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1. Introduction

In this report we consider the solvability of the parabolic-elliptic chemotaxis system

( % — AD(b) + V- (K(b,c)bVc) = f(b,c) in Q :=(0,00) x £,
—Ac+c=b in (0, 00) X €2,
(P) g ¢
(=VD(b) + K(b,c)bVc) - v =10, = 0 on (0,00) x 09,
|6(0,z) = bo(z), z € Q.

Here Q is a bounded domain in R® (n < 3) with C®-boundary, b: Q - R, c: @ = R
are unknown functions and D € C(R), K,f € C(R?) are given functions. In 1970
Keller and Segel proposed the fully parabolic version of (P) with D(b) = b, K(b,c) = 1
and f(b,c) = 0. This system describes a part of the life cycle of cellular slime molds
with chemotaxis. In more detail, slime molds move towards higher concentrations of the
chemical substance. Here b(t, ) represents the density of the cell population and c(t, z)
shows the concentration of the signal substance at place z and time ¢. -

As introduced by Bellomo, Bellouquid, Tao and Winkler [2], a number of variations
of the original Keller-Segel system are proposed and studied. In those studies, the proof
of existence of local solutions is based on the theory by Ladyzhenskaya, Solonnikova and
Uraltseva [7] or the theory by Amann [1]. These are based on linear theory, which need
linearlization, and thus the proof is indirect; note that these studies need the smoothness
or boundedness for initial data to prove existence of local solutions. As to the problem
(P), Marinoschi [9] established existence of local solutions to (P) by an operator theo-
retic approach under the Lipschitz condition for D, K, f. This approach for existence of
solutions to (P) by Marinoschi was new, however, it is insufficient in terms of imposing
the smallness of [|Bol| 2. Concerning this problem, in [12] the smallness assumption
was removed in the case with Lipschitz and nondegenerate diffusion and with superlinear
growth term f(b,c). However these results cannot be applied to the more general case
such as porous medium-type diffusion D(r) = r™, which is studied in many papers (see
e.g., Chung, Kang and Kim [4]). More precisely, porous medium-type diffusion is moti-
vated from a biological point of view (see Szymanska, Morales-Rodrigo, Lachowicz and
Chaplain [11]), furthermore, more many studies with quasilinear diffusion are found in
[6]. Therefore it is important to extend the result by Marinoschi to the case with more
general diffusion. Recently, we obtained existence results in the case of non-Lipschitz and



degenerate diffusion in [13]. These results are obtained as an extension of [12], which is
proved by the approximation of diffusion and it is effective that the smallness assumption
- for |[bo] L2y Was removed. However the assumption in these results were strong, because
of the way of approximation. In [13] we consider the linear approximation of D as follows:

D.(r) :== D(r +¢),

D,(r) r<R
DE(r) = ’ ’ 0<e<l<R
e (T) {DE(RHD;(R)(T—RL rSR <e<l<

This approximation loses some condition for D and thus to prove local existence of solu-
tions we need a technical condition. Also we note that the result in [13] did not assert
the case with growth term.

The purpose of this report is to improve this problem and obtain existence results
in more general case. To overcome this problem, instead of linear approximation, we
consider the Yosida approximation of D, as

DE,A(T) = DE(JE’)\(T‘)),
Joa(r) = (I +AD)7'(r), 0<e <],

where D, is the function defined as above. Note that the Yosida approximation preserves
a growth property:
D(r) 2 dyr™ = D, (1) = didea(r)™.

This is one of advantages of the Yosida approximation, whereas linear approximation in
[13] loses such property.

In this report we make the following assumption on D, K and f:
(A1) DeC\R), D()>0(r>0), Dr)>dr™ @m>n~—1, 3d>0),
(A2) D'i(r)<d, ( / ' D'%(s) ds + 1) , rD'(r) < dsD(r) (3dg,ds > 0),
(A3) (r1,72) = K(ry,m3)r € C* (R?),

l——— (K(ri,m2)m)| € k (D’% (ry) + 1) (3 ki, > 0),

\5—* (K(’f‘l,’rg)’fl) < kz (3 kg > 0),
T2

(A4)  |K(ry,ro)r| < ks (rfp'%(n) + 1) @Be[0,1- 2], 3k > 0),

where 2* denotes the Sobolev embedding exponent with H Q) — L¥ (D),
(A5) (i) f is Lipschitz continuous on R? or

(i) f(b,c) = |b|*"'b, where 2<a+1<2m+(m+ 1)—-

We also define weak solutions of (P) as follows.
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Definition 1.1. Let T > 0. A pair (b, ¢) is said to be a weak solution of (P) on [0, T} if
(a) 0 <be C([0,T]; L)) N HY(0,T; (H'(Q))'), D(b) € L*(0,T; H(%)),
(b) 0 < ce C([0,T); H*(R)),
(c) b(0) = by and for any ¥ € H'(R),

db ‘
D), D) -V — | K(b,cbVe Vo= | fb,w,
(F08) o e [700 90~ [ Kopve Vo= [ 6.0

/ﬂvc.v¢+/nmp=/ﬂbw.

In particular, if T > 0 can be taken arbitrarily, then (b, c) is called a global weak solution
of (P).

Then our main results read as follows.

Theorem 1.1. Let n < 3. Assume that the conditions (A1)—(A5) are satisfied. Let

0 < by € L*(Q) and fob° D(r)dr € L'(2). Then there exists T > 0 such that (P) possesses
a weak solution (b,c) on [0,T). Moreover, the following estimates hold:

16D 2y < €, 1 €[0,T],
b(t)

D(r)dr <C, telo,T],
LY

Vel oy £ €, t €0, T,

0

where C is a constant which depends on ||bg|| j2(q) and ” fob" D(r)dr .

Under an additional condition, global existence of solutions is established.

Theorem 1.2. Under the assumption of Theorem 1.1 suppose further- that B8 = 0 in the
condition (A4), that D'(r) < dgr™! for some dy > 0 and that « < m in the condition
(A5). Then there ezists a global weak solution of (P).

This report is organized as follows. In Section 2 we introduce an approximate problem
and give an existence result for approximate solutions. Section 3 gives estimates for the
approximate solutions. Section 4 is devoted to convergence of approximate solutions and
gives the proof of Theorem 1.1. Finally we deal with global existence of solutions in

Section 5.

2. Approximate Problem

In what follows, we assume the same hypothesis as in Theorem 1.1 and assume (ii) in
(A5); we can also prove the case (i) in (A5) by a similar way. We define the real Hilbert
spaces V and H as
’ V:.=HYQ) and H :=L*Q)



equipped with standard inner products. We shall denote by ||- || and || - || the norms in
V and H, respectively. Then we have V C H C V' with dense and continuous injections.
Introducing the operator Ay : D(Aa) C H — H as

Ap = —A with D(Ap) = {u e H*(Q); g'% =0 on 8(2} ,

we define the inner product and norm on V' as
(v,0)ys = (v,(I + An) 1:‘7>v',v for v,7 € V',
lwllv: = ||( + Aa)~ v][v forve V'

To show existence of solutions to (P) we introduce the approximate system

(& ADAB)+ V- (Kea(b, V) = Foa(bre) in (0,00) X9
21) ) —Ac+c= J (D) Ny in (0,00) x €,
(=V D5 (b) + Kep(b,c)bVe) - v =0, 3= 0 on (0,00) x 9.
(b(0,2) = bo(z), z € Q,

where 0 < e, A <1 and

De(r) = D(r+¢), Dea(r) = D(Jep(r)), Jealr) =+ D)7 (r),

Ke(Jea(ry),m2) Jea(r)
T

KE(Tl,TQ) = K(T’l +5,T2), KE’)\(T'I,Tz) L=

and f;  is the approximation which varies depending on the form of f: if f is Lipschitz
continuous then f; \(r1,72) := f(Jea(r1),72), else if f(ry,m9) == |r1|*"'ry then

ferlry,ra) = foa(r1) = (T + Af) 7 (Jea(r1),ma)-
Lemma 2.1. Let 0 <€, A <l Let D, 5 and K. be as above. Then

D'(e)

-1
—_— < D <= >
1 + ADI(E) — DS,)«(T) —— < o0 (T S O)

(2.2) 0< 3
and (r1,72) = K \(r1,7m2)711 18 Lipschitz continuous on R?. Moreover,
(Al)ep Diy(r) >0, s,\(T) > diJea(r)™,

(A2): 2 ‘DeA( ) < dy (/ D s)ds + 1) Jex(r) D 5(r) £ d3De(r),
(A3).s (r1,72) ¥ Kep(ri,ra)rs € CHR?),

0 s 2l
B <k (DEQ(Js,,\(Tl)) + 1) , ‘5;'2' (Kea(r1,7m2)71))| < ko,

,1
(Ad)cpn  [Kea(ry,re)ri] < ks (JE,A(Tl)ﬂDez(Jg,,\(Tl)) + 1) )

(Kea(r1,7m2)r1))

where m, d;, k; and B are the same constants as in the conditions (A1)~(A4).
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Proof. See [14]. O
We now state existence of solutions to the approximate problem.

Proposition 2.2 (Existence of Approximate Solutions). Let n < 3 and 0 < €,A < 1.
Then there exists T,y > 0 such that (2.1) has a unique weak solution (be y,ce ) satisfying

0 < by € C([0, T.pl; H)YN L0, T, p; V)N HY0, Tup; V'),
0 < cex € C([0,T:5); D(An)).

Proof. Let 0 < g,A < 1. In the same way as in {9, 12], we rewrite (2.1) as the abstract
Cauchy problem '

(2.3) {%It‘)(t) + A p\b(t) =0 aa. te(0,7T),

b(0) = by,
where Ac ) : D(A;p) = {beV; D (b) € V} =V C V' - V' is the nonlinear operator
defined as
(Aesb vy o= [ IDea(®)- V6= [ Kerts. bV V= [ fonlbica
Q Q

for any 9 € V, where we have denoted
Cp 1= ([ + AA)“IJE’A(b).

Then (b, c) is the weak solution of (2.1) if and only if b is the solution of (2.3). In the
previous papers [9, 12], we prove existence of solutions by considering the approximate
abstract Cauchy problem of (2.3), by proving the quasi-m-accretivity for an approximate
operator of A, », and by discussing convergence. We note that, as to the estimate for ¢,
it was sufficient to have

”CanQ(Q) S CR ”b”LQ(Q) (3 CR_ > 0)

Though the second equation in the approximate problem in present report seems to be
different from one in [9, 12], we can derive the same estimate for ¢, as

”Cb“m(n) < Cr ”Je,k(b)“w(n) <Cr “6”1,2(9):
and hence we can prove existence of solutions to (2.1) by a similar way. O

We conclude this section by a useful inequality for D, which will be used in estimates
for the approximate solutions.

Lemma 2.3. For each b € H' () it holds that
Je:,k(b) )1 2 Je,A(b) 2! 2
/ Di(s)ds|| <|v / D3 (s) ds
0 0

H()

+ (1 + d3)
L2()

Jea(b)
/ D.(s)ds
0

LY(Q)



Proof. We note that the assumption (A2) gives
(24)  rDur) = / (Da(s) + sD.(s)) ds < (1+do) / Du(s)ds, >0,
0 0

In light of Schwarz’s inequality and (2.4), we have

Jer®) 1 ? FANC) Te(6)
/ D2(s)ds | < JE,A(b)/ Di(s)ds < (1+ dg)/ D¢(s)ds.
0 0

0

Hence the assertion follows. )

3. Estimates for Approximate Solutions

In this section we derive some estimates for approximate solutions independent of £, A.
We give alower estimate for 7,"}*, where T"{* is the maximal existence time of the weak
solutions to (2.1) in Proposition 2.2.

Lemma 3.1 (Lower Bound for the Existence Time). There ezists a constant T > 0 such
that for all0 < e, X < 1,
s >T.

Next we give estimates for the approximate solutions.

Lemma 3.2 (Estimates for Approximate Solutions). Let T be as in Lemma 3.1. Then
Jorall0 < e, A < 1, '

(3.1) | | Jea (bea ()l 12y < po = 4/ HbO[[i'z(n) +1, te€l0,T],

2

Je,a\(be,A) /_1_
(32) [ pas < M,
0 12001 V)
Ja:.)‘(bc,)\(t))
(3.3) / Du(s)ds| <M, telo,T),
. 0 L)
(3.4) (Ve (Ol pooiy < Mz, t€[0,T],
(3'5) l!DE,z\(bE,A)Ili’—’(U,T; V) < 2M2:
(36) \ “fe,)x(be,)n ce,)‘)“ia(o)fp; V) < 2M37
dbex ||*
(3.7) ’ < My
dt || a0, vy

where My, My, Mj, M3 and M4. are positive constants which do not depend on €, .
Moreover there exists T' € (0,T) such that for each é € (0,T"),

Je,z\(bs,A) 1
% / D;; (s)ds
0 .

2
S MS)
L2(8, T V")

(3.8)

where Ms is a positive constant.
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4. Passage to the Limit as g,A = 0 (Local Existence)

Letting €, A — 0 in (2.1), we can obtain a pair (b, c) which solves (P). To discuss
convergence we note the following lemma (see [10, p. 51, Lemma 3.9]).

Lemma 4.1. Put 1 < p < oo, u € LP(Q) and (ua)a>o0 satisfies

ue = ¢ weakly in LP(2),
Uy =V a.e. on £,

where v is a measurable function on ). Then u = v.

Proof of Theorem 1.1. Put T :=T". From (3.1) there exists b € L2(0, T’; L*(Q2)) such that
the following convergence holds: -

(4.1) Jea(bes) = b weakly in L*(0,T; L*(92))

as €,A — 0. Hereafter, we denote a suitable subnet of (Jex(bex))o<er<1 againb by the
same notation (J; x(be))o<e <. Moreover, in light of (3.2) and (3.8), the Lions-Aubin
theorem (see [8, p. 57]) says that for each & € (0, T) there exists (s € L*(d, T; L*(Q) such
that ‘

- . Jz,A(b) 2
De(ber) = / D (s)ds = ¢ in L2(5,T; L¥(Q)) and a.e. on (5,T) x Q
0 )

as g, A — 0. Since D7} \y D! as £, A = 0, where D(r) := [; D'3(s) ds, we observe
(4.2) Jea(bep) = DIA(Dea(Jea(ben))) = D7H(¢) e on (5,T) x Q

" ase, A — 0. We can thus apply Lemma 4.1 for (4.1) and (4.2) to conclude that b = D~1(¢5)
a.e. on (6,T) x §. Since § is arbitrarily, it follows from (4.2) that

Je,A(bs,,\) = b a.e on (O,T) x )
as €, A = 0. Moreover, by (3.5), there exists a function ¢ € L*(0,7T; V) such that
De (b)) — ¢ weakly in L*(0,T;V) .

as £, A — 0. In particular, D, (b ) = ¢ weakly in L*((0,T) x Q) as ¢, A — 0. Noting
that De (b)) — D(b) a.e. on (0,T) x €2, we observe from Lemma 4.1 that ¢ = D(b).
Thus we have

D, x(b:») = D(b) weakly in L*(0,T;V)
as g, A = 0. Moreover, (3.1) and (3.6) imply that

(4.3) be L2(0,T; V) N HY(0,T; V")

and

db. db . g .
7 == weakly in L*(0,T; V")




as £, A — 0. On the other hand, using (3.1) together with the regularity result and. the
Sobolev embedding yields that (cs,)\( Docenct and (Veea(t))geercy are bounded in H 1(Q)
for each t € (0,T), and hence we see that

cer = ci=(I+ Apx)"'b in L*(0,T; H*(?)) and a.e. on (0,T) x £,
Ve = Ve in L*(0,T;L¥ (Q)) and a.e. on (0,T) x Q

as £, A — 0. Moreover, the condition (A3), , and the Sobolev embedding yield

2 . J&,A(be,)\) /1 2
Koo cebeall _yys < KCE | [ (D(s) +1) ds
L (8] 0

2
€, A(b)
< 2k3CEy ( / DE (s)ds
0

H()
-1
Therefore we see that (K x(bex, Ce,2)bex)o<e,n<1 is bounded in L%(0, T 1(-%) (Q )) by

the results produced in Lemma 3.2. So there exists a function £ € L*(0,T; L~ *) (Q)
such that -

HY(Q)

+ ”Je,z\(bs,)\)lﬁﬂ(g)) :

Ko a(ben, cen)bep — € weakly in L*(0,T; (=) 1(Q))

as g,A — 0. In particular, K, \(bex,cen)bep — K(b,c)b weakly in L2((0,T) x Q) as
g, A — 0. In the same argument as above, we deduce from Lemma 4.1 that { = K (b, c)b
and hence

Kea(bep, Cer)bey — K(b,c)b  weakly in L*(0,T; p(=2) 1(Q))

as €, A — 0. Therefore for any ¢ € V, we have
/ KE,A(be,Aycs,A)bs,Avca,A -V — / K(b,c)bVe - Vi
Q Q .

as £, A = 0. Moreover the property of the Yosida approximation and (3.6) imply that
Jealbep, cen) = f(b, c) weakly in L?(0,T; V')

as £, A = 0. Thus we conclude that (b, ¢) solves (P) in V’; note that b € C([O T]; L*(Q))
by (4.3) so that ¢ € C([0,T}; H*(2)). Finally we prove that b € c(o, T] L*()). We first
show the weak continuity in L?*(Q):

(4.4) }gg (b(t), ¥) L2y = (0(t0),¥) 120y (Lo € [0, T], ¥ € L*()).
If 4 € V, then we deduce
| (b(2) — b(t0), %) pagey | = t( / b s) ds w> sl
| db
<=3 |2 0
<| ol T o 1¥lly —
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ast—ty. If ¢ € H, then for all £ > 0 we choose 9. € V satisfying |[t) — 9c| 2y < €, 50
that ,

| (b(t) - b(t0), %) L2y | < N16() = b(to)ll 2y 1% — Vel pagqy + | (b(t) - b(to), Ye) 12(n) ‘
< 2u0e + | (b(¢) = b(to), Ye) 12(qy |
and hence

lim sup I (b(t) - b(t())a'l/))m(g) l < 2/‘057

t—>tp
which implies (4.4). Next, we can show that
16(8) 35y = 16(to3a(en| < Molt ~to] 0 a5 ¢ = to,
that is,
tl_lgt Hb(t)”m(n) = “b(tO)HB(Q) :
This fact and (4.4) imply that b(t) — b(tp) in L*(£2) as t — to (see (3, Proposition 3.32]).

Therefore it turns out that b € C([0,7]; L2(€2)). Thus we conclude that (b, c) is a weak
solution of (P). This completes the proof. O

5. Proof of Theorem 1.2 (Global Existence)

‘The goal of this last section is to prove Theorem 1.2.

Proof of Theorem 1.2. It suffices to show that for all T > 0 there exists a constant Cr > 0

such that
< Cr,
LY ()

where (b, c) is a weak solution of (P) on [0,T). Indeed, we can show that
b(t)
/ D(s)ds
° L1(®)

’/Ob(’ D(s) ds

This completes the proof of Theorem 1.2. a

b(t)
D(s)ds

t€l0,T)

sup (”b(t)”zﬁ(n) +

1 1
5 “b(t)ni'z(n) *t3

L) /

1 1
< i (5 IBollzae) + 5 ) (T -1), teo,T).
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