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1 Introduction and preliminaries

Let f be a real valued continuous function on (0,00). We call f n-matrix
monotone on (0, 00) if it holds f(A) < f(B), for n x n self-adjoint matrices
A, B with 0 < A < B, where A < B means

(A¢,8) < (BE,§)  vEeC™

When f is n-matrix monotone on (0, 00) for any positive integer n € N, f is
called operator monotone on (0, 00). By Lowner’s theorem, it is known that
f is operator monotone on (0, 0o) if and only if f is a Pick function on (0, 00),
which means the function f : (0, 00) — R has the analytic continuation f(z)
on the upper half plane Hy = {2z € C: Sz > 0} and satisfies the condition
f(H, ) is contained in the closure of H. ([1], [3], [7]). For any positive integer
n € N, a real number v € R, and positive numbers «;, 8; (1 < 7 < n) with
a; # B (1 <1i,5 < n), we define the function f(t) on (0, 00) as follows:

n ’ T 1
f=r[25=1 ¢+
i=1 ¢

and f(1) = 1. In [9], the author gave the method to investigate the operator
monotonicity of functions f(t). Using this result, we consider the operator
monotonicity of the function f(t) with some special form.

In section 2, we treat the following functions related to the power differ-

ence mean:
bt* -1

att—1
for any real number a and b. In section 3, we treat the following functions
(extended Petz-Hasegawa’s functions) :

ab(t — 1)
(te =)t —1)’

h(t) = t € (0,00),

h(t) = t € (0,00),
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for any real number a and b, where we use the notation

t9—1 a_1
)-

= logt (= 1
5 ogt (= 1m -
We remark that the point-wise limit function f(¢) of {fm ()}, is n-
matrix monotone if f,,(¢) is n-matrix monotone for all m.
Let, for vy € R and o = (a1,...,0), 8= (B1,--.,Pn) With o4, B; > 0,

fﬂ%zﬁIIE}@u1 (t#1)
e

and f(1) = 1. We introduce two quantities Fy(a, 8) and F(a, ) for f(t).
The following two lemmas related to these quantities are used to determine
the operator monotonicity of functions in section 3.

When 0 < a;, 8; < 2, we define

ai‘_].
z =( for z € (0, 00)

and continuously define the argument of Z5=1 on z € H;. So we can define,
for 0;, 5, <2 (i =1,...,n),

Qo

n
arg f(z) = yarg 2 +Zarg %—_—_——1-, for z € H,,
i=1

and arg f(t) = 0 for ¢t € (0, 00).

If f(¢) is non-constant operator monotone, then its analytic continuation
f(2) has no zeros and no singular points on H, since f is Pick function. It
is known (see, [9]:Proposition 3.1) that f(z) has no zeros and no singular
points on H, if and only if |v| < 2 and 0 < ¢4, 8; <2 (1 < ¢ < n). When
lv] > 2 or max{ay, B;: 1 <i<n}>2, f(t)is not operator monotone.

Lemma 1.1 ([9]:Theorem 1.1, Lemma 2.3 and Proposition 3.2). Let |y| < 2,

(1) f(t) is operator monotone on (0,00) if and only if
7+G0(avﬁ) > 0 and7+FO(oz,,8) < 17

where we set

and define Go(a, B) = inf{argg('re’”) :r € (0,00)}/m and Fy(o, B) =
sup{arg g(re™) : r € (0,00)}/7.
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(2) Gola, B) = —Fy(B,a) and Fy(a, B) > 0.
(3) Fola, B) + Gola, B) = 221y (0 — By).
(4) When0<b<a <2,
0<b<1% Gola,b) >0 Fyla,b) <a—b,
where we use the notation a (resp. b) instead of o = (a) (resp. B = (b)).

For 0 < a,b < 2, we define

a—b ifa>b,0<b<1
F(a,b)=<a—1 ifl<ab<?2
0 ifa<b0<a<l
Let o = (au,...,0p) and B8 = (B1,...,0n) (0 < @, B; < 2) and ¢ and 7
permutations on {1,...,n} satisfying with ay(1) < ap2) < -+ < Q@) and

B’r(l) < 131'(2) <-.-< ﬂr(n) Then we define
F(a,ﬁ) = Z F(aa(i)y ﬁT(Z))
i=1
Lemma 1.2 ([9]:Theorem 1.2). For |y| <2, 0 < oy, 5; < 2, the function

£(t) = mﬂﬁ i

Q; tﬁz

becomes operator monotone on (0,00) if

7= F(B,0) 20 and v+ F(e, f) <1

2 Functions related the power difference mean

The following characterization is well-known:

Lemma 2.1 ([6]: Theorem 2.4.3). The function h : (0,00) — R is 2-matriz
monotone if and only if h is in C*(0,00) and

h[l](Al,)\l) hm(h,)\z) >0
hm(AZ,/\l) h“]()\z, )\2) -

for any A, Ag € (0,00), where

B(Y) — h()
h[”(/\,u)={ \—n AEH
RN A= u
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Theorem 2.2. Let a,b be real numbers and

bt*—1
(t)watb_17

t € (0,00).

Then we have
(1) h is increasing on (0,00) if a > b and decreasing if a < b.

(2) h becomes operator monotone on (0,00) if and only if the point (a,b)
belongs to the set

Q={a=b}U{(a,b):0<a—b<1a>—1,6<1}U([0,1] x [-1,0])

in the (a, b)-plane:

(3) h is 2-matriz monotone on (0,00) if and only if h is operator monotone
on (0, 00).

Proof. (1) We set .
dh(t -1
di)::(ﬁ-—ljzk@%

where k(t) = 2((a — b)t* — at*™® + b). Since

a

dk(t)
dt
we have k(t) > 0 for t € (0,00) if a > b. This means h(t) is positive and

increasing on (0, 00) if a > b.
Remarking the fact

k(1) =0, bla — b)t* (1 —¢t77),
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h(t) is decreasing on (0, 00) if a < b.

(2) This has been proved in [9]:Example 3.4(1).

(3) It suffices to show that (a,b) € Q if h(t) is 2-matrix monotone on
(0, ).

We assume that h is 2-matrix monotone and not constant. By (1) we
have a > b and

b ki(t)
e >
dE 12 0 forall t € (0,00),

where ki (t) = (a — b)t+*~1 — a1 4+ bt>~1. So we have, for any s,¢ > 0,

K(s) hl(s,t)
(hm(s,t) B(2) )20’

equivalently, A'(s)h/(t) — (hl(s,¢))? > 0. Then we set
D(s,t) = K (s)K'(t) — (A (s, ¢))?
b? 1

= EEo e o REORO6E -~ ks ),

where
ka(s,8) = ((s* = 1) = 1) = (s = 1)(* - 1))?
= ((s* — 1)tb - (sb — 1)t — s+ sb)z,
and we remark ki (s)k1(t)(s — t)?, ka(s,t) > 0 for all s,t € (0, c0).
When b > 0 and a + b+ 1 < 2a, we have

lim D(s,t) <0 for some s
t—00

because

lim t—za(kl (S)kl (t)(s - t)2 - kIQ(S, t))

t—oo ,
= tli)lg) ¢~ 20+ @) (g — b) — at™ 4 bt~ ) ky () (st — 1)%)
. ((Sa . 1)tb-a _ (Sb . 1) . (Sa _ Sb)t—a)z
=-(s*-1)2 <.
This contradicts to the assumption of h. The highest degree d; (resp. dg) of
¢t in ki1(s)ki(t)(s —t)? (resp. ko(t)) is
(a+b+1,2a) (0<b<a)
(d1,d2) =< (a+1,2a) (b<0<a),
(a+1,0) (b<a<0)
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and the lowest degree d) (resp. db) of ¢ in ky(s)ki(t)(s — ¢)? (vesp. ka(t)) is
(b—1,0) (0<b<a)
(d},dy) = < (b—1,2b) (b<0<a).
(a+b—1,2b) (b<a<0)

By using the similar argument as above, when d; < d; or d} > dj, we have

D(s,t) < 0 for a sufficiently large ¢(> 0) and some fixed s,

or
D(s,t) < 0 for a sufficiently small ¢(> 0) and some fixed s.

So 2-matrix monotonicity of A implies

dy > dy and d, < d.

This means that (a,b) € ¥ if h is 2-matrix monotone. O

3 Extended Petz-Hasegawa’s functions

We consider the operator monotonicity of the function
ab(t — 1)*
E-DE-1)

for any real number a and b. When b = 1—a and —1 < a < 2, this function is
called Petz-Hasegawa’s function and becomes operator monotone on (0, co)

(see [4], [5], [7]).
Theorem 3.1. Let a,b be real numbers and
ab(t — 1)2
(te —1)(t> — 1)

Then h becomes operator monotone on (0,00) if and only if the point (a,b)
belongs to the following set:

Q= {(a,b): ac[-1,2], g1(a) < b < go(a)},

h(t) =

where
1, a € [-1,0]

gi(a)=<1—a, a€l0,1)
-1, a€]l,2]
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and go(a) is satisfying 1 — a < go(a) < 2 — a and the following equation:

(a — g2(a) sin a7 o (gg(a) —a sings(a)m ()
a  sin(a+ go(a))m g2(a) sin(ge(a) +a)r ’

This set Q) in the (a, b)-plane is as follows:

where the boundary curve go(a) is given by computations of approrimate val-
ues.

Proof. The function A is symmetric for a and b. So we may assume that
a > b. We can rewrite h(t) as follows:

h(t) = ab- @ ftl")éf_ 5 a>b>0
= a(-0)t o _(tl)“(tl_)b — b<0<a
= (=a)(=b)t™*°. -1 b<a<0

e -1 -1)

By the remark before Lemma 1.1, we have |al, |b] < 2 if h is operator mono-

tone.
Case (1) 0 < b <a <2  Wecan consider v = 0, a = (1,1), and
B = (a,b). Since

. T\ 1 2—a—b (em =1/r)? o
Tlirxgo arg h(re™) = }Ln()lo arg abr (i = 1jra) (ebm —1/7) (2—a—b)

and Go(a, 8) <2 —a — b < Fy(a, B), it follows that, by Lemma 1.1,
1<a+b<2

if h is operator monotone.
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When 0 < b <a <1, we have

F(o,B)=F(l,a)+F(1,b)=(1—a)+(1-b)=2—a—b,
~F(B,0) = —(F(a,1) + F(b,1)) = (0 +0) = 0.

By Lemma 1.2, a+b > 1 and 0 < b < a < 1 implies that h is operator
monotone. _ ‘

Case (2) —2<b<0<a<2 Wecan consider v = —b, @ = (1,1), and
B = (a,—b). Since

(e —1/r)?
(eam' — 1/7aa)(e—bm' — I/T“b)
=(~b+2~a—(=b))r=(2—a)r

lim arg h(re™) = lim arga(—b)r? %" .
T—00 7300

and

; ™Y — 1 _p\—b—bmi (Tem — 1)2
Tl_l_)l&&l’gh(% )= TEI(I)1+ arga(—b)r e o — 1) (e = 1)

= —bm,

we have 1 < a <2 and —1 < b < 0if h is operator monotone.
- When 1 <a<2and —-1<b<0, we have

—b+F(a,f) = -b+ F(l,a) + F(1,-b) = =b+ 0+ (1 — (-b)) = 1,
—b+G(a,B)=—b—F(a,1) = F(-b1)=-b—(a—1)-0=1~(a+D).

By Lemma 1.2, a+b > 1,1 < a < 2, and —1 < b < 0 implies that h is
operator monotone.

Case (3) =2 < a,b < 0: We can consider vy = —a — b, o = (1,1), and
B = (—a,—b). Since ' |

. . wE 1 2
lim arg h(?‘em) = lim arg aerE(——a—b)m' (3 /’l“) _ 27r,

7300 =300 (e—am' — ]_/7--a)(e-—b1rz‘ _ 1/,’,.-b)

h is not operator monotone.
So we have that ) is contained in

{(a,b): =1<a<0, g1(a) <b<2}U{(a,b):0<a <2, gi(a) <b<2—a}

and h is operator monotone if the point (a,b) is contained in the following
three triangles:
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By the numerical computation of Fy(c, 8) and Go(c, 8), we can replace the
above figure to the figure in the statement of Theorem 3.1.

We consider the function gs(a). By the symmetry of a and b, we only
consider the case 1 < a < 2and 1 —a < b < 2—a. We remark that f(t)
is operator monotone on (0, co0) if and only if Sf(re™) > 0 for all 7 > 0 by
Lemma 1.1(1). Since

Sf(re™)

(T + 1)2 a ,—ami —bmi
~|(reeami — 1) (rbrbmi — 1)|2%ab(r e =1)(r" = 1)

(r+1)2%r° o . .
:'(Taeam' — 1)(7-b7.bm‘ _ mzab(—r sm(a + b)7r + sin b + % sin a7r),

the signature of &f(re™) is equal to that of
k(r) = ab(—r®sin(a + b)m + sin b + r*®sin an)

for all 7 > 0. We can see that the solution 7y of k¥'(r) = 0 is

(a—b) sinavr)l/b
asin(a + b)

)

and k(r) is decreasing on (0, 7o) and increasing on (ry,00). So we have f(t)
is operator monotone on (0,00) if and only if k(r) > 0. As a relation of a
and b satisfying with k(1) = 0, we can get the following:

a—b sinam )a_(b——a sin b )
a sin(a+bn’ ' b sin(b+a)r’

So we can get the desired relation. W

The following is a program drawing a part of this figure in [1,2] x [~1,1]
by Mathematica.



picki={};
f10[a_,b_,z_]:= -Argl[z~a-1]-Arg[z"b-1];

minmaxf10[a_,b_] :=Module[{zval,zmin,zmax},
zval=Table[f10[a,b,~-0.001%i],{i,1,1000}];
zmin=Min[zval];
zmax=Max[zval] ;
{Min[{zmin, (2-a-b)*Pi-zmax}] ,Max [{zmax, (2-a-b)*Pi-zmin}]}]

Dol { ¢ = minmaxfi0O[a,b];
Ifl ( cl[1]1>=0 ) && ( c[[2]] <= Pi) ,
pickl = Append[ picki, {a,b} 1 ; 1},
{a,1.01, 2.0, 0.01}, {b, 0.01, 1.0, 0.01}]

pick2={};
fo0la_,b_,z_]:= -Arg[z~a-1]-Arg[z~(-b)-1];

minmaxf00([a_,b_] :=Module[{zval,zmin,zmax},
zval=Table[f00[a,b,-0.001%i],{i,1,1000}];
zmin=Min[zval];
zmax=Max [zval];
{Min({zmin, (2-a+b) *Pi-zmax}] + (-b)*Pi,
Max [{zmax, (2-a+b)*Pi-zmin}]+ (-b)*Pi}]

Dol { ¢ = minmaxf00[a,b];
If{ (C c[[11]1>=0 ) && ( c[[2]] <= Pi) ,
pick2 = Append[ pick2, {a,b} 1; 1} ,
{a,1.01, 2.0, 0.01}, {b, -0.01, -1.0, -0.01}]

ListPlot[ {pickl, pickQ},’ AspectRatio—>Automatic,
AxesOrigin->{0,0},PlotStyle->PointSize[0.01]]
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