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1. INTRODUCTION

Throughout this note, $\theta$ will denote a sufficiently large regular cardinal. $\mathcal{H}_{\theta}$ will
denote the set of all sets $x$ with hereditariry cardinality $<\theta.$ $X=\langle X,$ $\tau\rangle$ will
denote a topological space, and $M$ an elementary submodel of $\mathcal{H}_{\theta}$ with $X\in M.$

The elementary submodel space was introduced and studied in Junqueir$*$Tall
[1].

Definition 1.1. For $X$ and $M$ , the elementary submodel space $X_{M}$ is the space
$X\cap M$ with topology generated by the family $\{O\cap M : O\in\tau\}.$

The elementary submodel spaces reflect many properties of the original spaces
and vise verse, for instance:

Fact 1.2 ([1]). (1) $(n=0,1,2,3,3 \frac{1}{2})X$ is $T_{n}\Leftarrow\Rightarrow X_{M}$ is $T_{n}.$

(2) If $X_{M}$ is compact then $X$ is compact.

In [2], Tall showed that if $X_{M}$ satisfies some $\mathbb{R}$-like properties, then $X_{M}$ must be
the same to the original space $X$ :

Theorem 1.3 (Tall [2]). If $X_{M}$ is locally compact, metrizable, separable, and un-
countable, then $X_{M}=X$ . In particular if $X_{M}$ is homeomorphic to the real $hne\mathbb{R}_{i}$

then $X_{M}=X.$

Among this result, Tall asked the following question:

Question 1.4 (An irrational problem). Suppose $X_{M}$ is completely metrizable, sep-
arable, and uncountable. Does $X_{M}=X$ ? Or, if $X_{M}$ is homeomorphic to the
imationals $\mathbb{R}\backslash \mathbb{Q}$, does $X_{M}=X^{q}$

In [2] and [3], Tall gave some partial answers of an irrational problem, and it
turned out that if $o\#$ does not exist, then the affirmative answer of an irrational
problem holds, so it is consistent with ZFC. However it is unknown whether the
negative answer of an irrational question is consistent with ZFC. In this notes, we
will give another partial answer of an irrational problem under certain cardinal
arithmetic assumption.
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Theorem 1.5. Suppose $2^{\omega}>\omega_{1}$ and $2^{\kappa}=\kappa^{+}for$ every cardinal $\kappa\geq 2^{\omega}$ . For
every space $X$ , if $X_{M}$ is completely metrizable, separable, and uncountable, then
$X=X_{M}.$

2. PROOFS

Let $X$ be a topological space. Recall that a sequence $\langle x_{i}:i<’\delta\rangle$ in $X$ is left-
separated (right-separated, respectively) if there is a sequence $\langle O_{i}$ : $i<\delta\rangle$ of open

sets such that $x_{i}\in O_{i}$ but $x_{j}\not\in O_{i}$ for every $j<i$ $(j>i,$ respectively) . The

following is well-known:

Fact 2.1. Let $\kappa$ be a regular Cardinal.

(1) $X$ has a left-separated sequence of length $\kappa$ if and only if there is a subset
$Y$ of $X$ such that $Y$ has no subset of $size<\kappa$ which is dense in $Y.$

(2) $X$ has a right-separated sequence of length $\kappa$ if and only if there are a subset

$YofX$ and a family $\mathcal{U}$ of open sets such $that\mathcal{U}$ covers $Y$ but every subfamily

of $\mathcal{U}$ of $size<\kappa$ does not cover $Y.$

The following lemmas may be folklores, but we prove it for the reader’s conve-
nience.

Lemma 2.2. Let $\kappa$ be a regular cardinal. Let $X$ be a topological space and suppose

that :

(1) For every subset $Y$ and open coveru of $Y$ , there is a subcover $of\mathcal{U}$ of size
$<\kappa$ which covers $Y$ , and

(2) For every point $x\in X$ , there is a family $\mathcal{U}$ of open sets such that $|\mathcal{U}|<\kappa$

and $\{x\}=\cap \mathcal{U}.$

Then $|X|\leq 2^{<\kappa}.$

Proof. Take $M\prec \mathcal{H}_{\theta}$ such that $\kappa,$ $X\in M,$ $|M|=2^{<\kappa},$ $\kappa\subseteq M$ , and $<\kappa M\subseteq M$ . It

is enough to see that $X\underline{\subseteq}M.$

Suppose, to the contrary, that $X\not\subset M$ . Fix $x^{*}\in X\backslash M$ . For $y\in X\cap M$ , take

a family of open sets $\mathcal{U}_{y}\in M$ with $\{y\}=\cap \mathcal{U}_{y}$ and $|\mathcal{U}_{y}|<\kappa$ . Note that $\mathcal{U}_{y}\underline{C}M.$

Then we can find $O_{y}\in \mathcal{U}_{y}\cap M$ with $x^{*}\not\in O_{y}$ . The family $\{O_{y} : yEX\cap M\}$ is an
open cover of $X\cap M$ . By our assumption, there is $\mathcal{U}’\subseteq\{O_{y} : y\in X\cap M\}$ such

that $|\mathcal{U}’|<\kappa$ and $\mathcal{U}’$ covers $X\cap M$ . Since $\mathcal{U}’\subseteq M$ , we have $\mathcal{U}’\in M$ . Then, by

the elementarity of $M,$ $\mathcal{U}’$ covers the whole of $X$ . This contradicts that $x^{*}\not\in O$ for

every $O\in \mathcal{U}’.$
$\square$

Lemma 2.3. Let rc be a regular cardinal. Let $X$ be a $T_{2}$ -space such that for every

subset $Y$ and open cover $\mathcal{U}$ of $Y$ , there is a subcover of $\mathcal{U}$ of $size<\kappa u,hich$ covers
Y. Then $|X|\leq 2^{<\kappa}.$
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Proof. By Lemma 2.2, it is enough to see that for every $x\in X$ , there is a family $\mathcal{U}$

of open sets of such that $|\mathcal{U}|<\kappa$ and $\{x\}=\cap \mathcal{U}.$

Let $x\in X$ and suppose to the contrary that $\{x\}\neq\cap \mathcal{U}$ for every $\mathcal{U}$ with size $<\kappa.$

Let $\mathcal{U}_{0}$ be the family of all open neighborhoods of $x$ and ノ- $=$ $\{\overline{O}\backslash \{x\} : O\in \mathcal{U}_{0}\}.$

By our assumption, $\cap \mathcal{F}’\neq\emptyset$ for every $\mathcal{F}’\subseteq \mathcal{F}$ of size $<\kappa$ . Since every open cover
of $X\backslash \{x\}$ has a subcover of size $<\kappa$ , we have that $\cap \mathcal{F}\neq\emptyset$ . On the other hand,

since $X$ is $T_{2}$ , for each $y\in X$ with $y\neq x$ , there is an open neighborhood $O$ of $x$

with $y\not\in\overline{O}.$ Thus $\cap \mathcal{F}=\emptyset$ , a contradiction. $\square$

Lemma 2.4. Suppose $X_{M}$ is uncountable, second countable, and $T_{2}$ . Let $\delta\in M$

be the ordinal with $ot(M\cap\delta)=\omega_{1}$ (note that $|M\cap|X||\geq\omega_{1}$ , hence such a $\delta$ must
exist). Then $\delta$ is regular uncountable, $\delta\leq|X|$ , and for every subset $Y$ of $X$ , the
following hold:

(1) $Y$ has a subset which is dense in $Y$ and of $size<\delta$ , and
(2) every open cover of $Y$ has a subcover of $size<\delta.$

Hence $|X|\leq 2^{<\delta}$ . Moreover if $X_{M}$ is $T_{3}$ and $2^{<\delta}=\delta$ , lhen $X$ has an open base of
$size<\delta.$

Proof. First suppose to the contrary that $cf(\delta)<\delta$ . Then there is a cofinal map $f$ :
$cf(\delta)arrow\delta$ with $f\in M$ . By the elementarity of $M,$ $f((cf(\delta)\cap M)$ is a cofinal map

from $M\cap cf(\delta)$ to $M\cap\delta$ . Since $cf(\delta)<\delta$ , we have $ot(M\cap cf(\delta))<ot(M\cap\delta)=\omega_{1}.$

Thus $f(M\cap cf(\delta))$ must be bounded in $\sup(M\cap\delta)$ , this is a contradiction.
For (1), suppose $X$ has a subset $Y$ which has no dense subset of size $<\delta$ . By

Fact 2.1, we can find a left-separated sequence $\langle x_{i}:i<\delta\rangle$ in $X$ . Let $\langle O_{i}:i<\delta\rangle$

be a sequence of open sets which witnesses the left-separatedness of $\langle x_{i}$ : $i<\delta\rangle.$

By the elementarity of $M$ , we may assume $\langle x_{i}:i<\delta\rangle,$ $\langle O_{i}:i<\delta\rangle\in M$ . Then
$\langle O_{i}\cap M$ : $i\in M\cap\delta\rangle$ witnesses that $\langle x_{i}$ : $i\in M\cap\delta\rangle$ is left-separated in $X_{M}$ . Since
$ot(M\cap\delta)=\omega_{1},$ $\langle x_{i}:i\in M\cap\delta\rangle$ witnesses that $X_{M}$ has a left separated sequence
of length $\omega_{1}$ , so $X_{M}$ is not hereditarily separable, this contradicts to the second

countability of $X_{M}$ . (2) follows from a similar argument.

Now suppose $2^{<\delta}=\delta$ . We see that $X$ has an open base of size $<\delta$ . Since $X_{M}$

is $T_{3}$ , so is $X$ . Since $X$ has a dense subset of size $<\delta,$ $X$ has an open base of size
$\leq 2^{<\delta}=\delta$ . Now fix an open base $\mathcal{B}=\{O_{i} : i<\delta\}$ with $\mathcal{B}\in M$ . We see that
$\{O_{i} : i<\gamma\}$ is a base for some $\gamma<\delta$ . By the defimtion of the topology of $X_{M},$

$\mathcal{B}_{M}=\{O_{i}\cap M : i\in M\cap\delta\}$ is an open base for $X_{M}$ . Since $X_{M}$ is second countable,
$\mathcal{B}_{M}$ has a countable subset $\mathcal{B}’$ which is a base for $X_{M}$ . On the other hand, since
$ot(M\cap\delta)=\omega_{1}$ , there is $\gamma\in M\cap\delta$ such that $\mathcal{B}’\subseteq\{O_{i}\cap M : i\in M\cap\gamma\}$ . We see that
$\{O_{i} : i<\gamma\}$ is an open base for $X$ . Suppose otherwise. Since $\{O_{i} : i<\gamma\}\in M,$

there is $x\in X\cap M$ and an open $O\in M$ such that there is no $i<\gamma$ with $x\in O_{i}\subseteq O.$
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$\mathcal{B}’\subseteq\{O_{i}\cap M : i\in M\cap\gamma\}$ , hence there is $i\in M\cap\gamma$ with $x\in O_{i}\cap M\underline{\subset}O\cap M.$

Then $x\in O_{i}\subseteq O$ by the elementarity of $M$ , this is a contradiction. $\square$

We use the following fact:

Fact 2.5 (Tall [3]). Suppose $X_{M}$ is completely $metrizable_{j}$ separable, and uncount-

able. $If|X|\leq 2^{\omega}$ or $|\mathbb{R}\cap M|$ is uncountable, then $X_{M}=X.$

Proposition 2.6. Suppose $2^{\omega}>\omega_{1}$ and $2^{<\kappa}=\kappa$ for every oegular cardinal $\kappa$ with
$2^{\omega}<\kappa<|X|$ . If $X_{M}$ is completely metrizable, $separable_{f}$ and uncountable, then

$X=X_{M}.$

Proof. lf $|X|\leq 2^{\omega}$ , we are done by Fact 2.5. Suppose $|X|>2^{\omega}$ . Let $\kappa\in M$ be

such that $ot(M A \kappa)=\omega_{1}.$ $\kappa$ is regular uncountable by Lemma 2.4, and since
$|M\cap|X||=|X_{M}|=2^{\omega}>\omega_{1}=|M\cap\kappa|$ , we have $\kappa<|X|.$

lf $\kappa>2^{\omega}$ , then $2^{<\kappa}=\kappa$ by our assumption. So $|X|\leq 2^{<\kappa}=\kappa$ by Lemma 2.4, but

this is a contradiction. Thus we have $\kappa\leq 2^{\omega}$ . Then $|M\cap 2^{\omega}|\geq|M\cap\kappa|=\omega_{1}$ . Thus
$|M\cap 2^{\omega}|=|MA\mathbb{R}|$ is uncountable, so we have $X_{M}=X$ by Fact 2.5 again. $\square$

Now we have the following conclusion.

Corollary 2.7. (1) Suppose $2^{\omega}>\omega_{1}$ and $2^{K}=\kappa^{+}for$ every cardinal $\kappa\geq 2^{\omega}.$

Then for every $X_{f}$ if $X_{M}$ is completely metrizable, $separable_{f}$ and uncount-
able, then $X_{M}=X.$

(2) Suppose $2^{\omega}>\omega_{\lambda}$ . For every $X$ , if $X_{M}$ is completely $metrizable_{f}$ separable,

and uncountable, but $X_{M}\neq X$ , then $|X|>(2^{\omega})^{+}.$

This corollary shows that the affirmative answer of an irrational problem is con-

sistent with Martin’s Maximum: A standard argument shows that we can construct

a model of.ZFC in which Martin’s Maximum holds, $2^{\omega}=\omega_{2}$ , and $2^{\kappa}=\kappa^{-\succ}$ for every

cardinal $\kappa\geq\omega_{2}$ . In this model, we have that for every space $X$ , if $X_{M}$ is completely

metrizable
$\prime$

, separable, and uncountable, then $X=X_{M}.$

As mentioned before, Tall showed that if $0\#$ does not exist, thdn the affirmative

answer of an irrational problem holds ([2]). The previous observation also shows

that the affirmative answer of an irrational problem can hold even if $o\#$ exists (or

more strong large cardinal properties hold).
Under GCH, we also have the following:

Corollary 2.8. Suppose $GCH$. Suppose $X_{M}\dot{u}$ completely metrizable, separable,

and uncountable. Let rc $\in M$ be such that $ot(M\cap\kappa)=\omega_{1}$ , Then $w(X)<|X|=\kappa.$

In $particular_{f}|X|$ must be regular.

Proof. We have $\kappa\leq|X|\leq 2^{<\kappa}=\kappa$ by Lemma 2.4, and $w(X)<\kappa$ by Lemma 2.4
again. $\square$
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