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1. INTRODUCTION

For an ordered oriented link in the -sphere, J. Milnor [15, 16] defined a family of
invariants, known as Milnor’s $\overline{\mu}$-invariiants. For an $n$-component link $L$ , Milnor invariant
is determined by a sequence I of elements in $\{$ 1, 2, . .. , $n\}$ and denoted by $\overline{\mu}_{L}(I)$ . It is
known that Milnor invariants of length two are just linking numbers. In general, Milnor
invariant $\overline{\mu}_{L}(I)$ is only well-defined modulo the greatest common divisor $\Delta_{L}(I)$ of all
Milnor invariants $\overline{\mu}_{L}(J)$ such that $J$ is a subsequence of $I$ obtained by removing at least
one index or its cyclic permutation. If the sequence is of distinct numbers, then this
invariant is also alink-homotopy invariant and we call it Milnor’s link-homotopy invariant.
Here, the link-homotopy is an equivalence relation generated by ambient isotopy and self-
crossing changes.

In [3], N. Habegger and X. S. Lin showed that Milnor invariants are also invariants for
string links, and these invariants are called Milnor’s $\mu$-invariants. For any string hnk $\sigma,$

$\mu_{\sigma}(I)$ coincides with $\overline{\mu}_{\hat{\sigma}}(I)$ modulo $\triangle_{\hat{\sigma}}(I)$ , where $\hat{\sigma}$ is a link obtained by the closure of $\sigma.$

Milnor’s $\mu$-invariants of length $k$ are finite type invariants of degree $k-1$ for any natural
integer $k$ , as shown by D. Bar-Natan [1] and X. S. Lin [11].

In [17], M. Polyak gave a formula expressing Milnor’s $\overline{\mu}$-invariant of length 3 by the
Conway polynomials of knots. His idea was derived from the following relation. Both
Milnor’s $\mu$-invariant of length 3 for string link and the second coefficient of the Conway
polynomial are finite type invariants of degree 2. He gave this relation by using Gauss
diagram formulas.

Then, in [14], J-B. Meilhan and A. Yasuhara generalized it by using the clasper theory
introduced by K. Habiro [4]. They showed that general Milnor’s $\overline{\mu}$-invariants can be
represented by the HOMFLYPT polynomials of knots under some assumption. Moreover
the author and A. Yasuhara improved it in [9].

In [8], we give a formula expressing Milnor’s $\mu$-invariant by the HOMFLYPT polyno-
mials of knots under some assumption (Theorem 3.1) by using the clasper theory in [4].
The course of proof is similar to that in [14] and [9]. Moreover, Milnor’s $\mu$-invariants of
length 3 for any string link are given by the HOMFLYPT polynomial, which is a finite
type invariant of degree 2, and the linking number. Because a finite type knot $inVaria\mathfrak{r}lt$

of degree 2 is only the second coefficient of the Conway polynomial essentially, $Milnor^{\rangle}s$

$\mu$-invariants of length 3 are given by the second coefficient of the Conway polynomial and
the linking number (Theorem 3.3). It is a string version of Polyak’s result, and by taking
modulo $\triangle(I)$ , our result coincides with Polyak’s result.
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2. $MILNOR’ S\mu$-iNVARIANT AND HOMFLYPT POLYNOMIAL

2.1. String link. Let $n$ be a positive integer and $D^{2}c\mathbb{R}^{2}$ the unit disk equipped with
$n$ marked points $x_{1},$ $x_{2}$ , . . . , $x_{n}$ in its interior, lying in the diameter on the $x$-axis of $\mathbb{R}^{2}$

as in Figure 1. Let $I=[0$, 1$]$ . An $n$ -string link $\sigma$ is the image of a proper embedding
$|J_{i=1}^{n}I_{i}arrow D^{2}\cross Iof$ the disjoint union of $n$ copies of $I$ in $D^{2}\cross I$ , such that $\sigma|_{I_{i}}(0)=(x_{i},0)$

and $\sigma|_{I_{i}}(1)=(x_{i}\rangle 1)$ for each $i$ as in Figure 1. Each string of a string link inherits an
orientation from the usual orientation of $I$ . The $n$-string link $\{x_{1}, x_{2}, . .. , x_{n}\}\cross I$ in $D^{2}\cross I$

is called the trivial $n$ -string link and denoted by $1_{n^{O1^{\cdot}}}1$ simply.

FIGURE 1. An $n$-string link

Given two $n$-string links $\sigma$ and $\sigma^{;}$ , we denote their product by $\sigma\cdot\sigma’$ , which is given by
stacking $\sigma’$ on the top of $\sigma$ and reparametrizing the ambient cylinder $D^{2}\cross I$ . By this
product, the set of isotopy classes of $n$-string links has a monoid structure with unit given
by the trivial string link $1_{n}$ . Moreover, the set of link-homotopy classes of $n$-string links
is a group under this product.

2.2. Milnor’s $\mu$-invariant for string links. Let $\sigma=\bigcup_{i=1^{(}}^{n}\gamma_{i}$ in $D^{2}\cross I$ be an $n$-string
link. We consider the fundamental group $\pi_{1}(D^{2}\cross I\backslash \sigma)$ of the complement of $\sigma$ in $D^{2}\cross I,$

where we choose a point $b$ as a base point and curves $\alpha_{1},$ $\cdots,$ $\alpha_{n}$ as meridians in Figure
2.

$b$

FIGURE 2. Longitude of string link
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By Stalling$s^{}$ theorem [18], for any positive integer $q$ , the inclusion map

$\iota$ : $D^{2}\cross\{0\}\backslash \{x_{1}, \cdots, x_{n}\}arrow D^{2}\cross I\backslash \sigma$

induce an isomorphism of the lower central series quotients of the fundamental groups

$\iota_{*}:\frac{\pi_{1}(D^{2}\cross\{0\}\backslash \{x_{1},.\cdot.\cdot.\cdot,x_{n}\})}{(\pi_{1}(D^{2}\cross\{0\}\backslash \{x_{1\}},x_{n}\}))_{q}}arrow\frac{\pi_{1}(D^{2}\cross I\backslash \sigma)}{\pi_{1}(D^{2}\cross I\backslash \sigma)_{q}},$

where given a group $G,$ $G_{q}$ means the q-th lower central subgroup of $G$ . The fundamental
group $\pi_{1}(D^{2}\cross\{0\}\backslash \{x_{1}, \cdots, x_{n}\})$ is a free group generated by $\alpha_{1},$ $\cdots,$ $\alpha_{n}$ . We then
consider the j-th longitude $l_{j}$ of $\sigma$ in $D^{2}\cross I$ , where $l_{j}$ is the closure of the preferred
parallel curve of $\sigma_{j}$ , whose endpoints lie on the $x$-axis in $D^{2}\cross\{0$ , 1 $\}$ as in Figure 2. We
then consider the image of the longitude $\iota_{*}^{-1}(l_{j})$ by the Magnus expansion and denote
$\mu(i_{1}, \cdots, i_{k},j)$ the coefficient of $X_{i_{1}}X_{i_{2}}\cdots X_{i_{k}}$ in the Magnus expansion.

Theorem 2.1 ([3]). For any positive integer $q$ , if $k<q$ , then $\mu(i_{1}, \cdots, i_{k},j)$ is invart-
ant under isotopy. Moreover, if the sequence $i_{1},$

$\cdots,$ $i_{k},j$ is of distinct numbers, then
$\mu(i_{1}, \cdots, i_{k},j)$ is also link-homotopy invariant.

We call this invariant Milnor’s $\mu$-invariant.

2.3. HOMFLYPT polynomial. Recall the definition of the HOMFLYPT polynomial.
The HOMFLYPT polynomial $P(L;t, z)\in \mathbb{Z}[t^{\pm 1}, z^{\pm 1}]$ of an oriented link $L$ is defined

by the following two formulas:
(1) $P(U;t, z)=1$ , and
(2) $t^{-1}P(L_{+};t, z)-tP(L_{-};t, z)=zP(L_{0};t, z)$ ,

where $U$ denotes the trivial knot and $L_{+},$ $L$-and $L_{0}$ are link diagrams which are identical
everywhere except near one crossing, where they look as follows:

$L_{+}=\nearrow^{\aleph_{\backslash }};L_{-=}/\backslash ^{\nearrow};L_{0}=\rangle($

Recall that the HOMFLYPT polynomial of a knot $K$ is of the form $P(K;t, z)=$
$\sum_{k=0}^{N}P_{2k}(K;t)z^{2k}$ , where $P_{2k}(K;t)\in \mathbb{Z}[t^{\pm 1}]$ is called the $2k$-th coefficient polynomial
of $K.$

3. MAIN THEOREM

Given a sequence $I$ of elements of $\{$ 1, 2, . . . , $n\},$ $J<I$ will be used for any subsequence
$J$ of $I$ , possibly $I$ itself, and $|J|$ will denote the length of the sequence $J,$

Let $\sigma$ be an $n$-string link. Given a sequence $I=i_{1}i_{2}\cdots i_{m}$ obtained from $12\cdots n$ by
deleting some elements, and a subsequence $J=j_{1}j_{2}\cdots j_{k}$ of $I$ , we define a knot $\overline{\sigma_{I,J}}$

as the closure of the product $b_{I}\cdot\sigma_{J}$ . Here $\sigma_{J}$ is the $m$-string link obtained from $\sigma$ by
deleting the i-th string, for all $i\in\{1, 2, \cdots, n\}\backslash \{i_{1}, i_{2}, \cdots, i_{m}\}$ and replacing the i-th
string with a trivial string underpassing all other components, for all $i\in\{i_{1}, i_{2}, \cdots, i_{m}\}\backslash$

$\{j_{1},j_{2}, j_{k}\}$ , and $b_{I}$ is the $m$-braid associated with the permutation $b=(\begin{array}{lll}i_{1}i_{2} i_{m-1} \acute{\iota}_{m}i_{2}i_{3} i_{m} i_{1}\end{array})$

and such that the arc with connecting $(b^{k}(i_{1}), 0)$ with $(b^{k+1}(i_{1}), 1)$ underpasses all arcs with
connecting $(b^{k’}(i_{1}), 0)$ with $(b^{k’+1}(i_{1}), 1)$ in $[0$ , 1 $]$ $\cross[0$ , 1$]$ of braid diagram for $k<k’<n.$
See Figure 3 for an example. We then have the following Theorem.
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Theorem 3.1. Let $\sigma$ be an $n$ -string link $(n\geq 4)$ with vanishing Milnor’s link-homotopy
invariants of length $\leq m-2$ . Then for any sequence I obtained from $12\cdots n$ by deleting

$n-m$ elements, we have

$\mu_{\sigma}(I)=\frac{(-1)^{rn-1}}{(m-1)!2^{m-1}}\sum_{J<I}(-1)^{|J|}P_{0}^{(m-1)}(\overline{\sigma_{I,J}};1)$ ,

where $P_{0}^{(m-1)}(\cdot;1)$ is the $(m-1)$ -th derivative of the $0$-th coefficient $P_{0}$ t) of the HOM-
FLYPT polynomial evaluated at $t=1.$

Note that the above vanishing assumption for string link is equivalent to that any
$(m$ 2 $)$ -substring link is link homotopic to the trivial string link.

Remark 3.2. Theorem 1.1 remains valid if we use one of the following two alternative
definitions of $b_{I}$ . One is that we use “overpasses” instead of (underpasses” The other is
that we use く any $i\in\{i_{1},$ $i_{2}$ , )

$i_{m}$ instead of $\{i_{1}$
”

We also give the case of $\mu$-invariants of length 3 without the assumption.

Theorem 3.3. Let $\sigma$ be an $n$ -string tink and $I=i_{1}i_{2}i_{8}$ be a length 3 sequence with distinct
numbers in $\{$ 1, 2, $\cdots,$ $n\}$ . We then have

$\mu_{く r}(I)=-\sum_{J<I}(-1)^{|J|}a_{2}(\overline{\sigma_{I,J}})-lk_{\sigma}(i_{1}i_{2})lk_{\sigma}(i_{2}i_{3})+A_{I},$

where $a_{2}$ is the second coeficient of the Conway polynomial $lk_{\sigma}(ij)$ is the linking number

of the i-th component and j-th component of $\sigma$ , and

$A_{I}=\{\begin{array}{ll}lk_{\sigma}(i_{1}i_{2}) (i_{2}<i_{3}<i_{1})-lk_{\sigma}(i_{1}i_{2}) (i_{1}<i_{3}<i_{2})0 (otherwise).\end{array}$

Remark 3.4. This operation from a string link to a knot corresponds to $Y$-graph sum
of links defined by M. Polyak. By taking this formula modulo $\Delta_{\overline{o_{I.J}}}.(I)$ , we get Polyak’s
relation between Milnor’s $\overline{\mu}$-invariants and Conway polynomials [17].

Remark 3.5. In [19], K. Taniyama gave a formula expressing Milnor’s $\overline{\mu}$-invariants of
length 3 for links by the second coefficient of the Conway polynomial assuming that all
linking numbers vanish.

Remark 3.6. In [12], J.B. Meilhan showed that all finite type invariants of degree 2 for
string link was given a formula by some invariants (Theorem 2.8). So the formula in
Theorem 3.3 could also be derived from [12].

4. EXAMPLES

Example 4.1. Let $\sigma$ be a 3 string link showed by Figure 3. Then $\mu_{123}(\sigma)=-1,$ $\mu_{132}(\sigma)=$

$\mu_{213}(\sigma)=1$ and $\mu_{231}(\sigma)=\mu_{312}\langle\sigma$ ) $=\mu_{321}(\sigma)=$ O. And $lk_{\sigma}(12)=lk_{\sigma}(23)=1$ and
$lk_{\sigma}(13)=0.$

On the other hand, $\overline{\sigma_{123,123}}$ and $\overline{\sigma_{123,23}}$ are the figure-eight knot, and $\overline{\sigma_{123,J}}(J\neq 123,23)$

is the trivial knot. Therefore we obtain

$- \sum_{J<123}(-\lambda)^{|J|}a_{2}(\overline{\sigma_{12il,J}})-lk_{\sigma}(12)lk_{\sigma}(23)=a_{2}(4_{1})-a_{2}(4_{1})-1\cdot 1=-1.$
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Similarly, we have

$- \sum_{J<231}(-1)^{|J|}a_{2}(\overline{\sigma_{231,J}})-lk_{\sigma}(23)lk_{\sigma}(31)=a_{2}(3_{1}\# 4_{1})-a_{2}(3_{1})-a_{2}(4_{1})-1\cdot 0=0,$

$- \sum_{J<312}(-1)^{|J|}a_{2}(\overline{\sigma_{312,J}})-lk_{\sigma}(31)lk_{\sigma}(12)+lk_{\sigma}(13)=a_{2}(3_{1})-a_{2}(3_{1})-0\cdot 1+0=0.$

Moreover, $\overline{\sigma_{132,32}}$ is the figure-eight knot and $\overline{\sigma_{132,J}}(J\neq 32)$ is the trivial knot. There-
fore we obtain

$- \sum_{J<132}(-1)^{|J|}a_{2}(\overline{\sigma_{132,J}})-lk_{\sigma}(13)lk_{\sigma}(32)-lk_{\sigma}(13)=-a_{2}(4_{1})-0\cdot 1-0=1.$

Similarly, we have

$- \sum_{J<213}(-1)^{|J|}a_{2}(\overline{\sigma_{213,J}})-tk_{\sigma}(21)lk_{\sigma}(13)=a_{2}(7_{6})-a_{2}(3_{1})-a_{2}(4_{1})-1\cdot 0=1,$

$- \sum_{J<321}(-1)^{|J|}a_{2}(\overline{\sigma_{321,J}})-lk_{\sigma}(32)lk_{\sigma}(21)=a_{2}(5_{2})-a_{2}(3_{1})-1\cdot 1=0.$

$($

$\sigma \overline{\sigma_{123,123}} \overline{\sigma_{123,12}} \overline{\sigma_{123,13}} \overline{\sigma_{123,23}}$

FIGURE 3
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