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Abstract 

 

To establish a new Si-electrodeposition process, the optimum conditions for 

obtaining adherent, compact, and smooth Si films using molten KF–KCl–K2SiF6 were 

investigated at 923 K. Galvanostatic electrolysis was conducted on a Ag substrate in 

eutectic KF–KCl (45:55 mol%) with various current densities (10–500 mA cm
−2

) and 

K2SiF6 concentrations (0.5–5.0 mol%). Cross-sectional scanning electron microscopy 

(SEM) of the deposits revealed that compact and smooth Si films form at intermediate 

K2SiF6 concentrations and current densities. The relationship between the deposition 

conditions and Si morphology is discussed in terms of the electrodeposition mechanism. 
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1. Introduction 

 

Photovoltaic power generation is attracting substantial attention as an 

environmentally friendly renewable energy. Until now, the prevalent material for solar 

cells has been silicon, particularly polycrystalline and single-crystalline Si. Currently, 

polycrystalline Si for solar cells is produced by slicing high-purity Si ingots prepared 

using the Siemens process. However, the low productivity of the Siemens process and the 

considerable kerf loss in the Si-slicing process are the main drawbacks of the 

conventional production process in terms of energy efficiency and yield. Thus, an 

efficient process for manufacturing polycrystalline Si for solar cells is required. 

The electrodeposition of Si from purified Si compounds is a promising alternative 

method for producing polycrystalline Si films for solar cells. According to the literature, 

only amorphous Si is electrodeposited in organic solvents [1,2] and ionic liquids [3,4]. 

The electrodeposition of crystalline Si from high-temperature molten salts has been 

reported since the 1970s. Elwell et al. obtained a compact and smooth Si layer in molten 

LiF–NaF–KF at 1018 K [5–9]. Cohen et al. also achieved compact and smooth Si 

deposition in LiF–KF at 1023 K [10]. However, the removal of the adhered salt from the 

deposited Si was difficult because of the low solubilities of LiF and NaF in water [11]. 

Among alkali and alkali earth fluorides, KF has exceptionally high solubility in water: 

101.6 g (100 g-H2O)
−1

. The use of a single KF molten salt is, however, rather difficult 

because of the high melting point of KF (1131 K). Because KCl also has high solubility 

in water, low-temperature electrolysis and easy removal of the adhered salt by washing 

with water can be achieved with a KF–KCl binary system (melting point = 878 K at 
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eutectic composition [12]) as an electrolyte. Previously, Si electrodeposition was reported 

by Andriiko et al., who used molten KF–KCl–K2SiF6 (45.8:48.2:6.0 mol%) containing 

SiO2 as the main Si source [13]. However, the resulting deposit contained only 20–50 

wt% of powder-like Si. Moreover, the addition of SiO2 requires the elimination of O
2−

 

ions from the melt. The elimination of O
2−

 ions is only practically possible with carbon 

anodes in molten fluorides, which inevitably results in carbon contamination of the Si 

deposit because of the formation of CO3
2−

 ions. 

Recently, we proposed a novel Si-electrodeposition process utilizing high-purity 

SiCl4, which is commercially available at low cost, as a Si-ion source and KF–KCl mixed 

molten salt as an electrolyte [14–16]. In this technique, gaseous SiCl4 is introduced into 

the molten salt to produce Si(IV) complex ions. Si films are then electrodeposited onto a 

cathode of an appropriate material, and Cl2 gas is evolved at a carbon anode. The salt 

adhered on the Si deposit can be easily removed by washing with water. 

 

 SiCl4 dissolution:  SiCl4 (g) + 6 F− → SiF6
2− + 4 Cl−     (1) 

 Cathodic reaction:  SiF6
2− + 4 e− → Si (s) + 6 F−      (2) 

 Anodic reaction:  4 Cl− → 2 Cl2 (g) + 4 e−       (3) 

 Total reaction:   SiCl4 (g) → Si (s) + 2 Cl2 (g)      (4) 

 

In this process, Si electrodeposition is achieved without introducing impurities or 

changing the composition of the molten salt. Moreover, when the Cl2 gas by-product is 

recovered for the chlorination of Si to produce SiCl4, a circulation cycle generating no 

by-product is realized. In our previous studies [14–16], the electrodeposition of Si from 

Si(IV) complex ions on a Ag electrode at 923 K was investigated in a molten KF–KCl–
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K2SiF6 system containing the same Si(IV) complex ions as the introduced SiCl4. The 

reduction observed as a single 4-electron wave in cyclic voltammetry, was suggested to 

proceed through an EqEr (quasireversible-reversible electron transfer reaction) 

mechanism [16]. The diffusion coefficient of the Si(IV) ions was determined to be 

3.2×10
−5

 cm
2
 s

−1
 at 923 K [16]. 

The present study investigated the effects of K2SiF6 concentration and current 

density on the morphology of the Si deposits in molten KF–KCl–K2SiF6 at 923 K, which 

are indispensable because the industrial electrolytic processes are conducted under the 

controlled ion concentration and current. Galvanostatic electrolysis was conducted with 

various K2SiF6 concentrations (0.5–5.0 mol%) and current densities (10–500 mA cm
−2

). 

The optimum conditions for forming adherent, compact, and smooth Si films were 

discussed based on scanning electron microscopy (SEM) of the Si deposits. Furthermore, 

the purity of the Si deposits was analyzed by glow discharge mass spectroscopy (GD-

MS). 

 

2. Experimental 

The experimental setup is described elsewhere [16]. The electrochemical 

experiments were performed in a dry Ar atmosphere at 923 K. Reagent-grade KF and 

KCl were mixed to the eutectic composition (KF:KCl = 45:55 mol%, melting point = 878 

K [12]) and loaded into a graphite crucible. The crucible was placed at the bottom of a 

quartz vessel in an air-tight Kanthal container and dried under vacuum at 673 K for 24 h. 

A Ag wire (Nilaco Corp., > 99.99%, diameter: 1.0 mm), a Ag flag electrode (Nilaco 

Corp., 99.98%, thickness: 0.1 mm), and a Ag plate (Nilaco Corp., 99.98%, thickness: 0.2 

mm) were used as working electrodes. A glassy carbon rod (Tokai Carbon Co., Ltd., 
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diameter: 5.0 mm) was used as the counter electrode. A Pt wire (Nilaco corp., >99.98%, 

diameter: 1.0 mm) was employed as the quasi-reference electrode. The potential of the 

reference electrode was calibrated with reference to a dynamic K
+
/K potential, which was 

prepared by the electrodeposition of K metal on a Ag wire. Galvanostatic electrolysis was 

conducted with various K2SiF6 concentrations and current densities. The electrolyzed 

samples were washed in hot distilled water at 333 K for 24 h to remove the adhered salt 

on the deposits and dried under vacuum for 12 h. The samples were analyzed by SEM 

(Keyence Corp., VE-8800), energy dispersive X-ray spectroscopy (EDX; AMETEK Co. 

Ltd., EDAX Genesis APEX2), X-ray diffraction (XRD; Rigaku Corp., Ultima IV, Cu-Kα 

line), and Raman spectroscopy (Tokyo Instruments Corp., Nanofinder30). For the cross-

sectional SEM observations, the samples were embedded in acrylic resin and polished 

with emery paper and buffing compound. The impurity concentrations in the Si deposits 

were analyzed by GD-MS (Thermo Electron Corp., VG9000). 

 

3. Results and Discussion 

 

3.1 Sample preparation 

 The galvanostatic electrolysis was conducted using a Ag wire electrode at various 

cathodic current densities from 10 to 500 mA cm
−2

 in molten KF–KCl containing 0.5, 2.0, 

3.5, and 5.0 mol% K2SiF6. Here, the reduction current is expressed as a positive value. In 

the electrolysis, the electric charge was fixed to 60 C (186 C cm
−2

). Figure 1 compares 

representative potential transient curves during the galvanostatic electrolysis at 38.8, 77.6, 

155, and 310 mA cm
−2

 in KF–KCl–K2SiF6 (2.0 mol%). In our previous study [16], 

deposition of Si and formation of K metal fog were found to occur from around 0.8 V and 
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0.2 V vs. K
+
/K, respectively, from cyclic voltammetry. At the current densities of 38.8 

and 77.6 mA cm
−2

, the potentials are around 0.8 V and 0.6 V, respectively, indicating that 

only Si deposition occurs. At higher current densities of 155 and 310 mA cm
−2

, the 

observed potentials are considerably negative and fluctuated in the potential range of K 

metal fog formation. In particular, at 310 mA cm
−2

, the potential is more negative than 

the deposition potential of K metal. Since these current densities are higher than the 

diffusion limiting current of Si(IV) ion, both the Si deposition and the K metal fog 

formation proceed simultaneously at the electrode. Under such condition, the adhesion of 

Si deposits becomes very poor and the detachment of deposits frequently occurs. Since 

the effective electrode area changes intermittently, the potential fluctuates. 

 

*** Fig. 1 *** 

 

3.2 Morphology of Si deposits 

 Figure 2 shows the optical microscope images of the electrolyzed samples after 

washing treatment. When the electrolysis was conducted at high current densities of 155 

and 310 mA cm
−2

 in KF–KCl–K2SiF6 (0.5 mol%), no deposit remained on the Ag 

substrate. Except for these two samples, the deposition of crystalline Si was confirmed by 

XRD and Raman spectroscopy. Generally, the surface morphology is observed to become 

smoother as the current density decreased. The deposits obtained in the melt containing 

5.0 mol% K2SiF6 were found to exhibit rough surfaces. 

Figure 3 shows the cross-sectional SEM images of the samples. Adherent, compact, 

and smooth Si films with a thickness of 50 µm were electrodeposited at 77.6 and 155 mA 

cm
−2

 in KF–KCl containing 2.0 and 3.5 mol% K2SiF6 (Fig. 4). At higher current densities, 

nodular and coral-like Si is observed. Specifically, obvious porous structures are obtained 
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from electrolysis performed at current densities exceeding 310 mA cm
−2

, as shown in the 

SEM images in Fig. 5. At lower current densities, the deposits are not homogeneous, and 

a flat Si layer is not obtained. At a high K2SiF6 concentration of 5.0 mol%, porous and 

coral-like Si is observed, especially at higher current densities. In contrast, no deposition 

or partial removal of the Si layer occurred at a low K2SiF6 concentration of 0.5 mol%. 

 

*** Fig. 2 *** 

*** Fig. 3 *** 

*** Fig. 4 *** 

*** Fig. 5 *** 

 

 Based on the SEM images presented in Fig. 3, the relationship between the 

electrolysis conditions and morphology of Si deposits is graphically drawn in Fig. 6. In 

this figure, the stars indicate the experimental electrolysis conditions, and the dashed 

boundaries are drawn between the stars. The optimum conditions for the 

electrodeposition of adherent, compact, and smooth Si layers are intermediate K2SiF6 

concentrations (2.0–3.5 mol%) and current densities (50–200 mA cm
−2

). The 

morphologies of the Si deposits are explained below. 

 At high current densities, the morphology of the Si film changes from compact and 

smooth to nodular or coral-like. Electrolysis at high current densities increases 

concentration gradient of Si ions in the diffusion layer. As a result, Si deposition proceeds 

preferentially at convex parts of the deposited Si. Thus, the morphology becomes nodular 

or coral-like. At very low current densities, the Si layer on the Ag wire substrate has an 

uneven thickness, which is probably attributable to the uneven current distribution on the 

electrode: a thicker film forms on the side closest to the counter electrode, and a thinner 
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film forms on the opposite side. Hence, one has to pay special attention to the current 

distribution for the Si deposition in this melt. A possible technical measure to achieve the 

even current distribution is the placement of anodes so as to surround the cathode. 

The formation of porous and coral-like Si layers at high K2SiF6 concentrations 

results from the intermediate state of the Si ions. Figure 7 presents the differential pulse 

voltammograms for a Ag flag electrode in molten KF–KCl–K2SiF6 (blank, 0.5, 2.0, 3.5, 

and 5.0 mol%) at 923 K. At a low concentration of 0.5 mol%, a single wave from Si(IV) 

to Si(0) is observed, which agrees with the results of our previous study [16]. In contrast, 

the separation of the reduction wave into two peaks becomes increasingly obvious as the 

K2SiF6 concentration is increased. This behavior suggests the high stability of the 

intermediate states of the Si ions, such as Si(II), at high K2SiF6 concentrations. At the low 

K2SiF6 concentration of 0.5 mol%, no deposit is obtained at high current density. In this 

case, the electrode potential becomes so negative that K metal is codeposited, as shown in 

Fig. 1. The deposited Si likely dissociates from the Ag substrate because of the formation 

of liquid K metal or may be removed by H2 gas generated during the washing; H2 gas is 

evolved by the reaction of the K metal with water. 

Furthermore, the diagram on the types of polycrystalline electrodeposits against 

overpotential and current density for the various bulk concentrations is of great interest. 

In aqueous solution systems, the relationship has been discussed using the so-called 

Winand diagram [17–19] which gives the fields of stability of Fischer’s types of 

electrodeposits [20] as a function of two main parameters: the ratio of current density to 

the diffusion limiting current density, and the inhibition such as organic additives, 

exchange current density, and hydrogen overvoltage. The dependence of morphology on 

mass transfer, nucleation, and crystal growth would provide an instruction to elucidate 
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the electrocrystallization process even in high-temperature molten salts. Since the 

accurate overpotential is unknown for the present data, the illustration and interpretation 

of the diagram are interesting future tasks. 

 

*** Fig. 6 *** 

*** Fig. 7 *** 

 

3.3 Purity of Si deposits 

For purity determination, a sample was prepared by galvanostatic electrolysis of a 

Ag plate (0.2-mm thickness) at 100 mA cm
−2

 for 50 min in molten KF–KCl–K2SiF6 (2.0 

mol%) at 923 K. The experimental setup was the same as the previous section. Figure 8 

shows a cross-sectional SEM image of the Si deposits. Adherent, compact, and relatively 

smooth Si films with thicknesses of 70–80 µm are formed on both sides of the Ag 

substrate. Compositional analysis by EDX revealed that the films consisted of 100 at% 

Si. Based on the electric charge and sample weights before and after electrolysis, the 

current efficiency is calculated to be 93.1%. The remaining current might relate to the 

reduction of Si(IV) ions to Si ions with lower oxidation state such as Si(II). 

Table 1 summarizes the GD-MS results of the deposited Si films. For comparison, 

the reported acceptable impurity levels for solar-grade Si (SOG-Si) are also listed [21–

24]. The deposited Si films contain some impurities derived from stainless steel and Ag 

derived from the substrate. The concentrations of B and P, which are the two most 

problematic elements for solar cell applications, are 3.2 ppmw and 2.7 ppmw, 

respectively. Although these levels are not appropriate for solar cell application, the fact 

that relatively low levels were found in the initial experiment, which involved no special 

considerations to ensure purity, suggests the great potential of the proposed process. 
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*** Fig. 8 *** 

*** Table 1 *** 

 

 

Conclusion 

 

 For the establishment of a novel Si plating process, the optimum conditions for 

the electrodeposition of adherent, compact, and smooth Si layers in molten KF–KCl–

K2SiF6 at 923 K were investigated. Galvanostatic electrolysis with a Ag wire was 

conducted with various K2SiF6 concentrations (0.5, 2.0, 3.5, and 5.0 mol%) and current 

densities (10–500 mA cm
−2

). Cross-sectional SEM observations of the deposits revealed 

that relatively compact and smooth Si layers are obtained at intermediate K2SiF6 

concentrations (2.0–3.5 mol%) and current densities (50–200 mA cm
−2

). The B and P 

impurities in the produced Si films were present at levels of a few ppm levels. 

 

Acknowledgments 

This study was partly supported by the Core Research for Evolutionary Science and 

Technology (CREST) of the Japan Science and Technology Agency (JST). 

 

  



12 

 

 

Reference 

 

1. Y. Takeda, R. Kanno, and O. Yamamoto, J. Electrochem. Soc., 128, 1221 (1981). 

2. M. Bechelany, J. Elias, P. Brodard, J. Michler, and L. Philippe, Thin Solid Films, 520, 

1895 (2012). 

3. S. Z. E. Abedin, N. Borissenko, and F. Endres, Electrochem. Commun., 6, 510 

(2004). 

4. Y. Nishimura, Y. Fukunaka, T. Nishida, T. Nohira, and R. Hagiwara, Electrochem. 

Solid-State Lett., 11, D75 (2008). 

5. G. M. Rao, D. Elwell, and R. S. Feigelson, J. Electrochem. Soc., 127, 1940 (1980). 

6. G. M. Rao, D. Elwell, and R. S. Feigelson, J. Electrochem. Soc., 128, 1708 (1981). 

7. D. Elwell, J. Crystal Growth, 52, 741 (1981). 

8. D. Elwell and R. S. Feigelson, Sol. Energ. Mat., 6, 123 (1982). 

9. D. Elwell, J. Appl. Electrochem., 18, 15 (1988). 

10. U. Cohen and R. A. Huggins, J. Electrochem., 123, 381 (1976). 

11. G. M. Haarberg, L. Famiyeh, A. M. Martinez, and K. S. Osen, Electrochim. Acta, 

100, 226 (2013). 

12. L. P. Cook and H. F. McMurdie, Phase Diagrams for Ceramists vol. VII, The 

American Ceramic Society Inc., 509 (1989). 

13. A. A. Andriiko, E. V. Panov, O. I. Boiko, B. V. Yakovlev, and O. Ya. Borovik, Rus. 

J. Electrochem., 33, 1343 (1997). 

14. K. Maeda, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma, ECS Transactions, 

Molten Salts and Ionic Liquids, 64(4), 285 (2014). 



13 

 

15. T. Nohira, K. Maeda, K. Yasuda, R. Hagiwara, and T. Homma, Proceeding of 10th 

International Conference on Molten Salt Chemistry and Technology (MS10) and 5th 

Asian Conference on Molten Salts Chemistry and Technology (AMS5), Shenyang, 

China, 10–14 June, 2015, p. 70. 

16. K. Maeda, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma, J. Electrochem. Soc., 

162, D444 (2015). 

17. R. Winand, Mem. Scient. Revue Metall., 58, 25 (1961). 

18. R. Winand, Hydrometallurgy, 29, 567 (1992). 

19. R. Winand, Electrochim. Acta, 39, 1091 (1994). 

20. H. Fischer, Elektrolytische Abscheidung und Elektrokristallisation von Metallen, p. 

729, Springer Verlag, Berlin (1954). 

21. Y. Kato, N. Yuge, S. Hiwasa, H. Terashima, and F. Aratani, Materia Japan, 41, 54 

(2002). 

22. M. A. Martorano, J. B. F. Neto, T. S. Oliveira, and T. O. Tsubaki, Mater. Sci. Eng. B, 

176, 217 (2011). 

23. R. H. Hopkins and A. Rohatgi, J. Crystal Growth, 75, 67 (1986). 

24. J. R. Davis, Jr., A. Rohatgi, R. H. Hopkins, P. D. Blais, P. Rai-Choudhury, J. R. 

Mccormick, and H. C. Mollenkopf, IEEE Trans. Electron Devices, 27, 677 (1980). 

 

  



14 

 

Figure captions 

 

Fig. 1 Potential shift during galvanostatic electrolysis on a Ag wire in KF–KCl–

K2SiF6 (2.0 mol%) at 923 K. 

Fig. 2 Optical microscope images of the samples obtained by galvanostatic 

electrolysis on a Ag wire in molten KF–KCl–K2SiF6 at 923 K. 

Fig. 3 Cross-sectional SEM images of the samples obtained by galvanostatic 

electrolysis on a Ag wire in molten KF–KCl–K2SiF6 at 923 K. 

Fig. 4 Cross-sectional SEM images of the samples obtained by galvanostatic 

electrolysis of Ag wire electrodes at 77.6 mA cm
−2

 in molten KF–KCl–K2SiF6 

((a) 2.0 mol% and (b) 3.5 mol%) at 923 K. 

Fig. 5 Cross-sectional SEM images of the samples obtained by galvanostatic 

electrolysis of Ag wire electrodes at 466 mA cm
−2

 in molten KF–KCl–K2SiF6 

((a) 2.0 mol% and (b) 5.0 mol%) at 923 K. 

Fig. 6 Relationship between the electrolysis conditions and the morphology of the Si 

deposits. 

Fig. 7 Differential pulse voltammograms for a Ag flag electrode in molten KF–KCl–

K2SiF6 (blank, 0.5, 2.0, 3.5, and 5.0 mol%) at 923 K. 

Fig. 8 A cross-sectional SEM image of the sample obtained by galvanostatic 

electrolysis of a Ag plate electrode at 100 mA cm
−2

 for 50 min in molten KF–

KCl–K2SiF6 (2.0 mol%) at 923 K. 



Table 1  Acceptable impurity levels for SOG-Si [21–24] and impurity contents 

determined by GD-MS for the sample obtained by galvanostatic electrolysis of an Ag 

plate at 100 mA cm
−2

 for 50 min in molten KF–KCl–K2SiF6 (2.0 mol%) at 923 K. 

 

 

 

Element 
Acceptable levels for SOG-Si 

/ ppmw 
Impurity content 

in Si deposit 
/ ppmw [21] [22] [23,24] 

B 0.1–0.3 0.1–10 ― 3.2 
Al < 0.06 0.005–0.05 ― 0.8 
P < 0.1 0.02–2 ― 2.7 
K ― ― ― < 2 
Ca ― < 2 ― < 1 
Ti < 4×10

−5
 < 1 < 1×10

−4
 < 0.1 

Cr ― ― < 4×10
−3
 5.1 

Mn ― ― < 8×10
−3
 1.8 

Fe  < 0.007 < 1 < 0.02 5.0 
Ni ― ―    < 0.3      11 
Cu ― ―     < 20 1.8 
Mo ― ― < 7×10

−5
 0.6 

Ag ― ― ―      76 
Pt ― ― ― < 0.5 

 



Fig. 1   Potential shift during galvanostatic electrolysis on a 
Ag wire in KF–KCl–K2SiF6 (2.0 mol%) at 923 K.
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Fig. 2 Optical microscope images of the samples obtained by galvanostatic 
electrolysis on a Ag wire in molten KF–KCl–K2SiF6 at 923 K.
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Fig. 3 Cross-sectional SEM images of the samples obtained by galvanostatic electrolysis 
on a Ag wire in molten KF–KCl–K2SiF6 at 923 K.
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Fig. 4 Cross-sectional SEM images of the samples obtained by galvanostatic electrolysis
of Ag wire electrodes at 77.6 mA cm−2 in molten KF–KCl–K2SiF6 ((a) 2.0 mol% and (b)
3.5 mol%) at 923 K.
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Fig. 5 Cross-sectional SEM images of the samples obtained by galvanostatic electrolysis of
Ag wire electrodes at 466 mA cm−2 in molten KF–KCl–K2SiF6 ((a) 2.0 mol% and (b) 5.0
mol%) at 923 K.
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Fig. 6 Relationship between the electrolysis conditions and the morphology of the 
Si deposits.
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Fig. 7  Differential pulse voltammograms for a Ag flag electrode in molten 
KF–KCl–K2SiF6 (blank, 0.50, 2.0, 3.5, and 5.0 mol%) at 923 K.
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Fig. 8 A cross-sectional SEM image of the sample obtained by galvanostatic electrolysis of
a Ag plate electrode at 100 mA cm−2 for 50 min in molten KF–KCl–K2SiF6 (2.0 mol%) at
923 K.


