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Abstract

A random chaotic interval map with noise which causes coarse-graining in-
duces a finite-state Markov chain. For a map topologically conjugate to a
piecewise-linear map with the Lebesgue measure being ergodic, we prove that
the Shannon entropy for the induced Markov chain possesses a finite limit as
the noise level tends to zero. In most cases, the limit turns out to be strictly
greater than the Lyapunov exponent of the original map without noise.
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1. Introduction

For the study of random mapping dynamics, Lyapunov exponents play
key roles. Furstenberg–Kesten [4] proved convergence of upper Lyapunov
exponent for products of independent random matrices (see also Bougerol–
Lacroix [2]). Diaconis–Freedman [3] proved almost sure convergence of the
backward iteration if the random mapping is contracting on the average.
Steinsaltz [12] proved almost sure convergence of the backward iteration for
random logistic maps under the assumption that the averaged Lyapunov
exponent is negative.

Matsumoto–Tsuda [8] observed that the numerical KS entropy for a mod-
ified BZ map with noise may fall below that for the original map without
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noise, and called this phenomenon the noise-induced order. For mathemat-
ical results, Sumi [13] proved that the chaos disappears for most of random
complex dynamical systems for rational chaotic maps.

In order to study how a (non-random) mapping dynamics is affected by
a noise, it may be useful to study how the Lyapunov exponent is related
to some entropies for random chaotic maps. Araújo–Tahzibi [1] proved that
the metric entropy of a random mapping dynamics, which was introduced
by Kifer [6] via its skew product realization, falls below the KS entropy of
the noise zero limit of the random mapping dynamics. Kozlov–Treshchev [7]
and Piftankin–Treschev [11] proved that the coarse-graining Gibbs entropy
converges to the KS entropy in the noise zero limit.

In this paper, we study the noise zero limit of the entropy of random
chaotic maps through an approach which is different from all the above re-
sults.

Let f be a chaotic map on the interval [0, 1] with invariant probability
measure µ and consider a device which is designed to return f(x) as output if
input is x and if there is no noise. Suppose there is a noise which affects the
device in such a way as coarse-graining the states; more precisely, the states
are clustered into the set of subintervals ∆ = {A(1), . . . , A(N)} equivolume
with respect to µ, and, if input is n taken from {1, . . . , N}, the device picks
a point U from the subinterval A(n) at random with respect to µ conditional
on A(n) and returns n′ such that f(U) ∈ A(n′) as output. To iterate this
procedure independently induces a Markov chain taking values in {1, . . . , N}.

The purpose of this paper is to study the fine-graining limit as the noise
level 1/N tends to zero of the Shannon entropy H∆(f) for the induced Markov
chain. We shall prove that lim supH∆(f) and lim infH∆(f) are invariants
with respect to topological conjugate. We shall also prove that, for piecewise-
linear map with the Lebesgue measure being ergodic, the fine-graining limit
does exist and is obtained explicitly. It is remarkable that the limit is always
no less, and, in most cases strictly greater, than the Lyapunov exponent λ(f)
of the original (non-random) dynamical system (f, µ).

Let us give a small remark. Misiurewicz [9] and [10] studied continuity
and discontinuity of topological entropies for piecewise monotone interval
maps under perturbations preserving the number of pieces of monotonicity.
He proved that the topological entropy for the skew tent maps is continuous.
In a remarkable contrast, our fine-graining limit of the Shannon entropy for
such a map is strictly greater than its Lyapunov exponent.

We give another small remark. The induced Markov chain can always
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be realized as a random mapping dynamics. So one may want to adopt
the Shannon entropy of the random mapping dynamics rather than that of
the Markov chain. However, the former is not less than the latter, and, in
addition, the way of such realizations is not unique; see Yano–Yasutomi [14]
and [15] for related results.

This paper is organized as follows. In Section 2, we prepare notations
of the finite-state Markov chain induced by coarse-graining. In Section 3,
we define H∆(f) and prove that its fine-graining limits are invariants with
respect to topological conjugate. Section 4 is devoted to the computation of
the fine-graining limit. In Section 5, we examine the results in the case of
skew tent maps.

2. Random chaotic maps with noise which causes coarse-graining

Let f : [0, 1] → [0, 1] be a measurable map with a unique non-atomic
invariant probability measure µ on [0, 1] which is ergodic. For a positive in-
teger N , we call ∆ = {A(1), . . . , A(N)} an equivolume partition if ∆ consists of
disjoint subintervals of [0, 1] such that

⋃N

n=1A
(n) = [0, 1] and µ(A(n)) = 1/N

for n = 1, . . . , N . Since µ is non-atomic, the function [0, 1] 3 x 7→ µ([0, x]) ∈
[0, 1] is continuous, so that there exists an equivolume partition. We write
‖∆‖ = 1/N , which will be called the noise level. Let U = (U (1), . . . , U (N))
be a vector-valued random variable whose marginal U (n) is distributed as µ
conditional on A(n), i.e.,

P
(

U (n) ∈ B
)

=
µ
(

B ∩ A(n)
)

µ(A(n))
= Nµ

(

B ∩ A(n)
)

for B ∈ B([0, 1]). (2.1)

We do not require any assumption for the joint distribution among U (1), . . . , U (N),
because we only need the marginal distributions of U . Let π∆ : [0, 1] →
{1, . . . , N} be the projection map such that

π∆[x] = n if and only if x ∈ A(n). (2.2)

We define a random map f∆ from [0, 1] to itself by

f∆(x) = f(U (π∆[x])). (2.3)

We define a random map F∆ from {1, . . . , N} to itself by

F∆(n) = π∆[f(U (n))]. (2.4)
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We note that

π∆[f∆(x)] = F∆(π∆[x]). (2.5)

For n, n′ = 1, . . . , N , we write

p∆(n′|n) := P (F∆(n) = n′) = N · µ
(

f−1
(

A(n′)
)

∩ A(n)
)

. (2.6)

We are now interested in the orbit of the iteration of the random maps
repeated independently. Let (Ut)t=1,2,... be a sequence of independent copies
of U . Then we obtain the random maps (f∆

t )t=1,2,... and (F∆
t )t=1,2,... from

(2.3) and (2.4). Let x0 be a random variable taking values in [0, 1] and
being independent of (Ut)t=1,2,... which obeys the law µ. Set X0 = π∆[x0],
which is thus distributed uniformly on {1, . . . , N}. We define (xt)t=1,2,... and
(Xt)t=1,2,... recursively by

xt = f∆
t (xt−1), t = 1, 2, . . . (2.7)

and

Xt = F∆
t (Xt−1), t = 1, 2, . . . (2.8)

We note that

Xt = π∆[xt], t = 1, 2, . . . (2.9)

and it is immediate that (Xt)t=1,2,... is a time-homogeneous Markov chain.
Its transition probability is given as

P (Xt = n′|Xt−1 = n) = p∆(n′|n) (2.10)

for n, n′ = 1, . . . , N and t = 1, 2, . . ., and its stationary distribution is the
uniform distribution:

µ∆(n) =
1

N
, n = 1, . . . , N (2.11)

3. Entropy of the induced Markov chain

We denote the Shannon entropy of the induced Markov chain (Xt)t=1,2,...

by

H∆(f) =
N

∑

n,n′=1

µ∆(n)φ(p∆(n′|n)) , (3.1)
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where

φ(t) = −t log t (t > 0), φ(0) = 0. (3.2)

Now we write its fine-graining limits as the noise level ‖∆‖ = 1/N tends to
zero by

H(f) = lim sup
‖∆‖→0

H∆(f), H(f) = lim inf
‖∆‖→0

H∆(f). (3.3)

Theorem 3.1. Suppose that f : [0, 1] → [0, 1] has a unique non-atomic

invariant probability measure µ on [0, 1] which is ergodic. Then the fine-

graining limits H(f) and H(f) are invariants with respect to topological con-

jugate.

Proof (Proof). Let C : [0, 1] → [0, 1] be a homeomorphism and write
g = C ◦ f ◦ C−1. Then the interval map g also has the unique non-atomic
invariant probability measure given as ν := µ◦C−1 which is ergodic. For any
partition ∆ = {A(1), . . . , A(N)} equivolume with respect to µ, the partition
C(∆) = {C(A(1)), . . . , C(A(N))} is equivolume with respect to ν. Let us
denote the transition probability p∆ for the dynamical system (f, µ) and
the equivolume partition ∆ as is defined in (2.6), and write qC(∆) for its
counterpart for the dynamical system (g, ν) and the equivolume partition
C(∆). It is then obvious that

p∆(n′|n) =N · µ
(

f−1
(

A(n′)
)

∩ A(n)
)

(3.4)

=N · ν
(

g−1
(

C(A(n′))
)

∩ C(A(n))
)

(3.5)

=qC(∆)(n
′|n). (3.6)

Now we obtain

H∆(f) = HC(∆)(g). (3.7)

If ∆ varies all the equivolume partitions, so does C(∆). Therefore, immedi-
ately from the definition (3.3), we obtain

H(f) = H(g), H(f) = H(g). (3.8)

The proof is now complete.
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4. Existence of fine-graining limits for piecewise-linear maps

Let f be an interval map with a unique non-atomic invariant probability
measure µ on [0, 1] which is ergodic. Suppose that f is piecewise C1, i.e.,
there exists a finite partition of [0, 1], say 0 = a0 < a1 < · · · < ar−1 < ar = 1,
such that the restriction of f on each subinterval [ai−1, ai] can be extended
to a C1 map defined on an open interval including [ai−1, ai]. The Lyapunov
exponent of f is defined as

λ(f) =

∫ 1

0

log |f ′(x)|µ(dx). (4.1)

Let us write

{x} = min{x + n : n ∈ Z, x + n ≥ 0}. (4.2)

Theorem 4.1. Suppose that µ is the Lebesgue measure on [0, 1]. Suppose,

in addition, that f is piecewise-linear, i.e., there exists a finite partition of

[0, 1], say 0 = a0 < a1 < · · · < ar−1 < ar = 1, such that f is linear on each

subinterval Ei = (ai−1, ai). Then one has

H(f) := H(f) = H(f) = λ(f) +D(f), (4.3)

where D(f) is given as

D(f) = 2

∫ 1

0

ρ(|f ′(x)|)

|f ′(x)|
dx (4.4)

and the function ρ is defined as

ρ(m) =0 if m ∈ Z, (4.5)

ρ(m) =
1

p

p−1
∑

n=1

φ

(

n

p

)

if m =
q

p
: irreducible, p, q ∈ Z and p ≥ 2, (4.6)

ρ(m) =
1

4
if m is irrational. (4.7)

Combining Theorem 4.1 with Theorem 3.1, we obtain the following.
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Corollary 4.2. Suppose that f is a piecewise-C1 map which is topologically

conjugate to a piecewise-linear map g with the Lebesgue measure being the

unique non-atomic invariant probability measure µ on [0, 1] which is ergodic.

Then one has

H(f) = H(f) ≥ λ(f). (4.8)

Unless g′ is integer valued, the inequality in (4.8) is strict.

Before proving Theorem 4.1, we need the following lemma.

Lemma 4.3. Suppose that µ is the Lebesgue measure. Then the map f
satisfies

|f ′| ≥ 1 a.e. (4.9)

Proof (Proof of Lemma 4.3). Recall that the operator L : L1([0, 1]) →
L1([0, 1]) defined as

(Lϕ)(x) =
∑

y:f(y)=x

1

|f ′(y)|
ϕ(y) for ϕ ∈ L1([0, 1]). (4.10)

is the Perron–Frobenius operator for the dynamical system (f, µ), i.e.,

∫ 1

0

(Lϕ)(x)ψ(x)dx =

∫ 1

0

ϕ(x)ψ(f(x))dx (4.11)

holds for all ϕ ∈ L1([0, 1]) and all ψ ∈ L∞([0, 1]). If we take ϕ(x) ≡ 1, we
have, since µ ◦ f−1 = µ,

∫ 1

0

(L1)(x)ψ(x)dx =

∫ 1

0

ψ(f(x))dx =

∫ 1

0

ψ(x)dx, (4.12)

and thus we obtain

(L1)(x) =
∑

y:f(y)=x

1

|f ′(y)|
= 1 a.e. (4.13)

From this we obtain (4.9).

Now we prove Theorem 4.1.

7



Proof (Proof of Theorem 4.1). Let ∆ = {A(1), . . . , A(N)} be an equiv-
olume partition. Since µ is the Lebesgue measure, we may assume that
A(n) = [xn−1, xn) for n = 1, . . . , N−1 and A(N) = [xN−1, xN ] where xn = n/N
for n = 1, . . . , N . For i = 1, . . . , r, let mi = |f ′(x)| for x ∈ Ei. Note that
mi ≥ 1 by Lemma 4.3.

Let i = 1, . . . , r and n = 1, . . . , N be fixed such that A(n) ⊂ Ei. Let us
write m simply for mi. Since f ′ is constant on Ei, we may suppose without
loss of generality that m = f ′(x) ≥ 1 for x ∈ Ei, and, consequently, f is
increasing on Ei. We now have

µ(f(A(n))) = f(xn) − f(xn−1) = m(xn − xn−1) =
m

N
. (4.14)

Let u and v be such that

f(xn−1) ∈ A(u) and f(xn) ∈ A(v). (4.15)

We then have

u =dNf(xn−1)e and v =dNf(xn)e (4.16)

where

dxe = min{n ∈ Z : n ≥ x} for x ∈ R. (4.17)

Set B(i) = A(i) for i = u+ 1, . . . , v − 1 and set

B(u) = [f(xn−1), xu) and B(v) = [xv−1, f(xn)]. (4.18)

We then have f(A(n)) = B(u) ∪ · · · ∪B(v), and hence

p∆(n′|n) = 0 for n′ < u or n′ > v. (4.19)

Since µ is the Lebesgue measure and since f is linear on A(n), we see that

p∆(n′|n) =
µ(B(n′))

µ(f(A(n)))
for n′ = u, . . . , v. (4.20)

Hence we obtain

p∆(n′|n) =



















1/m if n′ = u+ 1, . . . , v − 1,

a/m if n′ = u,

b/m if n′ = v,

0 otherwise,

(4.21)
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where

a =dNf(xn−1)e −Nf(xn−1) = 1 −{Nf(xn−1)} , (4.22)

b =Nf(xn) −dNf(xn)e + 1 ={Nf(xn)}+ , (4.23)

where {x}+ = min{x + n : n ∈ Z, x + n > 0}. Noting that φ(xy) =
xφ(y) + yφ(x) for x, y ≥ 0, we have

∑

n′

φ(p∆(n′|n)) =(v − u− 1)φ

(

1

m

)

+ φ
( a

m

)

+ φ

(

b

m

)

(4.24)

=(v − u− 1 + a + b)φ

(

1

m

)

+
1

m
φ(a) +

1

m
φ(b) (4.25)

=mφ

(

1

m

)

+
1

m
φ(a) +

1

m
φ(b) (4.26)

= logm+
1

m
φ(a) +

1

m
φ(b). (4.27)

Let i = 1, . . . , r be fixed and return to write mi instead of m. We then
have

∑

n:A(n)∈Ei

φ(b) =
∑

n:A(n)∈Ei

φ({Nf(n/N)}+) =
∑

n:A(n)∈Ei

φ({min}), (4.28)

where we note that φ({x}+) = φ({x}) because φ(0) = φ(1) = 0. Let ci(N)

denote the number of n’s such that n : A(n) ∈ Ei. Then we see that

1

ci(N)

∑

n:A(n)∈Ei

φ(b) −→
N→∞

ρ(mi) (4.29)

by the following arguments:

(i) If mi ∈ Z, then {min} = 0 for all n so that we obtain (4.29).
(ii) If mi = q/p: irreducible, p, q ∈ Z and p ≥ 2, then the set {{min} : n =

kp+1, kp+2, . . . , (k+1)p} coincides with the set {0, 1/p, 2/p, . . . , (p−
1)/p} for all k = 0, 1, . . ., so that we obtain (4.29).

(iii) If mi is irrational, then by Weyl’s equidistribution theorem we obtain

1

ci(N)

∑

n:A(n)∈Ei

φ({min}) −→
N→∞

∫ 1

0

φ(t)dt =
1

4
, (4.30)

so that we obtain (4.29).
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In the same way, we obtain

1

ci(N)

∑

n:A(n)∈Ei

φ(a) −→
N→∞

ρ(mi). (4.31)

Thus, using (4.27), we obtain

r
∑

i=1

∑

n:A(n)⊂Ei

µ∆(n)
∑

n′

φ(p∆(n′|n)) (4.32)

=

r
∑

i=1

ci(N)

N
·

1

ci(N)

∑

n:A(n)⊂Ei

φ(p∆(n′|n)) (4.33)

−→
N→∞

r
∑

i=1

(ai − ai−1) ·

{

logmi +
ρ(mi)

mi

+
ρ(mi)

mi

}

(4.34)

=

∫ 1

0

{

log |f ′(x)| + 2
ρ(|f ′(x)|)

|f ′(x)|

}

dx. (4.35)

Note that if A(n) does not included in any Ei, then A(n) contains at least
one of the points a1, . . . , ar, so that the number of such n’s is not greater
than r. Since

∑

n′

φ(p∆(n′|n)) ≤
∑

n′

φ

(

1

N

)

= logN, (4.36)

we obtain

r
∑

i=1

∑

n:A(n) 6⊂Ei

µ∆(n)
∑

n′

φ(p∆(n′|n)) ≤ r ·
1

N
· logN −→

N→∞
0. (4.37)

Therefore, we conclude that

H∆(f) =

r
∑

i=1

∑

n,n′

µ∆(n)φ(p∆(n′|n)) −→
N→∞

∫ 1

0

{

log |f ′(x)| + 2
ρ(|f ′(x)|)

|f ′(x)|

}

dx,

(4.38)

which completes the proof.
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5. Examples: skew tent maps

For the illustration of Theorem 4.1, we compute the difference D(f) for
a skew tent map f : [0, 1] → [0, 1], which is defined as

f(x) =

{

mx if 0 ≤ x ≤ 1/m,

l(1 − x) if 1/m < x ≤ 1
(5.1)

for some m > 1 and l > 1 such that 1/m+ 1/l = 1. Note that the Lebesgue
measure is the unique non-atomic invariant probability measure for f and is
ergodic; see, e.g., Jetschke–Stiewe [5].

(1) Suppose that m = 2. In this case, we have l = 2 and hence we have
D(f) = 0. Note that this map f is topologically conjugate to the logistic

map

g(x) =
1

4
x(1 − x) for x ∈ [0, 1], (5.2)

so that we have

H(g) = λ(g) = H(f) = λ(f) = log 2. (5.3)

(2) Suppose that m is rational and m 6= 2. We represent m = (p + q)/p
as an irreducible fraction with p, q ∈ Z, p, q ≥ 1. In this case, we have
l = (p+ q)/q and hence we obtain

D(f) =2 ·
1

m
·
ρ(m)

m
+ 2 ·

1

l
·
ρ(l)

l
(5.4)

=2
p

(p+ q)2

p−1
∑

n=1

φ

(

n

p

)

+ 2
q

(p+ q)2

q−1
∑

n=1

φ

(

n

q

)

, (5.5)

where the summation
∑p−1

n=1 (resp.
∑q−1

n=1) is discarded if p = 1 (resp. q = 1).
(3) Suppose thatm is irrational. In this case, we see that l is also irrational

and hence we obtain

D(f) =2 ·
1

m
·
1/4

m
+ 2 ·

1

l
·
1/4

l
(5.6)

=
m2 − 2m+ 2

2m2
. (5.7)
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