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1. INTRODUCrION

Let $H$ be an infinite dimensional separable complex Hilbert space and

let $\mathcal{B}(H)$ be the set of all bounded operators on $H$ . A bounded operator

on $H$ means a linear bounded operator from $H$ to $H$ . This report is

treated with the Invariant Subspace Problem on $H$ . That is, for any

bounded operator $T$ , does there exist nontrivial closed subspace $M(\neq$

$\{O\},$ $H)$ such that $TM\underline{\subseteq}M$? This problem has not been completely

solved yet. But it is known that, under additional conditions with $T$

(normal, subnormal, having rich spectrum and so on), there exists a

nontrivial $T$-invariant closed subspace.

In our study for ISP, we do not set additional conditions on $T$ . How-

ever, we set hypothesises on something which are not concerned with
$T$ . Something is (a choice function’ which assigns a Hilbert norm to each

semiclosed subspace. Among of all, we paticularly consider a choice func-

tion satisfying hypothesises (h1), (h2) and (h3) as stated in the following

section. We do not know whether the choice funtion truely exists or

not. A reason why we consider hypothesises is that, if a propositio$n^{}$ any

bounded operator $T$ on $H$ has nontrivial $T$-invariant closed subspace’ is

independent of ZFC $(+CH)$ , then we are disconsolate.

Our aim of this report is to state an outline of our approach to ISP,

which does not mean that ISP can be solved by this way. There are

some key words in our approach, that is, a linear dimension, a Hilbert

dimension, a choice function with hypothesises, $T$-invariant semiclosed

subspaces, $a$ $codimen\mathcal{S}ion$ and so on. The following Theoreml.1 is one of

motivations for our study. It says that, under CH (continuous hypothe-

sis), a separable Hilbert space is the only case the Hilbert dimension and
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the linear dimension are different. We feel a kind of corresponding be-

tween Theoreml.1 and ISP from the fact that a separable Hilbert space

is the only case ISP is not solved.

Theorem 1.1 ([2]). Let $H$ be a Hilbert space. Then,

(1) $\dim H<\infty\Leftrightarrow\dim_{l}H<\infty$ . In this case, $\dim H=\dim_{l}H.$

(2) If $\aleph_{0}\leq\dim H<2^{\aleph 0,}$ then $\dim_{l}H=2^{\aleph_{0}}$ . Hence, $\dim H<\dim_{l}H.$

(3) If $2^{\aleph_{0}}\leq\dim H$ , then $\dim H=\dim_{l}H.$

2. FROM SEMICLOSED SUBSPACES TO A CLOSED SUBSPACE

It is well known ([3]) that any bounded operator $T$ on $H$ have many
$T$-invariant semiclosed subspaces. If ISP is affirmatively solved, then the

set of all nontrivial $T$-invariant semiclosed subspaces necessarily contains

a closed subspace. In the following, we seek (but now, can not obtain)

a nontrivial closed subspace among the set of all $T$-invariant semiclosed
subspaces by a method of diminishing intervals of semiclosed subspaces,

which are based on a choice function as stated above.

Definition 2.1. A subspace $M$ in $H$ is said to be semiclosed if there

exists a Hilbert norm $\Vert\cdot\Vert_{M}$ on $M$ such that $(M, \Vert\cdot\Vert_{M})\mapsto H$ (continuously

embedded).

It is easily shown that a semiclosed subspace is equivalent to an oper-

ator range. Clearly, a closed subspace is semiclosed.

The following theorem plays a central role for applying a method of

diminishing intervals to ISP.

Theorem 2.1 ([4]). Let $T\in \mathcal{B}(H)$ and let $M_{1}$ and $M_{2}$ be nontrivial
$T$-invariant semiclosed subspaces such that $M_{1}\subsetneq M_{2}$ in H. Suppose that
$\dim_{l}M_{2}/M_{1}>1$ . Then, there exists $T$-invariant semiclosed subspace $M_{3}$

$\mathcal{S}uch$ that
$M_{1}\wedge\subseteq M_{3}\subsetneq M_{2}.$

3. A CHOICE FUNCTION $\alpha$

By Definition 2.1, we can consider a concept of the following function

in Definition 3.1.
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Definition 3.1. We choose a Hilbert norm from each semiclosed sub-
space. Denote such a choice function by $\alpha.$

Given a choice function $\alpha$ . For a semiclosed subspace $M$ , there is

the Hilbert norm $\Vert$ $\Vert_{M}$ by $\alpha$ such that $(M, \Vert \Vert_{M})\mapsto H$ . It follows
from [1] that $(M, \Vert\cdot\Vert_{M})$ is isometrically isomorphic to de Branges space
$(\mathcal{M}(A), \Vert\cdot\Vert_{A})$ for a unique positive operator $\mathcal{A}\in \mathcal{B}(H)$ . Then, we denote
$M=\alpha AH$ . A corresponding between $\Vert\cdot\Vert_{M}$ and $A$ is one to one. Hence, we
consider a choice function $\alpha$ as a choice of positive operators. Summing

up, the notation a has two meanings such as a choice of Hilbert norms
or a choice of positive operators.

We explain an example of $\alpha$ in $L^{2}(\mathbb{R}^{d})(d\geq I)$ . A subspace

$M^{\sigma}:=\{f\in L^{2}(\mathbb{R}^{d}):(1+|\xi|^{2})^{\frac{\sigma}{2}}\hat{f}(\xi)\in L^{2}(\mathbb{R}^{d})\} (\sigma>0)$

of $L^{2}(\mathbb{R}^{d})$ is semiclosed. Because, the inclusion mapping $(M^{\sigma}, \Vert \Vert_{\sigma})carrow$

$L^{2}(\mathbb{R}^{d})$ is contraction, where $\Vert f\Vert_{\sigma}$ $:=\Vert(1+|\xi|^{2})^{\frac{\sigma}{2}}\hat{f}\Vert_{L^{2}}(\hat{f}$ is the Fourier
transform of $f$). As you know, $H^{\sigma}(\mathbb{R}^{d})$ $:=(M^{\sigma},$ $\Vert$ $\Vert_{\sigma}\rangle$ is known as

Sobolev spaces of the order $\sigma$ . Then, we choose Sobolev norm $\Vert$ $\Vert_{\sigma}$ for

each semiclosed subspace $M^{\sigma}$ for $\sigma>0$ , and we choose the appropriate

Hilbert norm for other semiclosed subspaces.

On the other hand, it is proved ([5]) that Sobolev space $H^{\sigma}(\mathbb{R}^{d})$ is

isometrically isomorphic to de Branges space $\mathcal{M}(A_{\sigma})$ , where $A_{\sigma}=(I-$

$\Delta)^{-\frac{\sigma}{2}}$ (the Bessel potential of the order a). Hence we can also say that

we choose the Bessel potential $A_{\sigma}$ from Sobolev space $H^{\sigma}(\mathbb{R}^{d})$ , and we
choose the appropriate positive operator from each semiclosed subspace

except for Sobolev spaces.

4. HYPOTHESISES OF $\alpha$

Ekom this section, we handle a paticular choice function for construct-

ing a method of diminishing intervals. A $paticular^{)}$ choice function

means that it satisfies some hypothesises (h1), (h2) and (h3).

In the following statements (h2) and (h3), we use the notation $\alpha$ as a
subset of $\mathcal{B}(H)$ .
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(h1) For semiclosed subspaces $M,$ $N$ such that $M\subseteq N,$

$(M, \Vert \Vert_{M})\mapsto(N, \Vert \Vert_{N})$ (contractively)

(h2) $\alpha=\alpha^{2}$ , where $\alpha^{2}:=\{A^{2}:A\in\alpha\}.$

(h3) A set $\alpha$ is closed in $\mathcal{B}(H)$ , that is, $\alpha=\overline{\alpha}.$

Remark 4.1.

(i) A set $\alpha$ consists of positive contractions $A(0.\leq A\leq I)$ .
(ii) For $M=\alpha AH$ and $N=\alpha BH(M\underline{\subseteq}N)$ , (hl) if and only if

$A^{2}\leq B^{2}$

(iii) For a closed subspace $M=\alpha AH$ , it deduces $AH=A^{\frac{1}{2}}$H. Since
$A\in\alpha$ implies $A^{\frac{1}{2}}\in\alpha$ by (h2), we see $A=A^{\frac{1}{2}}$ . That is, $A$ is

the orthogonal projection.

5. A METRIC ON SEMICLOSED SUBSPACES

Let $S$ be the set of all semiclosed subspaces in $H$ . For semiclosed

subspaces $M=\alpha AH$ and $N=\alpha BH$ , we define a metric $\rho_{\alpha}$ on $S$ by

$\rho_{\alpha}(M, N)(=\rho(M, N))$ $:=\Vert A-B\Vert$ (the operator norm)

Example 5.1 ([5]). The metric between Sobolev spaces are given by the

following. For $0<\sigma_{1}<\sigma_{2},$

$\rho((H^{\sigma x}(\mathbb{R}^{d}), H^{\sigma}2(\mathbb{R}^{d}))=(\frac{\sigma_{1}}{\sigma_{2}})^{\frac{\sigma 1}{\sigma 2^{-\sigma}1}}-(\frac{\sigma_{1}}{\sigma_{2}})21\sigma.$

In particular, $\rho(H^{1}(\mathbb{R}^{d}), H^{2}(\mathbb{R}^{d}))=0.25.$

Under the hypothesises (h1), (h2) and (h3), we have the following

propositions.

Proposition 5.1. The metric space $(S, \rho_{\alpha})$ is complete.

We define an interval $[M, N]$ for semiclosed subspaces $M\subseteq N.$

$[M, N] :=\{L\in S : M\underline{\subseteq}L\underline{\subseteq}N\}.$

Proposition 5.2. An interval $[M, N]$ is $clo\mathcal{S}ed$ in $(S, \rho_{\alpha})$ .

We define the diameter of $I=[M, N]$ by a usual way.

diam$I$
$:= \sup_{L,L\in I}\rho_{\alpha}(L,$

$L$
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Proposition 5.3. Let $I_{n}$ $:=[M_{n}, N_{n}](n=1,2, \cdots)$ . Then, as $narrow\infty,$

$diamI_{n}arrow 0\Leftrightarrow\rho_{\alpha}(M_{n}, N_{n})arrow 0$

From previous propositions, we have
$\langle$

a method of diminishing inter-

vals’ of semiclosed subspaces.

Theorem 5.4. Let $I_{n}:=[M_{n}, N_{n}](n=1,2, \cdots)$ such that $I_{n}\supset I_{n+1}$ . If
$\rho_{\alpha}(M_{n}, N_{n})arrow 0(narrow\infty)$ , then there exists a unique semiclosed subspace

$M_{\infty} \in\bigcap_{n=1}^{\infty}I_{n\prime}$

6. A THINKING FOR ISP

Given any $T\in \mathcal{B}(H)$ . By [3], there exists many $T$-invariant semiclosed

subspaces. We want to find a closed subspace among the set of all non-

trivial $T$-invariant semiclosed subspaces $\{M_{\lambda}\}_{\lambda\epsilon\Lambda}$ . Without a loss of

generality, we may assume that the linear dimension $\dim_{l}H/M_{\lambda}=\infty$

for all $\lambda$ . For, $\dim_{l}H/M_{\lambda}<\infty$ for some $\lambda$ implies that $M_{\lambda}$ is closed. (It

is known that a semiclosed subspace which has finite codimension in $H$

is closed in $H.$ ) Roughly $explaining_{\rangle}$ an idea related with a codimension

is the following.
. The first step.

Pick non-trivial $T$-invariant semiclosed subspaces $M_{1}$ and $M_{2}$ such that

$(*)$ . . . . . . $\{\begin{array}{l}M_{1}\subsetneq M_{2}\dim_{l}M_{2}/M_{1}=\infty.\end{array}$

We put the interval $I_{1}$ $:=[M_{1}, M_{2}].$

The second step.

Since $\dim_{l}M_{2}/M_{1}=\infty$ , there exists ([4]) a $T$-invariant semiclosed sub-

space $M_{3}$ such that
$M_{1}\subsetneq M_{3}\subsetneq M_{2}.$

Then, we see that $\dim_{l}M_{3}/M_{1}=\infty$ or $\dim_{l}M_{2}/M_{3}=\infty$ . Now we

suppose that $dim,$ $M_{3}/M_{1}=\infty$ . Then we put the interval $I_{2}$ $:=[M_{1\}}M_{3}].$

The third step.

Since $\dim_{l}M_{3}/M_{1}=\infty$ , there exists a $T$-invariant semiclosed subspace

$M_{4}$ such that
$M_{1_{\wedge\wedge}}\subseteq M_{4}\subseteq M_{3}.$
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Then, we see that $\dim_{l}M_{4}/M_{1}=\infty$ or $\dim_{t}M_{3}/M_{4}=\infty$ . Now we
suppose that $\dim_{l}M_{3}/M_{4}=\infty$ . Then we put the interval $I_{3}$ $:=[M_{4}, M_{3}].$

By an inductive way, we get a sequence $\{I_{n}\}_{n}$ of intervals. Note that

semiclosed subspaces $M_{i}(i=1,2, \cdots)$ are $T$-invariant.

(If’ diam $I_{n}arrow 0$ , then, by Theorem 5.4, we get the semiclosed subspace

$\exists!M_{\infty}\in\bigcap_{n=1}^{\infty}I_{n}.$

We want to expect that $M_{\infty}$ is the $T$-invariant closed subspace, so that

it is necesarry to check the following questions.

Ql. Does there exist $M_{1}$ and $M_{2}$ satisfying $(*)$ ?
Q2. Does there exist a sequence $\{I_{n}\}_{n}$ such that (diam $I_{n}arrow 0^{)}$ ?
Q3. Is $M_{\infty}$ $T$-invariant?
Q4. Is $M_{\infty}$ closed?

7. ABOUT QI

There exist semiclosed subspaces $M_{1}$ and $M_{2}$ such that $(*)$ . Pick any
$T$-invariant $M_{1}$ . Put $M_{1}=\alpha A_{1}H$ . Since $A_{1}\in\alpha,$

$A^{\frac{1}{12}}\in\alpha$ by $(h2)1^{\cdot}$ Hence,

we define $M_{1}^{\frac{1}{2}}$ to be the semiclosed subspace $A^{\frac{1}{12}}H$ , and let $M_{1}^{\tilde{2}}=\alpha A^{\frac{1}{12}}H.$

If $M_{1}=M^{\frac{1}{12}}$ , then $M_{1}$ is $a$ ( $T$-invariant) closed subspace. This attains

our goal. Thus, without a loss of generality, we assume that $M_{1}\underline{\subseteq}M_{1}^{\frac{1}{2}}$

Since $M_{1}$ is $T$-invariant, $M_{1}^{\frac{1}{2}}$ is also $T$-invariant. Since $\dim_{l}H/M_{1}^{\frac{1}{2}}=\infty,$

there exists $T$-invariant $M_{2}$ satisfying $M_{1}^{\frac{1}{2}}\subset\wedge M_{2}\subseteq\wedge H$ . Moreover we can

prove that $\dim_{l}M_{1}^{\frac{1}{2}}/M_{1}=\infty$ . Then we get the interval $[M_{1}, M_{2}]$ which

satisfies the condition $(*)$ .

8. ABOUT Q2, Q3 AND Q4

We do not know that how do we try to solve these questions Q2, Q3

and Q4. But we think that these questions are linked each other. In the
following, we state an idea in our brain.
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Let $M=\alpha AH$ and $N=\alpha BH$ . By (h1) and Douglas’s majorization

theorem, the interval

$[M, N]=\{L\in S:M\subseteq L\subseteq N\}$

is order isomorphic to the operator interval

$[A^{2}, B^{2}] :=\{X^{2} : A^{2}\leq X^{2}\leq B^{2}\},$

where $X\in \mathcal{B}(H)$ is a positive operator.

Let $I_{1}=[M_{1}, M_{2}]$ be the interval satisfying the condition $(*)$ in the

section 6. Since $\dim_{i}M_{1}^{\frac{1}{2}}/M_{1}=\infty$ and $M_{1}^{\frac{1}{2}}$ is $T$-invariant, there exists a

$T$-invariant semiclosed subspace $M_{3}$ such that $M_{1}\subseteq M_{3}arrow\subseteq\sim M^{\frac{1}{12}}$ In the

same $way_{\’{i}}$ we have a $T$-invariant semiclosed subspace $M_{5}$ such that $M_{3}\subsetneq$

$M_{5}\subset<M_{3}^{\overline{2}}.$ Hexlce, we have inductively $M_{2k+1}(k=1,2, \cdots)$ such that
$M_{2k-1}\subseteq M_{2k+\lambda}\subseteq M_{2k-1}^{\frac{1}{2}}$ . On the other hand, with respect to indexes

of even numbers, we choose a $T$-invariant semiclosed subspace $M_{2k+2}$ so

that $\rho_{\alpha}(M_{2k+1}, M_{2k+2})arrow 0(karrow\infty)$ , and let $I_{k+1}=[M_{2k+1}, M_{2k+2}]$

$(k=0,1,2, \cdots)$ .

$M_{1}$ $I_{1}$ . $M_{2}$

$M_{1}^{\frac{1}{2}}$

$M_{3}$ $I_{2}$ . $M_{4}$

$M_{3}^{\frac{1}{2}}$

$M_{5}$ $I_{3}$ . $M_{6}$

By $\rho_{\alpha}(M_{2k+1}, M_{2k+2})arrow 0$ , that $is_{\rangle}diamI_{k}arrow 0(karrow\infty)$ , there uniquely

exists the semiclosed subspace $M_{\infty} \in\bigcap_{k=1}^{\infty}I_{k}$ . For intervals $[M_{n}, ]$ or
$[ , M_{n}],$ $\rho_{\alpha}(M_{n}, M_{\infty})=\Vert A_{n}-A_{\infty}||arrow 0(narrow\infty)$ , where $M_{n}=\alpha A_{n}H,$

$M_{\infty}=\alpha A_{\infty}H$ . Therefore, since $A_{2k+1}^{2}\leq A_{2k-1}\leq A_{2k+2}^{2}(k=1,2, \cdots)$ ,

we have that $A_{\infty}^{2}\leq A_{\infty}\leq A_{\infty}^{2}$ . This means that $A_{\infty}$ is the orthogonal
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projection, i.e., $M_{\infty}=\alpha A_{\infty}H$ is closed, which is a thinking for Q2 and
Q4. For Q3, we note that $M_{2k+1}$ and $M_{2k+2}$ are $T$-invariant and $M_{2k+1}\subsetneq$

$M_{\infty}\subsetneq M_{2k+2}$ . Now $\rho_{\alpha}(M_{2k+1}, M_{2k+2})arrow 0(karrow\infty)$ , is $M_{\infty}$ $T$-invariant?

Ibaraki University

Colleage of Engineering

Nakanarusawa 4-12-1

Hitachi 316-8511, Japan
$\ovalbox{\tt\small REJECT} \mathfrak{M}X\ovalbox{\tt\small REJECT} \mathcal{I}ae_{Q}^{R}\beta \mp\backslash ;\ovalbox{\tt\small REJECT}^{\backslash } \mathbb{R}$

REFERENCES

[1] T.Ando, De Branges Spaces and Analytic Operator Functions, Lecture note,
Hokkaido $University_{\rangle}$ Sapporo, Japan, 1990.

[2] $\ovalbox{\tt\small REJECT}\Pi\backslash \ovalbox{\tt\small REJECT} g\neq,$ $\delta’\mp/J$ $\ovalbox{\tt\small REJECT}\Phi \mathscr{X}\ovalbox{\tt\small REJECT}_{J^{1)-}}\backslash ^{\backslash }$ ス* $\ovalbox{\tt\small REJECT}\Re ffiffi\lambda P\ovalbox{\tt\small REJECT}$ $\Re$ $\ovalbox{\tt\small REJECT}$き]$\mathfrak{F}$ (Japanese)
[3] E.Nordgren, M.Radjabalpour, H.Radjavi and P.Rosenthal, On Invariant Opera-

tor Ranges, Trans. Amer. Math. Soc. vol.251 (1979), 389-398.
[4] L.Rodman and N.Zobin, Linear Preservers of Isomorphic Types of Lattices of

Invariant Operator Ranges, Proc. Amer. Math. Soc. vol.129 (2001), 2981-2986.
[5] G.Hirasawa, A Metric for Unbounded Linear 0perators in a Hilbert Space, Integr.

Equ. Oper. Theory vol.70 (2011), 363-378.

120


