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1. INTRODUCTION

We study supercompact cardinals in the context of ZF. Throughout this note,
our base theory is ZF, so we do not assume the axiom of choice.

Definition 1.1 (Woodin, Definition 132 in [1]). Let $\kappa$ be an uncountable cardinal.

(1) $\kappa$ is inaccessible if for every $x\in V_{\kappa}$ , there is no cofinal map from $x$ into $\kappa$

$($ that $is, f^{((}x is$ bounded $in \kappa)$ .

(2) $\kappa$ is supercompact if for every $\alpha>\kappa$ , there is $\beta>\alpha$ , a transitive set $N$ , and
an elementary embedding $j$ : $V_{\beta}arrow N$ such that:
(a) The critical point of $j$ is $\kappa$ and $\alpha<j(\kappa)$ .

(b) $V_{\alpha}N\subseteq N.$

It is easy to see that every inaccessible cardinal is regular, and every supercom-
pact cardinal is inaccessible.

Theorem 1.2 (Woodin, Theorem 227 in [1]). Suppose $\lambda$ is a singular cardinal and
a limit of supercompact $cardinal_{\mathcal{S}}$ . Then $\lambda^{+}$ is regular, and the non-stationary ideal
over $\lambda^{+}$ is $\lambda^{+}$ -complete. Here an ideal I over the set $A$ and an cardinal $\kappa$ , I is
$\kappa$-complete if for every $\alpha<\kappa$ and every sequence $\langle x_{i}:i<\alpha\rangle$ of $I$ -measure zero
sets, we have $\bigcup_{i<\alpha}X_{i}\in I.$

Woodin’s proof used a forcing method. In this note, we will give a direct and
simple proof of this theorem.

2. PROOFS

First we prove the following useful lemma, which can be seen as a L\"owenheim-

Skolem theorem in the context of ZF.

Lemma 2.1. Let $\kappa$ be a supercompact cardinal. Then for every $\alpha>\kappa$ and $x\in V_{\alpha},$

there is a $\mathcal{S}etM\prec V_{\alpha}$ such that:

(1) $x\in M$ and $M\cap\kappa\in\kappa.$

(2) $V_{M\cap\kappa}\subseteq M.$

(3) If $\overline{M}$ is the transitive collapse of $M$ , then $\overline{M}\in V_{\kappa}.$

Proof. Fix $\alpha>\kappa$ and $x\in V_{\alpha}$ . Since $\kappa$ is supercompact, there is $\beta>\alpha$ , a transitive
set $N$ and an elementary embedding $j$ : $V_{\beta}arrow N$ such that
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(1) The critical point of $j$ is $\kappa$ and $\alpha<j(\kappa)$ .

(2) $V_{\alpha N\subseteq N}.$

First we see that $j(a)=a$ for every $a\in V_{\kappa}$ . We prove this by induction on
the rank of sets. Suppose $\alpha<\kappa$ , and $j(a)=a$ for every $a\in V_{\kappa}$ with rank $<\alpha.$

Fix $a\in V_{\kappa}$ with rank $\alpha$ . We know rank(a) $=\alpha<\kappa$ , thus rank$(j(a))=rank(a)$ .
$j(b)=b$ for every $b\in a$ , so we know a $\subseteq j(a)$ . Pick $b\in j(a)$ . $rank(j(a))=\alpha,$

hence we have rank$(b)<\alpha$ , and $j(b)=b$ by the induction hypothesis. Then
$j(b)=b\in j(a)$ , so $b\in a.$

Since $V_{\alpha}N\subseteq N$ , we have that $j(V_{\alpha}\in N$ . Moreover $j(V_{\alpha}\cap j(\kappa)=\kappa$ . Since
$j(a)=a$ for every $a\in V_{\kappa}$ , we have $V_{\kappa}\subseteq j\langle V_{\alpha}$ . We also know that $j(x)\in jV_{\alpha}$

and the transitive collapse of $jV_{\alpha}$ is just $V_{\alpha}$ . By the elementarity of $j,$ $j^{(}V_{\alpha}$ is an
elementary submodel of $j(V_{\alpha})$ . $\alpha<j(\kappa)$ , hence $N$ satisfies the following statement:

There is a set $M\prec j(V_{\alpha})$ such that $M\cap j(\kappa)\in j(\kappa)$ , $V_{M\cap j(\kappa)}\subseteq M,$

$j(x)\in M$ , and the transitive collapse of $M$ is of the form $V_{\gamma}$ for
some $\gamma<j(\kappa)$ .

By the elementarity of $j,$ $V_{\beta}$ satisfies the following:

There is a set $M\prec V_{\alpha}$ such that $M\cap\kappa\in\kappa,$ $V_{M\cap\kappa}\subseteq M,$ $x\in M,$

and the transitive collapse of $M$ is of the form $V_{\gamma}$ for some $\gamma<\kappa.$

Clearly this $M$ is as required. $\square$

Now the theorem follows from the propositions below.

Proposition 2.2. Suppose $\kappa$ is supercompact. Then for every cardinal $\lambda\geq\kappa$ , we
have that $cf(\lambda^{+})\geq\kappa.$

Proof. Suppose to the contrary that $cf(\lambda^{+})=\mu<\kappa$ . Fix a large limit ordinal
$\alpha>\lambda^{+}$ . By Lemma 2.1, we can find $M\prec V_{\alpha}$ such that:

(1) $\{\mu, \kappa, \lambda, \lambda^{+}\}\in M$ and $M\cap\kappa\in\kappa.$

(2) If $\overline{M}$ is the transitive collapse of $M$ , then $\overline{M}\in V_{\kappa}.$

Note that $\mu\subseteq M$ since $\mu<\kappa$ and $M\cap\kappa\in\kappa$ . Moreover, since $\mu=cf(\lambda^{+})<\kappa$

and $M\prec V_{\alpha}$ , there is a cofinal map $f\in M$ from $\mu$ into $\lambda^{+}$ , hence we have that
$\sup(M\cap\lambda^{+})=\sup(f(\mu)=\lambda^{+}.$

Let $\overline{M}$ be the transitive collapse of $M$ , and $\pi$ : $\overline{M}arrow M$ the inverse map of the
collapsing map.

Define $h:M\cross\lambdaarrow\lambda^{+}$ as follows:

(1) For $\langle x,$ $\eta\rangle\in M\cross\lambda$ , if $x$ is a surjection from $\lambda$ onto some $\xi<\lambda^{+}$ , then
$h(x, \eta)=x(\eta)$ .

(2) Otherwise, $h(x, \eta)=0.$

For each $\xi\in M\cap\lambda^{+}$ , since $M\prec V_{\alpha}$ , there is a surjection $f\in M$ from $\lambda$ onto $\xi.$

Thus $h$ is a surjection from $M\cross\lambda$ onto $\lambda^{+}$ . Fix $\eta<\lambda$ , and let $h_{\eta}$ : $\overline{M}arrow\lambda^{+}$ be
the function defined by $h_{\eta}(y)=h(\pi(y), \eta)$ . So $h_{\eta}$ is a map from $\overline{M}$ into $\lambda^{+}.$
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Let $X_{\eta}=h_{\eta^{((}}\overline{M}$ . Since $\kappa$ is inaccessible and $\overline{M}\in V_{\kappa}$ , we have that $X_{\eta}$ has
cardinality $<\kappa$ , otherwise we can take a cofinal map from $\overline{M}$ into $\kappa$ . We know
$\lambda^{+}=\bigcup_{\eta<\lambda}X_{\eta}$ , hence we can define a map 9 from $\lambda\cross\kappa$ onto $\lambda^{+}$ such that $g(\eta, \gamma)$

is the $\gamma$-th element of $X_{\eta}$ . Since $|\lambda\cross\kappa|=\lambda$ in ZF, we have that $|\lambda^{+}|=\lambda$ , this is
a contradiction. $\square$

Proposition 2.3. Suppose $\kappa$ is supercompact. Let $\lambda\geq\kappa$ be a cardinal.

(1) If $cf(\lambda)\geq\kappa$ then the non-stationary ideal over $\lambda$ is at least $\kappa$ -complete.
(2) The non-stationary ideal over $\lambda^{+}$ is at least $\kappa$ -complete.

Proof. (2) is immediate from (1) and Proposition 2.2.
For (1), fix a cardinal $\mu<\kappa$ and $\langle X_{\xi}$ : $\xi<\mu\rangle$ measure-one sets of the non-

stationary ideal over $\lambda$ . We will find a club $C$ in $\lambda$ with $C \subseteq\bigcap_{\xi<\mu}X_{\xi}.$

By Lemma 2.1, we can find a large $\alpha>\lambda^{+}$ and $M\prec V_{\alpha}$ such that:

(1) $\{\mu, \kappa, \lambda, \langle X_{\xi} : \xi<\mu\rangle\}\in M$ and $M\cap\kappa\in\kappa.$

(2) If $\overline{M}$ is the transitive collapse of $M$ , then $\overline{M}\in V_{\kappa}.$

We know that $X_{\xi}\in M$ for every $\xi<\mu$ . Put $C=\cap$ { $D\in M$ : $D$ is a club in $\lambda$ }.
For each $\xi<\mu$ , there is a club $D\in M$ in $\lambda$ with $D\subseteq X_{\xi}$ . Thus we have that
$C \subseteq\bigcap_{\xi<\mu}X_{\xi}$ . We see that $C$ is a club in $\lambda$ . Closedness is clear. Hence it is enough
to see that $C$ is unbounded in $\lambda.$

Fix $\gamma<\lambda$ . We will show that $C$ has an element greater than $\gamma$ . By Lemma 2.1
again, we can find a large $\alpha’>\alpha$ and $M’\prec V_{\alpha’}$ such that:

(1) $\{\kappa, \lambda, M, C, \gamma\}\in M’$ and $M’\cap\kappa\in\kappa.$

(2) $V_{M’\cap\kappa}\subseteq M’.$

(3) If $\overline{M’}$ is the transitive collapse of $M’$ , then $\overline{M’}\in V_{\kappa}.$

We know that $M\subseteq M’$ ; let $\overline{M}$ be the transitive collapse of $M$ . We have $\overline{M}\in$

$V_{\kappa}\cap M’$ , hence $\overline{M}\in V_{M’\cap\kappa}$ , and $\overline{M}\subseteq V_{M’\cap\kappa}\subseteq M’$ . If $\pi$ : $\overline{M}arrow M$ is the inverse
map of the transitive collapsing map, then $\pi\in M’$ , hence $M=\pi^{(}\overline{M}\subseteq M’.$

Since cf(A) $\geq\kappa$ , we have that $\gamma<\sup(M’\cap\lambda)<\lambda$ ; If $\sup(M’\cap\lambda)=\lambda$ , there
is a cofinal map from $M’\cap cf(\lambda)$ into $\lambda$ . Hence we can take a cofinal map from the
transitive collapse $\overline{M’}$ into $\lambda$ . Since $cf(\lambda)\geq\kappa$ , we can also take a cofinal map from
$\overline{M’}$ into $\kappa$ , this contradicts that $\overline{M’}\in V_{\kappa}$ and $\kappa$ is inaccessible.

We see that $\sup(M’\cap\lambda)\in D$ for every club $D\in M$ in $\lambda$ , then $\gamma<\sup(M’\cap\lambda)\in$

$\cap$ { $D\in M$ : $D$ is a club} $=C$ , as required. Fix a club $D\in M$ . We have $D\in M’.$

By the elementarity of $M’,$ $M’\cap D$ is unbounded in $\sup(M’\cap\lambda)$ . Since $D$ is a club
in $\lambda$ and $\sup(M’\cap\lambda)<\lambda$ , we have that $\sup(M’\cap\lambda)=\sup(M’\cap D)\in D.$ $\square$

Corollary 2.4. Suppose $\lambda$ is a cardinal and a limit of supercompact cardinals.

(1) $cf(\lambda^{+})\geq\lambda$ , and the non-stationary ideal over $\lambda^{+}$ is at least $\lambda$ -complete.
(2) If $\lambda i_{\mathcal{S}\mathcal{S}}$ingular, then $\lambda^{+}$ is regular and the non-stationary ideal over $\lambda^{+}$ is

$\lambda^{+}$ -complete.
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(3) If $\lambda$ is regular, then the non-stationary ideal over $\lambda$ is $\lambda$ -complete.

Note 2.5. We can strengthen Propositions 2.2 and 2.3 as follows: suppose $\kappa$ is
supercompact, and $\lambda\geq\kappa$ a cardinal.

(1) For every $x\in V_{\kappa}$ , there is no cofinal map from $x$ into $\lambda^{+}.$

(2) If $cf(\lambda)\geq\kappa$ , then for every $x\in V_{\kappa}$ and every sequence $\langle X_{a}:a\in x\rangle$ of
non-stationary sets in $\lambda$ , we have that $\bigcup_{a\in x}X_{a}$ is non-stationary.
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