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SYMMETRIC GROUPS, DIHEDRAL GROUPS, AND KNOT GROUPS
MASAAKI SUZUKI

ABSTRACT. The number of group homomorphisms of a knot group is a knot invariant.
In this paper, we determine the numbers of group homomorphisms of knot groups to
symmetric groups and dihedral groups in low degree.

1. INTRODUCTION

Let K be a knot and G(K) the knot group, namely, the fundamental group of the
exterior of the knot K in S3. It is a useful method to investigate a given group that we
construct a group homomorphism of the group to another well known group. For example,
SL(2; Z/pZ)-representations of knot groups are studied in [5]. In this paper, we consider
group homomorphisms of knot groups to symmetric groups, and dihedral groups. To be
precise, we calculate all the group homomorphisms of knot groups with up to 8 crossings
to symmetric groups S, of degree up to 6, and to dihedral groups D5, of degree up to 18.
Furthermore, they are classified by the order of the images. Throughout this paper, the
numbers of homomorphisms are considered up to conjugation.

2. SYMMETRIC GROUP
First, we consider homomorphisms of knot groups to symmetric groups Sy:
Sp = (01,09, ..,0n-1]0* =1, 0405 = 0j0; if j #i %1, (0:0:41)° = 1).

A representation onto symmetric group S, corresponds to an n-fold covering of §® — K,
see [2] for example. It is known that there exist subgroups of symmetric group S; and
S4 whose orders are divisors of 3! and 4! respectively. However, there does not exist a
subgroup of S5 whose order is 15, 30,40, though they are divisors of 5!. Similarly, there
does not always exist a subgroup of symmetric subgroup S, whose order is a divisor of
n!. See [3], [4] in detail, for example.

Theorem 2.1. All the prime knots with up to 8 crossings, except for two pairs (71, 812)
and (73,813), can be distinguished by the orders of the images of group homomorphisms
to S, up to 6.

Theorem 2.1 is shown by Table 1 and Table 2. For example, Table 1 says that there
exists a surjective homomorphism of G(3;) onto S3. On the other hand, there does not
exist a surjective homomorphism of G(4;) onto S5. Then we conclude that these knots
3; and 4, are not equivalent. Moreover, though the numbers of group homomorphisms of
G(5;) and G(87) to S, are same up to degree 6, there exists a homomorphism of G(52) to
Sg such that the order of the image is 36 and there does not exist such a homomorphism
of G(87). Therefore we obtain that 5, and 8; are not equivalent.
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Remark 2.2. We can distinguish the pairs (71, 812) and (73, 813) by using homomorphisms
to 57.

We determine the numbers of homomorphisms to .S, in several cases as follows.

Proposition 2.3. For any knot K,

(1-a) |{f: G(K) = 83| |im f| =2} =1, (1-b) {f : G(K) — S3| |im f| = 3}| =1,
(2-a) {f: G(K) = Sy [m f| =2}[ =2, (2-b) {f:G(K) — Sy |im f| =3} =1,
(2-c) [{f : G(K) = S| |im fl =4} =1, (2-d) {f : G(K) = S| |im f| =8} =0
(3-a) {f : G(K) — S5 | |im f| = 2} = 2, g -b) l%f G(K) — 85| [im f| = 3} = 1,

(3-c) {f : G(K) = S5 | [im f| = 4} = 1, f:G(K) = S| im f| =5} =1,

(3-e) {f : G(K) = S5 |im f| =8} =

Proof. There exists only one subgroup of S3 of order 2 (up to conjugation), which is
generated by one element and a cyclic group. A non-trivial homomorphism of G(K) to
this group maps all elements to its generator. Then the number of such homomorphisms
is 1 and we get (1-a). By similar arguments, we obtain (1-b), (2-a), (2-b), (3-a), (3-b),
and (3-d). Note that there are two subgroups of Sy and S5 of order 2 respectively.

There are three conjugacy classes of subgroups of Sy (and Ss) of order 4. One of them is
a cyclic group Z/4Z and G(K) admits one surjective homomorphism onto this subgroup.
It is easy to see that G(K) does not admit a surjective homomorphism onto the other
subgroups. Then the number of homomorphisms to subgroups of Sy (and Ss) of order 4
is one.

The subgroup of Sy (and Ss) of order 8, which is the 2-Sylow subgroup, is the dihedral
group Dg. As we see later in Theorem 3.1, there does not exist a surjective homomorphism
of G(K) onto Dg. Therefore the order of the image of homomorphism to S; (and Ss) is
not 8.

This completes the proof. O

3. DIHEDRAL GROUP

Next, we will see homomorphisms of knot groups to dihedral groups Dap:
D2n = <7"73§'rn = 13 32 = 1’ srs = T-1>'
It is well known that Dg is isomorphic to S3. In general, Ds, can be regarded as a

subgroup of S,. The subgroups of D,, are determined in [1], namely, they are generated
by {r?} or {r¢,r*s}, where d is a divisor of n and 0 < k < d.

Theorem 3.1. Let K be a knot and f : G(K) — Dg a group homomorphism. Then the
image of f is a cyclic group Z/2Z or Z/AZ. In particular, f is not surjective. Moreover,
{f:G(K)— Dg|im f=2Z/2Z} =3 and |{f : G(K) = Dg| im f =Z/4Z}| = 1.

Proof. It it known that the conjugacy decomposition of Dg is the following:

= {e}U{r,r?}U{r*}u {s,r’s} U {rs,rs}.
Notethat s-7-s7' =71 =73 r.s.r7 ' =725, and r-rs-r~! = r3s. We fix the Wirtinger
presentation of knot group:

_ 1,1 1,1 _ 1,1 _
G(K) = (®1,%a, ..., xx | Tiy 212y, 05 = 1, 33,@00, 25 = 1,..., pyax;, o) = 1).

Remark that xq, 73, . . . , % are conjugate to one another. Then all the f(z), f(z2),..., f(zk)
are also conjugate. If f(z;) is r, then the image of f is a cyclic group Z/4Z. Similarly, if
f(z;) is 7%, then the image of f is Z/2Z.
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Next, we assume f(z;) = s. Since f(z1) and f(z;,) are contained in the same conjugacy
class, f(z;,) is s or r2s. We see that

-1
4 1\_ ) 888" =38
f(l"uxlﬂ?il ) - { r2s-s- (7‘2s)°1 =r2gr2=plg=35 °

In either case, f(z3) = s, by f(zi,z12;,'z;') = 1. Inductively, all the z; are sent to s.
Therefore the image of f is a cyclic group Z/2Z.

Finally, we assume f(z;) = 7s. In this case, all the x; are sent to r's by similar argument.
Since (rs)? = 1, the image of f is also a cyclic group Z/2Z.

The above shows us the numbers of homomorphisms to Dg too. O

4. TABLES

The following are tables of the numbers of homomorphisms to S, and Dj,. The first
columns of these tables line up prime knots with up to 8 crossings. The numbers of knots
follow the Rolfsen’s book [6]. The other columns give us the numbers of homomorphisms
(up to conjugation) to S, and Dy, such that the order of the image is k. For example,
the second column of Table 1 shows the numbers of homomorphisms to subgroups of S3
of order 2. We omit the columns for the number of trivial homomorphisms, since the
number is always 1.

Table 1: S3, S4, and Ss

K S3 S4 55
27316]2[3]4]6[8[12]24[2[3]4]5|6|8]10[12]20]24]|60 120
3, [1{1f1]2f1f1{1|0] 1| 1|2y1f{1|1}3(0| O 1} O] 1|1 0
4, [1]1]of2]1]1j0f0O] 1| O|2|1f{1|1|1|0O| 1] 1} O] 1] 1 2
50111102 |1]1]0|0] O] Of2f1|1|1|1|0| 1| O] O O 2 2
5 (1]1f0]2|1]|1]0|0| O] O|2(1|1{1|1]|0| O] O] O] O 1 1
6; |[1]1]1]2]1|1|1|0] O} 1|2|1f1|1}{3/0| O] O| 2}y 1| O 0
6, [1]1]0}2]1]1{0f(0] O] O|2j1}|1]|1}{1}{0f O] O O O] O 1
6; (1|1]0]2f1]1]0|O] O] Of2}1|1f1{1]j0| O] O] O O} 1 0
7. |1]1]o[2]1]1]0f0o] O] Of2}1|1|1|1{0] O] O] O} O} O O
7o [1l1]0f2]1|1]l0]0| 1} Of2f1|1|1]1]0| Of 1| 2} O] O] O
73 11]1]0f2[1]1]0f0O]| 1} O|2|1f{1|1{1{0| O 1} O} O} O 1
7o 1111121171 (1(0] O] T|2]1|1]1|3(0} 1} 0} O 1| 1 0
7s 11[1fo]2]1{1]of0o] O] Of2}1]|1|1|1|0] O] Of Of O] O] O
Te 11]1]0]2]1}1]0|0| O Of2|1(1|1{1|0| O O} 2| 0] O 1
7. (1{1{1{21}{1f{1[{0} O 1f{2f1}{1{1{3|0| O O] O] 1| O 2
8 [1{1({0f2]1f{1]of0] 1] O|2j1j1}1}1(0] O] 1] O} O} 1 0
8 [1]1]0]2({1]1}0[{0] O]l Of2{1{1{1}1i0f Of O] O} O] O 1
8 [1f{1}0f2|1]1]0j0] O O(2(1|1|1|1{0| O] O] O} O] 2 0
8 |1]1(0|2|1f1]0}0] 1] Of2{1f1(1{1j{0] O} 1| O} O} 1 1
8 (1f1f1}2|1}1|1{0| 1| 3}2(1|1|1|3|0| O 1} O} 3| 2 1
8 |1]1(0}2]1f1]0[0] O] Of2|1}1(1({1{0] O] O] O] O] 2 1
8 [1|1]0(2f1]1|l0(0| O Of{2|1j1|1|1({0| O O] O O] 1 1
171fof2f{1}{1{of{o] o} Of2y1j1)1)1i0| 1] O] 2] O} 1 1
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