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On m-complex symmetric operators

Muneo Cho, Eungil Ko, and Ji Eun Lee

Abstract

In this paper, we provide several spectral and local spectral properties of
m-complex symmetric operators. Moreover, we study properties of nilpotent
perturbations of m-complex symmetric operators. Finally, we discuss the
structures of m-complex symmetric operators.

1 Introduction

The results in this paper will be appeared in other journals. Let £(#) be the
algebra, of all bounded linear operators on a separable complex Hilbert space H. A
conjugation on H is an antilinear operator C' : H — H which satisfies (Cz, Cy) =
(y,z) for all z,y € H and C? = I. For any conjugation C, there is an-orthonormal
basis {e,}2, for H such that Ce, = e, for all n (see [12] for more details).
Note that (CTC)* = CT*C and (CTC)* = CT*C for every positive integer k,
and ||C|| = 1. An operator T € L(H) is said to be complex symmetric if there
exists a conjugation C on H such that T = CT*C. In this case, we say that T’
is complex symmetric with conjugation C. This terminology is due to the fact
that T' is a complex symmetric operator if and only if it is unitarily equivalent to
a symmetric matrix with complex entries, regarded as an operator acting on an
[?-space of the appropriate dimension (see {12]). The class of complex symmetric
operators includes all normal operators, Hankel matrices, finite Toeplitz matrices,
all truncated Toeplitz operators, and some Volterra integration operators. We refer
the reader to [12]-[15] for more details.
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In 1970, J. W. Helton [16] initiated the study of operators T € L(H) which
satisfy an identity of the form;

m

3 (-1ym (’;”) T =, (1)

§=0

In light of complex symmetric operators, using the identity (1), we define m-
complex symmetric operators as follows; an operator T' € L(H) is said to be an
m-complex symmetric operator if there exists some conjugation C such that

> (1) (;”) THOT™ 0 = 0
=0 '

for some positive integer m. In this case, we say that T is m-complex symmetric:

with conjugation C. Set An(T) := 37 (-1)" (;n) T*CT™IC. Then T is

an m-complex symmetric operator with conjugation C if and only if A,,(T) = 0.
An operator T € L(H) is said to be a strict m-complex symmetric operator if T
is an m-complex symmetric operator but it is not an (m — 1)-complex symmetric
operator. '
Note that
T*Am(T) = An(T)(CTC) = Apsa(T). (2)

Hence, if T is m-complex symmetric with conjugation C, then T is n-complex
symmetric with conjugation C for all n > m. It is obvious that a l-complex
symmetric operator is complex symmetric.

2 Preliminaries

If T € L(H), we write 0(T), 0(T), I'(T), 05(T), 0ap(T), 0e(T), 01(T), 0ve(T),
os(T'), and 0,,(T') for the spectrum, the surjective spectrum, the compression spec-
trum, the point spectrum, the approximate point spectrum, the essential spectrum,
the left essential spectrum, the right essential spectrum, Browder spectrum, and
Weyl spectrum of T, respectively.

An operator T' € L(H) is said to have the single-valued extension property (or
SVEP) if for every open subset G of C and any #-valued analytic function f on
G such that (T"— X)f(A) = 0 on G, we have f(A\) = 0 on G. For an operator
T € L(H) and for a vector z € H, the local resolvent set pr(x) of T at z is defined
as the union of every open subset G of C on which there is an ‘analytic function
f G — H such that (T — A\)f(A\) = z on G. The local spectrum of T at z is
given by or(z) = C\ pr(z). We define the local spectral subspace of an operator
T € L(H) by Hr(F) = {z € H : or(z) C F} for a subset F of C. An operator



T € L(H) is said to have Bishop’s property (8) if for every open subset G of C and
every sequence {f,} of H-valued analytic functions on G such that (T — A)fn(})
converges uniformly to 0 in norm on compact subsets of G, we get that fu())
converges uniformly to 0 in norm on compact subsets of G. An operator T' € L(H)
is said to be decomposable if for every open cover {U,V} of C there are T-invariant
subspaces X and Y such that

H=X+Y,0T|x)CU, and o(T|y) CV
It is well-known that
Decomposable = Bishop’s property (8) = SVEP.

In general, the converse implications do not hold (see [20] for more details).

3 Examples

In this section, we consider several examples of m-complex symmetric operators
with conjugation C. It is well-known that if 7" is nilpotent of order 2, then T' is
complex symmetric by [11, Theorem 5]. But if T is nilpotent of order k with & > 2,
then T' may not be complex symmetric.

Example 3.1 Let T € £(H) and let C be a conjugation on H. If T' is nilpotent
of order k > 2 and T* # CTC, then T is a (2k — 1)-complex symmetric operator
with conjugation C.

Example 3.2 Let C be a conjugation on H. If R € L(H) is a self-adjoint operator
and R = CRC where RQ = QR, Q* # CQC and Q* = 0 for some k > 2, then an
operator R + @ is (2k — 1)-complex symmetric with conjugation C.

Example 3.3 Let C be a conjugation given by C(z1, 22, 23) = (71, %2, 23) on C3. If
010

T=/[0 0 2] on C3 then 73 = 0 and T is a not complex symmetric operator
0 00

by [15]. Hence T is a 5-complex symmetric operator with conjugation C. However,

since T3 = 0 and T2 # 0, it follows that

4 00
> 1)4*9( )T*JCT‘**JC 6T*2CT?C = |0 0
j=0 00

0
0] +#0.
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So it is not a 4-complex symmetric operator.
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4 m-complex symmetric operators

In this section, we provide spectral properties of m-complex symmetric operators.
Recall that two vectors z and y are said to be C-orthogonal if (Cz,y) = 0.

Theorem 4.1 Let T € L(H) be an m-complex symmetric operator with conjuga-
tion C. Then the following statements hold.

(i) If A is an eigenvalue of T, then X is an eigenvalue of T*.

(i) Eigenvectors of T corresponding to distinct eigenvalues are C-orthogonal.

(iii) If A € 04p(T), then X € op(T*).

(iv) Let X # p. If {zn}, {yn} are sequences of unit vectors such that lim,_,o (T —
Nzn =0 and limp_,oo (T — p)yn = 0, then lim, 0o (Czp, yn) = 0.

An operator T € L(H) is said to be isoloid if for any A € isoo(T), A € C is an
eigenvalue of T', where iso o(T') denotes the set of all isolated points of o(T'). For
D C C, we denote D* = {z: z € D}.

Corollary 4.2 Let T € L(H) be m-complex symmetric with conjugation C. If T
18 1soloid, then T™ is also isoloid.

Theorem 4.3 If {T}} is a sequence of m-compler symmetric operators with con-
Jugation C' such that limy_,o ||Tx — T'|| = 0, then T is also m-complex symmetric
with conjugation C.

We provide equivalent statements for an m-complex symmetric operator.

Proposition 4.4 Let T € L(H) be invertible and let C be a conjugation on H.
Then the following assertions hold.

(i) If TYCT™C = CT™CT* for j =0,1,--- ,m, then T is m-complex sym-
metric with conjugation C if and only if CT*"1C is m-complex symmetric with
conjugation C. '

(ii) T is m-complex symmetric with conjugation C if and only if T~ is m-complex
symmetric with conjugation C.

Theorem 4.5 IfT € L(H) is an m-complex symmetric operator with conjugation
C, then T™ is also m- -complex symmetric with conjugation C for some positive
integer n.

Corollary 4.6 Let T € L(H) be m- comple:c symmetric with conjugation C. If
limy 00 | T7z||7 = 0, then limy e | T*™Cz||= = 0.
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and T*? = CT?C =

OO
O OO

0
on C3, then T* # CTC = | 2
0

oo
Pompy
~
f
S oo
O O =
o N o

. Hence 7% is a 1-complex symmetric operator but 7' is not a 1-complex

symmetric operator with conjugation C.

We next study the local spectral properties of m-complex symmetric operators.

Theorem 4.8 Let T € L(H) be an m-compler symmetric operator with conjuga-
tion C. Then T™* has the property (B) if and only if T is decomposable.

An operator X € L(H) is quasiaffinity if it has trivial kernel and dense range
and S € L(H) is quasiaffine transform of T if there is a quasiaffinity X such that
XS =TX. Two operators S and T are quasisimilar if there are quasiaffinities X
and Y such that XS = TX and SY = YT. A closed subspace M C H is invariant
for T if TM C M, and hyperinvariant for T if it is invariant for every operator in
{TY ={S e L(H): TS =8T}of T.

Corollary 4.9 Let T' € L(H) be m-complex symmetric operators. Then the fol-
lowing statements hold.

(i) If T* is hyponormal, i.e., TT* > T*T, then T is decomposable.

(i) If T* has the property (8) and o(T") has nonempty interior, then T has a non-
trivial invariant subspace.

(iil) If o(T) is not singleton and S € L(H) is quasisimilar to T, then S has a
nontrivial hyperinvariant subspace.

Theorem 4.10 Let T' € L(H) be an m-complex symmetric operator with conjuga-
tion C. If T™ has the single-valued extension property, then T has the single-valued
extension property. Moreover, in this case, op+(z) C op(Cxz)* for all x € H. Fur-
thermore, CHyp(F) C Hp+(F*) where F* .= {Z: z € F'} for any set F in C.

Assume that 7" has the single-valued extension property. If there exists a con-
stant k such that for every z,y € H with or(z) Nor(y) = @ we have

lzl<klz+yll

where k is independent of z and y, we say that an operator T satisfies Dunford’s
boundedness condition (B).
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Corollary 4.11 Let T € L(H) be an m-complex symmetric operator with conju-
gation C. If T* has the single-valued extension property and the Dunford’s bound-
edness condition (B), then T also has the Dunford’s boundedness condition (B).

Next, we investigate properties of nilpotent perturbations of m-complex sym-
metric operators.

Proposition 4.12 Let T € L(H), let C be a conjugation on H, and let N be
nilpotent of order n(n > 2) with NT = TN. Then the following statements hold.
(i) Assume that T is strict m-complezx symmetric with the conjugation C form > 1.
If T commutes with CT*C and CN*C, then T + N is a (2n + m — 2)-complez
symmetric operator.

(ii) Suppose that T is a complex symmetric operator with a conjugation C. If T
commutes with CN*C, then an operator T + N is a (2n — 1)-complex symmetric
operator.

Theorem 4.13 IfT € L(H) is m-complex symmetric with the conjugation C and
N is a nilpotent operator of order n with TN = NT, then the following statements
are equivalent:

(i) T is decomposable.

(ii) T* has the property (B).

(iii) T + N is decomposable.

(iv) T* + N* has the property (B).

Corollary 4.14 If T € L(H) is complex symmetric with the conjugation C and
N is a nilpotent operator of order n with TN = NT, then the following statements
are equivalent:

(i) T is decomposable.

(ii) T* has the property (B).

(iii) T has the property (5).

(iv) T+ N is decomposable.

(v) T* + N* has the property (B).

(vi) T+ N has the property ().

Let us recall that we say that Weyl’s theorem holds for T € L(H) if
o(T) \ 0uw(T) = moo(T),

where moo(T) = {\ € is00(T) : 0 < dim ker(T' — X\) < oo} and isoA denotes the
set of all isolated points of A. We say that Browder’s theorem holds for T € L(H)
if 04(T) = 0u(T). As some applications of Theorem 4.13, we get the following
corollary.



Corollary 4.15 Let R =T + N € L(H) where T is m-complex symmetric and
N™ =0 with TN = NT. If T* has the property (8), then the following assertions
hold.

(i) R and R* have the property (8) and the single-valued extension property.

(ii) If o(R) has nonempty interior, then R has a nontrivial invariant subspace.
(i) He(F) is a hyperinvariant subspace for R.

(iv) If f is any function analytic on a neighborhood of o(R), then both Weyl’s
and Browder’s theorems hold for f(R) and o,(f(R)) = op(f(R)) = flow(R)) =

f(os(R)).

Lemma 4.16 If T is an m-complex symmetric operator, then the following rela-
tions hold.
(1) 0p(T) C 0p(T*)*, 0ap(T) C 0gp(T*)*, T(T*)* CI(T), 0su(T*)* C 05u(T), and

0(T) = 0p(T*)* = 05 (T).

(i) 01e(T) C 016(T*)*, 07e(T*)* C 07o(T), and 0o(T) C 07 (T).
(iii) If T* has the single-valued extension property, then

0(T) = 05p(T) = 0p(T")" = o (T7)".

Proposition 4.17 Let R =T+ N be an operator in L(H) with the same hypothe-
ses as in Theorem 4.13. Then the following properties hold.

(i) op(R) C op,(T*)* U {0}, T(R*)* C T(T) U {0}, and 04p(R) C 0ap(T*)* U {0}.
(ii) 01e(R) C 01(T) and opo(R*)* C 0,.o(T*)*.

5 Structure of m-complex symmetric operators

In this section, we focus on structures of m-complex symmetric operators. For
0 < p <1, an operator T' € L(H) is said to be p-hyponormal if (T*T)? > (TT*)".
We call an operator T € L(H) skew complex symmetric if there exists a conjugation
C on H such that T = —-CT*C.

Theorem 5.1 Let T be an operator on ‘H and C be a conjugation on H. Then
the following statements hold.

(i) If m is even, then A, (T) is complex symmetric with the conjugation C. In this
case, if Ay (T) is p-hyponormal, then it is normal.

(ii) If m s odd, then An(T) is skew complex symmetric with the conjugation C.

In this case, if Apn(T) = 0 and Ap-1(T) is p-hyponormal, then T*Api(T) =
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A1 (TYCTC and Ap—1(T) 1s normal.
(iii) Let

Kn(T) = () ker(An(T)).
If K1(T) # {0} and Kn(T) # H, then the subspace C(Kn(T)) is a nontrivial
invariant subspace for T.

Corollary 5.2 Let T be an operator on H and C be a conjugation on H. Then
the following statements hold.

(1) If m is even, then o(Am(T)) = op(Am(T)).

(if) If m is odd, then o(Am(T)) = 0ap(Am(T)) U [-0ap(Am(T))].

(iii) If m is odd and A, (T) has finite rank k, then the rank of Ap(T') is even.
(iv) If Ki(T) # {0} and 1 & 0,(CTC), then C(K(T)) has at least two. distinct
elements of H.

(v) Put F,(T) := ﬂ ker(A;(T)) forn = 1,2,--- ,m — 1. If T is a strict
n<j<m-—1

m-complex symmetric operator and F1(T) # {0}, then CF,(T) is a nontrivial

invariant subspace for T forn=1,2,--- ,m— 1.

Example 5.3 Let C be a conjugation operator given by C(z1, 22, 23) = (%1, %3, Z3)
' : 010
on C3. If R=1+ N where N = (O 0 3) on C3, then N3 = 0. Hence

000
0 0
0 0] #0.
0 54

Thus R is not a 4-complex symmetric operator. Hence R = I + N 1is 5-complex
symmetric with C.

A4(R) = Ay(N) = 6N**CN?C = (

OO O

An operator T € L(H) is said to be normaloid if |T'|| = r(T) where r(T) is
the spectral radius of T. A vector z € H is said to be isotropic if (z,Cz) = 0
([14]). We next state some conditions for (m -+ 1)-complex symmetric operators to
be m-complex symmetric operators.

Theorem 5.4 Let T € L(H) and C be a conjugation on H. Suppose Apy1(T) =
0, A (T) is normaloid, and an eigenvector corresponding to every eigenvalue in
0p(Am(T)) is not isotropic. Assume that one of the following statements holds;
(i) When m is even, for every u € 04p(Am(T)) there exist A € o(A(T)) and a
sequence {z,} of unit vectors such that |A\|™ = |u| and

lim [[(Am(T) = p)znll = lim [[(Ar(T) = A)za|| = 0.



(ii) When m is odd, for every u € oop(Apm(T)) there exist A € o(T™* + CTC’) and
a sequence {z,} of unit vectors such that |\|™ = |u| and

s [(An(T) = w)eall = lm (" + CTC) ~ Nawll = 0.
Then A, (T) = 0.

Corollary 5.5 Let C' be a conjugation on H and let T € L(H) be a strict (m+1)-
complex symmetric operator, and an eigenvector corresponding to every eigenvalue
in op(Am(T)) be not isotropic. Assume that one of the following statements holds;
(i) When m is even, for every p € 04p(An(T)), there exist A € o(Ay(T)) and a
sequence {z,} of unit vectors such that |\|™ = |u| and

Tim [[(An(T) = )] = Tim [[(A4(T) = \)zal| = 0.

(ii) When m is odd, for every u € o4p(Am(T)), there ezist A € o(T* + CTC) and
a sequence {z,} of unit vectors such that |\|™ = |u| and

lim [(An(T) ~ sl = lim (7" +CTC) = Nl = .

Then Am(T) is not normaloid.

Theorem 5.6 For an operator T € L(H), let Ao(T) = 0. If T is self-adjoint or
Ql(T) is p-hyponormal, then A(T) = 0.

Corollary 5.7 Let C be a conjugation operator on H and let H and K be self-
adjoint operators. Suppose that T = H +iK € L(H) satisfies HCK = KCH and
CRC > R, where R=14(HK — KH). If Ay(T) =0, then A(T) = 0.

Theorem 5.8 If A (T') is hyponormal and Apy1(T) = 0, then ker(Ap(T) —A)N
ker(A:(T) — A) = {0} for any nonzero X € C.

Corollary 5.9 Let C be a conjugation on H. Let self-adjoint operators H and K
satisfy HCK = KCH and CRC > R, where R =i{(HK — KH). For an operator
T =H+iK, if Do(T) = 0, then ker(A(T) — X) = {0} for any nonzero A € C.
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