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RESEARCH OF WEIGHTED OPERATOR MEANS
FROM TWO POINTS OF VIEW

YOICHI UDAGAWA, TAKEAKI YAMAZAKI, AND MASAHIRO YANAGIDA

ABSTRACT. In the recent year, Pélfia and Petz have given to make a weighted op-
erator mean from an arbitrary operator mean. In this report, we shall give concrete
formulae of the dual, orthogonal and adjoint of weighted operator means. Then the
characterization of operator interpolational means is obtained. We shall show that
the operator interpolational means is only the weighted power means.

1. INTRODUCTION

Let H be a complex Hilbert space with inner product (-,-), and B(#) be the set
of all bounded linear operators on H. An operator A € B(H) is said to be positive
definite (resp. positive semi-definite) if and only if (Az,z) > 0 (resp. (Az,z) > 0)
for all non-zero vectors z € H. Let B(#), be the set of all positive definite operators
in B(H). If an operator A is positive semi-definite, then we write A > 0. For self-
adjoint operators A, B € B(#), A < B means B — A is positive semi-definite. A map
o - B('H)i — B(H) . is called an operator mean [6] if the operator 9(A, B) satisfies
the following four conditions; for A, B,C, D > 0,

(i) A< C and B < D implies M(4, B) < M(C, D),

(ii) X (M(A, B)) X < M(XAX, XBX) for all self-adjoint X € B(H),
(iii) An \( A and B, \( B imply 9M(A,, B,) \y JM(A, B) in the strong topology,
(iv) M, ) = 1.

We remark that by the above condition (iii), we may assume A, B € B(#),. It is
known many examples of operator means, for instance, the weighted geometric mean,
the weighted power mean and the logarithmic mean. In particular, the weighted power
mean has been studied by mary researchers (cf. [3, 5, 9]) because of its usefulness,
for instance, the weighted power means interpolate weighted arithmetic, geometric
and harmonic means. One of the fact is that weighted power means derive power
difference means by integrating their weight [9]. However, we do not know any ex-
plicit formula of the weighted operator means except the weighted power means. For
the problem, Pélfia-Petz [7] has given an algorithm to get weighted operator means
from arbitrary operator means. On the other hand, J.I. Fujii-Kamei have considered
another algorithm to get weighted operator means from arbitrary symmetric operator
means, and they have considered about the operator interpolational means [2]. It is
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a family of weighted operator means {9, };c[0,1) with the weight ¢ such that
Ma-rarrg(4, B) = My (Mo(A, B), Ms(A, B))

holds for all o, 8,A € [0,1] and A, B € B(H),. In [l], a characterization of the
operator interpolational means have been obtained. But it has not been given any
concrete example of the operator interpolational means.

In this report, we shall study about weighted operator means. In Section 2, we
shall introduce the algorithm to get weighted operator means due to Pélfia-Petz [7],
and introduce some properties of weighted operator means. In Section 3, we will give
the formulae of the dual, adjoint and orthogonal of weighted operator means, they
have very intuitive forms. In Section 4, we shall give another characterization of the
operator interpolational means. It says that the operator interpolational means are
just only the weighted power means. '

2. WEIGHTED OPERATOR MEANS

A function f(z) defined on an interval I C R is called an operator monotone
function, provided for A < B implies f(A) < f(B) for every self-adjoint operators
A, B € B(H) whose spectral 0(A) and o(B) lie in 1.

The next theorem is so important to study operator means.

Theorem A ([6]). For any operator mean M, there uniquely exists an operator mono-
tone function f on (0,00) with f(1) =1 such that

(2.1) fl@)I =, zI), z>0.

The function f satisfying (2.1) is called the representing function of M. The following
hold:

(i) The map M > f is a one-to-one onto affine mapping from the set of all
operator means to the set of all non-negative operator monotone functions on
(0,00) with f(1) = 1. Moreover, M +— f preserves the order, i.e., let M and
N be operator means with representing functions f and g, respectively, then

M(A,B) <M(A,B) (A4,B20) < f(z)<g(z) (z>0).
(ii) If A € B(H),, then
TM(A, B) = AT f(AT BA7 ) A3,

In this paper, The symbol OM and RF denote the sets of all operator means and
representing functions, respectively. Especially, for 9t € OM, we use the symbol
m € RF as the representing function of 9, i.e., m is an operator monotone function
on (0,00) with m(1) = 1, s.t.,

M(4, B) = Abm (47 BAT) A}

holds for all A, B € B(H), .
For operator means I, Ny, Ny € OM with the representing functions m,n;,ny €
RF, respectively. We can obtain a representing function of a composition mean
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M(M1,M,) as follows: For z > 0,
ML, zD), No(1,2I)) = M(ny (2)], np(z)])

, = ny(z)m(ny(z) ng(z)) 1.
In what follows, we will use the symbol 2t(n;(z), na(z)) by the representing function
of ﬂﬁ(‘ﬁl, mg), i.e

(2.2) M (1 (2), na(z)) = ny(z)m(n (z) " na()).

For the following discussion, we shall define the t-weighted operator means as fol-
lows. '

Definition 1. Let 9t € OM. Then 9 is said to be a t-weighted operator mean if
and only if its representing function m € RF satisfies m'(1) = ¢.

We remark that if m € RF, then m'(1) € [0,1] by [7].

Pélfia-Petz [7] suggested an algorithm for making a t-weighted operator mean from
given an operator mean, recently. It can be regarded as a kind of binary search
algorithm:

Definition 2 ([7]). Let MM € OM with the representing function m(z). For A,B €
B(H), and t € [0,1], let ap = 0 and by = 1, Ay = A and By = B. Define ay, b, and
Ap, B recursively by the following procedure defined inductively for alln = 0,1, 2, ...
(i) If @, =t, then ap41 := ap and bpyy = Gp, Apy1 := A, and Bpy1 = Ay,
(ii) if by, = ¢, then anyy := by and bpyg = by, Anyy := By, and By := By,
(iii) if (1 — w'(1))a, + m'(1)b, < t, then any; = (1 — m'(1))a, + m'(1)b, and
bas1 = by, Ans1 = D(An, Bn) and Bpy; = By,
(iv) if (1 —m'(1))a, + m'(1)b, > ¢, then byyy = (1 — w'(1))a, + m'(1)b, and
Qn41 = Gn, Bpyr = IM(A,, By) and Apyq = A,

For A, B € B(H),, the Thompson metric d(A, B) is defined by
d(A, B) = max{log M(A/B),log M(B/A)},

where M(A/B) = sup{a > 0 | aA < B}. It is known that B(#), is complete
respected to the Thompson metric [§].

Theorem B ([7]). The operator sequences { An}2 and { B,}32, defined in Definition
2 converge to the same limit point in the Thompson metric. In what follows, we shall
denote M, (A, B) by the limit point of {An}32, and {Bn}2,.

Proposition C ([7]). For MM, M € OM, A,B € B(H), andt € [0,1], M(A, B) and
MN:(A, B) fulfill the following properties:
(i) #f MN(A, B) < M(A, B) then M(A, B) < M,(A, B),
(ii) My (4, B) = M(A, B),
(iii) 9, (A, B) is continuous in t on the norm topology.

Corollary D ([7]). For a nontrivial operator mean IR, there is a corresponding one
parameter family of weighted means {M;}1cpo,1). Let m(z) be the representing function
of M. Then similarly we have a one parameter family of operator monotone functions
{me(z) }reo,yy corresponding to {Mi}eeppy. The family {my(z)}iep,y is continuous in



t, and mo(z) = 1 and my(z) = z are two extremal points which correspond to the two
trivial means, so actually m,(z) interpolates between these two points.

. d
It is easy to see that —M(z)] =1
dz =1
3. THE DUAL, ADJOINT AND ORTHOGONAL OF WEIGHTED OPERATOR MEANS

In this section, we shall give concrete formulae of the dual, adjoint and orthogonal
of weighted operator means.

Definition 3. Let 9 € OM and m(z) be the representing function of 9. The
1

dual, adjoint and orthogonal of 9t are defined by the representing functions zm(z)™,

m(z~!)"! and zm(z!), respectively. :

We remark that if m'(1) = ¢, then Zm(z™) 7,0 = ¢, am(z) =1 =1—1 and
Lom(c)|pm1 =1 -t

Proposition 1. Let M € OM and its representing function m € RF. Let g(z) =
m(z®)s (s € [-1,1]\ {0}). Then fort € [0,1],
()} = gu(a) (= (m(z)?) )

t

holds for all x > 0.

Proposition 1 says that the maps m(z) — m(z*)* and m(z) — m(z) are commu-
tative like the following diagram.

m(z) —< g(z) = m(z%)>

d d
my(z) —Ly gi(z) = mt(fﬂs)%

Remark 1. The function m(a:s)% in Proposition 1 is an operator monotone function
since m(z) is an operator monotone function. Especially, by putting s = —1, we get
g(z) = m(z~1)~! and my(z~!)"! = ¢,(z), namely, we obtain a relation between m,(x)
and the adjoint of m;(z).

Before proving Proposition 1, we would like to define some notations which will be
used in the proof. Let 9 € OM, and m € RF be the representing function of 1.

For t € [0,1], we define the sequences {a, 205 {8,322, © [0,1] as in Definition
2. For A,B € B(H),, we define the corresponding operator sequences {A,(Tf?n};’fzo
and {BY, 122, to {al,}, and {6}, respectively, by Definition 2. We remark

n=0 n=0>
that each Ag,)n (resp. Bﬁf)n) is an ag?n—weighted operator mean (resp. bg?n—weighted

operator mean). Then we give a representing function of Ag?n (resp. B,(,f,)n), and
denote mg?n(x) € RF (resp. mg?n(:c) € RF).
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Proof of Proposition 1. For a given 91 € OM with the representing functlon m(z),
and t € [0,1], let {a?,}, {9 ¢ [0,1] be sequences constructed by Definition 2.
Then, since m’(1) = ¢’(1), we have

al), = al¥) and b, = B9, (n=0,1,2,..).
Then we shall show
(3.1) m.(2°)% = gf",(z) and m, (°)* = g, ()
hold for n = 0,1,2,... by mathematical induction on n. The case n = 0 is clear.
Assume that (3.1) holds in the case n = k. If (1 — w’(1))a,, (?) L+ m (l)b(t) t (equiv-

alently (1 — ¢/(1))a’% + g(l)b(t) ) then b%,,, = b“k and bﬁm b, ie

mgit’)k«i-l( ) = mg)k(x) and ng+1($) ng(x) So

m(Rt)k+ (338)" = mg) (z° )“" = g(t) (z) = QR k+1(37)

hold from the assumption. On the other hand, by (2.2), we have
7k 11(2) = M) (z), mE (2))

(3.2) = mf@)m (nf () mh(2) ),
9k () = ofk(@)g (s(@) "alk(=))

By (3.2), we have

8hns(2) = @I ( (o(0)29%k(2)) )"

= m{(@")}m ((m%( 9%) (m%?m&)%)s) %
{mg)k( )m (m(Lt)k( (t)k(ms))} = mg)k+1(x

Similarly, we can also show zm(” | (2°)F = gg)n( ) in (3. ) for the case n = k+ 1. If

(1—m'(1))a?, +m'(1)pY, > ¢ (equivalently (1 — ¢'(1))al ® +¢/(1)p%, > t). From the
above, we get

1

“i

1
mg)n( 3) = gg)n(x)’ m([g)n(g;s)s —gg)n(m)

hold for n = 0,1,2,... Since g(t) (z) and an( $)3 converge point wise to g+(z) and

me(z°)s, respectlvely, on (0, 00),
0 < |gt(z) — mt(x“")é
= |9:(2) ~ gpn(@) + m{), (2°)7 — my(z*)

ai(z) — g (x )‘+|m§?n(m3)%-mt(x8)%

1
s

(as n —.00).
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In the next theorem, we obtain intriguing results for the relations among the dual
and the orthogonal of weighted operator means. It complements our intuitive under-
standing of the weighted operator means.

Theorem 2. Let M € OM, and let m € RF be the representing function of 9.
Define k(z) = zm(z)™! and l(z) := 2m(z™). Then fort € [0,1],

kii(z) = zmy(z)™ and 1_.(z) = zmy(z7h).
Theorem 2 gives similar consequences to Proposition 1 as the following diagram.

m(z) —  k(z) = am(z!) m(z) —— I(z) = zm(z)"!

’ o e

myo(z) — kiy(z) = zmy(z7Y)  mu_(z) —— hs(z) = zmy(z)"!

Proof. First we shall show l;_¢(z) = zmy(z™1). Let {at(1 Dy {b(1 e [0,1]
be the sequences constructed by Definition 2 for a given funcmon l(m) and a constant
1—t €[0,1], and let {a,}22,, {6,322 be so for t € [0,1]. Then, since m'(1) =
1—10(1), we have

alf), =1- bl(}n“t) and b, =1 — al(ln D (n=0,1,2,..).
To prove l1-¢(z) = zm(z ~1), it is enough to show
(3.3) xmg)n(:c“l) = l(1 t)(a:) and acm(t) (z7h) = lg’;t)(ac)

hold for n = 0,1, 2,... by mathematical induction on n as in the proof of Proposition
1. The case n = 0 is clear. Assume that (3.3) holds in the case n = k. If (1 —

w'(1))a, (2 e +m (l)b(t) < t (equivalently (1 — l’(l))al(lk 94 l’(l)bg,lk"t) > 1 —t), then
mi?mw = my(2) and 1777 (z) = 1,7 (z). Therefore zmy),,(z71) = I%7; (=)
holds from the assumptlon On the other hand, by (2.2), we have

m 1 (2) = M (), mPy ()

:mLk(w) (m(L)k(T) mg)k(x))z

it (@) = £:7@1 (15 @75 @)
From the assumption we get
(@) = 150 @)1 (82710 (=)
= am{l, (=) (mﬁz?k(fl)—lm“’ (=)
= zmf(z7) (mip () w27 ) m (m (e Hm{ (=) )
= amly (@ m (mdh e ImE ) )

t —
= Img,)kﬂ(fc 1)-
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Likewise, we can also show the case
(1 - m'(1))ad, + m' (16, > t (equivalently (1 — '(1))ali ™ + UMY < 1-1).
From the above, we obtain
xmg,)n(a:“l) - lg’;t)(x) and xmg?n(z‘l) = lg;t)(z) (n=0,1,2,..).
We can show k;_;(z) = zm;(z)~! by the same way. O

1 1
Example 1. Let f(z) = —-—-—%-:—E— (Arithmetic mean) and t = T Then applying the

Definition 2 implies

and we have
zfi(z)™! = l-i— éz_l B
O I '
On the other hand, k(z) = zf(z)™' = 13?33 (Harmonic mean) and
@) = |5+ 2]
RO I

from the algorithm of Definition 2. So we obtain

ks (@) = 2f3 ()"

4. INTERPOLATIONAL MEANS

In this section, characterizations of interpolatinal means will be obtained. We shall
consider them in the cases of numerical and operator interpolatinal means, separately.

Definition 4 (Interpolational mean, [2]).

(i) For each t € [0,1], let m; : (0,00)2 — (0,00) be a continuous function.
Assume m; is point wise continuous on t € [0,1]. The family of continuous
functions {m;}scpoy is said to be an interpolatinal mean if and only if the
following condition is satisfied;

ms (Ma(a,b), mp(a, b)) = ma-sa+ss(a, b)

for all @, 3,0 € [0,1] and a,b € (0, c0).

(ii) Let {9My}aep,y be a family of weighted operator means. If 9, is continuous-
on « € [0,1] and satisfies the following condition, then {904 }aco,1) is said to
be an operator interpolational mean;

M (gﬁa(A) B)’ mﬂ(A, B)) = 9:R(l-—é’)a‘HSﬁ(A, B)
for all @, 8,6 € [0,1] and all A, B € B(H),.



A typical example of operator interpolational mean is the weighted power mean
whose representing function is

Poo(z) =[(1-a) +az’]s (s€[-1,1]\{0}).
(The case s = 0 is considered as ll_I;I(l) P, ,(z) =z%)
Firstly, we think about the numerical case.
Theorem 3. For each t € [0,1], let my : (0,00)? — (0,00) be a continuous function.

Assume that my is point wise continuous on t € [0,1], and is satisfying the following
conditions

(i) mo(a,b) = a, mi(a,b) = b and m(a,a) = a for alla,b € (0,00) and t € [0,1],
(if) i my(a,b) =a orb, then a=b for all a,b € (0, 00).
Then the following assertions are equivalent:
(1) {me}iepo,y) is an interpolational mean,
(2) there exists a real-valued function f such that
my(a,b) = f7[(1 = £)f(a) + 2 (b)]
for each t € [0,1] and a,b € (0,0).

Proof. (2) = (1) is clear. .We shall prove (1) == (2). For fixed a,b € (0, 00), let
mq(a,b) := M, ,(t). We may assume a # b. First we shall prove M, (%) is a one-to-one
onto mapping on t € [0,1]. Assume that there exists o, € [0,1] such that o <
and Myp(@) = M,p(8) = p. For any v € [e, 8] there uniquely exists § € [0,1] such
that v = (1 — §)a + 63, so we have

Mup(v) = Myp (L= 0)a+6p)

= M(1-s)a+55(a, )

= ms (ma(a" b): mﬁ(a’> b)) (by (1))

=ms(u,p) =p,  (by (i)
namely,
(4.1) Map(y) =
holds for all v € [e, B8]. Moreover, for each € > 0 such that [a — e, +¢] C [0, 8], we
have

w= Ma,b(a)

= my (Mos(a — ), Map(a+)  (by (1))
=my (Mop(a—e),n)  (by (41)).
By (ii), it implies My (e — €) = p, so we have M, ,(y) = p for all v € [a — ¢, f]. By
using this way several times, we get M, p(7y) = u for all v € [0, 8]. Thus
M= Ma,b(O) = Q.
Likewise we can show p = M, (1) = b, and hence we get a = b. It is a contradiction

to a # b. Therefore M, ;(¢) is a one-to-one mapping on t € [0,1]. Also we can show
M, 5(t) is an onto mapping because M, ;(0) = a, M, (1) = b and M () is continuous
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.ont € [0,1]. From the above, M, ;(t) is a one-to-one onto mapping. Hence, for fixed
a,b € (0,00) such that a 5 b, there exists a function f,; defined on [a, b] such that

(4.2) fap(me(a, b)) = (1 —t) fap(a) + tfap(D).

Here we may assume a < b. Next we shall prove that this function f,} is independent
of the interval [a, b] and unique up to affine transformations of f,;. Because for any
M,N e R (M #0), let g(z) = M fop(z) + N. Then we can easily obtain

fap (A =1)f(a) +££(B)] = g7* [(1 = t)g(a) + tg(b)].

Case 1. [a,b] C [@/,¥];
Let M, : [a,b] = [0,1] be the inverse function of Mg (t)(= me(a,b)). From [a,8] C
[a’,b'], it is clear that there exists 01,0, € [0, 1] satisfying ms, (a',b') = a, ms,(a’, V) =
b. Since {m;}cfo,1) is an interpolational mean, we have

me(a, b) = my (ms, (a',8'), ms, (', b))

= M(1-1)6, +t5, (@', )
= My y ((1 —t)81 + t82).

It is equivalent to
Ma_;’lb/ (mt(a, b)) - (1 - t)51 + t52

Put z = my(a,b) € [a,b], then M, (z) = t. We have
My (@) = (1= Mgy (2)) 1 + My ()0,

hence we have

) 1 _ Mgy (a)
Moo @ = St = ae, @ ) T IR0 - @)
Here by putting
i — 1 and wy — M4 (a)
Mg () — Mg} (a) Mgy (b) — Mg y(a)

we have

Ma‘g(x) wlM,b,( )+we (z € [a,b)]).
For M, (z) and M}, (z), let

M, (z) (z € [a,b
0 ={ L) e (o< o o)

Then k(z) = wiMj},(2) + wp holds for z € [a/,t]. This result, (4.2) and putting
z = my(a,b) (or mt(a b)) imply t = M_;} (z) = k(z),

fap(z) = k() (fo(b) — fap(a)) + fap(a)
and

k'(SC) - Wi

fa’,b’(x) = (fa’,b’ (b,) - fa’,b’(al)) + fa’,b’(a,)-
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From the above, we can find that there exists w},w) € R such that
Jap (@) = Wi fap(z) + wh.
Case 2. [a,b],[c,d](a < b < c< d);
It’s enough to think about the case [a, b] C [a,d] and [¢,d] C [a, d]. O
Corollary 4. Fort € [0,1]. let m¢ : (0,00)? — R be a real-valued continuous function
on each variables satisfying the following condition
(4.3) (1=8)a™t + b7 <my(a,b) < (1 —t)a+tb
for alla,b € (0,00) andt € [0,1]. Assume that {m.}seqo,1) s point wise continuous on
t € [0,1]. Then the following assertions are equivalent:

(1) {mi}iep,y is an interpolational mean,
(2) there ezists a real-valued function f such that

my(a,b) = fH(1 —t)f(a) +t£(b)] for alla,b € (0,00) and t € [0, 1].

Proof. Tt is enough to show that the condition (4.3) satisfies the conditions (i) and
(ii) of Theorem 3. Since (i) is easy, here we only show that (4.3) implies the condition
(ii) of Theorem 3. If m %(3:, y) = x satisfies, then

-1 —1N —1

2 2

by (4.3). By the first inequality of the above, we get ¥ < , and also we obtain z <y
from the second inequality of the above. Therefore z = y holds and condition (ii) is
satisfied. 0

Lastly we derive a characterization of operator interpolational means from the above
results. The characterization gives us the fact that the weighted power mean is the
only operator interplational mean.

Theorem 5. For o € [0, 1], let M, be a weighted operator mean with the representing
functions ma(z). If {ma(z)}aco 95 point wise continuous on « € [0, 1] and
[(1—a)+az™']™ <my(z) < (1—0a)+ax

holds for all & € [0,1] and = > 0, then they are mutually equivalent:

(1) {Mal}acp,y s an operator interpolational mean,

(2) there ezists 7 € [~1,1], ma(z) = [(1 — @) + az"]+.
In (2), we consider the case r = 0 as z°.

To prove Theorem 5, we prepare the next lemma;
Lemma E ([4, Theorem 84]). For a real-valued continuous function f such that its
inverse function exists, let my(a,b) = f~(1 — a)f(a) + af(b)] for a,b > 0 and
a€(0,1]. If
mq(ka, kb) = kmy(a, b)

holds for all k > 0 and a,b € (0,00), then there exists r € R such that my(a,b) can

be determined as .
mq(a,b) =[(1—a)a” + ab']r.



64

Proof of Theorem &. (2) == (1) is clear. We only show (1) == (2). For a,b > 0 and
a € [0,1], My(al,bl) = amy(2)I holds from Theorem A and

a {(1“0‘)“%‘ (2_)—1]"1 < amyg (g) <a |:(1—a)+a§-l

follows from the assumption of Theorem 5. This relation is equivalent to the following
inequality;

[(1—a)a™t +ab ™ < My(a,d) < (1—a)a+ab,

here we identify 9, (a,b) and ¢ by M,(al,bl) and cl, respectively. Hence by the
assumption and Corollary 4, there exists a real-valued function f such that

Ma(a,b) = (1 — a)f(a) + af (b)].
Moreover, 9, satisfies the transformer equality
M,(cA,cB) = IM,(A,B) forc>0
because M, is an operator mean. These facts and Lemma E implies
Myl(a,b) = [(1 —)a” +ab’]7, reR.

Moreover since it is increasing on r € R, we have r € [—1,1] by the assumption.
Therefore we obtain

mg(zl) = My(I,zI) = [(1 — a) + az]

e

I
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