<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>THE ITERATED REMAINDERS OF THE RATIONALS (Research Trends on Set-theoretic and Geometric Topology and their Prospect)</td>
</tr>
<tr>
<td>著者</td>
<td>加藤 昭男</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 (2016), 1987: 11-20</td>
</tr>
<tr>
<td>発行日</td>
<td>2016-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/224543</td>
</tr>
<tr>
<td>資料種類</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版元</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
THE ITERATED REMAINDERS OF THE RATIONALS

AKIO KATO

ABSTRACT. Repeat taking remainders of Stone-Čech compactifications of the rationals
\[Q^{(1)} = Q^* = \beta Q \setminus Q, \quad Q^{(2)} = \beta Q^{(1)} \setminus Q^{(1)}, \quad Q^{(3)} = \beta Q^{(2)} \setminus Q^{(2)}, \quad Q^{(4)} \ldots. \]

We point out that they have similar structures, but are topologically different. In particular we prove here that \(Q^{(1)} \neq Q^{(3)} \). This result will be generalized to show that \(Q^{(n)} \neq Q^{(n+2)} \) for any \(n \geq 1 \) in the forthcoming paper [4].

1. INTRODUCTION

Consider the space of rationals \(\mathbb{Q} \), and repeat taking its remainders of Stone-Čech compactifications \(\mathbb{Q}^{(n+1)} = (\mathbb{Q}^{(n)})^* = \beta \mathbb{Q}^{(n)} \setminus \mathbb{Q}^{(n)} (n \geq 0) \)
where \(\mathbb{Q}^{(0)} = \mathbb{Q} \), i.e.,
\[Q^{(1)} = Q^*, \quad Q^{(2)} = Q^{**}, \quad Q^{(3)} = Q^{***}, \ldots. \]

Van Douwen [2] asked whether or not \(Q^{(n)} \approx Q^{(n+2)} \) for \(n \geq 1 \), remarking that \(Q^{(m)} \) for even \(m \) is never homeomorphic to \(Q^{(n)} \) for odd \(n \), because the former is \(\sigma \)-compact but the latter is not.

In this paper we point out that both \(Q^{(n)} \) and \(Q^{(n+2)} \) have a similar structure of "fiber bundle" for every \(n \geq 1 \), but they are topologically different. In particular we here show that \(Q^{(1)} \neq Q^{(3)} \), which we can generalize in the forthcoming paper [4] to show that \(Q^{(n)} \neq Q^{(n+2)} \) for any \(n \geq 1 \), answering van Douwen's question.

The precise connections of the remainders can be seen by the following construction. Viewing \(\beta \mathbb{Q} \) as a compactification of \(Q^{(1)} \), let
\[\Phi_0 : \beta Q^{(1)} = Q^{(1)} \cup Q^{(2)} \to Q \cup Q^{(1)} = \beta Q \]
be the Stone extension of the identity map \(id : Q^{(1)} \to Q^{(1)} \). Denote by
\[\phi_0 : Q^{(2)} \to Q^{(0)} \]
the restriction of \(\Phi_0 \). Next let
\[\Phi_1 : \beta Q^{(2)} = Q^{(2)} \cup Q^{(3)} \to Q^{(1)} \cup Q^{(2)} = \beta Q^{(1)} \]
be the Stone extension of the identity map \(id : Q^{(2)} \to Q^{(2)} \), and let
\[\phi_1 : Q^{(3)} \to Q^{(1)} \]

2000 Mathematics Subject Classification. 54C45, 54C10.

Key words and phrases. Stone-Čech compactification, \(C^* \)-embedded.
denote the restriction of Φ_1. In this way, for every $n \geq 0$ we can generally get the Stone extension

$$\Phi_n : \beta \mathbb{Q}^{(n+1)} = \mathbb{Q}^{(n+1)} \cup \mathbb{Q}^{(n+2)} \rightarrow \mathbb{Q}^{(n)} \cup \mathbb{Q}^{(n+1)} = \beta \mathbb{Q}^{(n)}$$

of the identity map $id : \mathbb{Q}^{(n+1)} \rightarrow \mathbb{Q}^{(n+1)}$, and its restriction map

$$\phi_n : \mathbb{Q}^{(n+2)} \rightarrow \mathbb{Q}^{(n)}.$$

Since every $\Phi_n (n \in \omega)$ is perfect, so is every ϕ_n. Hence every $\mathbb{Q}^{(n)} (n \in \omega)$ is Lindelöf since both $\mathbb{Q}^{(0)} = \mathbb{Q}$, $\mathbb{Q}^{(1)}$ are Lindelöf. We can also see that $\mathbb{Q}^{(n)}$ is σ-compact for even n, but $\mathbb{Q}^{(n)}$ is not for odd n, because $\mathbb{Q}^{(0)}$ is σ-compact but $\mathbb{Q}^{(1)}$ is not since $\mathbb{Q}^{(1)}$ is a perfect pre-image of the irrationals \mathbb{P} as we see below.

$$\beta \mathbb{Q}^{(0)} \quad \Phi_0 \quad \beta \mathbb{Q}^{(1)} \quad \Phi_1 \quad \beta \mathbb{Q}^{(2)} \quad \Phi_2 \quad \beta \mathbb{Q}^{(3)}$$

FIG. 1

A collection \mathcal{B} of nonempty open sets of X is called a π-base for X if every nonempty open set in X includes some member of \mathcal{B}. The minimal cardinality of such a π-base is called the π-weight of X. Note that any dense subspace of X has the same π-weight as X, and any space of countable π-weight is separable. Consequently, any dense subset of a space of countable π-weight is also of countable π-weight, and hence separable. So, all of $\beta \mathbb{Q}^{(n)}$, $\mathbb{Q}^{(n)} (n \in \omega)$ are of countable π-weight, and hence separable.

Recall that an onto map $g : X \rightarrow Y$ is called irreducible if every nonempty open subset U of X includes some fiber $g^{-1}(y)$, and it is well known and easy to see that

(1) every extension of a homeomorphism is irreducible, and
(2) the restriction of a closed irreducible map to any dense subset is irreducible.
Therefore we can see that all of the maps Φ_n, ϕ_n ($n \in \omega$) are perfect irreducible. Consider the partition of the closed interval $[0,1] = Q \cup P$ where

$$Q = [0,1] \cap Q \cong Q \text{ and } P = [0,1] \setminus Q \cong P,$$

and let $f : \beta Q \to [0,1]$ be the Stone extension of the homeomorphism $Q \cong Q$. Then the restriction $f_0 = f \restriction Q^{(1) : Q^{(1)}} \to P \cong P$ is perfect irreducible. Thus we get the following sequence of perfect irreducible maps:

$$Q \leftarrow Q^{(2)} \leftarrow Q^{(4)} \leftarrow \cdots ; \ P \leftarrow Q^{(1)} \leftarrow Q^{(3)} \leftarrow Q^{(5)} \leftarrow \cdots.$$

All spaces are assumed to be completely regular and Hausdorff, and maps are always continuous, unless otherwise stated. "Partition" is synonymous with "disjoint union." For a subset A of some compact space K we use the notation A^* to denote the remainder $\text{cl}_K A \setminus A$ when K is clear from the context. Our terminologies are based upon [3].

2. SIMILAR STRUCTURES

We first show that both $Q^{(n)}$ and $Q^{(n+2)}$ have a similar structure for every $n \geq 1$. In general, for any space Y let us denote by $H(Y)$ the collection of all homeomorphisms $h : Y \approx Y$. Let X be a nowhere compact, dense-in-itself space, where nowhere compact (or nowhere locally compact) means that X contains no compact neighborhood, or equivalently, that X is a dense subset of some/any compact space K such that the remainder $K \setminus X$ is also dense in K. Let cX be some compactification of X and let $H_* \subseteq H(X)$ denote the collection of all $h \in H(X)$ such that

$$(\ast) \quad h \text{ is extendable to } c(h) \in H(cX).$$

(Of course, $H_* = H(cX)$ if $cX = \beta X$.) Let $X^{(1)} = cX \setminus X$ be the remainder, and for every $h \in H_*$ define $h^{(1)} \in H(X^{(1)})$ to be the restriction of $c(h)$ to $X^{(1)}$. Next consider the Stone-Čech compactification $\beta X^{(1)}$ of $X^{(1)}$ and the Stone extension $\beta h^{(1)} \in H(\beta X^{(1)})$ of $h^{(1)}$. Let $X^{(2)} = \beta X^{(1)} \setminus X^{(1)}$ be the remainder, and define $h^{(2)} \in H(X^{(2)})$ to be the restriction of $\beta h^{(1)}$ to the remainder $X^{(2)}$; hence

$$h : X \approx X, \quad h^{(1)} : X^{(1)} \approx X^{(1)}, \quad h^{(2)} : X^{(2)} \approx X^{(2)}.$$

Note that $X^{(1)}$ is dense in βX, and $X^{(2)}$ is dense in $\beta X^{(1)}$, since we assume that X is nowhere compact. Viewing that βX is a compactification of $X^{(1)}$, we can consider the Stone extension $\Phi : \beta X^{(1)} \to \beta X$ of the identity map $id_{X^{(1)}} : X^{(1)} = X^{(1)}$. Let $\phi : X^{(2)} \to X$ be the restriction of Φ. Then both Φ and ϕ are perfect irreducible maps. We can show that the correspondence $H(X) \supset H_* \ni h \mapsto h^{(2)} \in H(X^{(2)})$ is compatible with the perfect irreducible map ϕ, i.e.,

Lemma 2.1. $h \circ \phi = \phi \circ h^{(2)} : X^{(2)} \to X.$
\textbf{Proof.} To show this equality, it suffices to prove the equality
\[c(h) \circ \Phi = \Phi \circ \beta h^{(1)} : \beta X^{(1)} \rightarrow c X, \]
which follows from the obvious equality
\[h^{(1)} \circ id_{X^{(1)}} = id_{X^{(1)}} \circ h^{(1)} : X^{(1)} \rightarrow X^{(1)} \]
on the dense subset \(X^{(1)} \) of \(\beta X^{(1)} \).
\[\square \]

\textbf{Corollary 2.2.} If \(h(x) = y \) for \(x, y \in X \), then \(h^{(2)}(\phi^{-1}(x)) = \phi^{-1}(y) \).

\textbf{Proof.} The inclusion \(h^{(2)}(\phi^{-1}(x)) \subseteq \phi^{-1}(y) \) follows from 2.1. Since \(h \) is a homeomorphism, we can replace \(h \) by \(h^{-1} \) to get the reverse inclusion. \[\square \]

Taking \(X = \mathbb{Q} \), \(cX = \beta \mathbb{Q} \), \(\mathcal{H}_{\star} = H(\mathbb{Q}) \), we can deduce from 2.1 that
\[h \circ \phi_{0} = \phi_{0} \circ h^{(2)} : \mathbb{Q}^{(2)} \rightarrow \mathbb{Q} \text{ for every } h \in H(\mathbb{Q}). \]

Let \([0,1] = Q \cup P \), \(Q \approx \mathbb{Q} \), \(P \approx \mathbb{P} \) be as at the end of §1, and take \(X = P \), \(cX = [0,1] \); then \(X^{(1)} = Q \), \(X^{(2)} = Q^{(1)} \), and the corresponding map \(\phi \) in Fig. 2 is identical to the map \(f_{0} : Q^{(1)} \rightarrow P \) at the end of §1. Note that \(\mathcal{H}_{\star} \subseteq H(P) \) is the collection of all homeomorphisms of \(P \) extendable to homeomorphisms of \([0,1]\). Then we can deduce from 2.1 that
\[h \circ f_{0} = f_{0} \circ h^{(2)} : Q^{(1)} \rightarrow P \text{ for every } h \in \mathcal{H}_{\star}. \]

Note that for every pair of irrationals \(p_{1} < p_{2} \) in \(P = [0,1]\setminus\mathbb{Q} \) we can find an \(h \in \mathcal{H}_{\star} \) such that \(h(p_{1}) = p_{2} \); for example, we can take as \(c(h) \) in \((\ast)\) a strictly increasing function \(c(h) : [0,1] \rightarrow [0,1] \) such that \(c(h)(Q) = Q \), \(c(h)(0) = 0 \), \(c(h)(p_{1}) = p_{2} \), \(c(h)(1) = 1 \). For \(m \geq 1 \) define \(g_{2m} \) and \(f_{2m-1} \) by
\[g_{2m} = \phi_{0} \circ \phi_{2} \circ \cdots \circ \phi_{2m-2} : Q(2m) \rightarrow \mathbb{Q}, \]
\[f_{2m-1} = f_{0} \circ \phi_{1} \circ \phi_{3} \circ \cdots \circ \phi_{2m-3} : Q(2m-1) \rightarrow P. \]
Then, using 2.1 we can extend the above (2-1), (2-2) to the followings, respectively, for $m \geq 1$.

\begin{equation}
(h) \quad h \circ g_{2m} = g_{2m} \circ h^{(2m)} : Q^{(2m)} \to Q \quad \text{for every } h \in H(Q),
\end{equation}

\begin{equation}
(g) \quad h \circ f_{2m-1} = f_{2m-1} \circ h^{(2m-1)} : Q^{(2m-1)} \to P \quad \text{for every } h \in H_{*},
\end{equation}

where $h^{(n)} \in H(Q^{(n)})$. Combining these results with 2.2 we can summarize that

\textbf{Theorem 2.3.} Let $m \geq 1$. Then every $Q^{(2m)}$ admits a perfect irreducible projection g_{2m} onto Q, and every $Q^{(2m-1)}$ admits a perfect irreducible projection f_{2m-1} onto $P \approx \mathbb{P}$, with the additional property that they are "fiberwise" homogeneous in the following sense:

1. For any $q_{1} < q_{2} \in Q$ there exists a homeomorphism of $Q^{(2m)}$, induced by a homeomorphism of Q, carrying the fiber $g_{2m}^{-1}(q_{1})$ to $g_{2m}^{-1}(q_{2})$.
2. For any $p_{1} < p_{2} \in P$ there exists a homeomorphism of $Q^{(2m-1)}$, induced by a homeomorphism of P, carrying the fiber $f_{2m-1}^{-1}(p_{1})$ to $f_{2m-1}^{-1}(p_{2})$.

Moreover, under CH (=the Continuum Hypothesis) every fiber $g_{2m}^{-1}(q)$ of $q \in Q$ as well as every fiber $f_{2m-1}^{-1}(p)$ of $p \in P$ is homeomorphic to $\omega^{*} = \beta \omega \setminus \omega$.

This last assertion follows from the well-known

\textbf{Fact 2.4.} (see 1.2.6 in [8] or 3.37 in [9]) (CH) Let Y be a 0-dimensional, locally compact, σ-compact, non-compact space of weight at most c. Then $Y^{*} = \beta Y \setminus Y$ and ω^{*} are homeomorphic.

Indeed, put $Z = g_{2m}^{-1}(q)$ and $Y = \beta Q^{(2m-1)} \setminus Z$. Then Z is a zero-set of the 0-dimensional $\beta Q^{(2m-1)}$ included in the remainder $Q^{(2m)} = \beta Q^{(2m-1)} \setminus Q^{(2m-1)}$, so that $Y^{*} = \beta Y \setminus Y = Z$. Since Y is a cozero-set and separable, Y satisfies the condition in 2.4. Hence $Z \approx \omega^{*}$. Similarly we can prove that $f_{2m-1}^{-1}(p) \approx \omega^{*}$.

3. Remote Points and Extremally Disconnected Points

To analyze further the structure of $Q^{(n)}$'s, we need the notion of remote points and extremally disconnected points. A point $p \in \beta X \setminus X$ is called a remote point of X if $p \notin \text{cl}_{\beta X} F$ for every nowhere dense closed subset F of X. Van Douwen [2], Chae, Smith [1], showed

\textbf{Fact 3.1.} Every non-pseudocompact space of countable π-weight has 2^{c} many remote points.

An easy consequence of this fact is

\textbf{Fact 3.2.} Let X be a non-compact, Lindelöf space of countable π-weight. Then remote points of X form a G_{δ}-dense subset of $X^{*} = \beta X \setminus X$.

Proof. Choose any point \(p \in X^* \) and a zero-set \(Z \) of \(\beta X \) containing \(p \). Since \(X \) is Lindelöf, we can suppose that \(Z \) misses \(X \). Put \(Y = \beta X \setminus Z \); then \(\beta Y = \beta X \), and \(Y \) is of countable \(\pi \)-weight since \(X \) is. Hence 3.1 implies that \(Y^* = Z \) contains remote points of \(Y \), which are also remote points of \(X \).

A space \(T \) is said to be extremally disconnected at a point \(p \in T \) (see [2]) if \(p \notin \text{cl}_T U_1 \cap \text{cl}_T U_2 \) for every pair of disjoint open sets \(U_1, U_2 \) in \(T \). Let us call such a point \(p \) as an extremally disconnected point of \(T \), or simply, an e.d. point of \(T \), and denote the set of all such e.d. points by \(\text{Ed}(T) \). A space \(T \) is extremally disconnected if every point of \(T \) is an e.d. point, i.e., \(\text{Ed}(T) = T \). If \(S \) is dense in \(T \), we always have \(\text{cl}_T U = \text{cl}_T (U \cap S) \) for every open set \(U \) of \(T \); hence a point \(p \in S \) is an e.d. point of \(S \) if and only if it is an e.d. point of \(T \), i.e., \(\text{Ed}(S) = S \cap \text{Ed}(T) \).

Fact 3.3. ([2]) (1) Any remote point of \(X \) is an e.d. point of \(\beta X \).
(2) Suppose \(X \) is first countable and hereditarily separable, and \(p \in \beta X \setminus X \). Then \(p \) is a remote point of \(X \) if and only if \(p \) is an e.d. point of \(\beta X \).

Let us call a point \(p \in T \) a common boundary point of \(T \) if \(p \) is not an e.d. point of \(T \), i.e., if \(p \notin \text{cl}_T U_1 \cap \text{cl}_T U_2 \) for some pair of disjoint open sets \(U_1, U_2 \) in \(T \). Similarly, we call a subset \(A \subseteq T \) a common boundary set in \(T \) if \(A \subseteq \text{cl}_T U_1 \cap \text{cl}_T U_2 \) for some pair of disjoint open sets \(U_1, U_2 \) in \(T \). We abbreviate “common boundary” to “co-boundary.” (Such \(p \), \(A \) are called “2-point,” “2-set,” respectively, in [2].) Note that any co-boundary set in \(T \) is nowhere dense in \(T \), but the converse need not be true. Let \(\text{Cob}(T) = T \setminus \text{Ed}(T) \) denote the set of all co-boundary points of \(T \). Note also that if \(A \) is a co-boundary set, then every point of \(A \) is obviously a co-boundary point, but the converse need not be true except the case \(A \) is a countable discrete subset:

Lemma 3.4. Suppose \(A \) is a countable discrete subset consisting of co-boundary points of \(T \). Then \(A \), and hence also \(\text{cl}_T A \), is a co-boundary set in \(T \). Therefore, if \(T \) is compact, \(\text{Cob}(T) \) is always countably compact in the strong sense that every countable discrete subset has compact closure in \(\text{Cob}(T) \).

Proof. Let \(A = \{ a_n \}_{n \in \omega} \subseteq \text{Cob}(T) \) be discrete in \(T \), and choose disjoint open sets \(\{ W_n \}_{n \in \omega} \) in \(T \) such that \(a_n \in W_n \). In each \(W_n \), choose disjoint open sets \(U_n, V_n \) with \(a_n \in \text{cl}_T U_n \cap \text{cl}_T V_n \). Put \(U = \bigcup_{n \in \omega} U_n \) and \(V = \bigcup_{n \in \omega} V_n \). Then these disjoint open sets \(U, V \) satisfy \(A \subseteq \text{cl}_T U \cap \text{cl}_T V \), and hence \(\text{cl}_T A \subseteq \text{cl}_T U \cap \text{cl}_T V \).

For an open set \(U \subseteq X \) its maximal open extension \(\text{Ex}(U) \subseteq \beta X \) is defined by

\[
\text{Ex}(U) = \beta X \setminus \text{cl}_{\beta X}(X \setminus U).
\]

Suppose \(W \) is an open set in \(\beta X \); then

\[
\text{cl}_{\beta X} W = \text{cl}_{\beta X}(W \cap X) = \text{cl}_{\beta X} \text{Ex}(W \cap X).
\]
Therefore we see

Fact 3.5. Suppose $p \in \beta X \setminus X$. Then p is a co-boundary point of βX if and only if $p \in \text{cl}_{\beta X} \text{Ex}(U) \cap \text{cl}_{\beta X} \text{Ex}(V)$ for some disjoint open sets U, V in X.

We denote the boundary of a subset W in Y by $\text{Bd}_Y W$ so that $\text{Bd}_Y W = \text{cl}_Y W \setminus W$ if W is open in Y. Van Douwen [2] proved the equality

$$(*) \quad \text{Bd}_{\beta X} \text{Ex}(U) = \text{cl}_{\beta X} \text{Bd}_X (U)$$

for every open set U of X. (Note that 3.3 (1) follows from this equality since $\text{Bd}_X (U)$ is a nowhere dense subset of X.) Using this $(*)$ and 3.5 we get an "inner" characterization of co-boundary points, hence of e.d. points also, of βX for a normal space X:

Lemma 3.6. Assume X is normal, and $p \in \beta X \setminus X$. Then p is a co-boundary point of βX if and only if $p \in \text{cl}_{\beta X} F$ for some co-boundary set F in X. In other words, p is an e.d. point of βX if and only if

$p \notin \text{cl}_{\beta X} F$ for every co-boundary set F in X.

Proof. By 3.5 it suffices to show the equality

$$\text{cl}_{\beta X} \text{Ex}(U) \cap \text{cl}_{\beta X} \text{Ex}(V) = \text{cl}_{\beta X} (\text{cl}_X U \cap \text{cl}_X V)$$

for disjoint open sets U, V in X, since $\text{cl}_X U \cap \text{cl}_X V$ is a co-boundary set in X. Using $(*)$ we get

$$\text{cl}_{\beta X} \text{Ex}(U) \cap \text{cl}_{\beta X} \text{Ex}(V) = \text{Bd}_{\beta X} \text{Ex}(U) \cap \text{Bd}_{\beta X} \text{Ex}(V)$$

$$= (\text{cl}_{\beta X} \text{Bd}_X U) \cap (\text{cl}_{\beta X} \text{Bd}_X V).$$

Since X is normal, this set is equal to $\text{cl}_{\beta X} (\text{Bd}_X U \cap \text{Bd}_X V)$, where $\text{Bd}_X U \cap \text{Bd}_X V = \text{cl}_X U \cap \text{cl}_X V$. \qed

Lemma 3.7. Suppose A is a closed subset of a normal space X. Then $A \subseteq \text{Ed}(X)$ implies $\text{cl}_{\beta X} A \subseteq \text{Ed}(\beta X)$.

Proof. Let A be a closed subset of a normal space X, and that $A \subseteq \text{Ed}(X)$. Let F be any co-boundary closed set in X. By 3.6 it suffices to show that $\text{cl}_{\beta X} F \cap \text{cl}_{\beta X} A = \emptyset$. Since $F \subseteq \text{Cob}(X)$ and $A \subseteq \text{Ed}(X)$, we know that F, A are disjoint closed subsets of X. Hence the normality of X implies that $\text{cl}_{\beta X} F \cap \text{cl}_{\beta X} A = \emptyset$. \qed

The next lemma shows how co-boundary points or e.d. points behave w.r.t. closed irreducible maps. Let g be a map from X onto Y. For a subset $U \subseteq X$ define $g^o (U) \subseteq Y$, a small image of U, by

$$y \in g^o (U) \quad \text{if and only if} \quad g^{-1} (y) \subseteq U,$$

i.e., $g^o (U) = Y \setminus g (X \setminus U) \subseteq g(U)$; so, g is irreducible if $g^o (U) \neq \emptyset$ for every non-empty open set U. Note an obvious useful formula

$$g^o (U \cap V) = g^o (U) \cap g^o (V)$$
for any sets $U, V \subseteq X$, which especially implies that $g^{o}(U) \cap g^{o}(V) = \emptyset$ whenever $U \cap V = \emptyset$. Suppose g is closed irreducible. Then it is well known that $g^{o}(U)$ is non-empty and open whenever U is, and
$$\text{cl}_{Y} g^{o}(U) = \text{cl}_{Y} g(U) = g(\text{cl}_{X} U)$$
for every open subset $U \subseteq X$.

Lemma 3.8. Let $g : X \to Y$ be any closed irreducible map. Then g maps co-boundary points to co-boundary points, i.e., $g(\text{Cob}(X)) \subseteq \text{Cob}(Y)$. Furthermore, for every $x \in X$
$g(x) \in \text{Cob}(Y)$ if and only if $x \in \text{Cob}(X)$ or $|g^{-1}(g(x))| > 1$, i.e.,
$g(x) \in \text{Ed}(Y)$ if and only if $x \in \text{Ed}(X)$ and $g^{-1}(g(x)) = \{x\}$.

Consequently, $g^{-1}(\text{Ed}(Y)) \subseteq \text{Ed}(X)$, and the restriction of g to $g^{-1}(\text{Ed}(Y)) \to \text{Ed}(Y)$ is a homeomorphism.

Proof. Let U_{1}, U_{2} be any disjoint open sets in X. Then
$g(\text{cl}_{X} U_{1} \cap \text{cl}_{X} U_{2}) \subseteq g(\text{cl}_{X} U_{1}) \cap g(\text{cl}_{X} U_{2}) = \text{cl}_{Y} g^{o}(U_{1}) \cap \text{cl}_{Y} g^{o}(U_{2}),$
and $g^{o}(U_{1}), g^{o}(U_{2})$ are disjoint open. Hence g maps co-boundary points to co-boundary points. Similarly, we can show that
$|g^{-1}(g(x))| > 1$ implies $g(x) \in \text{Cob}(Y)$.

Indeed, if we take two points $x_{1} \neq x_{2}$ in $g^{-1}(g(x))$, we can choose disjoint open sets U_{1}, U_{2} in X such that $x_{1} \in U_{1}$ and $x_{2} \in U_{2}$ (using the Hausdorffness of X), getting $g(x) \in g(\text{cl}_{X} U_{1}) \cap g(\text{cl}_{X} U_{2}) = \text{cl}_{Y} g^{o}(U_{1}) \cap \text{cl}_{Y} g^{o}(U_{2}).$

So, to complete our proof, assume $g(x) \in \text{Cob}(Y)$ and $|g^{-1}(g(x))| = 1$; then we need to show $x \in \text{Cob}(X)$. The condition $g(x) \in \text{Cob}(Y)$ implies that $g(x) \in \text{cl}_{Y} V_{1} \cap \text{cl}_{Y} V_{2}$ for some disjoint open sets V_{1}, V_{2} in Y. Since g is a closed map, $g(x) \in \text{cl}_{Y} V_{i}$ implies $g^{-1}(g(x)) \cap \text{cl}_{X} g^{-1}(V_{i}) \neq \emptyset$ for $i = 1, 2$. Hence the condition $g^{-1}(g(x)) = \{x\}$ implies $x \in \text{cl}_{X} g^{-1}(V_{1}) \cap \text{cl}_{X} g^{-1}(V_{2})$, showing $x \in \text{Cob}(X)$. \hfill \Box

4. **Topological Difference of $\mathbb{Q}^{(1)}$ and $\mathbb{Q}^{(3)}$**

Now let us apply the general theory in §3 to our spaces
$$\beta \mathbb{Q}^{(n)} = \mathbb{Q}^{(n)} \cup \mathbb{Q}^{(n+1)} (n \geq 0).$$

Recall that every $\mathbb{Q}^{(n)}$ is of countable π-weight and Lindelöf, hence normal. Put $C_{n} = \text{Cob}(\mathbb{Q}^{(n)})$ and $E_{n} = \text{Ed}(\mathbb{Q}^{(n)})$; then this gives a partition of $\mathbb{Q}^{(n)}$
$$\mathbb{Q}^{(n)} = C_{n} \cup E_{n}.$$

It is obvious that $E_{0} = \emptyset$, i.e., $\mathbb{Q}^{(0)} = C_{0}$, Lemma 3.4 implies that each $C_{n} (n \geq 1)$ is dense in $\mathbb{Q}^{(n)}$, and Fact 3.2 with 3.3 (1) implies that each
$E_n \ (n \geq 1)$ is dense in $Q^{(n)}$. Note in particular that E_1 coincides with the set of all remote points of Q, by 3.3 (2).

\[\begin{array}{cccc}
\beta Q^{(0)} & \overset{\Phi_0}{=} & \beta Q^{(1)} & \overset{\Phi_1}{=} \beta Q^{(2)} & \overset{\Phi_2}{=} \beta Q^{(3)} \\
Q^{(1)} & | & E_1 : C_1 & | & E_1 : C_1 & | & E_1 : C_1 & | & \ldots \\
Q^{(0)} & \overset{\phi_0}{\leftarrow} & \beta Q^{(2)} & \overset{\phi_1}{\leftarrow} \beta Q^{(3)} & \overset{\phi_2}{\leftarrow} \beta Q^{(4)} \\
C_0 & | & \beta Q^{(2)} & | & \beta Q^{(4)} & | & \ldots
\end{array} \]

FIG. 3

Property 4.1. Let A be any countable discrete subset of E_2 which is closed in $Q^{(2)}$. Then
(1) $\text{cl } A \subseteq E_2 \cup C_1$ in $\beta Q^{(1)}$, while (2) $\text{cl } A \subseteq E_2 \cup E_3$ in $\beta Q^{(2)}$.

Proof. (2) follows from 3.7. To prove (1), let A be as above. Then, since $\phi_0 : Q^{(2)} \to Q^{(0)}$ is perfect, $\phi_0(A)$ is also a countable discrete closed subset of $Q^{(0)} = C_0$. Since $C_0 \cup C_1 = \text{Cob}(\beta Q^{(0)})$ is countably compact in the strong sense as stated in 3.4, we have $\text{cl } \phi_0(A) \subseteq C_0 \cup C_1$ in $\beta Q^{(0)}$. Pulling back by the map Φ_0, we get $\text{cl } A \subseteq Q^{(2)} \cup C_1$ in $\beta Q^{(1)}$. This is the same as the assertion (1) since $A \subseteq E_2$.

Now we can prove the following strong assertion which in particular implies that $Q^{(1)} \not\simeq Q^{(3)}$.

Theorem 4.2. $Q^{(1)}$ admits no perfect irreducible map onto $Q^{(3)}$.

Proof. Suppose there existed a perfect irreducible map $\psi : Q^{(1)} \to Q^{(3)}$. Then, since $\beta Q^{(2)}$ can be seen as a compactification of $Q^{(3)}$, ψ extends to a perfect irreducible map

$\Psi : \beta Q^{(1)} = Q^{(1)} \cup Q^{(2)} \to \beta Q^{(2)} = Q^{(3)} \cup Q^{(2)}$.

Lemma 3.8 implies then that

$E_2 \cup E_1 \supseteq \Psi^{-1}(E_2 \cup E_3) \approx E_2 \cup E_3$.

Choose any countable discrete subset $B \subseteq E_2 \subseteq Q^{(2)} \subseteq \beta Q^{(2)}$ which is closed in $Q^{(2)}$. (We can do this because E_2 is dense in $Q^{(2)}$, and $Q^{(2)}$ is
Lindelöf.) Put $A = \Psi^{-1}(B)$, then this A is also a countable discrete subset of E_2 which is closed in $\mathbb{Q}^{(2)}$. Property 4.1 (2) shows $\text{cl } B \subseteq E_2 \cup E_3$ in $\beta \mathbb{Q}^{(2)}$, and so, pulling back by Ψ, we get
\[
\text{cl } A \subseteq \Psi^{-1}(E_2 \cup E_3) \subseteq E_2 \cup E_1
\]
in $\beta \mathbb{Q}^{(1)}$. But this contradicts 4.1 (1). \Box

We will be able to show in [4] that for any $n \geq 1$, $\mathbb{Q}^{(n)}$ admits no perfect irreducible map onto $\mathbb{Q}^{(n+2)}$ by analyzing further the behavior of limit points of countable discrete subsets in $\mathbb{Q}^{(m)}$. Some of the basic techniques in this paper can be found also in [5, 6, 7].

REFERENCES