Some operator divergences based on Petz-Bregman divergence

1. Introduction

This report is based on [12]. Throughout this report, a bounded linear operator \(T \) on a Hilbert space \(H \) is positive (denoted by \(T \geq 0 \)) if \(\langle T\xi, \xi \rangle \geq 0 \) for all \(\xi \in H \), and \(T \) is strictly positive (denoted by \(T > 0 \)) if \(T \) is invertible and positive.

For strictly positive operators \(A \) and \(B \), \(A \triangleleft_{x} B \) is defined as follows ([3, 4, 13] etc.):

\[
A \triangleleft_{x} B \equiv A^{\frac{1}{2}} \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right)^{x} A^{\frac{1}{2}}, \quad x \in \mathbb{R}.
\]

We call \(A \triangleleft_{x} B \) a path passing through \(A = A \triangleleft_{0} B \) and \(B = A \triangleleft_{1} B \). If \(x \in [0, 1] \), the path \(A \triangleleft_{x} B \) coincides with the weighted geometric operator mean denoted by \(A \natural_{x} B \) (cf. [15]). We remark that \(A \triangleleft_{x} B = B \triangleleft_{1-x} A \) holds for \(x \in \mathbb{R} \).

Fujii and Kamei [2] defined the following relative operator entropy for strictly positive operators \(A \) and \(B \):

\[
S(A|B) \equiv A^{\frac{1}{2}} \log \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right) A^{\frac{1}{2}}
\]

\[
= \frac{d}{dx} A \triangleleft_{x} B \bigg|_{x=0}.
\]

We can regard \(S(A|B) \) as the gradient of the tangent line at \(x = 0 \) of the path \(A \triangleleft_{x} B \). Furuta [7] defined generalized relative operator entropy as follows:

\[
S_{\alpha}(A|B) \equiv A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^{\alpha} \log(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}) A^{\frac{1}{2}}
\]

\[
= \frac{d}{dx} A \triangleleft_{x} B \bigg|_{x=\alpha}, \quad \alpha \in \mathbb{R}.
\]

We regard \(S_{\alpha}(A|B) \) as the gradient of the tangent line at \(x = \alpha \) of the path. We know immediately \(S_{0}(A|B) = S(A|B) \). Yanagi, Kuriyama and Furuiichi [18] introduced Tsallis relative operator entropy as follows:

\[
T_{\alpha}(A|B) \equiv \frac{A \triangleleft_{\alpha} B - A}{\alpha}, \quad \alpha \in (0, 1].
\]

\(T_{\alpha}(A|B) \) can be regarded as the average rate of change of \(A \triangleleft_{x} B \) from \(x = 0 \) to \(x = \alpha \). Since \(\lim_{x \to 0} \frac{a^{x} - 1}{x} = \log a \) holds for \(a > 0 \), we have \(T_{0}(A|B) \equiv \lim_{\alpha \to 0} T_{\alpha}(A|B) = S(A|B) \).

Tsallis relative operator entropy can be extended as the notion for \(\alpha \in \mathbb{R} \). In this case, we use \(\triangleleft_{\alpha} \) instead of \(\triangleleft_{x} \). In [8], we had given the following relations among these relative operator entropies:

\[
(*) \quad S_{1}(A|B) \geq -T_{1-\alpha}(B|A) \geq S_{\alpha}(A|B) \geq T_{\alpha}(A|B) \geq S(A|B), \quad \alpha \in (0, 1].
\]
Fujii [1] defined operator valued α-divergence $D_\alpha(A|B)$ for $\alpha \in (0,1)$ as follows:

$$D_\alpha(A|B) \equiv \frac{A \nabla_\alpha B - A \#_\alpha B}{\alpha(1-\alpha)},$$

where $A \nabla_\alpha B \equiv (1-\alpha)A + \alpha B$ is the weighted arithmetic operator mean. The operator valued α-divergence has the following relations at end points for interval $(0,1)$.

Theorem A ([5, 6]). For strictly positive operators A and B, the following hold:

$$D_0(A|B) \equiv \lim_{\alpha \to +0} D_\alpha(A|B) = B - A - S(A|B),$$

$$D_1(A|B) \equiv \lim_{\alpha \to 1-0} D_\alpha(A|B) = A - B - S(B|A).$$

Petz [17] introduced the right hand side in the first equation in Theorem A as an operator divergence, so we call $D_0(A|B)$ Petz-Bregman divergence. We remark that $D_1(A|B) = D_0(B|A)$ holds. Figure 1 shows our interpretation of $D_0(A|B)$.

In [10], we showed the following relation between operator valued α-divergence and Tsallis relative operator entropy:

Theorem B ([10]). For strictly positive operators A and B, the following holds:

$$D_\alpha(A|B) = -T_{1-\alpha}(B|A) - T_\alpha(A|B) \quad \text{for } \alpha \in (0,1).$$

Theorem B shows that $D_\alpha(A|B)$ is a difference between two terms in $(*)$. From this fact, we regard the differences between the relative operator entropies in $(*)$ as operator divergences. In section 2, we represent these operator divergences by using Petz-Bregman divergence.

On the other hand, for an operator valued smooth function $\Psi : C \to B(H)$ and $X, Y \in C$, where C is a convex set in a Banach space, Petz [17] defined a divergence
$D_{\Psi}(X, Y)$ as follows:

$$D_{\Psi}(X, Y) \equiv \Psi(X) - \Psi(Y) - \lim_{\alpha \to +0} \frac{\Psi(Y + \alpha(X - Y)) - \Psi(Y)}{\alpha}.$$

We call $D_{\Psi}(X, Y)$ \textit{\Psi-Bregman divergence} of Y and X in this report. Petz gave some examples for invertible density matrices X and Y. If $\Psi(X) = \eta(X) \equiv X \log X$ and X commutes with Y, then $D_{\Psi}(X, Y) = Y - X + X(\log X - \log Y)$, which is the usual quantum relative entropy.

In section 3, we let $C = \mathbb{R}$ and show $D_{\Psi}(x, y) = D_{0}(A \natural_{v} B | A \natural_{x} B)$ for $\Psi(t) = A \natural_{t} B$ and $x, y \in \mathbb{R}$. Then we have $D_{\Psi}(1, 0) = D_{0}(A|B)$ in particular.

The relation of the differences among $\Delta_{1}, \ldots, \Delta_{10}$ are given as in Table 1.

Lemma 2.1 ([8, 10]). For strictly positive operators A and B, the following hold for $s, t \in \mathbb{R}$:

(1) $S_{t}(A|A \natural_{s} B) = sS_{st}(A|B)$,

(2) $S_{t}(A|B) = -S_{1-t}(B|A)$.

In section 4, we show the results corresponding to those in section 2 on expanded relative operator entropies defined by operator power mean.
The following are the results on Δ_1 and Δ_2.

Theorem 2.2. For strictly positive operators A and B, the following hold:

(1) \[\Delta_1 = T_\alpha(A|B) - S(A|B) = \frac{1}{\alpha}D_0(A|A \#_{\alpha} B) \] for $\alpha \in (0, 1]$,

(2) \[\Delta_2 = S_\alpha(A|B) - T_\alpha(A|B) = \frac{1}{\alpha}D_0(A \#_{\alpha} B|A) \] for $\alpha \in (0, 1]$.

Proof. (1) By (1) in Lemma 2.1, we have

\[
T_\alpha(A|B) - S(A|B) = \frac{A \#_{\alpha} B - A}{\alpha} - S(A|B) = \frac{1}{\alpha} \left(A \#_{\alpha} B - A - \alpha S(A|B) \right) = \frac{1}{\alpha} \left(A \#_{\alpha} B - A - S(A|A \#_{\alpha} B) \right) = \frac{1}{\alpha} D_0(A|A \#_{\alpha} B).
\]

(2) By Lemma 2.1, we have

\[
S_\alpha(A|B) - T_\alpha(A|B) = \frac{A - A \#_{\alpha} B}{\alpha} + S_\alpha(A|B) = \frac{1}{\alpha} \left(A - A \#_{\alpha} B + \alpha S_\alpha(A|B) \right) = \frac{1}{\alpha} \left(A - A \#_{\alpha} B + S_1(A|A \#_{\alpha} B) \right) = \frac{1}{\alpha} D_0(A \#_{\alpha} B|A).
\]

Remark 1. By exchanging A for B and replacing α with $1 - \alpha$ for (1) and (2), we have the following relations:

(1) \[\Delta_4 = S_1(A|B) + T_{1-\alpha}(B|A) = \frac{1}{1-\alpha}D_0(B|A \#_\alpha B) \] for $\alpha \in [0, 1)$,

(2) \[\Delta_3 = -T_{1-\alpha}(B|A) - S_\alpha(A|B) = \frac{1}{1-\alpha}D_0(A \#_{\alpha} B|B) \] for $\alpha \in [0, 1)$.

Table 1

<table>
<thead>
<tr>
<th>Expression</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_1(A</td>
<td>B) - S(A</td>
</tr>
<tr>
<td>$T_\alpha(A</td>
<td>B)$</td>
</tr>
<tr>
<td>$S_\alpha(A</td>
<td>B) - S(A</td>
</tr>
<tr>
<td>$T_\alpha(A</td>
<td>B) - S(A</td>
</tr>
<tr>
<td>$S_1(A</td>
<td>B) - S_\alpha(A</td>
</tr>
<tr>
<td>$S(A</td>
<td>B) - T_\alpha(A</td>
</tr>
<tr>
<td>$S_\alpha(A</td>
<td>B) - S(A</td>
</tr>
<tr>
<td>$T_\alpha(A</td>
<td>B) - S(A</td>
</tr>
<tr>
<td>0</td>
<td>\forall</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
S_1(A|B) - S(A|B) & \geq S_1(A|B) - T_\alpha(A|B) \geq S_1(A|B) - S_\alpha(A|B) \geq S_1(A|B) + T_{1-\alpha}(B|A) \geq 0, \\
-T_\alpha(A|B) - S(A|B) & \geq -T_{1-\alpha}(B|A) - T_\alpha(A|B) \geq -T_{1-\alpha}(B|A) - S_\alpha(A|B) \geq 0, \\
S_\alpha(A|B) - S(A|B) & \geq S_\alpha(A|B) - T_\alpha(A|B), \\
T_\alpha(A|B) - S(A|B) & = 0, \\
0 & = 0.
\end{align*}
\]
We give a geometrical interpretation for (1) in Theorem 2.2. Figure 2 and Figure 3 show $T_\alpha(A|B) - S(A|B)$ and $D_0(A|A \#_\alpha B)$ appeared in (1) in Theorem 2.2, respectively. Figure 4 is an image of (1) in Theorem 2.2.

Figure 2: An interpretation of $T_\alpha(A|B) - S(A|B)$.

Figure 3: An interpretation of $D_0(A|A \#_\alpha B) = A \#_\alpha B - A - S(A|A \#_\alpha B)$.
Figure 4: An image of $T_{\alpha}(A|B) - S(A|B) = \frac{1}{\alpha}D_{0}(A|A \#_{\alpha} B)$.

Theorem 2.2 leads to the next theorem.

Theorem 2.3. For strictly positive operators A and B, the following holds:

$$D_{\alpha}(A|B) = \frac{1}{1-\alpha}D_{0}(A \#_{\alpha} B|B) + \frac{1}{\alpha}D_{0}(A \#_{\alpha} B|A) \quad \text{for } \alpha \in (0,1).$$

Proof. By (2) in Theorem 2.2 and (2) in Remark 1, we have

$$D_{\alpha}(A|B) = -T_{1-\alpha}(B|A) - T_{\alpha}(A|B)$$
$$= (-T_{1-\alpha}(B|A) - S_{\alpha}(A|B)) + (S_{\alpha}(A|B) - T_{\alpha}(A|B))$$
$$= \frac{1}{1-\alpha}D_{0}(A \#_{\alpha} B|B) + \frac{1}{\alpha}D_{0}(A \#_{\alpha} B|A).$$

\[\square\]

By Theorem 2.3, we have

$$\alpha(1-\alpha)D_{\alpha}(A|B) = \alpha D_{0}(A \#_{\alpha} B|B) + (1-\alpha)D_{0}(A \#_{\alpha} B|A)$$
$$= \alpha(B - A \#_{\alpha} B - S(A \#_{\alpha} B|B)) + (1-\alpha)(A - A \#_{\alpha} B - S(A \#_{\alpha} B|A))$$
$$= A \nabla_{\alpha} B - A \#_{\alpha} B - ((1-\alpha)S(A \#_{\alpha} B|A) + \alpha S(A \#_{\alpha} B|B)),$$

and then

$$(1-\alpha)S(A \#_{\alpha} B|A) + \alpha S(A \#_{\alpha} B|B) = 0,$$

since $D_{\alpha}(A|B) = \frac{A \nabla_{\alpha} B - A \#_{\alpha} B}{\alpha(1-\alpha)}$. This means that $A \#_{\alpha} B$ is a solution of $(1-\alpha)S(X|A) + \alpha S(X|B) = 0$ which is the Karcher equation concerning two operators A and B. In this case, we can rewrite the result of Lawson-Lim [16] as follows:
Theorem 2.4 ([16]). For strictly positive operators A, B and X, and for $\alpha \in [0,1],
(1 - \alpha)S(X|A) + \alpha S(X|B) = 0$ if and only if $X = A \natural_{\alpha} B$.

For readers’ convenience, we give a direct proof of this theorem.

Proof. It is obvious if $\alpha = 0$. Otherwise, we have
$$
(1 - \alpha)S(X|A) + \alpha S(X|B) = 0 $$
$$
\iff \log(X^{-\frac{1}{2}}AX^{-\frac{1}{2}})^{1-\alpha} + \log(X^{-\frac{1}{2}}BX^{-\frac{1}{2}})^{\alpha} = 0 $$
$$
\iff (X^{-\frac{1}{2}}BX^{-\frac{1}{2}})^{\alpha} = (X^{-\frac{1}{2}}AX^{-\frac{1}{2}})^{1-\alpha} $$
$$
\iff X^{-\frac{1}{2}}BX^{-\frac{1}{2}} = (X^{-\frac{1}{2}}AX^{-\frac{1}{2}})^{\alpha-1} $$
$$
\iff B = X^{\frac{1}{2}}(X^{\frac{1}{2}}A^{-1}X^{\frac{1}{2}})^{\frac{1}{2}}X^{-\frac{1}{2}}A $$
$$
\iff A^{-\frac{1}{2}}BA^{-\frac{1}{2}} = (A^{-\frac{1}{2}}XA^{-\frac{1}{2}})^{\frac{1}{2}} $$
$$
\iff (A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\alpha} = A^{-\frac{1}{2}}XA^{-\frac{1}{2}} $$
$$
\iff X = A \natural_{\alpha} B.
$$

Remark 2. This theorem holds even if α is any real number [14].

3. Ψ-Bregman divergences on the differences of relative operator entropies

In this section, we consider Ψ-Bregman divergence in the case $C = \mathbb{R}$ as follows: For an operator valued smooth function $\Psi : \mathbb{R} \to B(H)$ and $x, y \in \mathbb{R},$
$$
D_{\Psi}(x, y) \equiv \Psi(x) - \Psi(y) - \lim_{\alpha \to +0} \frac{\Psi(y + \alpha(x - y)) - \Psi(y)}{\alpha}.
$$
From the following theorem, it is natural that we consider $D_{\Psi}(1,0)$ as a divergence of operators A and B.

Theorem 3.1. Let $\Psi(t) = A \natural_{t} B$ for strictly positive operators A and B. Then for $x, y \in \mathbb{R},$
$$
D_{\Psi}(x, y) = D_{0}(A \mathfrak{h}_{y} B|A \natural_{x} B).
$$
In particular, $D_{\Psi}(1, 0) = D_{0}(A|B)$.

Proof. $D_{\Psi}(x, y) = A \mathfrak{h}_{x} B - A \mathfrak{h}_{y} B - \lim_{\alpha \to +0} \frac{A \mathfrak{h}_{y + \alpha(x-y)} B - A \mathfrak{h}_{y} B}{\alpha}$
$$
= A \mathfrak{h}_{x} B - A \mathfrak{h}_{y} B - \lim_{\alpha \to +0} \frac{(A \mathfrak{h}_{y} B) \mathfrak{h}_{\alpha} (A \mathfrak{h}_{x} B) - A \mathfrak{h}_{y} B}{\alpha} \quad \text{by [11, Lemma 2.2]}
$$
$$
= A \mathfrak{h}_{x} B - A \mathfrak{h}_{y} B - S(A \mathfrak{h}_{y} B|A \mathfrak{h}_{x} B) = D_{0}(A \mathfrak{h}_{y} B|A \mathfrak{h}_{x} B).
$$

In the rest of this section, we obtain $D_{\Psi}(1, 0)$ for functions Ψ which relate to the operator divergences $\triangle_{1}, \triangle_{2}, \triangle_{5}$ and \triangle_{6} in section 2.
Theorem 3.2. For strictly positive operators A and B, the following hold:

1. If $\Psi(t) = T_t(A|B) - S(A|B)$, then
 \[D_{\Psi}(1,0) = D_0(A|B) - \frac{1}{2}S(A|B)A^{-1}S(A|B). \]

2. If $\Psi(t) = S_t(A|B) - S(A|B)$, then
 \[D_{\Psi}(1,0) = D_0(A|B) + D_0(B|A) - S(A|B)A^{-1}S(A|B). \]

3. If $\Psi(t) = S_t(A|B) - T_t(A|B)$, then
 \[D_{\Psi}(1,0) = D_0(B|A) - \frac{1}{2}S(A|B)A^{-1}S(A|B). \]

4. If $\Psi(t) = D_t(A|B)$ for $t \in [0,1]$, then
 \[D_{\Psi}(1,0) = D_0(B|A) - 2D_0(A|B) + \frac{1}{2}S(A|B)A^{-1}S(A|B). \]

Here, we give a proof of (1). The others are obtained similarly.

Proof. (1) For $a > 0$, we have
 \[\lim_{\alpha \to 0} \frac{a^{\alpha} - 1 - \alpha \log a}{\alpha^2} = \frac{1}{2}(\log a)^2. \]
Replacing a by $A^{-\frac{1}{2}}BA^{-\frac{1}{2}}$, we have
 \[\lim_{\alpha \to 0} \frac{T_{\alpha}(A|B) - S(A|B)}{\alpha} = \frac{1}{2}A^{\frac{1}{2}}(\log(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}))^2 A^{\frac{1}{2}} = \frac{1}{2}S(A|B)A^{-1}S(A|B), \]
then
 \[D_{\Psi}(1,0) = T_1(A|B) - S(A|B) - (T_0(A|B) - S(A|B)) - \lim_{\alpha \to 0} \frac{T_{\alpha}(A|B) - S(A|B) - (T_0(A|B) - S(A|B))}{\alpha} \]
 \[= T_1(A|B) - S(A|B) - \lim_{\alpha \to 0} \frac{T_{\alpha}(A|B) - S(A|B)}{\alpha} \]
 \[= D_0(A|B) - \frac{1}{2}S(A|B)A^{-1}S(A|B). \]
4. Divergences given by the differences of expanded relative operator entropies

In this section, we try to generalize Theorems 2.2 and 2.3 in section 2 for operator power mean. For \(A, B > 0, \ x \in [0, 1] \) and \(r \in [-1, 1] \), operator power mean \(A \#_{x,r} B \) is defined as follows:

\[
A \#_{x,r} B \equiv A^{\frac{1}{2}} \left\{ (1-x)I + x \left(A^{-\frac{1}{2}} BA^{-\frac{1}{2}} \right)^r \right\}^{\frac{1}{r}} A^{\frac{1}{2}} = A \#_{\frac{r}{2}} \left\{ A \nabla_x (A \#_{r} B) \right\}.
\]

We remark that \(A \#_{x,r} B = B \#_{1-x,r} A \) holds for \(x \in [0, 1] \) and \(r \in [-1, 1] \) (cf. [9], [11]). To preserve \((1-x)I + x \left(A^{-\frac{1}{2}} BA^{-\frac{1}{2}} \right)^r \geq 0 \), we have to impose \(x \in [0, 1] \).

The operator power mean is a path passing through \(A = A \#_{0,r} B \) and \(B = A \#_{1,r} B \), and combines arithmetic, geometric and harmonic means, that is, \(A \#_{x,1} B = A \nabla_{x} B, A \#_{x,0} B \equiv \lim_{r \arrow 0} A \#_{x,r} B = A \#_{x} B \) and \(A \#_{x,-1} B = A \Delta_{x} B = (A^{-1} \nabla_{x} B^{-1})^{-1} \).

For \(\alpha \in [0, 1] \) and \(r \in [-1, 1] \), expanded relative operator entropy \(S_{\alpha,r}(A|B) \) and expanded Tsallis relative operator entropy \(T_{\alpha,r}(A|B) \) are defined as follows (cf. [9]):

\[
S_{\alpha,r}(A|B) \equiv A^{\frac{1}{2}} \left\{ (1-\alpha \lambda)I + \alpha \left(A^{-\frac{1}{2}} BA^{-\frac{1}{2}} \right)^r \right\}^{\frac{1}{r}} \frac{(A^{-\frac{1}{2}} BA^{-\frac{1}{2}})^r - I}{r} A^{\frac{1}{2}} = \frac{d}{dx} A \#_{x,r} B \bigg|_{x=\alpha} = (A \#_{\alpha,r} B) (A \nabla_{\alpha} (A \#_{r} B))^{-1} S_{0,r}(A|B) (r \neq 0),
\]

\[
S_{\alpha,0}(A|B) \equiv \lim_{r \arrow 0} S_{\alpha,r}(A|B) = S_{\alpha}(A|B),
\]

\[
T_{\alpha,r}(A|B) \equiv \frac{A \#_{\alpha,r} B - A}{\alpha} (\alpha \neq 0), \quad T_{0,r}(A|B) \equiv \lim_{\alpha \arrow 0} T_{\alpha,r}(A|B) = T_{r}(A|B).
\]

We remark that \(S_{0,r}(A|B) = T_{r}(A|B) \), \(S_{1,r}(A|B) = -T_{r}(B|A) \) and \(T_{1,r}(A|B) = B - A \) hold for \(r \in [-1, 1] \). A similar inequality to (*) also holds for these expanded relative operator entropies, which is given as follows [9]:

\[
(**) \ S_{0,r}(A|B) \leq T_{\alpha,r}(A|B) \leq S_{\alpha,r}(A|B) \leq -T_{1-\alpha,r}(B|A) \leq S_{1,r}(A|B), \quad \alpha \in [0, 1], \ r \in [-1, 1].
\]

If \(r = 0 \), then this inequality becomes (*).

We defined expanded operator valued \(\alpha \)-divergence \(D_{\alpha,r}(A|B) \) as follows [11]:

\[
D_{\alpha,r}(A|B) \equiv -T_{1-\alpha,r}(B|A) - T_{\alpha,r}(A|B), \quad \alpha \in [0, 1], \ r \in [-1, 1].
\]

For \(\alpha \in (0, 1) \), we can represent \(D_{\alpha,r}(A|B) \) as follows:

\[
D_{\alpha,r}(A|B) = \frac{A \nabla_{\alpha} B - A \#_{\alpha,r} B}{\alpha(1-\alpha)}.
\]

We gave the following relations on expanded operator valued \(\alpha \)-divergence.

Proposition 4.1 ([11], Proposition 4.4). For strictly positive operators \(A \) and \(B \), the following hold:

1. \(D_{\alpha,0}(A|B) = D_{\alpha}(A|B) \) for \(\alpha \in [0, 1] \),
2. \(D_{\alpha,1}(A|B) = 0 \) for \(\alpha \in [0, 1] \),
3. \(D_{0,r}(A|B) = B - A - S_{0,r}(A|B) \) for \(r \in [-1, 1] \),
4. \(D_{1,r}(A|B) = A - B - S_{0,r}(B|A) = D_{0,r}(B|A) \) for \(r \in [-1, 1] \).
We call $D_{0,r}(A|B) = B - A - S_{0,r}(A|B)$ expanded Petz-Bregman divergence.

Similarly to section 2, we consider the differences between two expanded relative operator entropies in $(**)$ as operator divergence. There are 10 such divergences.

\[T_{\alpha,r}(A|B) - S_{0,r}(A|B), \quad S_{\alpha,r}(A|B) - T_{\alpha,r}(A|B), \]
\[-T_{1-\alpha,r}(B|A) - S_{\alpha,r}(A|B), \quad S_{1,r}(A|B) + T_{1-\alpha,r}(B|A), \]
\[S_{\alpha,r}(A|B) - S_{0,r}(A|B), \quad -T_{1-\alpha,r}(B|A) - T_{\alpha,r}(A|B) = D_{\alpha,r}(A|B), \]
\[S_{1,r}(A|B) - S_{\alpha,r}(A|B), \quad -T_{1-\alpha,r}(B|A) - S_{0,r}(A|B), \]
\[S_{1,r}(A|B) - T_{\alpha,r}(A|B), \quad S_{1,r}(A|B) - S_{0,r}(A|B). \]

The relations of these differences are given as in Table 2. If $r = 0$, then this table coincides with Table 1.

$S_{1,r}(A	B) - S_{0,r}(A	B) \geq S_{1,r}(A	B) - T_{\alpha,r}(A	B) \geq S_{\alpha,r}(A	B) - S_{0,r}(A	B) \geq S_{1,r}(A	B) + T_{1-\alpha,r}(B	A) \geq 0$	\forall	\forall	\forall
$-T_{1-\alpha,r}(B	A) - S_{0,r}(A	B) \geq -T_{1-\alpha,r}(B	A) - T_{\alpha,r}(A	B) \geq -T_{1-\alpha,r}(B	A) - S_{\alpha,r}(A	B) \geq 0$	\forall	\forall			
$S_{\alpha,r}(A	B) - S_{0,r}(A	B) \geq S_{\alpha,r}(A	B) - T_{\alpha,r}(A	B)$	\forall	\forall					
$T_{\alpha,r}(A	B) - S_{0,r}(A	B)$	0								
\forall	0										

We represent these operator divergences by using expanded Petz-Bregman divergence. Theorems 4.2 and 4.3 correspond to Theorems 2.2 and 2.3, respectively.

Theorem 4.2. For strictly positive operators A and B and $r \in [-1, 1]$, the following hold:

1. $T_{\alpha,r}(A|B) - S_{0,r}(A|B) = \frac{1}{\alpha} D_{0,r}(A|A \#_{0,r} B)$ for $\alpha \in (0, 1)$,
2. $S_{\alpha,r}(A|B) - T_{\alpha,r}(A|B) = \frac{1}{\alpha} D_{0,r}(A \#_{\alpha,r} B|A)$ for $\alpha \in (0, 1)$.

Theorem 4.3. For strictly positive operators A and B and $r \in [-1, 1]$, the following holds:

\[D_{\alpha,r}(A|B) = \frac{1}{1-\alpha} D_{0,r}(A \#_{\alpha,r} B|B) + \frac{1}{\alpha} D_{0,r}(A \#_{\alpha,r} B|A) \] for $\alpha \in (0, 1)$.

References

(1) MAEBASHI INSTITUTE OF TECHNOLOGY, 460-1, KAMISADORI-MACHI, MAEBASHI, GUNMA, JAPAN, 371-0816. isa@maebashi-it.ac.jp
(2) MAEBASHI INSTITUTE OF TECHNOLOGY, 460-1, KAMISADORI-MACHI, MAEBASHI, GUNMA, JAPAN, 371-0816. m-ito@maebashi-it.ac.jp
(3) 1-1-3, SAKURAGAOKA, KANMAKICHO, KITAKATURAGI-GUN, NARA, JAPAN, 639-0202. ekamei1947@yahoo.co.jp
(4) Maebashi Institute of Technology, 460-1, Kamisadori-machi, Maebashi, Gunma, Japan, 371-0816. tohyama@maebashi-it.ac.jp

(5) Maebashi Institute of Technology, 460-1, Kamisadori-machi, Maebashi, Gunma, Japan, 371-0816. masayukiwatanabe@maebashi-it.ac.jp