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Quantum groups, quiver varieties, and
Lusztig’s symmetries

Fan QIN

Abstract
In this talk, I will give a geometric construction of the quantized

enveloping algebras of type ADE and their bases via cyclic quiver

varieties. The construction respects BGP reflections, which turns out
to be Lusztigs symmetries acting on these algebras.

1 Introduction

1.1 Quantum group $U_{t}(g)$

We take the following notations:

$\bullet$ I is the set of vertices $\{$ 1, 2, $\cdots$ , $n\}.$

$\bullet$ $C=(C_{ij})_{i,j\in I}$ is a symmetric generalized Cartan matrix.

$\bullet$

$g$ is complex Kac-Moody Lie algebra associated with $C.$

$\bullet$ $t$ is an indeterminate.

The quantum group $U_{t}(g)$ is the $\mathbb{Q}(t)$-algebra generated by the Chevalley
generators $E_{i},$ $K_{i}^{\pm},$ $F_{i},$ $i\in I$ , subject to the quantum Serre relations and
other relations $\sim$ :

$U_{t}(g)=\langle E_{i}, K_{i}^{\pm}, F_{i}\rangle/\sim.$

It has the triangular decomposition into the sub-algebras $U_{t}(n^{+})=\langle E_{i}\rangle/\sim,$

$U_{t}(h)=\langle K_{i}^{\pm}\rangle/(K_{i}K_{i}^{-1}=1, K_{i}K_{j}=K_{j}K_{i})$ , $U_{t}(n^{-})=\langle F_{i})/\sim.$

Now let us slightly enlarge the quantum group into $U_{t}(g)$ , generated by
$E_{i},$ $K_{i},$ $K_{i}’,$ $F_{i}$ , subject to similar relations. Then this algebra has the tri-
angular decomposition into the sub-algebras $U_{t}(n^{+})=\langle E_{i}\rangle/\sim,$ $\tilde{U}_{t}(h)=$

$\langle K_{i},$ $K_{i}’\rangle/(K_{i}K_{j}’=K_{j}’K_{i})$ , $U_{t}(n^{-})=\langle F_{i}\rangle/\sim.$

Taking the reduction of $\tilde{U}_{t}(g)$ by imposing the relation $K_{i}K_{i}’=1$ , we
obtain the usual quantum group $U_{t}(g)$ .
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1.2 Categorification of $U_{t}(n^{+})$

We let $\Gamma$ denote the diagram of $C$ , namely, it has the vertex set $I$ , and $-C_{ij}$

edges between any two different vertices $i,j.$

By choosing an orientation $\Omega$ on the diagram $\Gamma$ , we obtain an oriented
graph (called quiver) $Q=(\Gamma, \Omega)$ .

We work over the base field $k=\mathbb{C}$ . Then we have the path algebra $\mathbb{C}Q,$

whose category of left modules will be denoted by $\mathbb{C}Q-mod.$

Recall that, by naturally viewing $Q$ as a category, its representations
are the functors from the category $Q$ to the category of $\mathbb{C}$-vector spaces.
The category of the representations of $Q$ , which we denote by Rep(Q) , is
equivalent to the module category $\mathbb{C}Q-mod$ . For any $d=(d_{i})\in N^{I}$ , let
Rep$(Q, d)$ denote the vector space of representations which sends $i$ to $\mathbb{C}^{d_{i}}.$

Theorem 1.1 (Ringel [Rin90], Green [Gre95]). Assume $Q$ is acyclic, $namely_{f}$

it has no oriented cycles. Let the base field $k$ be a finite field and take $t$ to
be $\sqrt{|k|}$ . Let $H(Rep(Q))$ denote the Hall algebra of the abelian category
Rep(Q) . Then we have an embedding of algebra

$U_{t}(n^{+})c\prec H(Rep(Q))$ .

This embedding oe an isomorphism when $g$ is of type $ADE.$

Here, the Hall algebra $H(Rep(Q\rangle)$ has the natural basis $\{[M]\}$ , where
$|M]$ denote the isoclass of an object $M$ in Rep(Q) . Its multiplication is
determined by counting the short exact sequences.

Theorem 1.2 (Lusztig $|Lus90]$ [Lus91]). Let the base field $k$ be $\mathbb{C}.$

1. There is an embeddingfrom $U_{l}(n^{+})$ to the Grothendieck $r\acute{\iota}ng$ ofperverse
sheaves over the vector spaces Rep$(Q, d)$ , $d\in N^{I}$ . This embedding is
an isomorphism if $g$ is of type $ADE.$

2. Via this embedding, we obtain the canonical basis of $U_{t}(n^{+})w\backslash hich$ con-
sists of perverse sheaves and whose structure constants are in $N[t^{\pm}].$

Theorem 1.3 (Hernandez-Leclerc [HLII]). Let $g$ be of type $ADE$ , Then
$U_{t}(n^{+})$ is isomorphic to the dual of Grothendieck ring of perverse sheaves
over graded quiver varieties $\mathcal{M}(w^{d})_{f}$ where $w^{d}$ are some dimension vectors
associated with $d\in N^{I}.$

Proof They prove that the graded quiver varieties $\mathcal{M}(w^{d})$ are isomorphic to
the vector space Rep$(Q, d)$ . $\square$
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1.3 Categorification of $U_{t}(g)$

Let $\dot{U}_{t}(g)$ be the idempotended form of $U_{t}(g)$ introduced by Lusztig [Lus93].
It can be categorified by using quiver Hecke algebras (Khovanov-Lauda [KL09],
Rouquier [Rou08]).

Let $C_{2}(Rep(Q))$ denote the abelian category of 2-periodic complexes of
$Q$-representations $M^{\cdot}$ : $M^{0}rightarrow M^{1}.$ $Let\sim$ denote the quasi-isomorphisms.

Theorem 1.4 (Bridgeland[Bri13]). Let $k$ be a finite field and specialize $t$

to $\sqrt{|k|}$ . Assume $Q$ to be acyclic. Then there is an algebra embedding

from localized quantum algebra $\tilde{U}_{t}(g)[K_{i}^{-1}, K_{i}^{J-1}]$ to the localized Hall algebra
$H(C_{2}(Rep(Q)))[[M^{\cdot}] : H\cdot(M^{\cdot})=0]/\sim$ , such that $K_{i}$ and $K_{i}’$ correspond to
$[S_{i}arrow 1S_{i}]$ and $[S_{i}arrow 1S_{i}]$ respectively.

This embedding is an isomorphism if $g$ is of type $ADE.$

1.4 Main result

We take the base field $k=\mathbb{C}$ . Let $?^{be}$ of type $ADE.$ $h$ the Coxeter number.
Take the complex number $q=e^{\frac{\pi}{2h}}$ . Let $\mathcal{M}_{0}(w)$ denote the cyclic quiver
variety introduced by Nakajima, for any function $w$ from the cyclic group
$\langle q\rangle$ to N. This variety depends on the orientation of the associated quiver $Q,$

which we always take to be acyclic.

Theorem 1.5 (Main Theorem [Qin13]). (1) After the field extension to
$\mathbb{Q}(\sqrt{t})_{f}$ we have the $isomo7phism$ of algebras

$R_{t}(Q)\otimes \mathbb{Q}(\sqrt{t})arrow^{Q}\kappa\tilde{U}_{i}(g)\otimes \mathbb{Q}(\sqrt{t})$

where

$R_{t}(Q)=\oplus_{specia1w}K_{0}^{*}(w)$ ,

$K_{0}(w)$ is the Grothendieck ring of some perverse sheaves over the cyclic
quiver variety $\mathcal{M}_{0}(w)$ and $K_{0}^{*}(w)$ its dual.

As a consequence, the natural geometric basis $L(Q)$ in $R_{4}(Q)$ gives us a
basis $\kappa_{Q}(L(Q))$ in $R_{t}(Q)$ . Moreover, it has the following property by con-
struction.

Theorem 1.6 ([HLII]). $L(Q)$ contains the dual canonical basis of $U_{t}(Q)$

(dual to the canonical basis with respect to Lusztig’s bilinear form).

Corollary 1.7. Let $g(Q)$ be the reduction of $R_{t}(Q)$ by taking reduction
$K_{i}K_{i}’=1$ . Then we obtain corresponding claims for the quantum group
$U_{t}(g)$ and the Grothendieck ring $g(Q)$ .
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Remark 1.8. $\bullet$ Let $\Sigma$ denote the shift functor on complexes. Then $\Sigma^{2}=$

$1$ in $C_{2}(Rep(Q)\rangle$ . This gives the indication of our choice of $q$ such that
$q^{2h}=1.$

$\bullet$ Our choice of special $vJ$ is inspired from the choice ofHernandez Leclerc.
We generalize their result from $U_{t}(n^{+})$ to $U_{t}(g)$ .

$0$ In $Bridgetand’s$ work, the Cartan part $U_{t}(h)$ is realized by contractible
complexes, which are redundant infor ation in the study of triangulated
categories. In our approach, the Cartan part are associated with some
strata of $\mathcal{M}_{0}(w)$ . Their counterparts for generic $q\in \mathbb{C}^{*}$ choice are
redundant information, by Nakajima, in the study offinite dimensional
representations of quantum affine algebras.

2 Construction

2.1 Cyclic quiver variety $\mathcal{M}_{0}(w)$

We use the language of Keller-Scherotzke [KS13] to define quiver varieties
[NakOl].

Let $D^{b}(Q)$ denote the bounded derived category of Rep(Q) , $\Sigma=[1]$ its
shift functor, $\tau$ the Auslander-Reiten translation.

We choose a representative for each isoclass of an indecomposable object.
Let $IndD^{b}(Q)$ denote the corresponding full subcategory.

Example 2.1. We take the quiverQ to be the graph $2arrow 1.$ $S_{i}$ and $P_{i}$ its i-th
simple and injective respectively. Then $IndD^{b}(Q)$ is drawn in Figure 1 where
each arrow denotes an irreducible (minimat non-isomorphic) morphism. The

functor $\tau$ is the horizontal one-step shift to the left.

$P_{2} \Sigma S_{1} \Sigma S_{2} \Sigma^{2}P_{2}$

$\cdots$ $\nearrow$ $\backslash _{x}$ $\nearrow$ $\backslash _{\searrow}$ $\nearrow$ $\backslash \backslash$ $\nearrow$ $\cdots$

$S_{1} S_{2} \Sigma P_{2} \Sigma^{2}S_{X}$

Figure 1: $IndD^{b}(Q)$ for a type $A_{2}$ quiver $Q.$

We deform $(IndD^{b}(Q))^{op}$ into $R(Q)$ the regular Nakajima category by:

1. inserting a vertex $\sigma x$ between $\tau x$ and $x,$ $\forall x\in IndD^{b}(Q)$ ,

2. adding horizontal arrows from $x$ to $\sigma x$ and from $\sigma x$ to $\tau x,$
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3. imposing the mesh relations on this category (namely, sums of triangles
vanish).

see Figure 2 for an example.

$\sigma P_{2}arrow P_{2}arrow\sigma\Sigma S_{1}arrow\Sigma S_{1}\sim\sigma\SigmaS_{2}arrow\Sigma S_{2}+\sigma\Sigma^{2}P_{2}+\Sigma^{2}P_{2}$

$\cdots$ ’ $\backslash$ $\nearrow$ $\backslash$ $\nearrow$ $\backslash$ $\swarrow^{/}$ $\cdots$

$\sigma S_{1}arrow S_{1}arrow\sigma S_{2}arrow S_{2}arrow\sigma\Sigma P_{2}arrow\Sigma P_{2}+\sigma\Sigma^{2}S_{1}+\Sigma^{2}S_{1}$

Figure 2: $R(Q)$ for a type $A_{2}$ quiver $Q.$

Define the operator $\sigma$ such that $\sigma^{2}=\tau.$

Define the singular Nakajima category $S(Q)$ to be the full subcategory of
$R(Q)$ generated on $\sigma x,$ $x\in IndD^{b}(Q)$

Fold the categories $R(Q)$ and $S(Q)$ to $R(Q)/\Sigma^{2}$ and $S(Q)/\Sigma^{2}$ respectively.
We assign the an element in $\langle q\rangle$ (called the $q$-degree) to each object $u$ in

$R(Q)/\Sigma^{2}$ such that the arrows decrease the degrees by $q.$

We take dimension vectors $v\in N^{IndD^{b}(Q)/\Sigma^{2}},$ $w\in N^{\sigma S\langle Q)/\Sigma^{2}}$ By standard
argument in Nakajima’s work, we obtain cyclic quiver varieties

$\mathcal{M}(v, w)=Rep(R(Q)/\Sigma^{2}, v,w)//GL(v)$ , (GITquotient)

and

$\mathcal{M}_{0}(w)=Rep(S(Q)/\Sigma^{2}, w)$ .

There is a natural proper map $\pi$ from $\mathcal{M}(v, w)$ to $\mathcal{M}_{0}(w)$ . The derived push
forward $\pi_{1}$ on the constant perverse sheaf gives us the decomposition into
perverse sheaves

$\pi_{!}1_{\mathcal{M}(v,w)}=\oplus_{v’\leq v:(v’,w)l-do\min ant}IC(\mathcal{M}_{0}(v’, w$ (1)

where $l$ -dominant is some combinatorial condition on the pair $(v, w)$ , $\mathcal{M}_{0}(v’, w)$

is a closed subvariety in $\mathcal{M}_{0}(w)$ , $IC()$ denote the intersection cohomology
sheaf.

The ring $\mathbb{Z}[t^{\pm}]$ acts on the Grothendieck group of derived categories of
sheafs over $\mathcal{M}_{0}(w)$ such that $t$ acts as the shift functor. Let $K_{0}(w)$ denote
the submodule spanned by the IC sheaves appearing in Equation (1).
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2.2 Special $w$

We define $W^{S}=N^{\{\sigma \mathcal{S}_{i}\}},$ $W^{\Sigma S}=N^{\{\sigma\Sigma S_{i}\}}.$

Define $R_{4}(Q)$ as $\oplus_{w\in W}s_{\oplus W}\Sigma sK_{0}^{*}(w)$ . Its multiplication is defined geomet-
rically via restriction functors on quiver varieties.

Define

$R_{t}^{+}(Q)=\oplus_{w\in W}sK_{0}^{*}(w)$

$R_{\overline{t}}(Q)=\oplus_{w\epsilon W}\Sigma sK_{0}^{*}(w)$

$R_{t}^{0}(Q)=\langle K_{i}, K_{i}$

where $K_{i},$ $K_{i}’$ are special central element in $R_{t}(Q)$ .

Proof of Theorem X. 5. We show the triangular decomposition $R_{\gamma}(Q)=Rf(Q)\otimes$

$R_{t}^{0}(Q)\otimes R_{r}^{-}(Q)$ . It is then easy to verify the quantum Serre relations which
implies $R_{t}^{+}(Q)\otimes \mathbb{Q}(\sqrt{t})$ , $R_{t}^{0}(Q)\otimes \mathbb{Q}(\sqrt{t})$ , $R_{y}^{-}(Q)\otimes \mathbb{Q}(\sqrt{t})$ are isomorphic to
$U_{t}(n^{+})\otimes \mathbb{Q}(\sqrt{t})$ , $\tilde{U}_{t}(h)\otimes \mathbb{Q}(\sqrt{t})$ , $U_{t}(n^{-})\otimes \mathbb{Q}(\sqrt{t})$ respectively.

Cl

3 Reflection

Theorem 3.1. Letj be a sink point (no outgoing arrow) in Q. Let $Q’$ denote
the quiver obtained from $Q$ by a reflection at $j$ and $T_{j,-1}"$ and $T_{j,1}’$ Lusztig’s
symmetries. Then we can construct an isomorphism $\theta$ such that the diagram
in Figure 3 is commutative.

Figure 3: Changing quiver orientations.
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