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1. INTRODUCTION

These notes collect some general facts about character varieties of finitely generated
groups in $SL_{2}$ . We stress that one can study character varieties with the point of view of
skein modules: using a theorem of K. Saito, we recover some standard results of character
varieties, including a construction of a so-called tautological representation. This allows to
give a global construction of the Reidemeister torsion, which should be useful for further
study such as its singularities or differential equations it should satisfy.

The main motivation of the author is to understand the relation between character
varieties and topological quantum field theory (TQFT) with gauge group $SU_{2}$ . This theory
-in the [1] version-makes fundamental use of the Kauffman bracket skein module, an
object intimately related to character varieties. Moreover the non-abelian Reidemeister
torsion plays a fundamental role in the Witten asymptotic expansion conjecture, governing
the asymptotics of quantum invariants of 3-manifolds. However, these notes do not deal
with TQFT, and strictly speaking do not contain any new result. Let us describe and
comment its content.

(1) The traditional definition of character varieties uses an algebraic quotient, al-
though it is not always presented that way. On the contrary, the skein algebra is
given by generators and relations. These two points of view are in fact equivalent.
This was previously shown by Bullock up to nilpotent elements (see [3]) and by
Przytycki and Sikora in general (see [10]) using work of Brumfiel and Hilden ([2]).
Indeed, the proof is in a short article of Procesi (see [9]) and follows from the
fundamental theorems of invariant theory. We explain this in Section 2.

(2) A theorem of K. Saito (with unpublished proof) allows to recover a representa-
tion from its character in a very general situation. We present this theorem and
advertise it by applying it in different situations in Section 3. 1.

- Given a character $\chi$ with values in a field $k$ , in which extension of $k$ lives a
representation with character $\chi$?

- Compare the tangent space of the character variety with the twisted coho-
mology of the group with values in the adjoint representation.

- Define tautological representations with values in the field of functions of (an
irreducible component of) the character variety.

-Study points of the character variety in valuation rings, related to Culler-
Shalen theory.

$\langle$3) Using the tautological representation gives a convenient framework for studying
global aspects of the Reidemeister torsion. We show in what sense the Reidemeister
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torsion may be seen as a rational volume form on the character variety of a 3-
manifold with boundary and give examples in Section 4.
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versations. It is my pleasure to thank L. Benard, R. Detcherry, A. Ducros, E. Falbel, L.
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Wolff for their help and interest. I also thank the organizers of the conference Topology,
Geometry and Algebra of Low-Dimensional Manifolds in Numazu (Japan), June 2015 for
welcoming me and publishing these notes.

2. Two DEFINITIONS OF CHARACTER VARIETIES

In all the article, $k$ will denote a field with characteristic O. Most results of Section 3
hold for any field with characteristic different from 2. We stayed in characteristic $0$ in
view of our applications.

2.1. Algebraic quotient. Let $\Gamma$ be a finitely generated group. We define its represen-
tation variety into $SL_{2}$ and we denote by $Hom(\Gamma, SL_{2})$ the spectrum of the algebra

$A(\Gamma)=k[X_{i,j}^{\gamma}, i,j\in\{1, 2\}, \gamma\in\Gamma]/(\det(X^{\gamma})-1,$
$X^{\gamma\delta}-X^{\gamma}X^{\delta}$ with $\gamma,$ $\delta\in\Gamma)$

In this formula, $X^{\gamma}$ stands for the matrix with entries $X_{i_{J}}^{\gamma},,$ $i,j\in\{1$ , 2 $\}$ . In particular
the last equation above is a collection of 4 equations. The name representation variety is
justified by the following universal property which holds for any $k$-algebra $R$ :

$Hom_{k-alg}(A(\Gamma), R)=Hom(\Gamma, SL_{2}(R))$

Let $SL_{2}(k)$ act on the space $Hom(\Gamma, SL_{2})$ by conjugation. This action is algebraic as it
comes from the action $(g.P)(X^{\gamma})=P(g^{-1}X^{\gamma}g)$ where we have $g\in SL_{2}(k)$ and $P\in A(\Gamma)$ .

Definition 2.1. We define the character variety of $\Gamma$ and denote by $X(\Gamma)$ the spectrum
of the algebra $A(\Gamma)^{SL_{2}}$ of invariants.

In other words, $X(\Gamma)$ is the quotient of $Hom(r, SL_{2})$ in the sense of geometric invariant
theory. Standard arguments from this theory gives the following theorem:

Theorem 2.2. If $k$ is algebraically closed, there is a bijection between the following sets:
- The $k$ -points of $X(\Gamma)$ (or equivalently $Hom_{k-alg}(A(\Gamma)^{SL_{2}},$ $k)$ )
- The closed orbits of $SL_{2}(k)$ acting on $Hom(\Gamma, SL_{2}(k))$

- The conjugacy classes of semi-simple representations of $\Gamma$ into $SL_{2}(k)$

- The characters of representations in $Hom(\Gamma, SL_{2}(k))$ .

Recall that by character of a representation $p$ : $\Gammaarrow SL_{2}(k)$ we mean the map $\chi_{\rho}$ : $\Gammaarrow k$

given by $\chi_{\rho}(\gamma)=Tr\rho(\gamma)$ . This theorem will be made more precise in the sequel using the
point of view of skein algebras.

Remark 2.3. We point out the fact that the algebra $A(\Gamma)$ may have nilpotent elements,
as the skein algebra. A big part of the literature on character varieties uses the reduction
of these algebras: this is not the case of these notes.
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2.2. The skein algebra.

Definition 2.4. We define the skein character variety $X_{8}(\Gamma)$ as the spectrum of the
algebra

$B(\Gamma)=k[Y_{\gamma}, \gamma\in\Gamma]/(Y_{1}-2, Y_{\alpha\beta}+Y_{\alpha\beta^{-1}}-Y_{\alpha}Y_{\beta}$ with $\alpha, \beta\in\Gamma)$

One can show that $B(r)$ is a finitely generated $k$-algebra (see [4], Proposition 1.4.1).
Moreover, any representation $\rho$ : $\Gammaarrow SL_{2}(k)$ gives rise to an algebra morphism $\chi_{\rho}$ :
$B(\Gamma)arrow k$ by the formula $\chi_{\rho}(Y_{\gamma})=Trp(\gamma)$ . This is a consequence of the famous trace
relation:

$rr_{r}(AB)+Tr(AB^{-1})=Tr(A)Tr(B) \forall A, B\in SL_{2}(k)$

The character of the $tauto\log_{\grave{1}}ca1$ representation $\rho$ : $\Gammaarrow SL_{2}(\mathcal{A}(\Gamma))$ defined by $\rho(\gamma)=$

$X^{\gamma}$ is a map $\Phi$ : $B(r)arrow A(\Gamma\rangle^{SL_{2}}$ . The following theorem as been proved by Przytyscki
and Sikora, see [10]. In pract\’ice, it follows from [9] Theorem 2.6, see also [2] and [3].

Theorem 2.5. For any field $k$ of characteristic $0$ and any finitely generated group $\Gamma$ , the
map $\Phi$ : $B(r)arrow A(\Gamma\rangle^{SL_{2}}$ is an isomorphism.

The statement of Theorem 2.6 in [9] is much rrxore general and deals with algebras with
trace satisfying the Cayley-Hamilton identity. We derive our statement from his below.

Proof Let $k[\Gamma]$ be the group algebra of $\Gamma$ . We denote by $[\gamma]$ the generator associated to
$\gamma\in r$ and set $\mathfrak{R}([\gamma])=[\gamma]+[\gamma^{-1}]$ that we extend by $k$-linearity. We define $H(\Gamma)=k[\Gamma]/I$

where $I$ is the twesided ideal generated by the elements $Tx(x)y$ -y&(x $\rangle$ , for any $x,$ $y\in$

$k[\Gamma]$ . The trace factors to a $k$-linear endomorphism of $H(I^{\gamma})$ . By direct computation, one
checks that the following identities hold for any $x,$ $y\in H(\Gamma\rangle_{\backslash }.$

(i) $Tr(x)y=y$ Tr(x)
(ii) $\ulcorner fr(xy)=rfr(yx)$

(iii) $Tr(Tx(x)y)=\ulcorner fr(x)Tr(y)$

(iv) $x^{2}-r \ (x\rangle x+\frac{1}{2}(Tr(x)^{2}-Tr(x^{2}))=0.$

The last equation is called the Cayley-Hamilton identity of order 2. The map $j$ : $H\langle\Gamma$ ) $arrow$

$M_{2}(A(\Gamma))$ defined by $j([\gamma])=X^{\gamma}$ is an algebra morphism preserving the trace. It is
universal in the sense that for any $k$-algebra $B$ and morphism $j’$ : $H(\Gamma)arrow M_{2}(B)$ , there
is a unique algebra morphism $\varphi$ : $A(\Gamma)arrow B$ such that the following diagram commutes.

$H(\Gamma)arrow^{j}M_{2}(A(r^{t}))$

$\backslash ^{j’} \downarrow M_{2}(\varphi)$

$M_{2}(B)$

Denote by $G$ the group $GL_{2}(k)$ . The universal property implies that if we compose $j$

with a conjugation $\pi_{g}$ with $g\in G$ , there is an automorphism $\varphi_{g}$ of $A(\Gamma)$ such that
$7r_{g}oj=M_{2}(\varphi_{g})oj$ . The action of $G$ on $A(\Gamma)$ is the one described in Subsection 2.1: the
formula $\rho(g)=\pi_{g}\circ M_{2}(\varphi_{g})^{-\lambda}$ defines an action of $G$ on $M_{2}(A(\Gamma))$ fixing $X^{\gamma}$ for all $\gamma$ and
Theorem 2.6 of [9] says the following:

Theorem 2.6 $([9]_{{\}}2.6)$ . The map $j$ : $H(f’)arrow M_{2}(A(\Gamma))^{GL_{2}}$ is an isomorphism.
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To end the proof, we observe that $\Phi$ is the restriction of $j$ to the center. More precisely,
the map $B(\Gamma)arrow H(\Gamma)$ defined by $Y_{\gamma}\mapsto Tr([\gamma])$ is injective and its image by $j$ is the
center of $M_{2}(A(\Gamma))^{G}$ , that is $A(\Gamma)^{G}Id$ . We end the proof by observing the equality
$A(\Gamma)^{G}=A(\Gamma)^{SL_{2}}.$ $\square$

Thanks to this theorem, we can remove the ‘s’ in $X_{s}(\Gamma)$ .

2.3. Irreducible, reducible and central characters. Given $\alpha,\beta\in\Gamma$ , we define the
following element of $B(\Gamma)$ :

$\Delta_{\alpha,\beta}=Y_{\alpha}^{2}+Y_{\beta}^{2}+Y_{\alpha\beta}^{2}-Y_{\alpha}Y_{\beta}Y_{\alpha\beta}-4.$

The equation $\Delta_{\alpha,\beta}\neq 0$ defines an open subset $U_{\alpha,\beta}$ of $X(\Gamma)$ and we set

$X^{irr}( \Gamma)=\bigcup_{\alpha,\beta\in I}, U_{\alpha,\beta}.$

We begin our study with the following lemma, a slightly different version of Lemma
1.2.1 in [4]. We will say that a representation $\rho$ : $\Gammaarrow SL_{2}(k)$ is absolutely irreducible if
it is irreducible in an algebraic closure of $k.$

Lemma 2.7. Given a field $k$ and a representation $\rho$ : $\Gammaarrow SL_{2}(k)$ , $\rho$ is absolutely
irreducible if and only if there exists $\alpha,$ $\beta\in\Gamma$ such that $rb(\rho(\alpha\beta\alpha^{-1}\beta^{-1}))\neq 2.$

Proof. We first recall Burnside irreducibility criterion which states that $p$ is absolutely
irreducible if and only if $Span\{\rho(\gamma), \gamma\in\Gamma\}=M_{2}(k)$ .

Let $M$ be the matrix defined by $M_{ij}=Tr(p(\gamma_{i}\gamma_{j}))$ for $i,j\in\{1$ , . . . , 4 $\}$ where $\gamma_{1}=$

$1,\gamma_{2}=\alpha,$ $\gamma_{3}=\beta$ and $\gamma_{4}=\alpha\beta$ . A simple computation shows that $\det M=-\chi_{\rho}(\Delta_{\alpha,\beta})^{2}$

where we have $\chi_{\rho}(\Delta_{\alpha,\beta})=Tr\rho(\alpha\beta\alpha^{-1}\beta^{-1})-2$ . Hence if there exists $\alpha,$
$\beta$ such that

$\chi_{\rho}(\Delta_{\alpha,\beta})\neq 0$ , then $(\rho(\gamma_{i}))_{i=1..4}$ is a basis of $M_{2}(k)$ and by Burnside criterion, $\rho$ is abso-
lutely irreducible.

Conversely, suppose that for all $\alpha,$ $\beta\in\Gamma$ one has $\chi_{\rho}(\Delta_{\alpha,\beta})=$ O. Then there exists
a non-zero subspace $F_{\alpha,\beta}$ of $k^{2}$ fixed by the commutator $\rho([\alpha,$ $\beta$ Suppose that there
exists $\gamma,$

$\delta$ such that $F_{\alpha,\beta}\cap F_{\gamma,\delta}=\{O\}$ then in a basis made of these two lines, one can

write $\rho([\alpha, \beta])=(\begin{array}{ll}1 x0 1\end{array})$ and $\rho([\gamma, \delta])=(\begin{array}{ll}1 0y 1\end{array})$ with $x$ and $y$ non zero. We compute

then $Tr([[\alpha, \beta], [\gamma, \delta =2+(xy)^{2}$ . The hypothesis implies that $x$ or $y$ is zero which is
impossible. This finally implies that $\bigcap_{\alpha},{}_{\beta}F_{\alpha,\beta}\neq\{0\}$ . But this subset is -invariant which
implies that $\rho$ is reducible. $\square$

Consider the closed subset $X^{cen}(\Gamma)$ of $X(\Gamma)$ defined by the equations $Y_{\gamma}^{2}=4$ for all
$\gamma\in\Gamma.$ A $k$-point of $X^{cen}(\Gamma)$ has the form $\varphi(Y_{\gamma})=2\epsilon(\gamma)$ for some $\epsilon\in H^{1}(\Gamma, \mathbb{Z}/2\mathbb{Z})$ . This
is the character of the central representation $\rho$ : $\gamma\mapsto\epsilon(\gamma)id.$

The closed subset $X(\Gamma)\backslash X^{irr}(\Gamma)$ is denoted by $X^{red}(\Gamma)$ : let us describe it more precisely.
Let $Hom(\Gamma, G_{m})$ be the spectrum of the algebra

$C(\Gamma)=k[Z_{\gamma}, \gamma\in\Gamma]/(Z_{\gamma}Z_{\delta}-Z_{\gamma\delta}, \gamma, \delta\in\Gamma)$

We have for any $k$-algebra $R,$ $Hom_{k-alg}(C(\Gamma), R)\simeq Hom(\Gamma, R^{x})$ , which explains the
notation.

Let $\sigma$ be the automorphism of $C(\Gamma)$ defined by $\sigma(Z_{\gamma})=Z_{\gamma^{-1}}$ and $\pi$ : $B(\Gamma)arrow C(\Gamma)$ ,
the morphism defined by $\pi(Y_{\gamma})=Z_{\gamma}+Z_{\gamma^{-1}}.$
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Proposition 2.8. The map $7r:B(\Gamma)arrow C(\Gamma)$ is a morphism of algebras whose image is
the $\sigma$-invariant part. $It_{\mathcal{S}}$ kernel is the radical of the ideal generated by $\Delta_{\alpha,\beta}.$

In other words, a $k$ -point $\varphi$ of $X^{red}$ lifts to a $k$ -point of $Hom(\Gamma, G_{m})/\sigma$ . Hence, there
exists an extension $\hat{k}$ of $k$ (at most quadratic) and a morphism $\psi$ : $\Gammaarrow\hat{k}^{X}$ such that
$\varphi(Y_{\gamma}\rangle=\psi(\gamma)+\psi(\gamma)^{-1}.$

Proof We prove easily that $\pi$ is a homomorphism whose image is $C(\Gamma)^{\sigma}$ . Let $k$ be a field
and $\varphi$ : $B(r)arrow k$ a morphism satisfying $\varphi(\Delta_{\alpha,\beta})=0$ for all $a,$ $\beta\in\Gamma$ . We write $\varphi(\alpha)=$

$\varphi(Y_{\alpha})$ for short: by assumption one has $\varphi([\alpha, \beta])=2$ . Moreover, if $\varphi\langle\alpha$) $=\varphi(\beta)=2$

then $\varphi(\Delta_{\alpha,\beta})=0$ implies $(\varphi(\alpha\beta)-2)^{2}=0$ and hence $\varphi(\alpha\beta)=2$ . We conclude that
$\varphi(\alpha)=2$ for any $\alpha\in[\Gamma, \Gamma]$ . Moreover, if $\alpha\in\Gamma$ and $\beta\in[\Gamma, \Gamma]$ , then $\varphi(cx\beta)$ satisfies
$(\varphi(\alpha)-\varphi(\alpha\beta))^{2}=0$ and hence $\varphi(\alpha\beta)=\varphi(\alpha)$ . This proves that $\varphi$ factors through a map
$\varphi^{ab}$ : $B(\Gamma^{ab})arrow k$ where $\Gamma^{ab}=\Gamma/[\Gamma, \Gamma]$ . Moreover, we clearly have $C(\Gamma^{ab})=C(\Gamma)$ and
the map $B(\Gamma^{at\}})arrow c(r^{a\})})^{\sigma}$ is invertible. This proves the first part of the lemma. The
second part follows. $\square$

Remark 2.9. We don’t know if the $\Delta_{\alpha,\beta}s$ generate the kernel of $7\ulcorner$ . Moreover, it is well
known that the deformations of reducible representations into irreducible ones are related
to the Alexander module. It would be interesting to have an explicit description of the
(co-)normal bundle of $X^{red}(I)$ in $X(\Gamma)$ . More precisely, define the ideal $I$ by the following
exact sequence:

$0arrow Iarrow B(f^{\backslash })arrow C\langle\Gamma)^{\sigma}arrow 0$

Then there should be a relation between the $c(r)$-module $I/I^{2}\otimes_{C(\Gamma)^{\sigma}}C(\Gamma)$ and the
module $H^{1}く\Gamma,$ $c(r)$ ) where the action of $\gamma\in\Gamma$ is by multiplication by $Z_{\gamma}.$

2.4. Functorial properties. If $\varphi$ : $\Gammaarrow\Gamma’$ is a group homomorphism, there is a natural
map $\varphi_{*}:B(\Gamma)arrow B(\Gamma’)$ mapping $Y_{\gamma}$ to $Y_{\varphi(\gamma\rangle}$ . There is also a natural map $\varphi_{*}:A(r)arrow$

$A(\Gamma‘)$ which makes the following diagram commute:

$B(\Gamma)arrow^{\varphi*}\mathcal{B}(\Gamma’)$

$\downarrow\Phi \}\Phi$

$A(\Gamma)\underline{\varphi_{*}}A(\Gamma’)$

$2.4.\lambda$ . Double quotients. Let us show an example which arises when computing the fun-
damental group of a 3 manifold presented by a Heegard splitting.

Proposition 2.10. Let $\Gamma,$ $\Gamma_{\lambda},$ $\Gamma_{2}$ be three finitely generated groups and $\varphi_{i}:\Gammaarrow r_{i}$ be two
surjective morphisms. Denote by $\Gamma’$ the amalgamated product $r’=\Gamma_{1}\star\Gamma_{2}\Gamma^{\cdot}$

Then $x(r)$ is isomorphic to the fiber product $X(I_{1}^{\gamma})\cross X(\Gamma_{2})$ .
$x(r)$

More geometrically, if we denote by $L_{i}$ the images of $X(\Gamma_{i})$ in $x(r)$ , then $X(\Gamma’)$ is the
(schematic) intersection $L_{1}\cap L_{2}.$
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Proof. Given any morphisms $\varphi_{i}$ : $\Gammaarrow\Gamma_{i}$ and any $k$-algebra $R$ , one has the following
natural isomorphisms:

$Hom_{k-alg}(A(\Gamma’), R) = Hom(\Gamma’, SL_{2}(R))$

$= \{\rho_{i}:\Gamma_{i}arrow SL_{2}(R), \rho_{1}\circ\varphi_{1}=\rho_{2}0\varphi_{2}\}$

$= Hom_{k-alg}(A(\Gamma_{1})\bigotimes_{A(\Gamma)}A(\Gamma_{2}), R)$

Hence we have the isomorphism $A( \Gamma’)=A(\Gamma_{1})\bigotimes_{A(\Gamma)}A(\Gamma_{2})$ . We notice that the invariant

part of this tensor product is not the tensor product of the invariant parts (think about a
wedge of two circles). However, this holds when $A(\Gamma_{i})$ is a quotient of $A(\Gamma)$ , that is when
the morphisms $\varphi_{i}$ are surjective.

Denoting by $I_{i}$ the kernel of the map $A(\Gamma)arrow A(\Gamma_{i})$ , the result follows from the following
standard fact in invariant theory: $A(\Gamma’)=A(\Gamma)/(I_{1}+I_{2})$ and $(I_{1}+I_{2})^{SL_{2}}=I_{1}^{SL_{2}}+I_{2}^{SL_{2}}.$

On the other hand, one shows easily that the map $B(\Gamma_{1})\otimes_{B(\Gamma)}B(\Gamma_{2})arrow B(\Gamma’)$ is an
isomorphism, see for instance [10]. $\square$

2.4.2. Semi-direct products. The following situation appears for fundamental groups of 3-
manifolds which fiber over the circle. Let $\Gamma$ be a finitely generated group and $\varphi\in Aut(\Gamma)$

an automorphism. Set $\Gamma’=\Gamma x_{\varphi}\mathbb{Z}$ so that we have the following (split) exact sequence.
Let $t=s(1)$ .

$0arrow\Gammaarrow^{\alpha}\Gamma^{\prime_{arrow}}\mathbb{Z}-0\wedge s$

Lemma 2.11. Suppose that $k$ is algebraically closed and consider only closed points of
the character varieties. Then the map $\alpha^{*}:X(\Gamma’)arrow X(\Gamma)\omega$restricted to $X^{irr}(\Gamma)$ is a
$\mathbb{Z}/2\mathbb{Z}$ principal bundle over $F$ , where $F=\{x\in X^{irr}(\Gamma), \varphi^{*}x=x\}.$

Proof. Let $\rho’$ : $\Gamma’arrow SL_{2}(K)$ be a representation which restricts to an irreducible repre-
sentation $\rho$ : $\Gammaarrow SL_{2}(K)$ . This representation satisfies $\rho’(t)\rho(\gamma)\rho’(t)^{-1}=\rho(\varphi(\gamma))$ hence
the character $\chi_{\rho}$ is fixed by $\varphi^{*}$ . Suppose we have another representation $\rho’$ : $\Gamma’arrow SL_{2}(K)$

with the same restriction, then $\rho"(t)\rho’(t)^{-1}$ commutes with the image of $\rho$ . Hence $\rho"(t)=$

$\pm\rho’(t)$ . There are precisely two preimages for $\rho$ and the lemma is proved. $\square$

3. APPLICATIONS OF SAITO’S THEOREM

We know from the isomorphism between $X_{s}(\Gamma)$ and $X(\Gamma)$ that if $k$ is algebraically
closed, any $k$-point of $X_{s}(\Gamma)$ is the character of a representation $\rho:\Gammaarrow SL_{2}(k)$ . However
this fact is non-trivial to prove directly: the following theorem of [11] allows it and has
further applications.

Theorem 3.1. Let $R$ be a $k$ -algebra and $\varphi$ : $B(\Gamma)arrow R$ be a morphism of $k$ -algebras.
Suppose that there exists $\alpha,$ $\beta\in\Gamma$ such that $\varphi(\Delta_{\alpha,\beta})$ is invertible and $A,$ $B\in SL_{2}(R)$

such that Tr $A=\varphi(Y_{\alpha})$ , $Tr(B)=\varphi(Y_{\beta})$ , $Tx(AB)=\varphi(Y_{\alpha\beta})$ . Then, there is a unique
representation $\rho$ : $\Gammaarrow SL_{2}(R)$ such that $\rho(\alpha)=A,$ $\rho(\beta)=B$ and for all $\gamma\in\Gamma,$ $Tr(\rho(\gamma))=$

$\varphi(Y_{\gamma})$ .

Proof. (Sketch) Define $\gamma_{i}$ and $M$ as in Lemma 2.7. As $\det M=-\varphi(\triangle_{\alpha,\beta})^{2}$ , the matrix
$M$ is invertible over $R$ . Given any $\gamma\in\Gamma$ , we denote by $C_{\gamma}$ the vector of coefficients of $\rho(\gamma)$

in the basis $(\rho(\gamma_{\mathfrak{i}}))_{i=1..4}$ and by $T_{\gamma}$ the vector $(\varphi(Y_{\gamma\gamma_{i}}))_{i=1..4}$ . We then have $MC_{\gamma}=T_{\gamma}$

which we solve by setting $C_{\gamma}=M^{-1}T_{\gamma}$ and define this way $\rho(\gamma)$ . It remains to show that
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this actually defines a representation in $SL_{2}$ whose traces are prescribed by $\varphi$ . This is a
non-trivial consequence of the trace relations, we refer to [11] for a proof. $\square$

3.1. Points of $X(\Gamma)$ over arbitrary fields.

Definition 3.2. Let $k$ be a field and $p:\Gammaarrow SL_{2}(\hat{k})$ be a representation where $\hat{k}$ is an
extension of $k$ and such that Tr $p(\gamma)\in k$ for all $\gamma\in\Gamma$ . We set

$M(\rho)=Span_{k}\{\rho(\gamma),\gamma\in\Gamma\}.$

It is a sub-k-algebra of $M_{2}\langle\hat{k}\rangle$ . We will say that two representations $\rho_{i}$ : $rarrow SL_{2}(\hat{k}_{\eta}\cdot)$

where $i=1$ , 2 are equivalent if there is an isomorphism of $k$-algebras $\sigma$ : $M(\rho_{1})arrow M(\rho_{2})$

such that $p_{2}=\sigma 0\rho_{1}.$

We have the following proposition:

Proposition 3.3. Let $k$ be a fietd. There is a functorial isomorphism between $k$ -points

of $X^{irr}(\Gamma\rangle\wedge$ and equivalence classes of absolutely irreducible representations $p:\Gammaarrow SL_{2}(\hat{k})$

where $k$ is a finite extension of $k$ and for all $\gamma$ in $\Gamma,$ $Tr(p(\gamma))\in k.$

Proof of Proposition 3.3. Given $\rho:\Gammaarrow SL_{2}(\hat{k})$ as in the statement, we define a morphism
$\varphi\in Hom_{alg}(B(\Gamma), k)$ by setting $\varphi(Y_{\gamma})=Tr(p(\gamma))$ . By Lemma 2.7, there exists $\alpha,$ $\beta\in\Gamma$

such that $\chi_{\rho}(\triangle_{\alpha,\beta})\neq 0$ . Hence, $\varphi$ indeed corresponds to a $k$-point of $X^{irr}(\Gamma)$ .
On the other hand, a $k$-point of $X^{irr}(\Gamma)$ corresponds to a morphism $\varphi$ in $Hom_{alg}(B(\Gamma), k)$

such that there exists $\alpha,$ $\beta\in r$ with $\varphi(\triangle_{\alpha,\beta}\rangle\neq 0.$

We define the matrices $A=$ $(^{\varphi(Y_{\alpha})}1$ $-0^{1})$ and $B=(_{u}^{0}$ $\varphi(Y_{\beta})-1/u)$ where $u$ belongs to

an extension $\hat{k}$ of $k$ such that the equation $u^{2}+u\varphi(Y_{\alpha\beta})+1=0$ holds $(\hat{k}$ can be chosen at
most quadratic). By Theorem 3.1, there is a unique representation $\rho$ : $\Gammaarrow SL_{2}(\hat{k})$ such
that $p(\alpha)=A,$ $\rho(\beta)=B$ and $Tr(\rho(\gamma))=\varphi(Y_{\gamma})$ for all $\gamma\in\Gamma.$

In order to show that this representation does not depend on the choice of $\alpha$ and $\beta$ , we
observe that if we make an other choice for $A’,$ $B’\in M_{2}(\hat{k}’)$ which defines a representation
$\rho’$ : $\Gammaarrow SL_{2}(\hat{k}^{;})$ , the map defined by $\sigma(A)=A’$ and $\sigma(B)=B’$ extends to a k-
isomorphism from $M(\rho)$ to $M(p’\rangle$ showing that the two representations are equivalent. $\square$

The algebra $M(\rho)$ associated to an absolutely irreducible representation $\rho$ is simple and
central and hence defines a class in the Brauer group $Br(k)$ . Moreover, $\dim_{k}M(\rho)=4.$

It follows that $M(p)$ is a quaternion algebra and in particular, its square is $0$ in $Br(K)$ .
The set of $k$-points of $X^{irr}(\Gamma)$ has then a partition into Brauer classes. We get finally the
following proposition:

Proposition 3.4. Let $k$ be a field with $Br(k)=0$ (this occurs for instance if $ki\mathcal{S}$ alge-
braically closed or of transcendence degree one over an algebraically closed field). Then
$k$ -points in $X^{\dot{I}X}(\Gamma)$ correspond bijectively to conjugacy classes of absolutely irreducible
representations $\rho\prime\Gammaarrow SL_{2}(k)$ .

Proof An irreducible point $\varphi$ : $B(\Gamma)arrow k$ corresponds to the character of a representation
$\rho:\Gammaarrow SL_{2}(\hat{k})$ for some extension $\hat{k}$ of $k$ . As the Brauer group is trivial, there is an algebra
isomorphism $\sigma$ : $M_{2}(k)arrow M(\rho)$ . Tensoring by $\hat{k}$ , we find that $\sigma\otimes\lambda$ : $M_{2}(\hat{k})arrow M(\rho)\otimes\hat{k}$

is a $\hat{k}$-linear automorphism of $M_{2}(\hat{k})$ and hence a conjugation by some $g\in GL_{2}(\hat{k})$ by
Skolem-Noether theorem. Finally, the representation $gpg^{-1}$ : $\Gammaarrow SL_{2}(\hat{k})$ takes its values
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in $k$ . As two such representation $\rho$ and $\rho’$ are equivalent, it means that there is an
automorphism $\sigma$ of $M_{2}(k)$ such that $\rho’=\sigma 0\rho$ and this automorphism is a conjugation. $\square$

Example 3.5. Let $F_{2}$ be the free group on the generators $\alpha$ and $\beta$ . It is well-known that
the map $\Psi$ : $\mathbb{Q}[x, y, z]arrow B(F_{2})$ defined by $\Psi(x)=Y_{\alpha},$ $\Psi(y)=Y_{\beta}$ and $\Psi(z)=Y_{\alpha\beta}$ is an
isomorphism. Hence, one has a rational point of $X(F_{2})$ by sending $x,$ $y,$ $z$ to 1. However,
there is no representation $\rho$ : $F_{2}arrow SL_{2}(\mathbb{Q})$ with this character. However, one can find a
solution in some (non uniquely defined) quadratic extension of $\mathbb{Q}.$

3.2. Tangent spaces. Let $k$ be a field and $\rho$ : $\Gammaarrow SL_{2}(k)$ be an absolutely irreducible
representation. The character $\chi_{\rho}$ may be seen as a $k$-point of $X^{irr}(\Gamma)$ . We derive from
Saito’s Theorem a simple proof of the following well-known result:

Proposition 3.6. There is a natural isomorphism $T_{\chi_{\rho}}X_{k}(\Gamma)\simeq H^{1}(\Gamma, Ad_{\rho})$ where $Ad_{\rho}$ is
the adjoint representation of $\Gamma$ on $sl_{2}(k)$ induced by $\rho.$

Proof. It is well-known that a tangent vector at $\chi_{\rho}$ corresponds to an algebra morphism
$\varphi_{\epsilon}$ : $B(\Gamma)arrow k[\epsilon]/(\epsilon^{2})$ such that $\varphi_{0}=\chi_{\rho}.$

As $\rho$ is absolutely irreducible, there exists $\alpha,$ $\beta\in\Gamma$ such that $\varphi(\Delta_{\alpha,\beta})\neq 0$ . Consider the
map $\pi$ : $SL_{2}(k)\cross SL_{2}(k)arrow k^{3}$ defined by $\pi(A, B)=(Tr(A), Tx(B), Tx(AB))$ . Lemma 3.7
below shows that this map is a submersion precisely on the preimage of the open set of $k^{3}$

defined by $\Delta_{\alpha,\beta}\neq 0$ . This proves that we can find two matrices $A_{\epsilon},$ $B_{e}\in SL_{2}(k[\epsilon]/(\epsilon^{2}))$

such that $Tx(A_{\epsilon})=\varphi_{\epsilon}(Y_{\alpha})$ , $Tr(B_{\epsilon})=\varphi_{\epsilon}(Y_{\beta})$ and $b(A_{\epsilon}B_{\epsilon})=\varphi_{\epsilon}(Y_{\alpha\beta})$ . By Theorem 3.1,
there is a unique representation $\rho_{\epsilon}$ : $\Gammaarrow SL_{2}(k[\epsilon]/(\epsilon^{2}))$ such that $\rho_{\epsilon}(\alpha)=A_{\epsilon},$ $\rho_{e}(\beta)=B_{\epsilon}$

and $\chi_{\rho_{\mathcal{E}}}=\varphi_{\epsilon}.$

We define the cocyle $\psi\in Z^{1}(\Gamma, Ad_{\rho})$ by the formula

(1) $\psi(\gamma)=\frac{d}{d\epsilon}|_{\epsilon=0}\rho(\gamma)^{-1}\rho_{\epsilon}(\gamma)$ .

The map $\varphi_{\epsilon}\mapsto\psi$ is a linear map $T_{\chi_{\rho}}X_{k}(\Gamma)arrow H^{1}(\Gamma, Ad_{\rho})$ . We construct the inverse map
by sending the cocycle $\psi$ to the character of the representation $\rho_{\epsilon}(\gamma)=\rho(\gamma)(1+\epsilon\psi(\gamma))$ .
If we had chosen other matrices $A_{\epsilon}’,$ $B_{\epsilon}’$ defining a representation $\rho_{\epsilon}’$ , then as in the proof

of Proposition 3.3, we would have found an automorphism $\sigma$ of $M_{2}(k[\epsilon](\epsilon^{2}))$ such that
$\rho’=\sigma 0\rho$ . Moreover $\rho_{\epsilon}$ and $\rho_{\epsilon}’$ coincide up to first order so that one can write $\sigma=Id+\epsilon D$

for some derivation $D$ of $M_{2}(k)$ . All such derivations have the form $D(X)=[\xi, X]$ for
some $\xi\in sl_{2}(k)$ . A computation shows that $\psi’=\psi+d\xi$ and the map $\varphi_{\epsilon}arrow\psi$ is well-
defined. Reciprocally, changing $\psi$ to $\psi+d\xi$ amounts in conjugating $\rho_{\epsilon}$ by $e^{\epsilon\xi}$ , which does
not change the character, hence the theorem is proved. $\square$

Lemma 3.7. The map $\pi$ : $SL_{2}(k)^{2}arrow k^{3}$ defined by the formula
$\pi(A, B)=(Tr(A), Tr(B), \ulcorner fr\langle AB))$

is a submersion at any pair $(A, B)$ such that Tr $[A, B]\neq 2.$

Proof. Let $\xi,$
$\eta$ be in $sl_{2}(k)$ corresponding to a tangent vector $(A\xi, B\eta)\in T_{(A},{}_{B)}SL_{2}(k)^{2}.$

If $D_{(A,B)}\pi$ is not surjective, there exists $u,$ $v,$ $w\in k$ such that $uTr(A\xi)+vTx(B\eta)+$

$wTr(A\xi B+AB\eta)=0$ for all $\xi,$ $\eta\in sl_{2}(k)$ . This is possible if and only if there exists
$\lambda,$ $\mu\in k$ such that $uA+wBA=\lambda Id$ and $vB+wAB=\mu Id$ . Hence, there is a linear
relation in the family $(Id, A, B, AB)$ , which is equivalent to the equality $\mathfrak{t}R([A, B])=2,$

see Lemma 2.7. $\square$
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One has to be careful that the isomorphism between $T_{\chi_{p}}X(\Gamma\rangle and H^{1}(f, Ad_{\rho})$ does
not longer hold if $\rho$ is not absolutely irreducible. However there is still a natural map

: $H^{1}(\Gamma, Ad_{\rho})arrow T_{\chi_{p}}X(\Gamma)$ sending $\psi$ to the character of $\rho(1+\epsilon\psi)$ . Luckily, the skein
interpretation of the character variety still allows to compute the tangent space at these
points. Let us consider an extreme case, that is the tangent space at the character of the
trivial representation. One has $H^{1}(\Gamma, Ad_{\rho})=H^{\lambda}(\Gamma, k)\otimes sl_{2}(k)$ and the map vanishes.

Proposition 3.8. For any finitely generated group $r$ and field $k$ , the tangent space $T_{1}X(\Gamma)$

at the character of the trivial representation $\dot{u}$ isomorphic to the space of functions $\psi$ :
$\Gammaarrow k$ satisfying the following quadratic functional equation (see [6]):

$\forall\gamma, \delta\in\Gamma, \psi(\gamma\delta)+\psi(\gamma^{-1}\delta)=2\psi(\gamma)+2\psi(\delta)$

Proof. It is sufficient to write down the conditions for $\varphi_{\epsilon}$ : $Y_{\gamma}\mapsto 2+\epsilon\psi(\gamma)$ to be an algebra
morphism from $B(\Gamma)$ to $k[\epsilon]/(\epsilon^{2})$ . $\square$

Observe that the map $\mathscr{S}H^{1}(\Gamma, k)arrow\tau_{1}x(r)$ mapping $\lambda\mu$ to the map $\psi$ : $\gamma\mapsto\lambda(\gamma\rangle\mu(\gamma)$

is injective but not necessarily surjective.

3.3. Tautological representations. Let $\Gamma$ be a finitely generated group and $k$ be a field.
Consider an irreducible component $Y$ of $X(\Gamma)$ . We will say that $Y$ is of irreducible type
if it contains the character of an absolutely irreducible representation. More formally,
this component corresponds to a minimal prime $\mathfrak{p}\subseteq B(\Gamma\rangle$ : we will write $k|Y$ ] $=B(\Gamma)/\mathfrak{p}.$

The component $Y$ will be of irreducible type if and only if the tautological character
$\chi_{Y}$ : $B(f^{I})arrow k[Y]$ is irreducible.

From Proposition 3.3, there exists an extension $K$ (at most quadratic) of the field
$k(Y)$ and a representation $p_{Y}$ : $rarrow SL_{2}(K)$ such that $\chi_{\rho Y}=\chi_{Y}$ . We will call such a
representation a tautological representation.

Remark 3.9. The Brauer group of a transcendance degree one extension of an alge-
braically closed field vanishes. Hence, if $k$ is algebraically closed and $\dim(Y)=1$ , one
can choose $K=\mathbb{C}(Y)$ . This case will appear very often if $\Gamma$ is the fundamental group of
a knot complement.

Remark 3.10. If the component $Y$ is of reducible type, the tautological representation
still exists and can be constructed directly. Moreover, it will be convenient to replace
$k(Y)$ by an extension for more natural formulas. For $instance_{\}}$ if I ab $=\mathbb{Z}$ and $\varphi$ : $\Gammaarrow \mathbb{Z}$

is the abelianization morphism, then one component of $X(\Gamma)$ will be of reducible type.
Moreover, it will be isomorphic to $A^{1}$ via the map $\varphi_{*}$ : $B(\Gamma)arrow B(\mathbb{Z})\simeq k[Y_{1}].$ $A$

tautological representation will be given by

$\rho_{Y}:\Gammaarrow SL_{2}(k\langle t)) , \rho_{Y}(\gamma)=(\begin{array}{ll}t^{\varphi(\gamma)} 00 t^{-\varphi(\gamma)}\end{array})$

and the extension $k(Y_{1})\subset k(t)$ corresponds to the substitution $Y_{1}=t+i^{-1}.$

3.4. Valuation rings and Culler-Shalen theory. We give in this section an example
of result of Culler-Shalen theory (though not explicitly stated in their articles). The proof
will follow standard lines for what concerns $Culle\triangleright$Shalen theory. We add it in order to
convince the reader that the techniques of the preceding section are well-adapted to these
questions.

Let $M$ be a 3-manifold by which we mean a compact oriented and connected topological
3-manifold. An oriented and connected surface $S\subseteq M$ is said incompressible if
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- $S$ is not a 2-sphere,
- the map $\pi_{1}(S)arrow\pi_{1}(M)$ induced by the inclusion is injective,
$-S$ is not boundary parallel.

We will say that $M$ is small if it does not contain any incompressible surface without
boundary.

Given a topological space $Y$ with finitely many connected components $(Y_{i})_{i}\in I$ each
of them having a finitely generated fundamental group, we set $X(Y)= \prod_{i\in I}X(\pi_{1}(Y_{i}))$ .

Proposition 3.11. Let $M$ be a small 3-manifold. Then the restriction map $r:X(M)arrow$

$X(\partial M)$ is proper.

Proof. Fix a base point $y$ in $M$ and let $I=\pi_{0}(\partial M)$ . We choose a base point $y_{i}$ for
each component $\partial_{i}M$ of $\partial M$ . Set $\Gamma=\pi_{1}(M, y)$ and $\Gamma_{i}=\pi_{1}(\partial_{i}M, y_{i})$ . As $X(\partial M)=$

$\prod_{i\in I}X(\Gamma_{i})$ , it is sufficient to define the map $r_{i}:X(\Gamma)arrow X(\Gamma_{i})$ for any $i\in I$ . This map
is the one induced by the inclusion $\partial_{i}M\subset M$ on fundamental groups.

By the valuative criterion of properness (see Thm 4.7 in [7]), $r$ is proper if and only if for
any discrete valuation $k$-algebra $R$ with fraction field $K$ fitting in the following diagram
there is a morphism $Spec(R)arrow X(M)$ which makes the diagram commute.

(2) $Spec(K)arrow^{\varphi}X(M)$

$Spec(R)\downarrowarrow X(\partial M)\prime|r$

We will show that if such a morphism does not exist, then there is an incompressible
surface by standard Culler-Shalen arguments. First, by the preceding section and re-
marking that $K$ has transcendence degree 1 over $k$ , the morphism $\varphi$ corresponds to a
representation $\rho$ : $\Gammaarrow SL_{2}(K)$ . Let $T$ be the Bass-Serre tree on which $SL_{2}(K)$ acts.
Through $\rho$ , the group $\Gamma$ acts on $T$ . If this action is trivial- i.e. it fixes a vertex of T-
the representation $\rho$ is conjugate to a representation in $SL_{2}(R)$ . For any $\gamma\in\Gamma$ , we have
Tr $\rho(\gamma)\in R$ . This shows that the map $B(\Gamma)arrow R$ defined by $Y_{\gamma}\mapsto Tr\rho(\gamma)$ corresponds
to a map $Spec(R)arrow X(M)$ which yields a contradiction. Hence, the action is non-trivial
and is dual to a non-empty essential surface $\Sigma\subset M.$

For all $i\in I$ , denote by $\rho_{i}:\Gamma_{i}arrow SL_{2}(K)$ the representation induced by $\rho$ . From the
diagram (2), we get that for all $\gamma\in\Gamma_{i}$ , Tr $\rho_{i}(\gamma)\in R.$

Let us prove that $\gamma$ fixes a vertex in $T$ . If $\rho_{i}(\gamma)=\pm 1$ , then it is trivial. In the opposite
case, one can find a vector $v\in K^{2}$ such that $v$ and $\rho_{i}(\gamma)v$ form a basis. The matrix of

$\rho_{i}(\gamma\rangle$ in that basis is $(\begin{array}{ll}0 -11 b(\rho_{\iota’}(\gamma))\end{array})$ . This proves that $\rho_{i}(\gamma)$ is conjugate to an element

in $SL_{2}(R)$ and hence fixes a vertex in $T$ . A standard lemma (Corollaire 3 p90 in [12])
shows that if every $\gamma\in\Gamma_{i}$ fixes a vertex in $T$ , then $\Gamma_{i}$ itself fixes a vertex in $T.$

The relative construction of dual surfaces shows that one can find an essential surface
$\Sigma$ dual to the action without boundary, see Corollary 6.0.1 in [13]. Any component of $\Sigma$

is an incompressible surface. This is not possible as $M$ is small. $\square$

4. THE REIDEMEISTER TORSION AS A RATIONAL VOLUME FORM

In this section, we construct the Reidemeister torsion of a 3-manifold with boundary
on an irreducible component $Y\subset X(\Gamma)$ . It will be a rational volume form on $Y$ , that is
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an element of $\Lambda^{d}\Omega_{k(Y)/k}^{1}=\Omega_{k(Y)/k}^{d}$ where $d=\dim Y$ . Some assumptions are necessary for
this construction to work, and these are given in Subsection 4.2. We will end this section
with examples.

4.1. The adjoint representation. Let be a finitely generated group, $k$ a field and
$\varphi$ : $B(\Gamma)arrow k$ an irreducible character. Then, we now from Proposition 3.3 that there
exists an extension $\hat{k}$ of $k$ and a representation $\rho$ : $\Gammaarrow SL_{2}(\hat{k})$ such that $\chi_{\rho}=\varphi.$

Moreover, the subalgebra $M(\rho)=Span\{\rho(\gamma), \gamma\in r\}$ satisfies $M(\rho)\otimes_{k}\hat{k}\simeq M_{2}(\hat{k})$ and
depends only on $\varphi$ up to isomorphism.

Recall the splitting $M_{2}(\hat{k})=kId\oplus s1_{2}(\hat{k})$ and for any $X\in M_{2}(\hat{k})$ , denote by $X_{0}=X-$

$\frac{1}{I^{2}}\mathfrak{B}(X)Idthep$
rojection o$nthes$econd factor.Then s$etM(\rho)_{0}=S.pan_{k}\{p(\gamma)_{0}, \gamma\in\Gamma\}tisa3-$

dinxensional k$-$vector space o$nw$hich $\Gamma$ acts b$yc$onjugation W$ewi11$ denote b$y$

$Ad_{\varphi}$ this $\Gamma$-module and call it the adjoint representation. The relation between $Ad_{\varphi}$ and
$Ad_{\rho}$ is the following:

$Ad_{p}=Ad_{\varphi}\otimes_{k}\hat{k}.$

The representation $Ad_{\varphi}$ is more natural as it depends only on the character.
The Killing form is $an$ invariant non-degenerate pairing on $M(\rho)_{0}$ and there is an

invariant volume form $\epsilon\in\Lambda^{3}(M\langle\rho)_{0})^{*}$ given by $\epsilon(\zeta, \eta, \theta)=Tr(\zeta[\eta,$ $\theta$

Proposition 4.1. Let $Y$ be an irreducible component of $B(\Gamma)$ of irreducible type corre-
sponding to a minimal prime ideal $\mathfrak{p}$ . Let $Ad_{y}$ be the adjoint representation associated to
the tautological character $\chi_{Y}$ . There is an isomorphism between $\Omega_{B(\Gamma)/k}^{1}\otimes_{B(\Gamma)}k(Y)$ and
$H_{i}(\Gamma, Ad_{Y})$ . This provides the following exact sequence:

$\mathfrak{p}/\mathfrak{p}^{2_{\otimes_{k[Y]}}}k(Y)arrow H_{1}(\Gamma, Ad_{Y})arrow\Omega_{k(Y)/k}^{1}arrow 0.$

Proof. This follows by duality from Proposition 3.6 with the twist that $Ad_{Y}$ is not exactly
$Ad_{\rho_{Y}}$ which takes values in $SL_{2}(\hat{K})$ for some extension $\hat{K}$ of $k(Y)$ . Instead of adapting
the previous proof, we describe directly this dual picture.
Recall that $H_{1}(\Gamma, Ad_{Y})$ is the first homology of a complex $C_{*}(\Gamma, Ad_{Y})$ where $C_{k}(\Gamma, Ad_{Y})$

is generated by elements of the form $\xi\otimes[\gamma_{1}, . . . , \gamma_{k}]$ with $\xi\in Ad_{Y}$ and $\gamma_{1}$ , . . . , $\gamma_{k}\in\Gamma.$

We have the formulas $\partial\xi\otimes[\gamma]=\rho(\gamma)^{-1}\xi\rho(\gamma)-\xi$ and $\partial\xi\otimes[\gamma, \delta]=\rho(\gamma)^{-1}\xi p(\gamma)\otimes[\delta]-$

$\xi\otimes[\gamma\delta]+\xi\otimes[\gamma]$ . This allows to check directly that the map $dY_{\gamma}\mapsto p(\gamma)_{0}\otimes[\gamma]$ induces
a well-defined map of $B(\Gamma)$-modules $\Omega_{B(r)/k}^{1}arrow H_{1}(\Gamma, Ad_{Y})$ and hence a map

$\Psi:\Omega_{B(\Gamma)/k}^{1}\otimes k(Y)arrow H_{1}(r, Ad_{y})$ .

Reciprocally, let $\Lambda=k(Y)\oplus\epsilon(\Omega_{B(\Gamma)/k}^{1}\otimes k(Y))$ be the $k(Y)$-algebra with $e^{2}=0$ . The
map $\varphi$ : $B(\Gamma)arrow$ A given by $Y_{\gamma}arrow Y_{\gamma}+\epsilon dY_{\gamma}$ is an algebra morphism. By Lemma 3.7, one
can fin\‘a $A_{\epsilon},$ $B_{\epsilon}\in SL_{2}(\Lambda)$ whose traces are prescribed and by Saito’s theorem (using the
irreducibility of $\chi_{y}$ ), one finds a representation $\rho_{\epsilon}$ : $\Gammaarrow SI_{J}2(\Lambda)$ satisfying $\chi_{p_{\’{e}}}=\varphi.$

$A$

simple check shows that the map $\xi\otimes\gamma\mapsto\frac{d}{\ } Tr(\xi\rho(\gamma)^{-1}p_{\epsilon}(\gamma))$ induces precisely the inverse
of $\Psi$ . The exact sequence of the proposition follows from standard facts of commutative
algebra. $\square$

4.2. Characters of 3-manifolds. Let $M$ be a connected 3-manifold whose boundary
is non empty and has the following decomposition into connected components: $\partial M=$

$\bigcup_{i\in I}\partial_{i}M$ . Let $g_{i}$ be the genus of $\partial_{i}M$ : we suppose that $g_{i}>0$ for all $i\in I$ and set
$d= \sum_{i}\max(1,3g_{i}-3)$ .
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Denote by $\Gamma$ the fundamental group of $M$ and let $Y$ be an irreducible component of
X. ( $\Gamma$ ) . We denote by $\chi_{y}$ : $B(\Gamma)arrow k[Y]$ the tautological character and by $Ad_{Y}$ the adjoint
representation. The following technical lemma will be useful in the sequel.

Lemma 4.2. Let $\alpha,\beta$ be two elements of $\Gamma$ such that $\Delta_{\alpha,\beta}$ is non zero in $k[Y]$ , Then, there
is a $k(Y)$ -basis of $Ad_{Y}$ such that the adjoint representation has coeficients in $k[Y][ \frac{1}{\Delta_{\alpha,\beta}}].$

Proof. Set $R=k[Y|[\Delta_{\alpha,\beta}^{-1}]$ and consider the composition $\chi_{Y}$ : $B(\Gamma)arrow k[Y]arrow R$ . One
can find an extension $\hat{R}$ with $A,$ $B\in SL_{2}(\hat{R})$ and by Saito’s theorem, a unique repre-
sentation $\rho_{\alpha,\beta}$ : $\Gammaarrow SL_{2}(\hat{R})$ with character $\chi_{Y}$ satisfying $p(\alpha)=A$ and $p(\beta)=B$ . By
construction, $p(\gamma)$ lies in $Span_{R}\{1, A, B, AB\}$ . The basis $\mathcal{A}_{0},$ $B_{0},$ $(AB)_{0}$ of $M(\rho_{\alpha,\beta})_{0}$ sat-
isfies the assumption of the lemma and one has $M(\rho)_{0}\simeq M(\rho_{\alpha,\beta})_{0}\simeq Ad_{Y}$ . This proves
the lemma. $\square$

4.2.1. Computing $H^{1}.$

Definition 4.3. Recall that we say that a representation $\rho$ : $\Gammaarrow SL_{2}(k)$ belongs to $Y$

if its character $\chi_{\rho}$ : $B(\Gamma)arrow k$ factorizes through $k[Y]$ . Equivalently, we will say that $Y$

contains the representation $\rho$ . For instance, a representation is of irreducible type if it
contains an irreducible character.

A representation $\rho$ : $\Gammaarrow SL_{2}(k)$ is said regular if $H^{1}(\Gamma, Ad_{\rho})$ has dimension $d$ . An
irreducible component $Y$ of $X(\Gamma)$ will be said regular if it contains a regular representation.

Proposition 4.4. An irreducible component $Y$ of $X(\Gamma)$ of irreducible type $\dot{u}$ regular if
and only if $\dim H^{1}(\Gamma, Ad_{Y})=d.$

Proof. We start with a standard argument of Poincar\’e duality, taken from [8]. Let $\rho$ :
$\Gammaarrow SL_{2}(k)$ be any representation and $k$ be any field. From Poincar\’e duality and using
the trace to identify $Ad_{\rho}$ and $Ad_{\rho}^{*}$ , we get for any integer $l$ an isomorphism of $k$-vector
spaces:

$PD$ : $H^{l}(M, Ad_{\rho})\simeq H^{3-l}(M, \partial M, Ad_{\rho})^{*}$

The exact sequence of the pair $(M, \partial M)$ and Poincar\’e duality together give the following
commutative diagram:

$H^{1}(M, Ad_{\rho})arrow^{\alpha}H^{1}(\partial M, Ad_{\rho})arrow^{\beta}H^{2}(M, \partial M, Ad_{\rho})$

$\{PD |PD \downarrow PD$
$H^{2}(M, \partial M, Ad_{\rho})^{*}arrow H^{1}(\partial M, Ad_{\rho})^{*}\beta^{*}arrow^{\alpha^{*}}H^{1}(M, Ad_{\rho})^{*}$

This gives rank$(\alpha)=rank(\beta)=$ dimker $\beta$ , dimker $\beta+$ rank $\beta=\dim H^{1}(\partial M, Ad)$ and
finally rank$( \alpha)=\frac{1}{2}\dim H^{1}(\partial M, Ad_{\rho})$ . Hence, $\dim H^{1}(M, Ad_{\rho})\geq\frac{1}{2}\dim H^{1}(\partial M, Ad_{p})$ .

Moreover, $\chi(H^{*}(\partial_{i}M, Ad_{\rho}))=3\chi(\partial_{i}M)=6-6g_{i}$ and $H^{0}(\partial_{i}M, Ad_{\rho})$ and $H^{2}(\partial_{i}M, Ad_{\rho})$

have the same dimension. Hence, $\dim H^{1}(M, Ad_{\rho})\geq\sum_{i}(\dim H^{0}(\partial_{i}M)+3g_{i}-3)$ . If
$g_{i}=1,$ $\rho$ restricted to $\partial_{\’{i}}M$ is abelian and hence, $\dim H^{0}(\partial_{i}M, Ad_{\rho})\geq 1$ . This proves the
following inequality whatever be $\rho$ :

(3) $\dim H^{1}(M, Ad_{\rho})\geq d.$

Let $\rho$ : $\Gammaarrow SL_{2}(k)$ be a regular representation and $\alpha,$ $\beta\in\Gamma$ be such that $\chi_{\rho}(\Delta_{\alpha,\beta})\neq 0.$

Then, by Lemma 4.2, one can find a $k(Y)$-basis of $Ad_{Y}$ such that the adjoint representation
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has coefficients in $R=k[Y][ \frac{1}{\Delta_{\alpha,\beta}}]$ . Let us call $Ad_{Y}^{R}$ the free $R$-module such that $Ad_{Y}=$

$Ad_{Y}^{R}\otimes_{R}k(Y)$ .
Then $C^{*}(M, Ad_{Y}^{R})$ is a finite complex of free $R$-modules. By standard semi-continuity

arguments (See [7], Chap. 12), the function $p_{i}(x)=\dim_{k(x)}H^{i}(M, Ad_{Y}^{R}\otimes k(x)\rangle$ is upper
semi continuous on $Spec(R)$ for any $i\in N$ . Comparing the character $\chi_{p}$ with the generic
point, we get the inequality $( \lim_{k(Y)}H^{1}(M, Ad_{Y})\leq\dim_{k}H^{1}(M, Ad_{\rho})$ .

It follows that if $Y$ contains a regular representation, then $H^{1}(M, Ad_{p})$ has dimension
$d$. Reciprocally, if $H^{1}(M, Ad_{Y})$ has dimension $d$ , there is an open set in $Spec(R)$ , and
hence some closed points $\chi_{p}$ for which $H^{1}(M, Ad_{\rho})$ has dimension less than $d$ by upper
serni continuity, hence equal to $d$ by the inequality (3). $\square$

Corollary 4.5. Let $Y$ be an iweducible component of $X(\Gamma)$ which contains a regular
representation and such that $\mathfrak{p}/\mathfrak{p}^{2}\otimes k(Y)=0$ where $p$ is the minimal prime ideat of $B(\Gamma)$

associated to Y. Then $Y$ has dimension $d.$

Proof. $\mathfrak{R}om$ Proposition 4.1 and Proposition 4.4, we get the sequence of inequalities
$d=\dim H^{1}(M, Ad_{Y})=\dim\Omega_{k(Y)/k}^{1}=tr.deg_{k}k(Y)$ . $\square$

If the assumptions of the corollary are verified, we will say that $Y$ is a regular component
of $X(\Gamma)$ . If $M$ is a hyperbolic manifold with finite volume and $\rho$ : $\pi_{1}\langle M$) $arrow SL_{2}(k)$ is a
lift of the holonomy representation, then the component of $X(\Gamma\rangle$ containing $p$ is regular
as $p$ is regular and $\dim Y=d$ . We suppose from now on that $Y$ is a regular component
of $X(\Gamma)$ .

4.2.2. Computing $H^{2}$ . Let $I_{0}\subseteq I$ be the subset parametrizing the toric components of
$\partial M$ and let $Y$ be a regular component of $X(\Gamma)$ . Then, from the equality in (3), we get
the isomorphisms $H^{0}(\partial_{i}M,Ad_{Y})=0$ if $g_{i}>1$ and $H^{0}(\partial_{i}M, Ad_{Y})$ is one dimensional if
$g_{i}=1$ . Pick $\xi_{i}$ a generator of $H^{0}(\partial_{i}M)$ for $i\in I_{0}.$

Lemma 4.6. The map $H^{2}(M, Ad_{Y})arrow K^{Io}$ mapping $\eta$ to the family $(\langle r_{i}^{*}\eta, \xi_{i}\rangle)_{i\in I_{0}}$ is an
isomorphism, where $r_{i}$ : $\partial_{i}Marrow M$ is the $inclu\mathcal{S}ion$ map.

Proof. This map is part of the exact sequence of the pair $(M, \partial M)$ . Poincar\’e duality
gives $H^{2}(\partial M, Ad_{Y})=\oplus_{i}H^{0}(\partial_{i}M, Ad_{Y})^{*}=K^{Io}$ where a basis is given by evaluation
on $\xi_{i}$ . The map is surjective as the group $H^{3}(M, \partial M;Ady)=H^{0}(M, Ad_{Y})^{*}=0$ as
$Ad_{Y}$ is an irreducible representation. From a computation of Euler characteristic, we get
$\dim H^{2}(M,Ad_{Y})=|I_{0}|$ and the result follows. $\square$

4.3. Reidemeister Torsion. For a vector space $E$ of dimension $n$ over $k$ , we denote by
$\det(E)$ the space $\Lambda^{n}E$ and if $n=1$ , we set $E^{-1}=E^{*}$ . Given a finite complex of finite

dimensional vector spaces $C^{*}=C^{0}arrow\cdots C^{k}$ , we set $\det C^{*}=\otimes_{i=0}^{k}(\det C^{i})^{(-1)^{i}}$ The
cohomology of $C^{*}$ is viewed as a complex with trivial differentials. There is a natural
(Euler) isomorphism $\det C^{*}\simeq\det H^{*}$ between the determinant of a complex and the
determinant of its cohomology which is well-defined up to sign.

Picking a cellular decomposition of $M$ with $0$ , 1 and 2-cells, we obtain a complex
$C^{*}(M,Ad_{Y})$ with a preferred volume element: we associate to each cell the volume ele-
ment in $\Lambda^{3}Ad_{Y}$ dual to the trilinear form $\epsilon.$
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Through the isomorphism $\det C^{*}(M,Ad_{Y})\simeq\det H^{*}(M, Ad_{Y})$ , we get an element
$T(M)\in\det H^{*}(M, Ad_{Y})=\det\Omega_{k(Y)/k}^{1}\otimes\det H^{2}(M, Ad_{Y})$ . Given a system of genera-
tors $\xi=(\xi_{i})_{i\in I_{0}}$ of $H^{0}(\partial M, Ad_{Y})$ , we define

$T(M, \xi)=\langle T(M) , \bigotimes_{t\in I_{0}}\xi_{i}\rangle\in\Omega_{k(Y)/k}^{d}.$

In practice, we will evaluate it on preferred generators $\xi_{i}\in H^{0}(\partial_{i}M, Ad_{Y})$ such that
$b(\xi_{i}^{2})=2$ or on elements of the form $\xi_{i}=\rho(\gamma_{i})_{0}$ for some $\gamma_{i}\in\pi_{1}(\partial_{i}M)$ .

4.3.1. The handlebody. Let $M$ be handlebody of genus 2. Let $\alpha,$
$\beta$ be the generators of

$F_{2}=\pi_{1}(M)$ . One has $B(\Gamma)=k[x, y, z]$ with $x=Y_{\alpha},$ $y=Y_{\beta}$ and $z=Y_{\gamma}$ . Moreover a
tautological representation is given by

$\rho(\alpha)=(\begin{array}{ll}x -1l 0\end{array}), \rho(\beta)=(\begin{array}{ll}0 -u^{-1}u y\end{array})$

with $K=k(x, y, z,u)/(u^{2}+uz+1)$ . The handlebody collapses to a cellular complex with
one -cell and two 1-cells and the twisted complex is given by $C^{0}=sl_{2}(K)$ , $C^{1}=sl_{2}(K)^{2}$

and

$d\xi=(\rho(\alpha)^{-1}\xi\rho(\alpha)-\xi, \rho(\beta)^{-1}\xi\rho(\beta)-\xi)$

Let us write $T(M)=fdx\wedge dy\wedge dz$ . Then, in order to compute $f$ , it suffices to evaluate it
on the vector fields $\partial_{x},$ $\partial_{y},$ $\partial_{z}$ which correspond to the twisted cocycles $\psi_{x}=\rho^{-1}\partial_{x}\rho,$ $\psi_{y}=$

$\rho^{-1}\partial_{y}\rho,$ $\psi_{z}=\rho^{-1}\partial_{z}\rho.$

Finally, $f$ is the determinant of the matrix of $d$ and the three cocycles in a basis of
$sl_{2}(K)$ of volume 1. This gives $f=2$ and $T(M)=2dx\wedge dy\wedge dz.$

4.3.2. The 3-chain link complement. Let $p:S^{3}arrow S^{2}$ be the Hopf fibration and $\Sigma\subset S^{2}$

be the complement of three disjoint discs. Then $M=p^{-1}(\Sigma)$ is the complement of a link
in $S^{3}$ with 3 components. Clearly, the Hopf bundle restricted to $\Sigma$ is trivial and we have
indeed $M\simeq\Sigma\cross S^{1}.$

In particular, $\pi_{1}(M)=F_{2}\cross \mathbb{Z}$ . If $\rho$ : $\Gammaarrow SL_{2}(k)$ is irreducible, it has to map the
generator of $\mathbb{Z}$ to $\pm 1$ . This shows that $X(\Gamma)$ has two irreducible components $Y_{+}$ and $Y_{-}$

of irreducible type, each isomorphic to $X(F_{2})=A^{3}$ . Let $\alpha,$
$\beta$ be the generators of $F_{2}$ and

$t$ the generator of $\mathbb{Z}$ . The tautological representation $\rho$ : $\Gammaarrow SL_{2}(K)$ corresponding to
$Y_{\pm}$ is given by the same formula ae above with in addition $\rho(t)=\pm Id.$

The manifold $M$ collapses to the product of a wedge of two circles with a circle. This
cell complex has respectively 1,3,2 cells of dimension 0,1,2. We have

$d^{0}\xi=(\rho(\alpha)^{-1}\xi\rho(\alpha)-\xi, \rho(\beta)^{-1}\xi\rho(\beta)-\xi, 0)$ and

$d^{1}(\zeta, \eta, \theta)=(\rho\langle\alpha)^{-1}\theta p(\alpha)-\theta, \rho(\beta)^{-1}\theta\rho(\beta)-\theta)$

Without surprise, this complex is the tensor product of the complex of the handlebody
with the cellular complex of the circle. In particular, it splits into two independent
complexes. Its torsion will be $\frac{2}{g}dx\wedge dy\wedge dz$ where $g$ is the torsion of the acyclic complex

$0-SL_{2}(K)arrow^{d}SL_{2}(K)^{2}K^{3}\underline{\langle\cdot,\xi_{\alpha}\otimes\xi_{\beta}\otimes\xi_{\alpha\beta}\rangle}-0$
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Using $\xi_{\alpha}=p(\alpha)_{0},\xi_{\beta}=\rho(\beta)_{0}$ and $\xi_{\alpha\beta}=\rho(\alpha\beta)_{0}$ , we get the formula $g=4$ and hence
$T(M,$ $\xi\rangle=\frac{1}{2}dx\wedge dy\wedge dz$ . In the normalization Tr $\xi_{i}^{2}=2$ , we get

$T(M)= \frac{dx\wedge dy\wedge dz}{2\sqrt{(x^{2}-4)(y^{2}-4)(z^{2}-4)}}=\frac{1}{2}\frac{du}{u}\wedge\frac{dv}{v}\wedge\frac{dw}{w}$

where we have set $x=u+u^{-1},$ $y=v+v^{-1}$ and $z=w+w^{-1}.$

4.3.3. Manifolds fibering over the circle. The following example is an adaptation of [5].
Let $\Sigma$ be compact oriented surface with boundary and $\varphi$ : $\Sigmaarrow\Sigma$ be a homeomorphism
preserving the orientation and fixing the boundary pointwise. The suspension $M$ is detined
as $M=\Sigma\cross[0, 1]/\sim$ where ($x, 1)\sim(\varphi(x), 0)$ . Its boundary is $\partial\Sigma\cross S^{1}$ and its fundamental
group is

$\pi_{1}(M)=\pi_{1}(\Sigma)\rangle\triangleleft \mathbb{Z}$

where the action of $\mathbb{Z}$ is given by the action $\varphi$ on $\pi_{1}(M)$ . More precisely, picking an
element $t\in\pi_{1}(M\rangle iping to 1, we$ have $t\gamma t^{-1}=\varphi_{*}(7)$ where $\varphi_{*}:\pi_{1}(\Sigma)arrow 7r_{1}(\Sigma)$ is the
map induced by $\varphi.$

Recall from Subsection 2.4.2 that the map $r:X(M)arrow X(\Sigma)$ corestricted to $X^{irr}(\Sigma)$

is a $\{\pm 1\}$-principal covering on its image, the (irreducible) fixed point set of $\varphi^{*}$ acting on
$X^{irr}(\Sigma)$ . We choose an irreducible component $Y$ of $X(M)$ of irreducible type: it maps to an
irreducible component $Z=r(Y)$ of $X(\Sigma)$ of irreducible type. Moreover, the map $Yarrow Z$

is a covering of order at most 2. The adjoint representation $Ad_{Y}$ is clearly independent
on the representation of $\pi_{1}(M)$ chosen, hence the Reidemeister torsion actually lives on
$Z.$

Consider the long exact sequence of the pair $(M, \Sigma)$ (Wang sequence), together with
the corresponding sequence on the boundary. It gives the following diagram (we removed
the coefficients $Ad_{Y}$ from the notation).

$0 H^{1}(M)-H^{1}(\Sigma)arrow^{\alpha}H^{1}(\Sigma)arrow H^{2}(M)arrow 0$

$H^{0}(\partial\Sigma)-H^{1}(\partial M)\uparrowarrow H^{1}(\partial\Sigma)\}arrow H^{1}(\partial\Sigma)\downarrowarrow^{\sim}H^{2}(\partial M)|\simarrow 0$

Multiplicativity properties imply that the torsion of the first line is the element $T(M)\in$

$\det\Omega_{k(Y)/k}^{1}\otimes\det H^{2}(M)$ . Choosing generators $\xi$ of $H^{0}(\partial M)$ , gives the preferred generator

of $\det H^{2}(M)$ and hence the torsion $T(M, \xi)$ as a volume form on $Z.$

It remains to interpret the map $\alpha=\varphi^{*}$ –id, which we do in the following lemma,
proved in the same way as Proposition 4.1.

Lemma 4.7. The natural map $\Omega_{B(\Sigma)/k}^{1}\otimes_{k[Z]}k(Y)arrow H_{1}(\Sigma_{\}}Ad_{Y})$ is an isomorphism. $In$

geometric terms, $H_{1}(\Sigma, Ad_{Y})$ is the space of rational sections of the cotangent bundle of
$X(\Sigma)$ , pulled-back to $Y.$

In particular, the map $\varphi^{*}$ is simply the derivative of the action of $\varphi$ on $X(\Sigma)$ . Restricted
to $Z$ , it is an endomorphism of the restriction of the cotangent space of $X(\Sigma)$ to $Z.$

For any component $\gamma_{i}$ of $\partial\Sigma,$ $i\in\gamma r_{0}(\partial\Sigma)$ , we consider the generator $\xi_{i}=\rho_{Y}(\gamma_{i})_{0}.$

Plugging it into the sequence, we have the following interpretation of $T(M,\xi)$ and its
normalized version
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Proposition 4.8. On any irreducible component of the fixed point set of $\varphi^{*}$ on $X(\Sigma)$ we
have

$T(M, \xi)=\frac{1}{2}\frac{\wedge dY_{\gamma_{i}}}{\det(D\varphi-1)|_{kerdY_{\gamma_{i}}}}$ and $T(M)= \frac{1}{2}\frac{\wedge u_{\iota’}^{-1}du_{i}}{\det(D\varphi-1)|_{kerdu_{l}}}$

where $u_{i}+u_{i}^{-1}=Y_{\gamma_{i}}.$

In particular, we recover the example of the magic manifold, where $\varphi$ is the identity.
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