) = H (0, T;V _1,0) N L®(0,T; V) N L%0,T; V14a);

(D2) dw/dt + 0ls(w) 20 in H a.e. on (0,7),
df/dt —A0+v-VO+w=f inH a.e. on (0,7),
dv/dt + Av + B(v,v) = Pg(6) inV_y,, a.e. on(0,7T);

(D3) (w(0),6(0),v(0)) = (wo,bo,v0) in Hx H x H.
Now we are in a position to state the main results. Assume the following conditions:
(A1) 1,92 € CHR) NLip(R), %1 <1, on R;
(A2) fe L*0,T; H)NLY(0,T; L>(®)), g € Lip(R;RY);
(A3) wo € K(bp), 6 €VNL>®(Q), vy€V,.
Under the above assumption with the condition

3N -2) _

(1.3) ;

a<l

we establish solvability of global in time solutions in 2D and local in time solutions in 3D. ‘

Theorem 1.1. Let N =2,0< T < 00 and 0 < a < 1, Suppose (A1)—(A3). Then there
exrists a unique solution (w,8,v) to (P). Furthermore, if (w;, 0;,v;) is a solution with the
initial data (wo;,00,4,v0;) (i = 1,2), then continuous dependence of solutions on initial
data holds:

(1.4) |lwy — wallLooo,r;zo0 () + 1161 — B2l Lo 0,75000(02)) + |v1 — V2llLooo,msv)
< Co (Jlwo,1 — wo2|lo(y + 10,1 — Bo2llv + 1601 — Go2ll Loy + llvos — vo2llva)

where Cy > 0 is a constant, which increases depending on increase of max;-12 |60 =,
[6o2llv and max;—1 2 [|vo;llv,-
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Theorem 1.2. Let N =3,0< T < 00 and 2 < a <1, Suppose (A1)-(A3). Put

T* = T*(wla ¢21 f,ga 00, UO) = 6’)’_2—:——1 A T7
where § > 0 is a constant small enough, and vy = ¥(¢1,%s2, f, g, 0o, Vo) > 0 is defined as

v := |lvollv, + |IPgO) & + ']l L=®) (||90||L°°(n) + || fllro,1iL52)) + imz?bz(li/)i(o)l) -

Then there exists a unique solution (w,0,v) to (P) with T = T,. Furthermore, the con-
tinuous dependence of solutions on initial data (1.4) holds where T = T, and Cy increases

depending on increase of max;=12 |60l a, l|6o2llv, 602l and max;— 2 ||vo;llv,.

Remark 1.1. Let N = 2,3 and o = 1. Let (w,6,v) be a solution to (P) for some
0 < T < oo. In light of the well-known fact H* = {Vr € L*Q) | = € HY(Q)}
(see e.g., Temam [29, Theorem 1.4 in Chapter I]), there exists a function 7 satisfying
Vr € L?(0,T; L*(Q)) such that v/t — Av + (v - V)v = g(f) — Vr in L*(Q).

2 Orientation

The proof of the main results proceeds in the following three steps.

1. In Section 4 we show existence and uniqueness of solutions to

dw/dt + 0lg(w) 3 0 inH ae on(0,7),
df/dt —AG+v-VO+w=f inH ae on(0,7T),
(’UJ(O), 0(0)) = (’wo, 00) in Hx H

with some estimates for # with fixed v. Hence we have the mapping S; : v — 6.

2. In Section 5 we also establish solvability for
{dv/dt + Av+ B(v,v) = Pg(f) inV_;,, ae on{0,7),
v(0) =vo € V, in H
with estimates for v with fixed 6. Thus the mapping S; : # — v appears.
3. In Section 6 we combine the above two problems by virtue of the contraction map-

ping principle for the mapping S := S; 0 §;. The cornerstone of estimates toward
contractivity of S is appropriate estimates for

Uy V(91 — 02) or (’U1 - '02) . V02
by adopting the semigroup of the Dirichlet Laplacian and its properties.

In Sections 4 and 6 we will use the following norm. For a Banach space X and k > 0, we
introduce an equivalent norm || - || ee(o,,x) on the Lebesgue space L>(0,T’; X) as follows:

(2.1) lullzeomix) := sup |lu(t)lxe™, wue L®(0,T;X),
te(0,T)

with
I lzerxie™ <N lzeomrx) < I - l=@mx)-

Especially, in Section 6 we adopt || - || Lee (0,7, (s2)) @ the metric function of the contraction
mapping principle.
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3 Estimates for the convective terms

The space V, causes not a few complication when we estimate the convective terms
v - V@ or B(u,v). The following lemma gives estimates for the convective terms.

Lemma 3.1. The following holds:

(3.1) lv- Vol < collvllv. OIS 1A0]}57, vEV, € H(QNV,
(3.2) v - V8]l o 0y < collvllv, 101120 10011 7, vEV, 0 € HHQ)NV,
(33) B, v)llv_..a < collullvallvllf, (v, u€E Ve, vE Vi,
B4 1Bwwlly_y,, < colluly lulylulvlul;,, € Vi,

(35) 1B, v)llv_, < collullalvlvi., ueH,ve Vi,

where p € (0,1] and 0,7 € [1,00] are defined as

_J1-%+0, N=20<a<l or N=3,1<ax<]l,
AT N=2a=1.
o= (%_%)-1’ N=2,0<a<l or N»=3,%<a<1,
2, N=2 a=1,
bt N=20<a<l or N=3,i<a<l,
e N=2 a=1,
and co > 0 is a constant.
Proof. For simplicity use the notation || - ||, = - lzey or || - llp :== || - llzr() and let

¢ > 0 denote certain constant. We use the Holder inequality, the Sobolev inequality and
the Gagliardo-Nirenberg inequality through the proof. At that time we choose N and «
so as not to satisfy (3.1) with p = 0 nor (3.3) with p = 0. (See e.g., [5] for the Sobolev
imbedding theorem with fractional orders).

First we see that

o~ Vol < ol )—lnveu( o < clollv. oI ¥ a0E ™

1_a
2 N

Here note that  — & #0 and 5w <%¥ il,- On the other hand, if N =2 and a =1,
then (by using the Pomcare 1nequa11ty if needed) it follows that

36) v Vg < o] V8l < cllvllF vl 611 211 A0
< cllvllv 181121 A8] 2.
Hence the desired inequality (3.1) holds. We also see that
. 1 <
”'U Ve”(%_%) LS “'U”(

V8l gy < ellollv 1812 @l A1,

[N

%)
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Here note that 7 — 2 3 0. This inequality and (3.6) yield the desired inequality (3.2).
Next it follows that for all z € V1_,,

[ (w902

Here note that 3 — 2 #0, 1 — 4+ < & — 552 <1+ 152 and  — 15% # 0. On the other
hand, if N =2 and « = 1, then we also have

<l gy V2l ytllzll s ey

N

—~+a ——a

<dlullvalolly,” " lvlv,, Nzlv, ..

[(w- V)olla < llullsl|Volls

1/2 1/2 1/2 1/2 1/2 1/2
< ellulFllull vy vlyE < clullv vl vl

Hence the desired inequality (3.3) is obtained. Moreover it follows that for all z € V%
’ / (u-V)u)z

Thus we obtain the desired inequality (3.4). Finally we see that for all z € V' N

—-a?

< — —
lell gy 1Vl (3 gy 1211 gy
1/2 1/2 1/2 1/2
< cllull gl lully iy, zlv -

-

| /“ (u- V)v)z

< ]|u||(%)-1]|Vv||(%_%) 1”2“(%)
< c“u”HHv”VHa”z”VéL_a'

Here note tha,t 3 — 7% # 0. On the other hand, if N = 2 and a = 1, then it follows that
forallzeV 1,

w9

Therefore we derive the desired inequality (3.5). a

< [lullzflvllalizlla

1/2[ l/2|

< dlullalvlviviv,lzlv, <clulalvivizlv,.

4 Heat equation with hysteresis

The following proposition provides solvability for the heat equation with hysteresis
with some estimates in the case N = 2, 3.

Proposition 4.1. Let N = 2,3 and 0 < T < o0. Let Cy, Cy and C3 be as in Definition
1.1. Assume (Al), (A2) and (A3). Then for all v € C3(T), there exists a unique solution
(w, 0) satisfying w € C1(T';0) and 8 € Co(T') such that

dw/dt + 8Ip(w) 3 0 inH  ae on(0,T),
(H) do/dt —A+v-Vo+w=f inH a.e. on (0,7T),

(w(0),6(0)) = (wo, o) in H x H,



and moreover the following holds:

(4.1) ||9||L°°(0,T;H) < My = My(||6oll =),
(42) 16| oo 0,710 (2)) < Ma = Ma(||0ollz(r))s
(4.3) 161 Z 0 0,7y + N1AONZ2 071y < Ms = Ma(|[6ollv, 0]l e 0.1:v0))

Furthermore, if (w;, 0;) is a solution with v = v;, wy = wo,; and 6y = b, (i = 1,2), then
the following holds for all t € [0,T]:

(44) 1161 = )T + | A6 — 62)]| 720,10

<G (“90,1 - 90,2”; + |1 — v2llie o vy + lwr — w2”%2(0,t;H)) ,
45)  l(wr — wa)(®)llzeo@y < llwos — wollzeo() + Call61 — b2l Looo 0021 -
Here My, My, M3, C;,Cy,C3 > 0 are constants. In particular,

e M; increases depending on increase of ||6o|mr. Specifically
(4.) My i= G (lln + 1 llvam + mas )] )

o M, increases depending on increase of ||0o|| L(w);
e Mj increases depending on increase of ||6o|lv and ||| Le(0,TiVa);

o C, increases depending on increase of min;—y s ||6o;||v and max;—i 2 ||vil|zeorv4)-

Proof. The proof would be completed by referring to the statement and the proof of {32,
Lemma 3.1 and Propositions 3.2 and 5.1].

First existence and uniqueness for (H) would be obtained by almost the same argument
of [32, Proof of Proposition 5.1] via [32, Lemma 3.1 and Proposition 3,2]. It suffices to only
note (3.1) in Lemma 3.1 and replace the definition of & in [32, Lemma 3.1 and Proposition
3,2] with k(t) := ko J; H’u(r)”%{:’ dr, where p is defined in Lemma 3.1.

Next letting (w, 8) be a solution to (H), we show the estimates (4.1), (4.2) and (4.3).
Multiplying the second equation in (H) by 6(t), we see that for a.a. t € (0,7T),

He(t)”H%HH(t)”H HIOOIT < (Ol + lw®)lle) 164

In view of the condition w € K(#) and Lipschitz continuity of ¢, 1 integrating the above
inequality implies that for all ¢ € [0, T,

N0 e < 6ol + 1 fll o8y + 1wl 21 0,60
< |6ollzr + Il fll 0.0 + 122 max [0:(0)] + max lill oo 101l L2 0,6,

‘Multiply it by e~*, take the supremum as ¢ € (0,T) and note that
t ‘ 1
[0l 0uime™ = [ 1020 ds < 216l oam
0
(see (2.1) for the definition of || - || eo(o,r;ar))- Then we deduce that

1
161l e 0,5y < NGollir + [ f | 2oy + TIQY? max [¢;(0)] + - max |3 1| oo ) 10| L= 0,711
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Thus the desired inequality (4.1) holds for k& > 0 large enough. On the other hand,
applying [32, Eq. (3.5) in Lemma 3.1] (h = f — w, uy = 6y and u = 6) implies that for
t €[0,7],

16z < lfollzeo@) + fllr 06200 + 1wl 20,6290 -
By a similar argument toward (4.1) as above (replace H with L>°(€)) we also deduce the
desired inequality (4.2). Moreover apply [32, Eq. (3.4) in Lemma 3.1] (h = f —w, up = 6y
and u = ). Then we have
cllol?E o 1y
”9||%w(o,T;v) + “A(’”iﬁ(o,:r;y) < celPli=orva) (”90“%/ + ”f”%no,T;H) + Ilwlli2(O,T;H)> y

where ¢ > 0 is a constant and p is defined in Lemma 3.1. Then using the condition
w € K(6), ie.,

s < QI max [:(0)] + max [l zoo(en) 16| 22(07:)

and plugging (4.1), we obtain the desired inequality (4.3).

Finally letting (w;, 6;) be a solution with v = v;, wp = wo,; and 6y = 6p; (i = 1,2),
we show the estimates (4.4) and (4.5). By applying [32, Eq. (3.4) of Lemma 3.1] (h =
—(v1 — v3) - VO — (w1 — we), v =01, g = o1 — Op2 and u = @, — ) we deduce that
for all t € [0, 7],

161 — 62)IIF + [AE1 = 82)Z20,0)
clvil¥2 o rv _ 2 oy 2 2
<ce ©TVe) { |61 — Bozlly + [(v1 — v2) - VOallZ2(0s,m) + lwr — wallf20 8 ) »
where ¢ > 0 is a constant and p is defined in Lemma 3.1. Here (3.1) in Lemma 3.1 and
(4.3) imply
[(v1 = v2) - V6|7 < ggllvy —wallZ 162117 146,]17,%
V1 2 21lL2(0,H) = CollV1 — V2|{Lo(0,t;v4) 11921l Lo (0,1;v) 2llL2-20(0,t;H)
< c(2,T”M3||v1 - ”2||iw(0,t;va),

where M3 = Mj3(||6oz2||v, ||v2]lL=(,1;v.)) is defined as (4.3). Then the desired inequality

(4.4) is obtained. The estimate (4.5) is proved by a similar way as in the proof of [17,
Lemma 3.1] or [32, Lemma 2.1]. Indeed, we would show 4 |lw+(¢)||% < 0, where

+
wx(t) = |wi(t) — wa(t) F [lwo,1 — wopzllLe@) F max |[:(61) — i(62) llLeo.mizo=() |

and hence the desired inequality (4.5) holds. O

5 Navier-Stokes equations
In this section we provide the solvability with estimates for

(NS) dv/dt + Av+ B(v,v) = Pg(f) inV_;,, ae on(0,7T),
* v(0) =vy €V, in H.

The following two propositions show solvability for (NS), with‘% <a<lfor N =23



Proposition 5.1. Let N =2, 0 < T < o0 and 0 < o < 1. Let C; and C3 be as in
Definition 1.1. Assume (A2) and (A3). Then for all 6 € Co(T'), there exists a unique
solution v € C3(T) to (NS),. Moreover the following holds:

(61)  ollzmorva) + 10lZ0rvia < M= Ma(llvollva, 6]l 20,rm)-

Furthermore, if v; is a solution with § = #; and vy = vg; (: = 1,2), then the following
holds for all ¢ € [0,T]:

(5:2)  Jvi(t) = v2(OIF, + llv1 = valliegva)
< G (Jlvos = woall¥, + 161 = Ballfaoum ) -
Here My, Cy > 0 are constants. In particular,
o My increases depending on increase of ||vo||v, and ||0]|z20,1;m);
e C} increases depending on increase of max;—1 ||vo;||v, and max;—1 ||0i||z20,7;m)-

Proposition 5.2. Let N = 3, 0 < T < o and —:1; < a < 1. LetCy and C3 be as in
Definition 1.1. Assume (A2) and (A3). Put

o
To = To(8,v0) =6 (Jlwollvs + |Pg(0)||& + ||lg'llzom) 0]l Loo,rsmry) 2 AT

Then for all 6 € Co(T), there exists a unique solution v € C3(Tp) to (NS),. Moreover the
following holds:

G Mvlieomiva + 1V1T20myvi. < Mi= Mi(lvollva, 10l z=oz:m)-

Furthermore, if v; is a solution with § = 6; and vy = vo; (i = 1,2), then the following
holds for all ¢ € [0, Ty]:

(5.2 lvit) = v, + o1 — v2llTasvia)
< G4 (lvos = voally, + 161 = GallEaoary) -
Here 6, M}, Cy > 0 are constants. In particular,
e M increases depending on increase of ||vo|v,, and ||8]|L=q@,1;H);
e Cj increases depending on increase of max;=12 [|[vo,i]|v, and maxi—; 2 ||6;|| L= (0,1;x)-

Remark 5.1. Ty(0,v0) is bounded below by 7, (defined in Theorem 1.2) uniformly on
6 € L>(0,T; H) which is the second part of solutions to (H) (see (4.1) with (4.6)).

Proof of Propositions 5.1 and 5.2. Let N = 2,3, 0 < T < oo and %:2 <a<l
From Lipschitz continuity of g we see that for all ¢ € [0, T,

(5.3) I1Pg(@@)lla < 1PgO0)]a + llg'll L@ 6 () a-

73
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Use it when we estimate | Pg(0(t))| . First using (5.4) as below, we prove the estimate
(5.1) (for N = 2) or (5.1)' (for N = 3). Suppose v is a solution to (NS), and multiply
the equation in (NS), by A*v. Then we see that for a.a. t € (0,T),

1d
(5'4) 2dt“v( )”%’a + IIv(t)“2V1+a

< (I1B@®), v@)v_rsa + IPGOD)Iv_1sa) 1A%V,
< (IB®), v®)llv_..a + clPgO@)la) llo@)llvssas

where ¢; > 0 is a constant. By the way note that the following estimate holds:

(5.5) “v“iW(O,T;H) + ”v”%ﬂ(O,T;V) < Ms = Ms(||vo|| &, ”9”L2(0,T;H))a

where Ms > 0 is a constant, which increases depending on increase of ||vol|x, ||0||L2(0,7;1)-
Indeed, multiplying the equation in (NS)p by v with the standard argument yields the
inequality (5.5). For details refer to, e.g., [30, Chapter 3.1]. Note (5.3) if needed.

Now we put N = 2 and show (5.1). We see from (5.4) with (3.4) in Lemma 3.1 that
for a.a. t € (0,T),

1d
S S, + eI,

< collv @I @) I Il @IV @Y, + cll Pg@O) | allv @) v,y

< & (@Il @I @I, + 1 Pg@E)IE) + %Ilv(t)ll%rm,

where ¢] > 0 is a constant depending only on ¢y and ¢;. Using the Gronwall lemma and
(5.5), we deduce that for all ¢ € [0, T,

[0, + 1015wy < €245 ORI (ugE, -+ 26, | Pg(0)E2(0ar))

.
< 4 (gl + 26| Pa(6) Eacmn) -

Hence the desired inequality (5.1) holds.
On the other hand, we put N = 3 and show (5.1)’ similarly to [29, Proof of Theorem
3.11 in Chapter I]. It follows from (5.4) with (3.3) in Lemma 3.1 that for a.a. ¢t € (0,7,

1d

5z PO, +1R@IY,,, < ollv@IVIvOITY, + ellPg@E lallv@®)v..

<o (nv(t)nv(f )+ 1PgOOI ) + 51000,

where ¢/ > 0 is a constant depending only on ¢y and ¢;, and p := a — % is defined in
Lemma 3.1. Thus we see that for a.a. t € (0,7,

68 FI0OIY, + 10O, <2 (IO + 1Pa@EO)IE )
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Now we let 2(t) := max{|[v(®)|},,, |voll3,,, 2¢1cl Pg(O) 3o 0.1} for ¢ € [0,T], where
¢ > 0 is a constant satisfying | - [lv, < ¢| - |lvise- Then for a.a. t € (0,T),

d .
Zlv@lv. i llv@lF, = max { ol 21c) PIO) im0y g »

0 if o)1}, < max{llvoliy,, 26/l Pg(O) 17w (o :er)

2(t) =

&=

Hence (5.6) implies that £z(¢) < 2¢2(t)¢** for a.a. t € (0, T). Moreover it follows that
for alle > 0,

d _1 1 (1 2y
= (=(t) + ) b= 2 (2() + o) G L) > -2
' p
Integrating it yields that for all t € [0, T],
_1 _12d _1 _1
(5.7) (2(t) +¢)"% > (2(0) +¢) P—T-TEEQ s (2(0) +¢€)" 7,

where T, := 5;’—&,(1 — 2_%)(,2(0) —f—s)'?l; AT. Thus taking a limit of (5.7) to the power of —p
as € | 0, we see that for all ¢ € [0, To],
(5.8) I, < 2(t) < 22(0) = 2max {||voll3,,, 26/ | Pg(0) |7 0,71 } -
Here note that ‘ |
' 2
tim 7. = 6 mecx { ol 21 Pg(0) e oran} =7 AT 2 T,

where § := 2251(1 — 27%-1). Then by integrating (5.6) and using (5.8) We obtain the

4C”
desired inequality (5.1).

Next letting N = 2,3, we prove the estimate (5.2) (for N = 2) or (5.2)' (for N = 3).
For simplicity we let T, (defined in the case N = 3) be denoted by T'. Suppose v; is a
solution with 8 = 6; and vy = vg; to (NS), (i = 1,2) and take the difference between
the equation for ¢« = 1 and ¢ = 2. For simplicity put 6 := 6; — 6, vy := vg1 — Vo2 and
v :=v; — v2. Then it fqllows that

d’l)/dt + Av + B('Ul, 'U) + B(’U, ’Ug) = Pg(01) - Pg(02) in V—1+a,
v(0) = vy € V, in H.

Multiply it by A%v and use (3.3) in Lemma 3.1. Then we see that for a.a. ¢ G 0,7,

1d
57O, +lv®)Iv,,.,

< (IB(w1(#), vl 110 + 1B(0(2), v2(E) |V 144
+[1Pg(61(t) — Pg(62(t))llv_..) 1A%0(D)llv, .
< collor@llva @IS, @17, + collo@llvalv @5, o1V, o O)lvy,.
+ o9l e @ 0@ [0 (D) lv 11

< &, (I @101, + IR, oI, oI5, + 101 )

1
+ 5O,
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where c;,¢;, > 0 are constants. In particular, ¢, depends only on ¢y, ¢z and ||g’]| Lo (w).-
From the Gronwall lemma and (5.1) (for N = 2) or (5.1)’ (for N = 3) we deduce that for
all t € 0,7,

lo@IY, + o0y s
2 _ .
= oxp [263 (T“vlnzw(wva) + Tp””’é’”i';(o,r;va)””2||iz(2tfr;vl+a)>]
x (llvoll%, + 161350210 )
1
< exp (26 (TMa(llvoslva, 61 ll20.7:m)? + T Ma(lvollv, 182l z20mm)) ]
x (ol + 161220.m)) -

Here, in the case N = 3, replace My(||vo;llv., 10ill2(0,7;m)) by Mi(|lvosllv., 16l Lo(o;an)
(i = 1,2). Hence we obtain the desired inequality (5.2) (for N = 2) or (5.2)" (for N = 3),
which also implies uniqueness for (NS),.

Finally let § € C3(T) and vy € V, as in (A3). Then we prove existence for (NS),, for
N = 2,3. We apply the Galerkin approximation similarly as in [29]. It is well-known that
for a Hilbert basis {e,} C V of the topology on H and vy, € E, := span{ey,...,e,}
(which is the space spanned by e, ..., e,) there exists a solution

(5.9) va(t) = Xn:vn,k(t)ek € E, te0,T],
k=1

where vy, x(t) € R, such that for each k=1,...,n,

(dvn/di(t) + Avn(t) + B(va(t), va(t)), €x)y- v
(5.10) = (Pg(0(t)), ex)y-y a.a.te(0,T),
vn(0) = vo, € E,.

Here we decide {e,} and vy, as follows. By virtue of the Riesz representation theorem
for V', we have the continuous operator A : V_, — V, such that

(Au,2)y = (u,2)v_,v, foralzeV,,
and hence the compact imbeddings V, — H — V _, yield that A is a compact operator
on H. Moreover self-adjointness of A : H — H is easily seen. Thus H has a Hilbert

basis {e, } composed of eigenfuctions of A with the eigenvalues {\;!} satisfying A, > 0.
That is,

(5.11) (Afe,, A%z)H = Ap(€n,2)g  forall z € V,.
Now we regularize e, € V. It follows from (5.11) that for all z € V,

(A%A‘—lzﬂe,,,A%z)H - (A%en,‘A%Al_Taz)H = (/\"en,Al_Taz)H = (/\nA%gen,z)H



Thus A~ 2" e, satisfies the following;:

—A (A%ﬂen) + V= AAS%e, inQ,

div (A——l?ig‘en) =0 in €,
A:I‘zﬂen =0 onT.

Apply the regularlization for the above elliptic problem with MA e, € Vau_, C H.
Then we have A 2 e, € Vs, ie., €, € Vita C Vau. Therefore (5.11) yields that

(5.11) A%e, = M\e, in H.
Moreover (5.10) has a solution (5.9), and hence for each k = 1,...,n,
(dvn/di(t) + Avn(t) + B(vn(t), va(t)). €k)v_,,, v, s

(510)/ ‘ = <Pg(0(t))’ ek)V-1+a,V1_a a.a.t € (O’T)’
v, (0) = vy, € En.

Now we define vy, € E, as vo, := P,vg where P, : V_, = E, is defined as P,u :=

Y ori(u,er)v_,veer foru € V_,. Inlight of (5.11)", P, is the orthogonal projection on
E,, of each topology on V_,, H and V. Then P, would satisfy the following conditions:

(5.12) |Puullv, < llullv,, ueVs (B€{-a,0,a}),
(5.13) Pou—u inV,, ueV,.

The standard property of orthogonal projections implies (5.12). On the other hand, if
u € Vg, then (5.13) holds since (5.11)" yields that

A*Pu = Z(u,ek)ﬁA"ek = Z(u,Aaek)Hek = Z(A"‘u, ex)mer = PrA%u
k=1 k=1 k=1
— A%w inH.

" In the case u € V, we also have (5.13). Indeed, take arbitrary € > 0. Then there is
u. € Vy, such that ||u — u.|lv, < ¢, and hence

NPou — ullv, < ||Pa(u —ue)llv, + | Patte — wellv, + ue — ullv,
< || Patte — ey, + 2¢. :

Therefore we obtain limsup,,_, ., [|P.t — ullv, < 2¢, which implies (5.13).
Now multiplying the equation in (5.10)" by v, x(t) and taking additionas k=1,...,n
(namely Y 7_; vn(t)x(5.10)") with (5.9) implies
(dv,,/dt + Av,, + B(vn,v,), ”">V_1+a,V1-a = (Pg(6), vn>v—1+a7vl—a .
Similarly >0 _; Aevnk(t)x(5.10)" with (5.11)" implies

(dvn/dt + AVy + B(Vn, ), A0y, v . = (Pg), A}y | v, -
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Therefore by noting the above two equations and almost the same calculation toward
(5.1) (for N =2) or (5.1)' (for N = 3) it follows from (5.12) with 3 = o that

””n”iw(o,i‘;va) + “”n”%z(o,:r;vp,a) < My([|lvonllv,, ||0“L2(0,T;H))
< Ma(|lvollva, 101l 20,70

Here, in the case N = 3, replace My(||vollv., 10llz2(07:m)) by Mj(|[vollva, 16l L(.r:m))-
Hence there exists subsequence of {v,} (still denoted by {v,}) with the limit function
v € L®(0,T; Vo) N L*0,T; V1,a) and

v, = v weakly* in L*(0,T;V,),
—) weakly in L?(0,T; V14q).

Moreover it follows from the characterization of A: V., = V _;,, and (3.3) in Lemma
2
3.1 that there exists £ € LT™7(0,T;V _114) and

Av, - Av  weakly in L*(0,T;V _1,4),
B(v,,v,) = & weakly in LTET(O,T; V_1ta)
We show £ = B(v, v) later. Therefore we have

(5.14) h, == —Av, — B(v,,v,) + Pg(f)
— —Av—- €+ Pg(6) =h weakly in L2(0,T; V _1414).

Here the equation in (5.10)' yields v}, ,(t) = (hq(t), €x)v_,,v., and hence

n

. ditvn(t) = ;v;,k(t)ek = (hn(t), €x)v_o vaer = Paha(t).

k=1
Thus (5.12) with 8 = —a implies that
“dvn/dt”L2(0,T;V~a) = “Pnhn”B(O,T;V_a) < “hn”Li’(o,T;V_,,)-
Since {h,} is bounded in L?(0,T;V _,), so is {dv,/dt}, and hence

(5.15) dv,/dt — dv/dt  weakly in L2(0,T;V _y).

Then the Lions-Aubin compact theorem (see e.g., Simon [27, Corollary 4]) yields
U, 2V in C([0,T); H).

Moreover we have

B(v,,v,) = B(v,v) weakly in L*(0,T;V_,),



where 7 is defined in Lemma 3.1. Indeed, in view of (3.5) in Lemma 3.1 we see that for
all ¢ € L*(0,T;V,),

(B(Vn,vy) — B(v,v), C)L?(o,T;V_T),Lz(o,T;V,)

(B(vn — v,vn) + B(v,90 — v), Q) 120,750, 12(0,15V )
< collvn = vlleqomim |vnllz201v 1 ) 1€ L2007V
+ (B(v, v, — v), C)LZ(O,T;V_,.),Lz(O,T;VT)
—0 asn— .
Therefore ¢ = B(v,v). Now take arbitrary ¢ € L?*(0,T;V,), multiply the equation in

(5.10)" by >_7_,(¢(¢), ex) mr and integrate over [0, T] (namely fOT S e (C(2), ex) < (5.10)).
Then we have

(dvn/dt, PaC) p20.1v_a)1200,m3ve) = (s Pal) pao1iv o, 1207v0)

Passage to the limit of the above relation with (5.13), (5.14) and (5.15) yields that

(d'v/dt, C>L2(0,T;V_D;),L2(O,T;Va) = (h’ C>L2(0,T;V~a),L2(O,T;VQ) ’

and hence dv/dt = h € L*(0,T; V _1,4) holds from the arbitrariness of ¢ € L*(0,T; V).
This concludes existence since v is a solution to (NS),. O

Remark 5.2. Let N = 2,3, 0 < T < oo and a = 1. It is well-known that (NS); has
a (strong) solution v € HY(0,T; H) N L>(0,T; V) N L*(0,T; V) with an initial data
vy € V (see e.g., [29, Theorem 3.10 or 3.11 in Chapter ], [30, Theorem 3.2]). Con-
cerning the (global in time) existence in Proposition 5.1 (N = 2), we would prove via
another approximation instead of the Galerkin approximation. Indeed, for vy € V,
take {vo,} € V such that vy, — vy in V, and consider the approximate solution
v, € HY(0,T; H) N L>(0,T;V) N L*(0,T; V) with the initial data vy, € V. Then a
similar calculation guarantees the existence. However concerning Proposition 5.2 (N = 3),
the same way toward the (local in time) existence would break down since Tp(6, vo,,) de-
creases depending on increase of ||vg,||v and there is a possibility To(6, vo) tends to
0.

6 Proof of the main theorems

In this section e*® denotes the semigroup of the Dirichlet Laplacian A for ¢t € [0, T).
See e.g., Cazenave-Haraux [3] for such semigroup and its properties.
Lemma 6.1. For all £ € LP(0,T; LY(Q2)) with
1 N 1
6.1 -+ =-=-<1
1 R
the following estimate holds fort € [0,T):

¢ _1_N
/ le¥=92E(s) || ooy d5 < cot' ™72 ||€]| Loo,tsLa())
0

where cg > 0 is a constant.
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Proof. The standard estimate for the heat kernel and the Holder inequality yield that
t t
N1
J 136 gy ds < [ 0= ) Hleo)onr ds

t N 1. 1/11'
<c </ (t — 5)_7'3?) ds“E”LP(o,t;Lq(sz)),
0

where ¢ > 0 is a constant. Here the necessary and sufficient condition for integrability
N 1./

of (t —s)"27a® on (0,t) is that —% - % -p' > —1, namely (6.1), and hence the desired

inequality is obtained. O

Proof of Theorems 1.1 and 1.2. Let N = 2,3, 0 < T < oo and %J\;_-%l < a <l
Suppose (A1)-(A3). Even if N = 3, we let T, be denoted with T for simplicity. Fixing
6 € L>(0,T; L>(Q)), we see from Proposition 5.1 (for N = 2) or Proposition 5.2 (for
N = 3) that there exists a unique solution v(=: S1(6)) to the Navier-Stokes equation.
On the other hand, Proposition 4.1 gives a unique solution (w, 8)(=: (S;(v), S2(v))) to
the heat equation with the hysteresis with fixed v. That is, Proposition 5.1 or 5.2 and
Proposition 4.1 provide the following mappings:

S1:0€ X(T) —»veCs(T) (v is the solution to (NS), for 6),
Sy:veC3(T)— 0 € X(T) (6 is the second part of the solution to (H) for v),

Sy :v €C3(T) — w e Cy(T;0) (wis the first part of the solution to (H) for v),

where X (T) C L*>°(0,T; L>(f)) is defined below. Moreover we consider the well-defined
mapping B _
S:=5085:0e X(T)»vels(T)—0e€ X(T).

In other words, for fixed 8 there exists a unique solution (w, 8, v) such that

dw/dt + 0lz(w) 3 0 in H a.e. on (0,7,
dg/dt — A6 +v-VO+w=f inH a.e. on (0,7),
dv/dt + Av + B(v,v) = Pg(f) in V_;,, a.e. on (0,7),
(w(0),6(0),v(0)) = (wo,00,v9) in Hx H x H.

In order to establish existence we apply the contraction mapping principle with the
complete metric space (X(T'),d) as

X(T) := {0 € L=(0,T; L()) | 10l coo,;1) < Mi(|l6oller) }
d(01,02) = [|61 — 2| e (0,T;L0 (),

where M (||6o]|zr) > 0 is defined as (4.6) in Proposition 4.1 and || - || Leo(o,7;Lo (2)) is defined
as (2.1) with k£ > 0 large enough. Note the relation S;(X (7)) C C3(T') as above. Actually,
in the case N = 3, the relation S;(X(7.)) C C3(T.) eventually holds since the relation
6 € X(T.) implies T, < To(6,v0), and hence S;(6) € C3(To(0,v0)) C C3(T.). (From now

on we let T, be denoted by T for simplicity.) Now let § € X(T') and put v := S;(6),



0 := Sy(v) and w := S(v). Then Proposition 5.1 (for N = 2) or 5.2 (for N = 3) implies

62)  Ivlieenva. +tIVIZ0rv.. < Millvollve, 1B]lz207:m)
< My(llwollva, T2 My (1160l )
=: My = M{(||6o]lz, lwollv.)-

Here, in the case N = 3, replace My(||vo|lv., T2M:1(||60]l#)) by Mi(|[vollv., M1(||60]l&)).-
Hence M} increases depending on increase of ||6p||g and ||vo||v,. Moreover Proposition
4.1 yields

(6.3) ' 101l oo 0;1:21 < Ma(||€0]l )5
(6.4) 101l L 0,7:L (2)) < Ma([[6o]| L)),
(6.5) 161130 0.7:v) + 12017210 1y < Ms(ll€0llv, 1v]| Lo 0,73V 0))

< Ms(||6ollv, M7 (|60l &, llvollva)*?)
=: Mz = M;(||6ollv, llvollv.),

where Mj increases depending on increase of ||f||v and ||vo|lv,. Thus the estimate (6.3)

yields the relation 6 € X (T'), and hence guarantees S(X(T)) C X(T).

Now we show contractivity of S. Let 81,0, € X and put v; := S1(6;), 6; := Sa(v;)
and w; := Sj(v;) (¢ = 1,2). For simplicity put w := w; — wy, 9= 51 — 672, 0 =6, — 0,,
vV = U — Vg, Wp 1= Wo1 — Wo2, Op 1= bg1 — b2 and vy := vo;1 — Vo 2. Here in view of
the estimate (4.5) and the estimate (5.2) (for N = 2) or (5.2)’ (for N = 3) we see that for
tel0,T):

(6.6) lw(t)|| o) < llwollzeo() + Cs18]] Loo(o.t:L002)),
(6.7) lo@I%, + lvlZ20v1,.) < CF (ll’voll%/,, + ”5“%2(0,1&;H)) ,

where

2,
3,

o — ) Calmaxicyz [0o,llve, T2 maxicy  Mi([6os]lm)), N
e Ci(max;—12 ||vo,i|lv,, maxizi,2 Mi([|00;l ), N

which increases depending on increase of max;—1 2 ||6o,;||# and max;=1 2 ||vo,||v,. Moreover
plugging (6.7) into the estimate (4.4) implies that for all ¢ € [0, 7],

(6’-8) 1615 + “AHII%Q(O,t;H) <G (||90||%/ + ”U”%oo(o,t;va) + “w”%z(o,t;H))
< G5 (1180113 + l1wol}, + 181220,y + 0320 )
where

Cy = Cs(min [|8o]lv max M7 (18o,llzr, llvosllva)?)

x (Ci'(max 1607, max [wogllv) v 1).
i=1,2 i=1,2
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C; increases depending on increase of max;—1,2 [|6o,i|| g, min;—; 2 [|6o.i|lv, max;—1 2 ||vo;llv.,
Moreover we estimate ||0]| L (0,1;L(2)) as follows. By taking the difference of the heat
equations, we see that

d§/dt—A§+vl-V§+'v-ng+w:0 in H ae. on(0,7),
0(0) = 00 in H,
and hence we obtain the following integral equation for ¢ € [0, T7:
- t - t ‘ - i
o(t) = e®l, — / et~ (v, - VO)(s) ds — / =4 (v . V,)(s) ds — / et~ y(s) ds.
0 0 0

Here we apply Lemma 6.1 to vy - V8, v - V8, € L4(0, T; L°(Q)) and w € L?(0,T; L>=(Q)),
where ¢ is defined in Lemma 3.1. See (3.2) in Lemma 3.1 and note that

172 \4a" N “ i

This is exactly the condition assumed as (1.3). Then it follows that for all ¢ € [0, T,

~ t ~
B0 < Wollman + [ 920 9B, ds
0

L=(Q)

t _ ¢
+ / |e2@ - vB)s)|| s+ / 2w (8)|| o ey d
o Lo (02) 0 ()

< [16oll ()

+co [t%-% (””1 - V|| soizey + v - VE2HL4(0,t;L”)) + t%”w”L"’(O,t;Lm(Sl))] :
By using (3.2) in Lemma 3.1 with (6.2) and (6.8) we see that for all ¢ € [0, T,

lv1 - VO Le(o:0(02))
< COH'UI ||L°°(0 t;Va) ”9”Lco(o t; Loo(n))||A9”Loo(ot H)

- /
1/2
< colM)Y2(CR) 12 sty (100l + 0ol + B30, + 00,50

1/2 1/2
< Cg”H”L/“J(Oth (£2)) (HHOHV + |lvollva, + ||9||L2(0tH) + ||w||L2(0t H))

b
where

Cy = coMj (|60 lar, lvollve )/ X Cé(gg?g I!Ho,illy,g}g 160.illv, max lvo,illva) .

(3 increases depending on increase of max;—1,2 ||0o,i||#, min=12 |60,:||v, max;—12 ||ves||v..
-Similarly, it follows from (3.2) in Lemma 3.1 with (6.4), (6.5) and (6.7) that for all
t €[0,7T],

(6.9) |v- v92”L4(0 Lo () < CO||UHL°°(0 t; ch)”02“L°°(O t: L°°((2))”A02”L2(0 tH)
2
< co(CM2 M3 (M3) ¢ (Ilwolly, + 1B ot
< CY (Jlvollv, + ”§”L2(O,t;H)) )

1/2



where

Cy = 0002(52% 160,61l r, max [vo,illva)?x Ma(||Bo,2lzoo ) x M3 ([|602llv, lvo2llva.) ',

ie., C} increases depending on increase of max;—i2 ||00:llr, [|6oz2]lv, [|002lLe() and
max;=12 ||vo,||lv,. Therefore by combining the above three inequalities it follows that
for all t € [0, 7],

18() [l zooey < Cs (16ollv + 160l oo (2 + 1vollve + IBllz2(0,6) + Iwllz2(0,62(52))) »
where C5 > 0 is a constant, which increases depending on increase of
" :
G (max |16, 7, min [6o,llv, max [lvosflv.),
Cy' (max [|6o,: |, 16o,2llv, 1602l ooy, max [[vos]lva ),

and hence on increase of max;_12||6o;llm, |6o2llv, |60zl and max,—i s ||vesllv,.
Moreover in view of (6.6) we see that for all ¢ € [0, T,

lw(@)l| L) < llwoll Lo
+ C5Cs (|6ollv + |00/l zo() + llvollva + 18l 20, + lwllz2o250(02))) -

Multiplying the above two inequalities by e™* and taking the supremum as t € (0,7T)
(see (2.1) for the definition || - || Le(0,T;L(2))), We deduce that

~ ' 1 _
18]l Lo 0,720y < Cs (Ilf’ollv + [16oll (@) + llvollva + WHGHL?(O,T;M"(M)

1
+ plulizenimm).
|{w||L;°(o,T;L°$(sz)) < Jlwol| Lo () ‘
1
+ C3Cs (l|9o|lv + [|6oll L 2y + llvollv, + (2—19)1—/2||9”L,:°(0,T;L°°(sz))

1
+ emlvlizoramm).

Then taking k£ > 0 large enough for example, & := %(Cs \Y C5C3)2, we see from the above
two inequalities that

161l Lo 073202y < Cs ([166llv + I16ollz (@) + llvollv,)

1., -
+3 (18]l 5= 0,520 1)) + 1wl zge (0,720 (52)))

3
lwll e 0,752 00)) < 5 llwoll ()

3 1.—
+505Cs (l6ollv + l16oll ooy + llwollva) + 3 M8llzgs iz ca)-
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By combining the above two inequalities it follows that
(6.10) 18]l o 0.mszo () < C5 (lwoll ey + 16ollv + N80l 2= () + llwollv-.)

1.
+ §||9||L,;-°(0,T;L°°(sz)),

where Cf := C5 + —21- + %0503, which increases depending on increase of max;_; 2 |60 &,

16021lvs |60,2ll Lo (2y and max;—1 2 [[vosllv .-
Finally we conclude the proof. (6.10) with w1 = wo 2, 60,1 = 0,2, V0,1 = Vo2 yields

~ o~ ~ ~ 1 - — 1 - -
d(01,02) = (|61 — b2l Leo (0,71 (02)) < §||91 — 02|l L 0,120 () = §d(91,92),

ie., S: X(T) - X(T) is a contraction mapping. By virtue of the contraction mapping
principle, there exists § € X (T') such that S(0) = 6. Moreover put v := S;(6), w := S5(6).
Then 6§ = S»(v), and hence (w, 6, v) is a solution to (P). This guarantees existence for
(P). On the other hand, continuous dependence of solutions on initial data (1.4) would be
proved by almost the same calculation (see [33]), and hence this conmpletes the proof. O
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