<table>
<thead>
<tr>
<th>Title</th>
<th>Influence of surrounding environment on subcritical crack growth in marble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nara, Yoshitaka; Kashiwaya, Koki; Nishida, Yuki; Ii, Toshinori</td>
</tr>
<tr>
<td>Citation</td>
<td>Tectonophysics (2017), 706-707: 116-128</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2017-06-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/224815</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license</td>
</tr>
<tr>
<td></td>
<td>The full-text file will be made open to the public on 5 June 2019 in accordance with publisher's 'Terms and Conditions for Self-Archiving'; This is not the published version. Pleasecite only the published version. この論文は出版社版ではありません。引用の際には出版社版をご確認ください。</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>

Kyoto University
Highlights

- Influence of surrounding environment on the crack velocity in marble was studied.
- Crack velocity in air increased at higher temperature and/or humidity.
- Subcritical crack growth in marble occurs in grain boundary.
- Region II behavior of subcritical crack growth was observed in marble with low porosity in air.
Influence of surrounding environment on subcritical crack growth in marble

Yoshitaka Nara1*, Koki Kashiwaya1, Yuki Nishida1, Toshinori Ii2

1Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.

2Department of Civil Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan.

Address: Department of Civil and Earth Resources Engineering, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.

E-mail: nara.yoshitaka.2n@kyoto-u.ac.jp

Tel & FAX: +81 75 383 3210
Abstract

Understanding subcritical crack growth in rock is essential for determining appropriate measures to ensure the long-term integrity of rock masses surrounding structures and for construction from rock material. In this study, subcritical crack growth in marble was investigated experimentally, focusing on the influence of the surrounding environment on the relationship between the crack velocity and stress intensity factor.

The crack velocity increased with increasing temperature and/or relative humidity. In all cases, the crack velocity increased with increasing stress intensity factor. However, for Carrara marble (CM) in air, we observed a region in which the crack velocity still increased with temperature, but the increase in the crack velocity with increasing stress intensity factor was not significant. This is similar to Region II of subcritical crack growth observed in glass in air. Region II in glass is controlled by mass transport to the crack tip. In the case of rock, the transport of water to the crack tip is important. In general, Region II is not observed for subcritical crack growth in rock materials, because rocks contain water. Because the porosity of CM is very low, the amount of water contained in the marble is also very small. Therefore, our results imply that we observed Region II in CM.

Because the crack velocity increased in both water and air with increasing temperature and humidity, we concluded that dry conditions at low temperature are desirable for the long-term integrity of a carbonate rock mass. Additionally, mass transport to the crack tip is an important process for subcritical crack growth in rock with low porosity.
Keywords: subcritical crack growth, marble, relative humidity, temperature, water, porosity
1. Introduction

The long-term stability of rock masses surrounding structures, such as underground repositories of radioactive waste, caverns to store liquid natural gas and liquid petroleum gas, and underground power plants, is crucial. In addition, it is important to ensure the stability of rock slopes in open-pit mines for safety. Various studies have examined time-dependent fracturing in rock to determine the time-dependency of rock stability (Atkinson, 1984; Swanson, 1984; Meredith and Atkinson, 1985; Sano, 1988; Nara and Kaneko, 2005, 2006). In particular, studies of time-dependent fracturing in rock have been conducted to examine the natural hazards related to failure in rock, such as the increase in seismicity seen prior to earthquake rupture, fault formation, growth, sliding, and volcanic eruption (Kilburn and Voight, 1998; Ciccotti et al., 2000a, 2001; Heap et al., 2011; Brantut et al., 2013, 2014a; Violay et al., 2013). Additionally, several studies have evaluated the long-term strength and time-to-failure based on the measurement of time-dependent fracturing (Schmidtke and Lajtai, 1986; Jeong et al., 2007; Nara et al., 2013; Nara, 2015).

Although classical fracture mechanics postulates that crack propagation occurs when the value of the stress intensity factor reaches that of the fracture toughness, the crack can propagate even at a stress intensity factor lower than the fracture toughness. This is known as subcritical crack growth, which is considered to be one of the main mechanisms responsible for the time-dependent behavior of rock in the brittle regime (Atkinson, 1984). Most studies of subcritical crack growth in rock have been conducted on silicate rocks, such as igneous rocks (Sano and Kudo, 1992; Nara et al., 2009, 2010), sandstones (Holder et al., 2001; Ponson, 2009; Nara et al., 2011, 2014), and novaculite (Atkinson, 1980).
Only a few studies have examined subcritical crack growth in carbonate minerals and rocks. Henry et al. (1977) reported that for micrite the crack velocity in water is higher than that in air. Røyne et al. (2011) suggested that some plastic processes might affect subcritical crack growth in calcite. Rostom et al. (2012) reported that the fluid salinity influences the crack velocity in calcite in a NaCl solution; specifically, they showed that the stress intensity factor decreased when the concentration of NaCl is <0.8 mol/L. Bergsaker et al. (2016) examined the impact of the fluid composition on subcritical crack growth in calcite single crystal, and concluded that a pH in the range of 5 – 7.5 has a negligible influences. However, subcritical crack growth in carbonate rocks under different temperature and humidity conditions is poorly understood.

In this study, we investigated subcritical crack growth in marble experimentally in both air and water. We focussed on examining the influence of the surrounding environment on the relationship between the crack velocity and stress intensity factor by conducting all measurements under controlled temperature and relative humidity.
2. Rock samples

We used examined two types of marble: Carrara marble (CM) quarried in Italy, and a marble quarried in Skopje in Macedonia (MM).

Figure 1 shows photomicrographs of CM and MM observed with thin sections of 0.03 mm thickness. As shown in the photomicrograph, the grain size is around 0.2 mm and 0.3 mm for CM, and MM, respectively. Figure 2 shows the results of X-ray diffraction analysis of the marbles. Remarkable peaks can be seen for calcite (CaCO₃) in CM and dolomite (CaMg(CO₃)₂) in MM. Small peaks of illite are also seen in MM.

For CM, the porosity determined by water saturation was 0.19%. The P-wave velocities in three orthogonal directions were 6.04, 5.98, and 5.90 km/s under dry conditions. CM is considered to be isotropic. The Brazilian tensile strength was 6.9 MPa. The uniaxial compressive strength, Young’s modulus, and Poisson’s ratio were 77.8 MPa, 51.0 GPa, and 0.32, respectively, which were determined from uniaxial compression tests with the loading rate at 10⁻⁵ strain/s.

For MM, the porosity measured by water saturation was 0.6%. The P-wave velocities in three orthogonal directions were 4.15, 4.06, and 3.74 km/s. We named these three orthogonal directions Axes 1, 2, and 3 in order of decreasing P-wave velocity. Furthermore, we named the planes normal to these axes Planes 1, 2, and 3, respectively.

Slight anisotropy was observed in the P-wave velocity. Since investigation of anisotropic properties was beyond the scope of this study, we treated the marble sample as an isotropic material. The Brazilian tensile strength was 6.2 MPa when the fracturing was parallel to Plane 3. The uniaxial compressive strength, Young’s modulus, and Poisson’s ratio were 190 MPa, 80.2 GPa, and 0.46, respectively, which were determined from uniaxial compression tests with the loading rate at 10⁻⁵ strain/s.
3. Methodology

3.1 Outline of double torsion method

In this study, the double torsion (DT) method was used. The DT method is a fracture mechanics testing method used commonly to study subcritical crack growth. The loading configuration of the DT method is shown in Figure 3. Three different types of test can be performed using the DT arrangement, each using different loading conditions: the constant load method (Kies and Clark, 1969), the constant displacement rate method (Evans, 1972), and the load relaxation (RLX) method (Evans, 1972; Williams and Evans, 1973). Using the RLX method, we can obtain a large amount of data on the relationship between the stress intensity factor, K_I, and the crack velocity, da/dt (the K_I–da/dt relation), which, in general, ranges from 10^{-2} to 10^{-9} m/s, using only a single experimental run. Therefore, we used the RLX method to determine the K_I–da/dt relation in this study.

In the RLX method, the displacement of the loading points must be kept constant during the experiment while the temporally decreasing load (load relaxation) due to the crack growth is measured. The stress intensity factor and the crack velocity are expressed as follows (Williams and Evans, 1973):

$$K_I = P w_m \sqrt{\frac{3(1+\nu)}{W d^3 d_n}}$$ \hspace{1cm} (1)

$$\frac{da}{dt} = -\phi_c \times \frac{W d^3 G S_p P}{3 w_m^2} \frac{dP}{P^2} \frac{dt}{dt}$$ \hspace{1cm} (2)

where P is the applied load, w_m is the moment arm (18 mm in this study), ν is Poisson’s ratio, W is the width of the specimen, d is the thickness of the specimen, d_n is the
reduced thickness of the specimen, P_i is the initial value of the applied load, S_i is the compliance of the specimen at the initial crack length, dP/dt is the load relaxation rate, and G is the shear modulus. ϕ_c is a constant that is dependent on the shape of the crack front. We set the value of ϕ_c as 0.4 from observation of the crack front following Sano (1988). Evans (1972, 1973), Williams and Evans (1973), and Meredith (1983) concluded that the Mode-I stress intensity factor is evaluated from the DT test based on their experimental results using polycrystalline materials including rocks. As shown in Eq. (1), the stress intensity factor is independent of the crack length in the DT test. Because it is impossible to detect the crack tip in rock specimens, various researchers have employed DT tests to investigate subcritical crack growth (Atkinson, 1984; Atkinson and Meredith, 1987). For similar reasons, we employed the DT test in this study.

The size of the DT specimen must satisfy the following condition (Atkinson, 1979; Pletka et al., 1979):

$$12d \leq W \leq L/2$$ \hspace{1cm} (3)

where L is the length of the specimen. Ciccotti et al. (2000b) performed a finite element analysis to demonstrate the option of using specimens thicker than those recommended by Atkinson (1979). Previous studies (Shyam and Lara-Curzio, 2006; Madjoubi et al., 2007) recommended that the length of the specimen should be greater than twice the width.

Taking the above studies into consideration, we set the width W, length L, and thickness d to be 45, 140, and 3 mm, respectively. The width and depth of the guide groove were both 1 mm.

3.2 Experimental apparatus and conditions
The experimental apparatus used in this study was the same as that used by Nara and Kaneko (2005, 2006) in air, and Nara et al. (2009) in water. The apparatus was set in a room where the temperature and relative humidity could be controlled over ranges of 278–353 K, and 40–90%, respectively.

The subcritical crack growth in air was measured under different temperatures at fixed relative humidity and vice-versa to investigate the influences of temperature and relative humidity separately. We performed experiments under low temperature (293 K, 47–50%), intermediate temperature (323–324 K, 50%), and high temperature (351 K, 50%) conditions to investigate the influence of temperature; and under low humidity (323 K, 5–7%), intermediate humidity (323–324 K, 50%), and high humidity (323–324 K, 89–92%) conditions to investigate the influence of relative humidity. We could only control the temperature of the air in the apparatus. Therefore, the measurements in water were made at slightly different temperatures than those in air. The subcritical crack growth was measured at low temperature (290–291 K), and at intermediate temperature (313–319 K) in water.

3.3 Experimental procedure

Initially, precracking was performed. We applied a displacement of 4 μm at the loading point, and then maintained the displacement at this distance to observe the surface of the specimen, with a digital microscope set under the specimen to determine the crack length. We continued these operations until the crack length reached 25 mm, which is the minimum length required so that the stress intensity factor is independent of the crack length for a DT specimen (Trantina, 1977).
After precracking, the specimen was exposed to the experimental environment at a constant temperature and relative humidity for more than 20 hours. Then, measurements following the RLX method were made.

For rock, hysteresis in the K_1-da/dt relation has been reported during measurements using the RLX method several times with a single specimen. Sano (1988) suggested that the source of this hysteresis was friction and locking on the crack surfaces, because no hysteresis was observed on soda-lime glass. When measurements using the RLX method are performed, it is essential to minimise the influence of friction and locking. Hence, it is important to open the crack as much as possible, not to repeat opening and closing of the crack, and to perform only a single experimental run with one specimen to avoid the significant influence of friction and locking.

Based on the above considerations, after applying a preload of 14–15 N (27–30% of the maximum load) to avoid hitting the specimen, we applied displacements of 0.300 mm and 0.332 mm at the loading points of CM and MM specimens, respectively, because the DT specimens completely broke if we increased the displacement.

For the measurements in water, we used the distilled water in which the marble samples had been stored for more than 1 month. The pH of the water was measured just after measuring the subcritical crack growth. Figure 4 shows a photo of the experimental apparatus and a pH measurement.
4. Results

We performed several experiments under the same conditions to verify reproducibility. Figure 5 shows the temporal changes of the applied load, which are known as load-relaxation curves. Using the relations shown in Figure 5, we estimated the crack velocity and the stress intensity factor (Williams and Evans, 1973).

The crack velocity \(\frac{da}{dt} \) is empirically related to the stress intensity factor \(K_I \), as follows (Charles, 1958; Wiederhorn and Bolz, 1970):

\[
\frac{da}{dt} = AK_1^n \tag{4}
\]

\[
\frac{da}{dt} = v_0 \exp \left(-\frac{E^\ddagger + bK_1}{RT} \right) \tag{5}
\]

where \(E^\ddagger \) is the stress-free activation energy, \(R \) is the gas constant, \(T \) is the absolute temperature, and the other variables are experimentally-determined constants. \(n \) is the subcritical crack growth index (Atkinson, 1984). We used these equations to summarize the experimental results. In particular, we used the following equation of the exponential law:

\[
\ln \left(\frac{da}{dt} \right) = \alpha + \frac{b}{RT} K_1 \left(\frac{E^\ddagger}{RT} \right)
\]

\[
\therefore \alpha = \ln v_0 - \frac{E^\ddagger}{RT} \tag{5'}
\]

The \(K_I-da/dt \) relation for CM and MM at constant temperature in air with different relative humidities, and in water, are shown in Figure 6. The crack velocity increased with increasing relative humidity in air. In addition, the crack velocity in water was significantly higher than that in air. For CM in air, the slope was smaller when the crack velocity was > \(10^{-4} \) m/s.

Tables 1 and 2 summarize the results from the subcritical crack growth measurements.
for CM and MM in air and water under different relative humidities, respectively. The stress intensity factor for $\frac{da}{dt} = 10^{-5} \text{[m/s]}$, $K_I(10^{-5})$, is listed to quantitatively compare the values because the range in the crack velocity is 10^{-2}–10^{-8}m/s. Table 1 lists the values of the crack velocity at $K_I = 1.0 \text{[MN/m}^{3/2}]$, $\frac{da}{dt}(1.0)$. In the case of CM in air, the crack velocity values $< 10^{-4} \text{m/s}$ were analyzed. The values of the average and standard deviation were estimated from several experimental results performed under the same conditions. The crack velocity in air increases as the relative humidity increases. Additionally, the crack velocity in water is significantly higher than that in air.

Figure 7 shows the $K_I-\frac{da}{dt}$ relation at different temperatures in air at a constant relative humidity, and in water for CM and MM. The crack velocity increases with increasing temperature. In Figure 7a, the slope is small when the crack velocity is $> 10^{-4} \text{m/s}$ for CM in air. This decrease in the slope is remarkable, which implies Region II subcritical crack growth (Lawn, 1974, 1993). Tables 3 and 4 show the subcritical crack growth measurements for CM and MM, respectively, at different temperatures, in air under a constant relative humidity and in water. In the case of CM in air, the values of crack velocity $< 10^{-4} \text{m/s}$ were analyzed. As the temperature increases, the crack velocity increases, while the stress intensity factor decreases in both air and water. The crack velocity in water is higher than that in air.
5. Discussion

Water significantly affects subcritical crack growth in marble. Specifically, the increase in the crack velocity in water is remarkable.

If the fracture toughness of marble is obtained, we can verify the range of the stress intensity factor where subcritical crack growth occurs. Therefore, determining fracture toughness is important. Several researchers have measured the fracture toughness using DT tests (Atkinson, 1979; Meredith, 1983; Meredith and Atkinson, 1985; Nara, 2015; Nara et al., 2012). Since fracture toughness depends on the environmental conditions such as temperature (Meredith and Atkinson, 1985; Funatsu et al., 2004, 2014), relative humidity (Nara et al., 2012), water vapor pressure (Kataoka et al., 2015), and water (Vavro and Souček, 2013), it is necessary to conduct fracture toughness measurements under controlled environmental conditions. Consequently, we measured the fracture toughness of marble under controlled temperatures and relative humidities using the constant displacement rate method of DT test (Evans, 1972) with the same methodology as Nara et al. (2012) (see Appendix).

Table 5 summarizes the results of the fracture toughness measurements in the marble samples in air while controlling the temperature and relative humidity. For MM, the fracture toughness was measured in air at different temperatures with the same relative humidity. The fracture toughness of MM decreases as the temperature increases. This tendency agrees well with that for the Mode-I fracture toughness of Kimachi sandstone reported by Funatsu et al. (2004, 2014).

Table 5 also summarizes the results of the fracture toughness measurements for CM in air (293K, 47%). The results of CM and MM were used to check the range of the stress intensity factor in which subcritical crack growth occurs. Figure 8 shows the
relationships between the crack velocity and the stress intensity factor normalized by the fracture toughness determined under the same environmental conditions. The subcritical crack growth of marble occurs in the same range as the normalized stress intensity factor, which is higher than 74% of the fracture toughness in this study. If the values of the subcritical crack growth index n (in Eq. (4)) and constant b (in Eq. (5)) increase, the range of the stress intensity factor causing subcritical crack growth decreases. This can contribute to the long-term stability of rock (Nara et al., 2013).

It is important to compare the results in this study to previous studies. Henry et al. (1977) showed that the crack velocity in micrite in water is higher than that in air, and the slope (the value of subcritical crack growth index) in water is lower than that in air. These tendencies agree well with the results in this study. On the other hand, according to the result of calcite crystal by Bergsaker et al. (2016), the difference between the crack velocity in distilled water and that in air is unclear. It is considered that the extent of the influence of water on subcritical crack growth in rock completely differs from a single crystal. Røyne et al. (2011) showed the results of subcritical crack growth measurement on calcite single crystals. They reported that the variation in the crack velocity at a given energy release rate might be caused by the plastic process or other unclarified process.

Figure 9 depicts the relationships between the crack velocity and the stress intensity factor for CM, MM, and calcite crystal (Røyne et al., 2011; Rostom et al., 2012). Since the measured values of the stress intensity factor differ significantly between the marbles in this study and the calcite crystals (Røyne et al., 2011; Rostom et al., 2012), the stress intensity factors in Figure 9 are normalized by the fracture toughness. For CM and MM, the values obtained in air at the same temperature are used (see Table 5). The fracture toughness of the calcite crystal is $0.22 \text{ MN/m}^{3/2}$ (Chen et al., 2001; Shushakova
et al., 2013). The shape of the relationship for the calcite crystal is nonlinear, although
the shape for marbles is linear. The nonlinearity for the calcite crystal can be recognized
in different environmental conditions (Røyne et al., 2011; Rostom et al., 2012;
Bergsaker et al., 2016). It is considered that the mechanism controlling subcritical crack
growth in marble differs from that in calcite crystal. To understand why the mechanism
controlling subcritical crack growth differs, the crack path must be observed.

Figure 10 shows images of the crack paths in CM (Figure 10a) and MM (Figure 10b)
from thin sections (0.03mm thickness) observed using an optical microscope under an
open nicol, because this allowed the most clear crack path to be observed. On the other
hand, the crack path could not be observed clearly under crossed nicols. To prepare a
thin section, first an epoxy resin was permeated into the cracks. Then thin sections were
prepared to observe the tension plane (the lower plane in Figure 3). In Figure 10, green,
which corresponds to the epoxy resin, indicates the crack path. The crack path is mainly
inter-granular, and trans-granular crack paths are quite rare. Sano (1981) suggested that
microcracking occurs ahead of the crack tip in DT specimens of granite using the source
location of the acoustic emission. Swanson (1984) suggested that the fracture process
zone is generated ahead of the crack tip in DT specimen of rock. Nasseri et al. (2007)
suggested that the fracture process zone was generates ahead of the crack tip and the
crack grows by connecting smaller microcracks in the fracture process zone in granite.

It is considered that the fracture process zone is generated in marble. Considering that
the inter-granular crack path is dominant for marble, microcracking in the fracture
process zone occurs at the boundary of mineral grains mainly. Thus, the crack growth in
the grain boundary is more important in marble than the crack growth within a mineral
grain. In particular, it is suggested that fracturing in cement materials at a grain
boundary is important for subcritical crack growth in marble.
The crack path in marble is not perfectly planer (Figure 10). Previous studies did not observe planer crack paths for subcritical crack growth in rocks (Meredith and Atkinson, 1983; Swanson, 1985, 1987; Kudo et al., 1992; Nara and Kaneko, 2005; Nara et al., 2006, 2011). In this study, a rectangular guide groove is put on the specimen (Figure 3), generating a zigzag path. Nara and Kaneko (2005) tried to constrain the crack path to a straight line by preparing a semi-circular guide groove and a tri-angular guide groove on the DT specimen; they demonstrated that straight crack paths are not generated. Consequently, the larger scattering is obtained due to the crack propagation away from the bottom of the semi-circular and triangular grooves, where the crack thickness is not constant. Considering this result, the rectangular guide groove has been used to measure subcritical crack growth (e.g., Nara and Kaneko, 2006; Nara et al., 2011, 2013) and fracture toughness (e.g., Nara et al., 2012).

The results in this study are also compared to the results in a previous study of subcritical crack growth in igneous rocks shown in Nara et al. (2013). In igneous rocks, the crack velocity in distilled water was higher than that in air at 50% relative humidity by two to four orders of magnitude (Nara et al., 2013). The increase in the crack velocity in marble was greater than that recorded in igneous rock. As shown in Figure 2, MM contained illite. Francisca et al. (2005) reported that the strength of sediment containing illite decreased with increasing water content. Nara et al. (2011) showed that the crack velocity increased in rock containing illite with increasing water content. The results of these two studies agreed with those of this study. Thus, the presence of clay in rock increases the crack velocity in water.

Temperature affected the increase in the crack velocity in marble. Weakening processes, i.e. stress corrosion, can occur at the crack tip under tension (Anderson and Grew, 1977). In the case of silicate materials, it has been suggested that weakening of
siloxane bonds via chemical reaction with water occurs at the crack tip under tension (Michalske and Freiman, 1982). However, alternative mechanisms should also be considered for carbonate rocks.

Additionally, other chemical reactions between a carbonate mineral and water should be considered. Various researchers have studied the dissolution kinetics of calcite (e.g., Garrels and Christ, 1965; Sjöberg and Rickard, 1984; MacInnis and Brantley, 1992; Liang et al., 1996; Shiraki et al., 2000). The solubility of many carbonate minerals in water decreases as the temperature increases (Garrels and Christ, 1965). This property may suppress subcritical crack growth in carbonate materials. However, Nara et al. (2010) suggested that the electric double layer formed around the crack tip affects the acceleration of subcritical crack growth. Since the aperture of the crack close to the crack tip is very small, it is possible that the water vapor turns to liquid water by capillary condensation in this zone. Consequently, the crack path close to the crack tip is immersed in liquid water (Thomson, 1871; Nara et al., 2010; Nakao et al., 2016). In this case, an electric double layer is formed in the condensed water around the crack tip and a repulsive force acts between the crack planes. The electric double layer increases as the temperature increases (Shaw, 1980), causing the repulsive force in the crack tip to increase, which can decrease the activation energy of subcritical crack growth. This effect can reduce the stress intensity factor applied at the crack tip at a given crack velocity.

Variations in the slope of the K_I–da/dt relation for CM in air were observed. A similar trend has been observed in soda-lime glass (Wiederhorn, 1967), and in alumina (Evans, 1972) in air. Subcritical crack growth is divided into three key regions based on the mechanisms that control the crack velocity. In Region I, the crack velocity is controlled by the rate of stress corrosion. In Region II, the crack velocity is controlled by the rate
of transport of the reactive agent to the crack tip (Lawn, 1974, 1993). In Region III, the crack propagation is insensitive to the chemical environment and occurs mechanically (Wiederhorn et al., 1974). This is the classic tri-modal behaviour of the K_I-da/dt relation for subcritical crack growth. Figure 11 shows schematic illustrations of the tri-modal behaviour of the K_I-da/dt relation (Figure 11a) and that obtained for silica glass (Figure 11b). The change in the slope can be seen clearly for glass in air.

For CM in air, the region with a low slope can be seen clearly. This is likely to represent Region II of subcritical crack growth, in which the mass-transport rate of the reactive agent (in this case, water) controls the crack velocity. Since water is included within the rock materials, Region II is not usually observed in rock in air. According to Nakao et al. (2016), rock materials contain water in cracks and pores of tiny aperture because of the capillary condensation of water vapour. In the case of CM, the porosity is very low (0.19 %), and the water content is also very low, so that the transport rate of the water to the crack tip largely depends on the surrounding environmental conditions, similar to glass and alumina. For this reason, we were able to observe the region in which the transport of the reactive agent (water) controlled the crack velocity for subcritical crack growth in CM in air. In contrast, the porosity of MM is 0.6 %, which is higher than that of CM, and Region II crack growth was not observed, even in air.

The subcritical crack growth index n in water was lower than that in air for both types of marble. This tendency was similar to that previously observed in igneous rocks (Nara et al., 2013). Lower subcritical crack growth index results in lower long-term strength and shorter time-to-failure (Nara et al., 2013). This implies that long-term integrity will be realized under dry condition if structures are constructed in marble rock masses.

The results of this study provide insight on time-dependent fracturing under tension. Therefore, data under confining pressures is necessary to consider the long-term
stability in a rock mass in the underground. According to Brantut et al. (2014b), pressure solution can occur in calcite under compression. In addition, data under higher temperature is required. De Bresser et al. (2005) reported that the compressive strength of Carrara marble at a confining pressure of 300 MPa decreases as the temperature increases up to 1000 °C. Even in a compressive stress field such as underground, tensile stress can occur locally. Thus, the information and knowledge under tension as well as those under compression are important to ensure the long-term stability of rock masses.
6. Conclusion

Subcritical crack growth in marble was investigated experimentally in both air and water. Specifically, the influence of the surrounding environment on the relationship between the crack velocity and the stress intensity factor was investigated by conducting all measurements under controlled temperature and relative humidity.

The crack velocity in water was significantly higher than that in air. The crack velocity increased with increasing relative humidity in air, and with increasing temperature in both air and water. For CM in air, Region II crack growth was observed, which was due to the low porosity of CM.

The increasing crack velocity with increasing temperature and humidity implies that dry conditions at low temperature are desirable for the long-term integrity of carbonate rock masses. Additionally, mass transport to the crack tip represents a key process for subcritical crack growth in rock with low porosity.
Appendix – Fracture toughness measurement using double torsion test

The constant displacement rate method of the DT test (DT-CDR test) was used for the measurement of the fracture toughness in this study. In the DT-CDR test, the displacement rate of the loading points has to be kept constant during the experiment. When this method is used for the fracture toughness measurement, the displacement rate of the loading points should be large (Shyam and Lara-Curzio, 2006); this is especially important for applying this particular method to the calculation of fracture toughness. Selçuk and Atkinson (2000) reported an influence of measured stress intensity factor with loading rate when employing the DT-CDR method, with the use of a high displacement rates (above approximately 0.07 mm/s) mitigating this effect.

In the DT-CDR test as a fracture toughness measurement, the maximum value of applied load at failure is used to calculate fracture toughness via the following equation:

\[K_{ic} = P_{\text{max}} w_m \sqrt{\frac{3(1+\nu)}{Wd^3d_n}} \] \hfill (A1)

where \(K_{ic} \) is Mode-I fracture toughness, and \(P_{\text{max}} \) is the maximum value of the applied load.

Atkinson (1979), Meredith (1983) and Meredith and Atkinson (1985) applied the DT-CDR method using displacement rates of approximately 20 mm/min (around 0.33 mm/s) (Atkinson, 1979; Meredith, 1983) and 10 mm/min (around 0.17 mm/s) (Meredith, 1983; Meredith and Atkinson, 1985), respectively. These displacement rates are higher than that mentioned by Selçuk and Atkinson (2000). Meredith (1983) reported that the fracture toughness values obtained by DT-CDR method agreed well with those obtained by the short-rod method which is the standard method for Mode-I fracture toughness measurement of rock (International Society for Rock Mechanics, 1988). Based on these
considerations, DT-CDR test in this study was performed using by applying a load at a
displacement rate of 0.23 mm/s, which is the maximum rate of our apparatus and higher
than the rate suggested by Selçuk and Atkinson (2000).

Experimental procedure is same as Nara et al. (2012). Firstly, the rock specimens are
pre-cracked in order to introduce a small starting crack as described in Section 3.3. Then
the apparatus and specimen were exposed to the environmental condition of interest
with the same temperature and relative humidity for approximately 20 hours. Following
this period, a fracture toughness measurement with DT-CDR method was performed
using by applying a load at a displacement rate of 0.23 mm/s, after applying a small
amount of pre-load around 10 N.

A photo of the apparatus used in this study is shown in Figure A-1. This apparatus
consists of a speed-control (stepping) motor that drives the loading axis moving
perpendicular to the DT specimen. This apparatus is housed in a temperature and
humidity controlled room.

In Figure A-2, a photo of the DT specimen of MM used in the fracture toughness
measurement is shown. All DT specimens were completely broken in the fracture
toughness measurement. In Figure A-3, examples of the raw data from CM and MM are
presented in the form of load vs. time plots. Using the maximum value of the applied
load, the fracture toughness can be estimated.
References

98, 209-217.

Ciccotti, M., Gonzato, G., Mulargia, F., 2000b. The double torsion loading configuration
for fracture propagation: an improved methodology for load relaxation at constant

improved methodology for the double torsion load relaxation method. Int. J. Rock

and microstructure of Carrara marble axially compressed at high temperature. J.
Struct. Geol. 27, 265-281.

Evans, A.G., 1972. A method for evaluating the time-dependent failure characteristics
of brittle materials – and its application to polycrystalline alumina. J. Mater. Sci. 7,
1137-1146.

Francisca, F., Yun, T.S., Ruppel, C., Santamarina, J.C., 2005. Geophysical and
gatechnical properties of near-seafloor sediments in the northern Gulf of Mexico

effects of increasing temperature and confining pressure on the fracture toughness

toughness and elastic wave velocities at high crack density in thermally treated
testing – Experimental. ASTM STP 678, 19-37.
subcritical crack propagation in calcite, Tectonophysics, 583, 68-75.
Sano, O., 1981. A note on the sources of acoustic emissions associated with subcritical
Sci. 23, 2505-2511.
Shaw, D.J., 1980, Introduction to Colloid and Surface Chemistry, New York, USA.
NaCl solution at room temperature: an atomic force microscope (AFM) study.
Aquat. Geochem., 6, 87-108.

Figure 1. Photomicrographs of (a) Carrara marble (CM) and (b) Macedonian marble (MM) observed with a thin section under crossed nicols. The width and height of the sections are 1.5 mm and 1.1 mm, respectively.
Figure 1. Photomicrographs of (a) Carrara marble (CM) and (b) Macedonian marble (MM) observed with a thin section under crossed nicols. The width and height of the sections are 1.5 mm and 1.1 mm, respectively.
Figure 2. X-ray diffraction patterns for (a) CM and (b) MM.
Figure 3. Schematic illustration of double torsion specimen and loading configuration.

Figure 4. Photo of experimental apparatus of DT-RLX test with pH measurement.
Figure 5. Load-relaxation curves for marbles. (a): CM at 290-293K, and (b): CM at 313-324K, (c): MM at 290-293K, (d): MM at 318-324K, (e): MM at 351K.
Figure 6. Relationship between crack velocity and stress intensity factor for (a) CM and (b) MM in air with different relative humidities, and in water.
Figure 6. Relationship between crack velocity and stress intensity factor for (a) CM and (b) MM in air with different relative humidities, and in water.
Figure 7. Relationship between crack velocity and stress intensity factor for (a) CM and (b) MM in air and water at different temperatures.
Figure 7. Relationship between crack velocity and stress intensity factor for (a) CM and (b) MM in air and water at different temperatures.
Figure 8. Relationship between crack velocity and stress intensity factor normalized by fracture toughness for marble in air.
Figure 9. Relationship between crack velocity and stress intensity factor normalized by fracture toughness for marble and calcite crystal. “×” and “+” are the relationships obtained by Røyne et al. (2011) and Rostom et al. (2012), respectively.
Figure 10. Images of crack path observed for (a) CM and (b) MM. The width and height of the images are 1.5 mm and 1.1 mm, respectively.
Figure 11. Tri-modal behaviour of relationship between crack velocity and stress intensity factor for subcritical crack growth. (a): Schematic illustration, (b): Relationship in silica glass in air.
Figure 11. Tri-modal behaviour of relationship between crack velocity and stress intensity factor for subcritical crack growth. (a): Schematic illustration, (b): Relationship in silica glass in air.
Figure A-1. Photo of apparatus of fracture toughness measurement by DT-CDR test.

Figure A-2. Photo of DT specimen of Macedonian marble used in fracture toughness measurement
Figure A-3. Temporal change of applied load on DT specimen for fracture toughness
measurement. (a): CM in air at 324 K with 50 \% relative humidity, (b) MM in air at 323 K with 47 \% relative humidity, (c): MM in air at 293 K with 48 \% relative humidity.
Table 1. Summary of subcritical crack growth measurements for Carrara marble in air with different relative humidities, and in water.

<table>
<thead>
<tr>
<th>Condition</th>
<th>(n)</th>
<th>(\log A)</th>
<th>(K_f (10^3)) [MN/m(^3)] (power law)</th>
<th>(d\alpha/dt (1.0)) [m/s] (power law)</th>
<th>(b) [m(^{5/2})/mol]</th>
<th>(\alpha)</th>
<th>(K_r (10^3)) [MN/m(^3)] (exponential law)</th>
<th>(d\alpha/dt (1.0)) [m/s] (exponential law)</th>
</tr>
</thead>
<tbody>
<tr>
<td>323K, 5%</td>
<td>69</td>
<td>-9.26</td>
<td>1.15</td>
<td>5.50\times10^{10}</td>
<td>0.132</td>
<td>-68.3</td>
<td>1.15</td>
<td>9.08\times10^{10}</td>
</tr>
<tr>
<td>323K, 6%</td>
<td>71</td>
<td>-11.15</td>
<td>1.20</td>
<td>6.31\times10^{12}</td>
<td>0.179</td>
<td>-91.3</td>
<td>1.20</td>
<td>1.95\times10^{11}</td>
</tr>
<tr>
<td>average</td>
<td>70</td>
<td>-10.21</td>
<td>±1.33</td>
<td>±0.04</td>
<td>6.17\times10^{11}</td>
<td>±0.033</td>
<td>±79.8</td>
<td>±16.3</td>
</tr>
<tr>
<td>324K, 49%</td>
<td>92</td>
<td>-6.91</td>
<td>1.05</td>
<td>1.23\times10^{-7}</td>
<td>0.239</td>
<td>-104.6</td>
<td>1.05</td>
<td>1.41\times10^{-7}</td>
</tr>
<tr>
<td>324K, 49%</td>
<td>88</td>
<td>-7.97</td>
<td>1.08</td>
<td>1.07\times10^{-8}</td>
<td>0.221</td>
<td>-100.1</td>
<td>1.08</td>
<td>1.48\times10^{-8}</td>
</tr>
<tr>
<td>324K, 49%</td>
<td>80</td>
<td>-6.23</td>
<td>1.04</td>
<td>5.89\times10^{-7}</td>
<td>0.211</td>
<td>-92.7</td>
<td>1.04</td>
<td>6.25\times10^{-7}</td>
</tr>
<tr>
<td>324K, 49%</td>
<td>69</td>
<td>-6.73</td>
<td>1.06</td>
<td>1.86\times10^{-7}</td>
<td>0.177</td>
<td>-81.4</td>
<td>1.06</td>
<td>1.93\times10^{-7}</td>
</tr>
<tr>
<td>air average</td>
<td>82</td>
<td>-6.96</td>
<td>±0.73</td>
<td>±0.02</td>
<td>ave: 1.10\times10^{-7}</td>
<td>±0.026</td>
<td>±94.7</td>
<td>±10.1</td>
</tr>
<tr>
<td>324K, 89%</td>
<td>56</td>
<td>-5.19</td>
<td>1.01</td>
<td>6.46\times10^{-6}</td>
<td>0.152</td>
<td>-68.6</td>
<td>1.01</td>
<td>6.21\times10^{-6}</td>
</tr>
<tr>
<td>324K, 92%</td>
<td>54</td>
<td>-6.15</td>
<td>1.05</td>
<td>7.08\times10^{-7}</td>
<td>0.142</td>
<td>-66.9</td>
<td>1.05</td>
<td>6.95\times10^{-7}</td>
</tr>
<tr>
<td>324K, 91%</td>
<td>53</td>
<td>-4.50</td>
<td>0.98</td>
<td>3.16\times10^{-5}</td>
<td>0.147</td>
<td>-65.1</td>
<td>0.98</td>
<td>3.20\times10^{-5}</td>
</tr>
<tr>
<td>water average</td>
<td>54</td>
<td>-5.28</td>
<td>±0.83</td>
<td>±0.04</td>
<td>ave: 5.25\times10^{-6}</td>
<td>±0.005</td>
<td>±66.9</td>
<td>±1.8</td>
</tr>
<tr>
<td>319K, pH8.0</td>
<td>34</td>
<td>-3.37</td>
<td>0.89</td>
<td>4.27\times10^{-4}</td>
<td>0.102</td>
<td>-46.0</td>
<td>0.90</td>
<td>5.64\times10^{-4}</td>
</tr>
<tr>
<td>314K, pH7.8</td>
<td>25</td>
<td>-2.63</td>
<td>0.80</td>
<td>2.34\times10^{-3}</td>
<td>0.075</td>
<td>-34.5</td>
<td>0.80</td>
<td>3.20\times10^{-3}</td>
</tr>
<tr>
<td>314K, pH8.1</td>
<td>39</td>
<td>-1.34</td>
<td>0.81</td>
<td>4.57\times10^{-2}</td>
<td>0.128</td>
<td>-51.1</td>
<td>0.81</td>
<td>1.19\times10^{-1}</td>
</tr>
<tr>
<td>water average</td>
<td>33</td>
<td>-2.45</td>
<td>±1.03</td>
<td>±0.05</td>
<td>ave: 3.57\times10^{-3}</td>
<td>±0.027</td>
<td>±43.9</td>
<td>±8.5</td>
</tr>
</tbody>
</table>

ave: average, std: standard deviation

761

762

763
Table 2. Summary of subcritical crack growth measurements for Macedonian marble in air with different relative humidities, and in water.

<table>
<thead>
<tr>
<th>Condition</th>
<th></th>
<th></th>
<th>(K_c(10^5)) ([\text{MN/m}^{3/2}]) (power law)</th>
<th>da/dr(1.0) ([\text{m/s}]) (power law)</th>
<th>(b) ([\text{m}^{5/2} \text{mol}])</th>
<th>(\alpha)</th>
<th>(K_c(10^5)) ([\text{MN/m}^{3/2}]) (exponential law)</th>
<th>da/dr(1.0) ([\text{m/s}]) (exponential law)</th>
</tr>
</thead>
<tbody>
<tr>
<td>325K, 7%</td>
<td>97</td>
<td>-7.54</td>
<td>1.06</td>
<td>2.88\times10^{-8}</td>
<td>0.245</td>
<td>-107.9</td>
<td>1.06</td>
<td>3.44\times10^{-9}</td>
</tr>
<tr>
<td>325K, 5%</td>
<td>106</td>
<td>-6.96</td>
<td>1.04</td>
<td>1.10\times10^{-7}</td>
<td>0.274</td>
<td>-117.3</td>
<td>1.04</td>
<td>1.31\times10^{-7}</td>
</tr>
<tr>
<td>325K, 5%</td>
<td>104</td>
<td>-8.96</td>
<td>1.09</td>
<td>1.10\times10^{-9}</td>
<td>0.256</td>
<td>-115.0</td>
<td>1.09</td>
<td>1.67\times10^{-9}</td>
</tr>
<tr>
<td>average</td>
<td>103</td>
<td>-7.82</td>
<td>1.06</td>
<td>\text{ave}: 1.51\times10^{-8}</td>
<td>0.258</td>
<td>-113.4</td>
<td>1.06</td>
<td>\text{ave}: 1.96\times10^{-9}</td>
</tr>
<tr>
<td></td>
<td>\pm 5</td>
<td>\pm 1.03</td>
<td>\pm 0.03</td>
<td>\text{std}: 1.07\times10^{-1}</td>
<td>\pm 0.015</td>
<td>\pm 4.9</td>
<td>\pm 0.03</td>
<td>\text{std}: 9.33\times10^{-9}</td>
</tr>
<tr>
<td>air</td>
<td>61</td>
<td>-5.25</td>
<td>1.08</td>
<td>5.62\times10^{-6}</td>
<td>0.150</td>
<td>-71.8</td>
<td>1.08</td>
<td>1.03\times10^{-7}</td>
</tr>
<tr>
<td>324K, 48%</td>
<td>66</td>
<td>-5.72</td>
<td>1.03</td>
<td>1.91\times10^{-6}</td>
<td>0.166</td>
<td>-74.9</td>
<td>1.03</td>
<td>1.77\times10^{-6}</td>
</tr>
<tr>
<td>323K, 50%</td>
<td>65</td>
<td>-5.19</td>
<td>1.01</td>
<td>6.46\times10^{-6}</td>
<td>0.170</td>
<td>-75.5</td>
<td>1.01</td>
<td>5.21\times10^{-6}</td>
</tr>
<tr>
<td>average</td>
<td>64</td>
<td>-5.39</td>
<td>1.03</td>
<td>\text{ave}: 4.11\times10^{-6}</td>
<td>0.162</td>
<td>-74.1</td>
<td>1.03</td>
<td>\text{ave}: 9.83\times10^{-7}</td>
</tr>
<tr>
<td></td>
<td>\pm 2</td>
<td>\pm 0.29</td>
<td>\pm 0.04</td>
<td>\text{std}: 1.95\times10^{-6}</td>
<td>\pm 0.011</td>
<td>\pm 2.0</td>
<td>\pm 0.04</td>
<td>\text{std}: 7.56\times10^{-9}</td>
</tr>
<tr>
<td></td>
<td>\text{ave}: 3.72\times10^{-3}</td>
<td>\text{std}: 5.75\times10^{-3}</td>
<td>\text{ave}: 8.51\times10^{-5}</td>
<td>\text{std}: 1.00\times10^{-3}</td>
<td>\text{ave}: 1.99\times10^{-5}</td>
<td>\text{std}: 1.00\times10^{-3}</td>
<td>\text{ave}: 3.82\times10^{-5}</td>
<td>\text{std}: 1.00\times10^{-3}</td>
</tr>
<tr>
<td>324K, 89%</td>
<td>70</td>
<td>-4.07</td>
<td>0.97</td>
<td>8.51\times10^{-5}</td>
<td>0.191</td>
<td>-80.6</td>
<td>0.97</td>
<td>6.37\times10^{-3}</td>
</tr>
<tr>
<td>323K, 89%</td>
<td>52</td>
<td>-3.00</td>
<td>0.92</td>
<td>1.00\times10^{-3}</td>
<td>0.148</td>
<td>-62.0</td>
<td>0.92</td>
<td>1.05\times10^{-3}</td>
</tr>
<tr>
<td>average</td>
<td>61</td>
<td>-3.54</td>
<td>0.94</td>
<td>\text{ave}: 2.92\times10^{-4}</td>
<td>0.170</td>
<td>-71.3</td>
<td>0.95</td>
<td>\text{ave}: 2.58\times10^{-4}</td>
</tr>
<tr>
<td></td>
<td>\pm 13</td>
<td>\pm 0.76</td>
<td>\pm 0.04</td>
<td>\text{std}: 5.75\times10^{-4}</td>
<td>\pm 0.030</td>
<td>\pm 13.2</td>
<td>\pm 0.04</td>
<td>\text{std}: 7.24\times10^{-9}</td>
</tr>
<tr>
<td>water</td>
<td>35</td>
<td>-2.43</td>
<td>0.84</td>
<td>3.72\times10^{-3}</td>
<td>0.106</td>
<td>-44.8</td>
<td>0.84</td>
<td>8.92\times10^{-3}</td>
</tr>
<tr>
<td>318K, pH8.5</td>
<td>37</td>
<td>-2.66</td>
<td>0.87</td>
<td>2.19\times10^{-3}</td>
<td>0.111</td>
<td>-47.8</td>
<td>0.87</td>
<td>2.94\times10^{-3}</td>
</tr>
<tr>
<td>average</td>
<td>36</td>
<td>-2.55</td>
<td>0.86</td>
<td>\text{ave}: 2.85\times10^{-3}</td>
<td>0.109</td>
<td>-46.3</td>
<td>0.86</td>
<td>\text{ave}: 5.12\times10^{-3}</td>
</tr>
<tr>
<td></td>
<td>\pm 1</td>
<td>\pm 0.16</td>
<td>\pm 0.02</td>
<td>\text{std}: 1.45\times10^{-3}</td>
<td>\pm 0.035</td>
<td>\pm 2.1</td>
<td>\pm 0.02</td>
<td>\text{std}: 2.19\times10^{-3}</td>
</tr>
</tbody>
</table>

ave: average, std: standard deviation
Table 3. Summary of subcritical crack growth measurements for Carrara marble in air and water at different temperatures.

<table>
<thead>
<tr>
<th>Condition</th>
<th>n</th>
<th>logA</th>
<th>$K_I(10^3)$ [MN/m$^{3/2}$] (power law)</th>
<th>$da/ddt(1.0)$ [m/s] (power law)</th>
<th>b [m$^{5/2}$/mol] (power law)</th>
<th>α</th>
<th>$K_e(10^3)$ [MN/m$^{3/2}$] (exponential law)</th>
<th>$da/ddt(1.0)$ [m/s] (exponential law)</th>
</tr>
</thead>
<tbody>
<tr>
<td>air</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>293K, 47%</td>
<td>81</td>
<td>-9.85</td>
<td>1.15</td>
<td>1.41×10^{-10}</td>
<td>0.174</td>
<td>-93.5</td>
<td>1.15</td>
<td>2.70×10^{-10}</td>
</tr>
<tr>
<td>293K, 47%</td>
<td>75</td>
<td>-6.31</td>
<td>1.04</td>
<td>4.90×10^{-7}</td>
<td>0.179</td>
<td>-88.1</td>
<td>1.04</td>
<td>4.47×10^{-7}</td>
</tr>
<tr>
<td>293K, 47%</td>
<td>73</td>
<td>-7.59</td>
<td>1.09</td>
<td>2.57×10^{-8}</td>
<td>0.165</td>
<td>-85.2</td>
<td>1.09</td>
<td>2.65×10^{-8}</td>
</tr>
<tr>
<td>average</td>
<td>77</td>
<td>-7.92</td>
<td>1.09</td>
<td>ave: 1.21×10^{-8}</td>
<td>std: 6.17×10^{1}</td>
<td>-88.9</td>
<td>1.09</td>
<td>ave: 1.47×10^{-8}</td>
</tr>
<tr>
<td>324K, 49%</td>
<td>92</td>
<td>-6.91</td>
<td>1.05</td>
<td>1.23×10^{-7}</td>
<td>0.239</td>
<td>-104.6</td>
<td>1.05</td>
<td>1.41×10^{-7}</td>
</tr>
<tr>
<td>324K, 49%</td>
<td>88</td>
<td>-7.97</td>
<td>1.08</td>
<td>1.07×10^{-8}</td>
<td>0.221</td>
<td>-100.1</td>
<td>1.08</td>
<td>1.48×10^{-8}</td>
</tr>
<tr>
<td>324K, 49%</td>
<td>80</td>
<td>-6.23</td>
<td>1.04</td>
<td>5.89×10^{-7}</td>
<td>0.211</td>
<td>-92.7</td>
<td>1.04</td>
<td>6.25×10^{-7}</td>
</tr>
<tr>
<td>324K, 49%</td>
<td>69</td>
<td>-6.73</td>
<td>1.06</td>
<td>1.86×10^{-7}</td>
<td>0.177</td>
<td>-81.4</td>
<td>1.06</td>
<td>1.93×10^{-7}</td>
</tr>
<tr>
<td>average</td>
<td>82</td>
<td>-6.96</td>
<td>1.06</td>
<td>ave: 1.10×10^{-7}</td>
<td>std: 5.37×10^{0}</td>
<td>-94.7</td>
<td>1.06</td>
<td>ave: 1.26×10^{-7}</td>
</tr>
<tr>
<td>water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290K, pH8.2</td>
<td>30</td>
<td>-3.14</td>
<td>0.87</td>
<td>7.24×10^{-4}</td>
<td>0.093</td>
<td>-46.0</td>
<td>0.90</td>
<td>6.25×10^{-4}</td>
</tr>
<tr>
<td>290K, pH8.1</td>
<td>35</td>
<td>-4.58</td>
<td>0.97</td>
<td>2.63×10^{-5}</td>
<td>0.088</td>
<td>-47.0</td>
<td>0.97</td>
<td>2.91×10^{-5}</td>
</tr>
<tr>
<td>290K, pH8.2</td>
<td>35</td>
<td>-4.52</td>
<td>0.97</td>
<td>3.02×10^{-5}</td>
<td>0.088</td>
<td>-46.9</td>
<td>0.97</td>
<td>3.11×10^{-5}</td>
</tr>
<tr>
<td>average</td>
<td>33</td>
<td>-4.08</td>
<td>0.94</td>
<td>ave: 8.32×10^{-4}</td>
<td>std: 6.46×10^{0}</td>
<td>-46.6</td>
<td>0.95</td>
<td>ave: 8.27×10^{-4}</td>
</tr>
<tr>
<td>319K, pH8.0</td>
<td>34</td>
<td>-3.37</td>
<td>0.89</td>
<td>4.27×10^{-4}</td>
<td>0.102</td>
<td>-46.0</td>
<td>0.90</td>
<td>5.64×10^{-4}</td>
</tr>
<tr>
<td>314K, pH7.8</td>
<td>25</td>
<td>-2.63</td>
<td>0.80</td>
<td>2.34×10^{-3}</td>
<td>0.075</td>
<td>-34.5</td>
<td>0.80</td>
<td>3.20×10^{-3}</td>
</tr>
<tr>
<td>314K, pH8.1</td>
<td>39</td>
<td>-1.34</td>
<td>0.81</td>
<td>4.57×10^{-2}</td>
<td>0.128</td>
<td>-51.1</td>
<td>0.81</td>
<td>1.99×10^{-1}</td>
</tr>
<tr>
<td>average</td>
<td>33</td>
<td>-2.45</td>
<td>0.83</td>
<td>ave: 3.57×10^{-3}</td>
<td>std: 1.05×10^{1}</td>
<td>-43.9</td>
<td>0.84</td>
<td>ave: 5.99×10^{-3}</td>
</tr>
</tbody>
</table>

ave: average, std: standard deviation
Table 4. Summary of subcritical crack growth measurements for Macedonian marble in air and water at different temperatures.

<table>
<thead>
<tr>
<th>Condition</th>
<th>n</th>
<th>logA</th>
<th>$K_0 (10^{-5})$ [MN/m$^{3/2}$] (power law)</th>
<th>$da/dr (1.0)$ [m/s] (power law)</th>
<th>b [m$^{5/2}$/mol]</th>
<th>α</th>
<th>$K_c (10^{-5})$ [MN/m$^{3/2}$] (exponential law)</th>
<th>$da/dr (1.0)$ [m/s] (exponential law)</th>
</tr>
</thead>
<tbody>
<tr>
<td>air</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>293K, 50%</td>
<td>61</td>
<td>-7.02</td>
<td>1.08</td>
<td>9.55x10$^{-8}$</td>
<td>0.136</td>
<td>-71.8</td>
<td>1.08</td>
<td>1.19x10$^{-7}$</td>
</tr>
<tr>
<td>293K, 50%</td>
<td>60</td>
<td>-6.75</td>
<td>1.07</td>
<td>1.78x10$^{-7}$</td>
<td>0.133</td>
<td>-70.0</td>
<td>1.07</td>
<td>2.10x10$^{-7}$</td>
</tr>
<tr>
<td>average</td>
<td>61</td>
<td>±1</td>
<td>-0.19</td>
<td>1.08</td>
<td>±0.01</td>
<td>±0.9</td>
<td>1.08</td>
<td>1.58x10$^{-7}$</td>
</tr>
<tr>
<td>324K, 50%</td>
<td>65</td>
<td>-5.19</td>
<td>1.01</td>
<td>6.46x10$^{-6}$</td>
<td>0.170</td>
<td>-75.5</td>
<td>1.01</td>
<td>5.21x10$^{-6}$</td>
</tr>
<tr>
<td>324K, 50%</td>
<td>66</td>
<td>-5.72</td>
<td>1.03</td>
<td>1.91x10$^{-6}$</td>
<td>0.166</td>
<td>-74.9</td>
<td>1.03</td>
<td>1.77x10$^{-6}$</td>
</tr>
<tr>
<td>324K, 50%</td>
<td>65</td>
<td>-5.19</td>
<td>1.01</td>
<td>6.46x10$^{-6}$</td>
<td>0.170</td>
<td>-75.5</td>
<td>1.01</td>
<td>5.21x10$^{-6}$</td>
</tr>
<tr>
<td>average</td>
<td>64</td>
<td>±2</td>
<td>-0.29</td>
<td>1.03</td>
<td>±0.04</td>
<td>±1.3</td>
<td>1.03</td>
<td>7.56x10$^{-6}$</td>
</tr>
<tr>
<td>351K, 50%</td>
<td>55</td>
<td>-3.14</td>
<td>0.93</td>
<td>7.24x10$^{-4}$</td>
<td>0.167</td>
<td>-64.7</td>
<td>0.93</td>
<td>5.84x10$^{-4}$</td>
</tr>
<tr>
<td>351K, 50%</td>
<td>74</td>
<td>-3.34</td>
<td>0.95</td>
<td>4.57x10$^{-4}$</td>
<td>0.224</td>
<td>-84.4</td>
<td>0.95</td>
<td>4.99x10$^{-4}$</td>
</tr>
<tr>
<td>351K, 50%</td>
<td>77</td>
<td>-3.79</td>
<td>0.96</td>
<td>1.62x10$^{-4}$</td>
<td>0.228</td>
<td>-87.0</td>
<td>0.96</td>
<td>1.46x10$^{-4}$</td>
</tr>
<tr>
<td>average</td>
<td>69</td>
<td>±12</td>
<td>-0.33</td>
<td>0.95</td>
<td>±0.02</td>
<td>±12.2</td>
<td>0.95</td>
<td>7.14x10$^{-4}$</td>
</tr>
<tr>
<td>water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>291K, pH8.6</td>
<td>37</td>
<td>-3.29</td>
<td>0.90</td>
<td>5.13x10$^{-4}$</td>
<td>0.096</td>
<td>-47.3</td>
<td>0.90</td>
<td>5.39x10$^{-4}$</td>
</tr>
<tr>
<td>291K, pH8.5</td>
<td>42</td>
<td>-2.56</td>
<td>0.87</td>
<td>2.75x10$^{-3}$</td>
<td>0.112</td>
<td>-52.3</td>
<td>0.88</td>
<td>2.54x10$^{-3}$</td>
</tr>
<tr>
<td>average</td>
<td>40</td>
<td>±4</td>
<td>-0.52</td>
<td>0.89</td>
<td>±0.02</td>
<td>±3.5</td>
<td>0.89</td>
<td>3.02x10$^{-3}$</td>
</tr>
<tr>
<td>318K, pH8.5</td>
<td>35</td>
<td>-2.43</td>
<td>0.84</td>
<td>3.72x10$^{-3}$</td>
<td>0.106</td>
<td>-44.8</td>
<td>0.84</td>
<td>8.92x10$^{-3}$</td>
</tr>
<tr>
<td>318K, pH8.6</td>
<td>37</td>
<td>-2.66</td>
<td>0.87</td>
<td>2.19x10$^{-3}$</td>
<td>0.111</td>
<td>-47.8</td>
<td>0.87</td>
<td>2.94x10$^{-3}$</td>
</tr>
<tr>
<td>average</td>
<td>36</td>
<td>±1</td>
<td>-0.16</td>
<td>0.86</td>
<td>±0.02</td>
<td>±2.1</td>
<td>0.86</td>
<td>5.12x10$^{-3}$</td>
</tr>
</tbody>
</table>

ave: average, std: standard deviation
Table 5. Summary of fracture toughness measurement for marble in air.

<table>
<thead>
<tr>
<th>Rock</th>
<th>Condition</th>
<th>Fracture toughness [MN/m$^{3/2}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>323K, 50%</td>
<td>1.36</td>
</tr>
<tr>
<td></td>
<td>323K, 50%</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td>323K, 50%</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>average</td>
<td>1.31±0.05</td>
</tr>
<tr>
<td>MM</td>
<td>293K, 47%</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td>293K, 48%</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td>average</td>
<td>1.31±0.01</td>
</tr>
<tr>
<td></td>
<td>323K, 45%</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>323K, 48%</td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td>323K, 47%</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>average</td>
<td>1.28±0.04</td>
</tr>
</tbody>
</table>

The English in this document has been checked by at least two professional editors, both native speakers of English, from an English editing service company:

https://www.zenis.co.jp/eng/index.html
Figure 2a

Carrara marble

○ : Calcite

Intensity [c.p.s.]

2θ [°] (CuKα)
Figure 5a

- In air (293K, 47%)
- In water (290K, pH = 8.1-8.2)

Carrara marble

Applied load [N] vs. Time [s]
Figure 5b

- in air (323K, 5-6%)
- in air (323-324K, 49%)
- in air (324K, 89-92%)
- in water (314-319K, pH = 7.8-8.1)

Applied load [N]

Carrara marble

Time [s]
Figure 5c

- in air (293K, 50%)
- in water (291K, pH = 8.5-8.6)

Figure 5d

Macedonian marble

Applied load [N]

Time [s]

- in air (325K, 5-7%)
- in air (323-324K, 48-50%)
- in air (323-324K, 89%)
- in water (318K, pH = 8.5-8.6)
Figure 7a

Carrara marble

Crack velocity [m/s]

Stress intensity factor [MN/m^{3/2}]

- In water (314-319K, pH=7.8-8.1)
- In water (290K, pH=8.1-8.2)
- In air (323-324K, 49%)
- In air (293K, 47%)
Figure 8: Crack velocity [m/s] vs. Normalized stress intensity factor.

- Open circles: CM in air (324K, 49%)
- Triangles: MM in air (323K, 50%)
- Squares: MM in air (293K, 50%)
Increase of water vapour pressure

$log(\text{crack velocity})$

K_0

K_{lc}

stress intensity factor

I

II

III
Figure 11b

Temperature: 293 K
Relative humidity: 45-46%

Crack velocity [m/s] vs. Stress intensity factor [MN/m^{3/2}]

Silica glass
Figure A2

Click here to download high resolution image

MM-KIC-05

MM-KIC-05
Carara marble in air
Temperature: 324K
Relative humidity: 50%
Macedonian marble in air
Temperature: 323K
Relative humidity: 47%
Macedonian marble in air
Temperature: 293K
Relative humidity: 48%