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Abstract 

Sn–Fe alloy thin films were prepared by electroplating of tin on iron substrates and 

annealing them at 533 K for 0 to 25 h. The charge–discharge behavior of the films as 

negative electrodes for sodium secondary batteries was evaluated using a 

Na[FSA]–K[FSA] (FSA = bis(fluorosulfonyl)amide) ionic liquid at 363 K. Although the 

Sn–Fe film without annealing (pure Sn film) showed a relatively high discharge 

capacity of 730 mAh (g-Sn)–1 in the first cycle, its capacity rapidly decreased to 30 mAh 

(g-Sn)–1 within 10 cycles. In contrast, Sn–Fe films annealed for 2 or 4 h retained higher 
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discharge capacities of 191 or 82 mAh (g-Sn)–1 after 100 cycles, respectively, due to the 

formation of an FeSn2 alloy. Additionally, an FeSn2 film was prepared by removing the 

SnO layer of the Sn–Fe alloy film that was annealed for 25 h, and its charge–discharge 

behavior was investigated. 
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1. Introduction 

Sodium secondary battery is a promising alternative to the widely used lithium-ion 

battery (LIB), due to abundant sodium resources in the Earth’s crust and in sea water, 

and sodium being chemically similar to lithium. The number of papers on sodium 

secondary batteries has increased rapidly in the last decade [1–9]. However, because 

most of the previous studies utilized highly volatile and flammable organic 

solvent-based electrolytes, safety concerns from over-charging and thermal runaway 

remain. These concerns are especially important for large-scale battery systems in 

practical applications. 

Based on these backgrounds, our group has focused on ionic liquid electrolytes 

[10–21] due to their high safety such as negligible volatility and non-flammability. 

Moreover, their superior physicochemical properties of reasonably high ionic 

conductivities and wide electrochemical windows are attractive for use in battery 

applications. Especially, we have intensively investigated an eutectic Na[FSA]–K[FSA] 

ionic liquid (x(Na[FSA]) = 0.56; FSA = bis(fluorosulfonyl)amide) [13–21]. This liquid 

consists of inexpensive atomic cations, and unlike bis(trifluoromethylsulfonyl)amide 

(TFSA)-based salts, the production of FSA salts does not require an expensive 



3 

 

electrolytic fluorination process. Thus, it is likely to further decrease the prices of FSA 

salts when their large-scale production is put into practice. Although we have reported 

that Na/NaCrO2 and Na/Na2FeP2O7 cells showed good cycleability and rate capability 

in this ionic liquid at 353–363 K [15–17], there is intrinsically a safety risk due to the 

use of highly reactive sodium metal negative electrode. Therefore, to develop safer 

negative electrode materials, we have focused on tin negative electrodes due to the high 

theoretical capacity of tin (847 mAh (g-Sn)–1). We prepared tin-coated aluminum foils 

with 10 µm thickness of tin (hereinafter, called “Sn–Al film”) by electroplating, and 

investigated charge–discharge behavior of the films in Na[FSA]–K[FSA] ionic liquid 

electrolyte at 363 K [18,19]. As a result, the Sn–Al film showed rapid capacity decline 

within 10 cycles from 729 to 121 mAh (g-Sn)–1, due to large volume changes during 

cycling (∆V = 424% for Na15Sn4) causing pulverization of the active materials. 

With an aim to improve such poor cycleability, several kinds of Sn–M films (M = 

Cu, Ni) with a thinner tin film (~1 µm) were prepared by electroplating of tin on copper 

or nickel substrates and subsequent annealing of these films at 463 K [20,21]. We 

especially focused on the utilization of such electrodeposited films because coherent 

and strong interfaces between tin films and substrates could be easily prepared and they 

would prevent the delamination of the active material layer from the substrate, resulting 

in good cycleability. Moreover, since this simple electrode structure does not require 

conductive agents or binders, a higher capacity is expected compared to the 

conventional composite electrodes. Since copper and nickel do not react with sodium, it 

is expected that Cu–Sn and Ni–Sn alloys will also be less active and will act as buffers 

for the large volume changes of tin, which prevents the active materials from being 

electrically isolated. We evaluated the charge–discharge characteristics of the Sn–Cu 
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and Sn–Ni films in Na[FSA]–K[FSA] ionic liquid at 363 K. For Sn–Cu films [20], it 

was found that Cu6Sn5 slightly reacts with sodium and Cu3Sn is practically inactive. 

Moreover, a Sn–Cu film annealed for 4 h (4h-annealed film) exhibited the stable 

reversible capacity of ca. 100–120 mAh (g-Sn)–1 for 1000 cycles. Sn–Ni films showed 

different charge–discharge characteristics from the Sn–Cu films [21]. A Sn–Ni film that 

was not annealed (0h-annealed film) showed the highest reversible capacity of 343 mAh 

(g-Sn)–1 after 100 cycles, and annealed films showed lower capacities and poorer 

cycleability. In addition, it turned out that Ni3Sn4 is almost inactive with sodium. 

It is necessary to understand the electrochemical behavior of other Sn–M systems to 

explore new negative electrode materials for sodium secondary batteries with high 

charge and discharge performance. There are several reports on Sn–Fe systems for 

lithium-ion batteries [22–28]. It was found that the metastable Fe1–xSn5 phase and the 

stable FeSn2 phase reacted with lithium, and showed relatively high initial reversible 

capacities of approximately 700 and 500 mAh g–1, respectively. In sodium-ion battery, it 

has recently been reported that Fe1–xSn5 nanoparticles exhibit an initial reversible 

capacity of approximately 600 mAh g–1 [28]. However, to the best of our knowledge, 

there is no information on the reactivity of FeSn2 with sodium. 

In this study, several kinds of Sn–Fe alloy films were prepared by the 

electrodeposition of tin on iron substrates and subsequent annealing at 533 K, and their 

electrochemical behavior was investigated in Na[FSA]–K[FSA] ionic liquid at 363 K. 

 

2. Experimental 

2.1 Reagents and their handling 

Na[FSA] (99+%) and K[FSA] (99+%) were purchased from Mitsubishi Materials 
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Electronic Chemicals Co., Ltd. The salts were dried under vacuum at 353 K for 48 h 

prior to use. The Na[FSA]–K[FSA] eutectic salt (x(Na[FSA]) = 0.56 [14]) was prepared 

by grinding the two salts in a mortar. 

Tin-coated iron foils were prepared by electrodeposition of tin on iron foils. The 

loading mass of tin was determined to be 0.76(7) mg cm–2, corresponding to 1.05(9) μm 

thickness of tin, by inductively coupled plasma atomic emission spectroscopy 

(ICP-AES). Before electrochemical measurements, these Sn–Fe films were dried under 

vacuum at 363 K for 48 h, and some were then annealed at 533 K under vacuum. Rotary 

vane pumps were used for the drying and annealing processes, and the achieved vacuum 

levels were approximately 1 Pa and 200 Pa, respectively. Annealing times were set for 2, 

4, 10, or 25 h. 

 

2.2 Electrochemical measurements and analysis 

Galvanostatic charge–discharge tests were conducted under argon atmosphere using 

an electrochemical measurement apparatus (VSP, Bio-Logic Co.) with a two-electrode 

cell (Tomcell Japan Co., Ltd.). Two-ply glass-fiber filter papers (Whatman, GF/A, 260 

μmt), used as a separator, were vacuum-impregnated with the electrolyte prior to the test. 

The working electrode and counter electrode were Sn–Fe films and Na metal (99.85%; 

Sigma-Aldrich, Inc.), respectively. The charge–discharge rate was set at a current 

density of 84.7 mA (g-Sn)–1, corresponding to C/10 rate. Cut-off voltages were 0.005 

and 1.200 V, and the operating temperature was 363 K for all tests. The two-electrode 

cell was heated with a mantle heater, and its temperature was monitored by a 

thermocouple and maintained at 363 K.  

To characterize the Sn–Fe films before and after charge–discharge tests, X-ray 
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diffraction (XRD) analysis was applied to identify phases of the films using an X-ray 

diffractometer (SmartLab, Rigaku Co.; Cu-Kα radiation (λ = 0.15418 nm)) equipped 

with a 1D high-speed detector (D/teX Ultra, Rigaku Co.) with a nickel filter. All XRD 

patterns were normalized based on the peak intensity from the Fe 211 reflection (2θ = 

82.4°). The elemental compositions and chemical states of Sn–Fe alloy film were 

investigated by X-ray photoelectron spectroscopy (XPS; JPS-9010, JEOL) combined 

with argon ion etching. Surfaces and cross-sections were observed with a field emission 

scanning electron microscope (FE-SEM; SU-8020, Hitachi, or JSM-7600F, JEOL) with 

an energy dispersive X-ray spectrometer (EDX; X-max, Horiba, or X-maxN80, Oxford 

Instruments). Before the cross-sectional SEM observation, a cross-section polisher (CP; 

IB090-20, JEOL) was used to cut the Sn–Fe films. All charge–discharge tests were 

terminated at 1.200 V, and then the cells were disassembled and the Na[FSA]–K[FSA] 

salts on the surfaces of Sn–Fe films were removed by soaking the samples in 

dehydrated and deoxidized tetrahydrofuran (water content < 10 ppm, oxygen content < 

1 ppm; Wako Pure Chemical Industries, Ltd.). These manipulations were conducted in 

the argon-filled glovebox. Finally, the samples were transferred to the analysis or work 

chambers of XRD, CP and FE-SEM without air exposure by using transfer vessels. 

 

3. Results and discussion 

3.1 Characterization of Sn–Fe films before charge–discharge test 

3.1.1 XRD 

Fig. 1 shows X-ray diffraction patterns of annealed Sn–Fe films. For the Sn–Fe film 

without annealing (hereinafter, called “pure Sn film”), β-Sn and Fe current collector are 

detected, and the diffraction peak of β-Sn 200 (2θ = 30.7°) is strong (Fig. 1a). In 
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addition, no peaks derived from Fe–Sn alloys (FeSn2 or FeSn) are observed, indicating 

that Fe–Sn alloys were not formed during the drying process at 363 K for 48 h. This 

result is different from Sn–Cu and Sn–Ni films, in which Cu6Sn5 and small amounts of 

NiSn3 were confirmed after the drying process [20,21]. After annealing at 533 K for 2 h 

(called “2h-annealed film”, Fig. 1b), several peaks of FeSn2 appear and peak intensities 

of β-Sn significantly decrease. This is consistent with a previous report that the rate of 

formation of FeSn2 phase drastically increases near the melting point of tin (505 K) [29]. 

Moreover, a peak at 2θ = 37.2° is assigned to the SnO 002 reflection, indicating that 

residual oxygen is not negligible for the oxidation of β-Sn at 533 K, in a vacuum level 

achieved by a rotary vane pump. Peak intensities of FeSn2 and SnO increase with the 

annealing time. In the 25h-annealed film (Fig. 1e), the peaks of pure metallic tin 

completely disappear, and the peaks of FeSn2 and SnO are observed. 

 

3.1.2 Cross-sectional FE-SEM 

Representative cross-sectional SEM images of the annealed Sn–Fe films are shown 

in Fig. 2. In the pure Sn film (Fig. 2a), a β-Sn layer of 1 μm thickness is observed on the 

Fe current collector. In contrast, inhomogeneous growth of the FeSn2 phase and the 

rougher Sn/Fe interface are observed in the 2h-annealed film, indicating that the 

formation of FeSn2 proceeds from the Sn/Fe interface toward the surface of β-Sn. The 

FeSn2 area increases in the 4h-annealed film, and the β-Sn area almost disappears in the 

10h- and 25h-annealed films. Instead, a SnO layer of ca. 100 nm thickness is observed 

on the top surface of the 25h-annealed film (Fig. 2e). 

 

3.2 Charge–discharge characteristics of Sn–Fe films  
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3.2.1 Initial charge–discharge curve 

Fig. 3a and 3b show the initial charge–discharge curves for all the Sn–Fe films, and 

the enlarged curves for the 10h- and 25h-annealed films, respectively. Several plateaus 

corresponding to the alloying and dealloying of tin with sodium are observed except for 

the 25h-annealed film. For the pure Sn film, the initial charge (alloying) and discharge 

(dealloying) capacities are 836 and 730 mAh (g-Sn)–1, respectively, that are close to the 

theoretical capacity of tin (847 mAh (g-Sn)–1). During the 1st discharging process, three 

main plateaus are observed in the cell voltage regions of 0.10–0.11, 0.20–0.21, and 

0.54–0.57 V. According to the previous studies [19, 30–32], these plateaus correspond to 

the coexisting states of Na15Sn4/Na5–δSn2, Na5–δSn2/α-NaSn, and α-NaSn/β-Sn, 

respectively. On the other hand, more complicated behavior is observed in the 1st 

charging process. Especially, several plateaus are confirmed in the region above 0.2 V, 

which is related to the formation of Na-poor (x < 1 for NaxSn) alloy phases. However, 

there are few reports concerning the electrochemical formation mechanism of Na-poor 

phases [33]. Thus, detailed analysis will be necessary in the future. In addition, the 

coulombic efficiency in the 1st cycle is calculated to be 87.3%, suggesting that the 

irreversible reaction such as the electrolyte decomposition and the formation of solid 

electrolyte interphase (SEI) occur during the 1st charging process. There are several 

reports on SEI formation in ionic liquid electrolytes consisting of only FSA anion 

[34–36]. In case of silicon negative electrodes combined with LiFSA–PYR13FSA ionic 

liquid electrolytes for lithium battery [34], the most probable species of SEI layer are 

LiF, sulfates, sulfites, and sulfides. Moreover, LiF is considered to be formed on the 

surface of lithium metal negative electrodes in FSA-based ionic liquid electrolytes 

[35,36]. Thus, the formation of NaF and sulfur-based compounds on the surface of tin 
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electrodes is speculated for the present study of sodium battery. 

The initial discharge capacities are 443, 173, and 52 mAh (g-Sn)–1 for the 2h-, 4h, 

and 10h-annealed films, respectively. Smaller discharge capacities are observed for 

Sn–Fe films with longer annealing times because the amount of active β-Sn decreases 

with annealing time. Although the peaks of β-Sn have completely disappeared in the 

X-ray diffraction pattern (Fig. 1e), the 25h-annealed film shows an initial discharge 

capacity of 46 mAh (g-Sn)–1. This is explained by the fact that the 25h-annealed film 

possesses a larger amount of SnO. As shown in Fig. 3b, two plateaus are observed at 

0.45 V and below 0.05 V for the 25h-annealed film in the 1st charging process, and they 

closely resemble those for SnO negative electrodes for sodium-ion battery [37]. Taking 

a closer look at the 1st charge curves (Fig. 3a and 3b), the pure Sn film (without SnO) 

and the 25h-annealed film (FeSn2 and SnO) show plateaus in the region of 0.4–0.5 V, 

suggesting that the formation of some Na–Sn alloys and the reduction of SnO occur in 

this region. For other films containing both β-Sn and SnO, the observed capacities in 

this region are ascribed to the sum of the two reactions. Further discussion of this matter 

appears in subsection 3.3.1. 

 

3.2.2 Cycleability 

Cycleability of Sn–Fe films is compared in Fig. 3c and 3d. For the pure Sn film, 

although the high discharge capacities of over 700 mAh (g-Sn)–1 are observed in the 1st 

and 2nd cycles, the capacity rapidly decreases to below 30 mAh (g-Sn)–1 within initial 

10 cycles, which is a typical capacity fade for tin negative electrodes [18]. Although the 

2h-annealed film shows the capacity decline from 443 to 122 mAh (g-Sn)–1 within 

initial 10 cycles, its capacity gradually recovers after 50 cycles and reaches 191 mAh 
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(g-Sn)–1 at the 100th cycle. For the 4h-annealed film, its capacity decreases from 173 to 

76 mAh (g-Sn)–1 within initial 10 cycles, and maintains at around 80 mAh (g-Sn)–1 after 

100 cycles. The 10h- and 25h-annealed films exhibit stable cycle characteristics, and 

retain their reversible capacities of 41 and 25 mAh (g-Sn)–1, respectively, after 100 

cycles. 

Especially, since the interesting cycling behavior is confirmed for the 2h-annealed 

Sn–Fe film, the possible mechanism is discussed as follows. Firstly, the sudden capacity 

drop in the initial 10 cycles can be explained by the pulverization of the active material 

and the loss of electrical contact between active material and current collector, as in the 

case of the pure Sn film. After the 10th cycle, the capacity is stabilized at around 

110–120 mAh (g-Sn)–1 until the 50th cycle, and then gradually increases to 200 mAh 

(g-Sn)–1 at the 100th cycle. Such capacity recovery of the 2h-annealed Sn–Fe film was 

also observed for Sn–Cu and Sn–Ni films [20,21], and can be interpreted by two main 

factors. One possible factor is the increase of effective surface area during cycling. As 

shown in Fig. 5, the surface morphology of the 2h-annealed film has become rougher 

after 100 cycles. With increasing cycle, the electrolyte gradually penetrates into the 

electrode and additionally makes a direct contact with the inside region, which leads to 

the decrease of the practical current density for the active materials. In this way, the 

increased amount of the active material can contribute to the reversible capacity. 

Another factor is the repairing of electrical contact during cycling. Since the melting 

points of sodium and tin are 371 and 505 K, respectively, both atoms can diffuse fast at 

the intermediate operating temperature in the present study (363 K). So, with the 

increase in the cycle number, the electrical contact of the pulverized tin partly recovers 

by the interdiffusion between the “living” active material and the “dead” active material, 
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which brings about the capacity increase. 

 

3.3 Analysis of Sn–Fe films after charge–discharge tests 

3.3.1 XRD 

Fig. 4 compares the X-ray diffraction patterns of Sn–Fe films before and after 

charge–discharge tests. For the pure Sn film, the h00 preferred orientation of β-Sn 

disappears, and the pattern changes to the reported powder pattern. This change 

indicates that β-Sn electrochemically reacts with sodium, as was the case of our 

previous studies [20,21]. Similar tendencies for β-Sn are observed in other Sn–Fe films 

after charge–discharge tests, except for the 25h-annealed film. Since the SnO peaks 

have disappeared after the charge–discharge tests for the annealed Sn–Fe films, SnO 

reacts with sodium based on the following manner [37]. 

SnO + 2 Na → Sn + Na2O (irreversible)   (1) 

Sn + 3.75 Na ⇄ Na3.75Sn (reversible)   (2) 

No detection of β-Sn peaks for the 25h-annealed film can be explained by the smaller 

amount of initial SnO and the low crystallinity of electrochemically formed β-Sn. Peak 

intensities of the FeSn2 phase have decreased and its orientation has slightly changed, 

suggesting that FeSn2 is active with sodium. 

 

3.3.2 Surface FE-SEM 

Surface SEM images of Sn–Fe films are shown in the Fig. 5. All films possess 

smooth surfaces before charge–discharge tests. However, large cracks are seen on the 

surface of the pure Sn film after the test. Through EDX mapping, Fe substrate is clearly 

observed in the cracks. This large morphological change originates from the large 
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expansion and contraction of β-Sn, leading to rapid degradation of the negative 

electrode (Fig. 3c). Although there are no large cracks in the 2h-annealed film, large 

pores are observed. These pores become smaller in the Sn–Fe films with longer 

annealing time, resulting in smoother surface morphologies. This is consistent with 

smaller reversible capacities having smaller volume changes. 

 

3.3.3 Cross-sectional FE-SEM 

Fig. 6 depicts cross-sectional SEM images of Sn–Fe films after charge–discharge 

tests. For the pure Sn film (Fig. 6a), compared to the film before test (Fig. 2a), the 

thickness of the active material layer has increased more than tenfold. Moreover, the 

formation of large pores and a rougher top surface are observed. These morphological 

changes are consistent with surface SEM observations (Fig. 5b) and poor cycleability 

(Fig. 3c). In the 2h-annealed film, relatively large particles (white color in the image) 

with diameters of several micrometers are distributed in the vicinity of the Sn/Fe 

interface. These particles are considered as FeSn2 according to the EDX analysis. 

Moreover, it is worth noting that some FeSn2 particles are refined into smaller ones, 

suggesting that FeSn2 particles partly react with sodium. Concerning the 4h- and 

10h-annealed films, similar morphological changes are confirmed. For the 25h-annealed 

film, some cracks appear in the FeSn2 layer due to the strain from the reaction of SnO or 

FeSn2. 

 

3.4 Charge–discharge mechanism of FeSn2 phase 

3.4.1 Preparation of an FeSn2 film without a SnO layer 

To prepare an FeSn2 film without a SnO layer, the SnO layer of the 25h-annealed 



13 

 

film is removed by argon ion etching attached to the XPS apparatus. Fig. 7a describes 

the XPS depth profiles of the 25h-annealed film. Without argon ion etching, peaks from 

Sn 3d5/2 and Sn 3d3/2 are observed in the oxidized state (486.5 eV for Sn 3d5/2 and 495 

eV for Sn 3d3/2). No peaks from Fe 2p3/2 and Fe 2p1/2 are detected, suggesting that the 

surface of the film is covered with a SnO layer. After etching for 20 s, peak intensities 

corresponding to tin oxides decrease and new peaks appear at around 485 and 493 eV, 

which are assigned to the metallic state of tin. Simultaneously, peaks from Fe 2p3/2 and 

Fe 2p1/2 are also observed to be in the metallic state (707 eV for Fe 2p3/2 and 720 eV for 

Fe 2p1/2). After etching for 40 s, peak intensities of tin in the metallic state are enhanced 

relative to those of tin oxide. In addition, peak intensities ascribed to Fe 2p3/2 and Fe 

2p1/2 increase simultaneously. 

Fig. 7b shows XRD patterns before and after argon ion etching. The diffraction peak 

of the SnO 002 (2θ = 37.2°) has almost disappeared after etching, indicating that most 

of the SnO layer has been removed. In addition, the peak intensities of FeSn2 phase 

have slightly decreased to approximately 90% of those before etching. From this point 

forward, we refer to the 25h-annealed film treated with 40 s etching as the “FeSn2 film”.  

 

3.4.2 Charge–discharge mechanism of an FeSn2 film without a SnO layer 

Fig. 8a compares the initial charge–discharge curves of the 25h-annealed film and 

the FeSn2 film. As mentioned before, for the 25h-annealed film, the plateau 

corresponding to the reduction of SnO into β-Sn is observed at around 0.45 V in the 1st 

charge process. However, the capacity of such a plateau is negligible in the initial 

charge curve of FeSn2 film, which is consistent with the absence of SnO confirmed by 

XRD (Fig. 7b). Moreover, a long plateau of approximately 300 mAh (g-Sn)–1 is 



14 

 

observed below 0.05 V. According to the previous studies of Fe–Sn alloy negative 

electrode for lithium-ion batteries [22,23], the following mechanism has been proposed 

for the 1st charge (lithiation) process: 

FeSn2 + 8.8 Li → 2 Li4.4Sn + Fe    (3) 

It is reasonable to consider a similar reaction for the 1st charge (sodiation) process of 

FeSn2 phase, that is, 

FeSn2 + 7.5 Na → 2 Na3.75Sn + Fe    (4) 

In the 1st discharge (desodiation) process, three distinct plateaus are observed at around 

0.11, 0.22, and 0.54 V, which is the typical desodiation behavior of Na–Sn alloys [18]. 

Thus, the assumed whole reaction of the 1st discharge process is: 

Na3.75Sn → Sn + 3.75 Na     (5) 

As shown in Fig. 8b, after the 2nd cycle, several plateaus are observed below 0.6 V in 

both the charge and discharge curves, which closely resembles the alloying and 

dealloying reaction of tin with sodium [18,20]. 

Sn + 3.75 Na ⇄ Na3.75Sn     (6) 

Fig. 9a compares the XRD patterns of FeSn2 film before and after the 

charge–discharge test. After the test, the diffraction peak intensities of FeSn2 002 and 

211 (2θ = 33.7° and 35.1°) have decreased to below 25% of initial intensities, 

suggesting that the large amounts of FeSn2 phase have reacted with sodium. Moreover, 

as shown in the enlarged view of the XRD patterns (Fig. 9b), the diffraction peaks of 

β-Sn 200 and 101 (2θ = 30.6° and 32.0°) are newly confirmed, indicating that this β-Sn 

phase is formed by the electrochemical reaction of FeSn2 (Equations 4–6).  

Fig. 10 shows the cross-sectional SEM images of the FeSn2 film before and after the 

charge–discharge test. The thickness of the active material layer has increased from 1 to 
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5 μm during the test, which is indicative of a reaction between FeSn2 and Na. White 

particles dispersed in the active material layer are considered to be FeSn2 that remain 

unreacted. 

 

3.4.3 Explanation of the lower capacities for Sn–Fe films with a SnO layer 

Cycle characteristics of the 25h-annealed film and FeSn2 film are compared in Fig. 

8c. Initial discharge capacities are 46 and 268 mAh (g-Sn)–1 for the 25h-annealed film 

and FeSn2 film, respectively. This difference is explained as follows. Since the 

25h-annealed film possesses a relatively thick SnO layer (approximately 100 nm 

thickness, see Fig. 2e), the inactive byproducts such as Na2O are produced on the 

electrode surface during the reduction of SnO into Sn at 0.45 V in the 1st charge process 

(Equation 1). In fact, as described in Fig. 11, the FeSn2 layer of the 25h-annealed film is 

covered with a thick Na2O layer after the charge–discharge test. Thus, sodium diffusion 

into the inner part of the electrode is blocked by the Na2O layer, and most of the FeSn2 

layer remains unreacted and does not contribute to the charge–discharge capacity. In 

contrast, since the FeSn2 film possesses a very small amount of SnO, little Sn and Na2O 

are produced at 0.45 V and sodium can directly diffuse into the FeSn2 layer. As a result, 

a larger amount of FeSn2 reacts with sodium in the 1st charge process below 0.05 V, 

which leads to the larger initial discharge capacity. After the 2nd cycle, although the 

25h-annealed film shows small discharge capacities below 50 mAh (g-Sn)–1, the FeSn2 

film retains its capacity of over 100 mAh (g-Sn)–1 for 25 cycles. 

 

4. Conclusions 

In this study, with the aim of exploring new negative electrode materials having high 
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charge–discharge performance, various kinds of Sn–Fe alloy films were prepared by 

annealing tin-coated iron foils at 533 K for 0 to 25 h, and their charge–discharge 

behaviors as negative electrode materials for sodium secondary batteries were 

investigated using Na[FSA]–K[FSA] ionic liquid at 363 K. 

The pure Sn film (without annealing) was composed of β-Sn and Fe substrate, and 

showed a precipitous capacity decline from 730 to 30 mAh (g-Sn)–1 within initial 10 

cycles, which is a typical degradation of tin negative electrodes. The severe 

morphological changes were confirmed by surface and cross-sectional FE-SEM 

analyses, which indicates that the electrodeposited tin film needs some buffers relieving 

the strain from the large volume change of tin. 

In contrast, the growth of FeSn2 phase was confirmed in other films annealed at 533 

K for 2–25 h. Sn–Fe films with a longer annealing time showed smaller initial 

capacities due to the lower sodium activity of the FeSn2 phase compared to β-Sn, and 

especially the 2h- and 4h-annealed films exhibited higher capacities of 191 and 82 mAh 

(g-Sn)–1 after 100 cycles. However, their capacity retention ratios were lower than 50% 

that was not sufficient for practical applications. As a result of cross-sectional FE-SEM 

analysis, the Sn/Fe interface did not keep the original morphologies, suggesting that the 

FeSn2 phase reacts with sodium.  

FeSn2 film was prepared by removing a SnO layer on the surface of the 

25h-annealed film, and the film showed the 1st discharge capacity of 268 mAh (g-Sn)–1. 

Combined with XRD and FE-SEM analyses, the FeSn2 phase was observed to be active 

with sodium, and changed into Sn–Na alloy and Fe. 

As a conclusion, we succeeded in improving the charge–discharge performance of 

tin film electrode by utilizing Sn–Fe films. However, further study to increase reversible 
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capacity is needed for practical applications. 
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Fig. 1. XRD patterns of annealed Sn–Fe films. Annealing temperature: 533 K. Annealing time: 0–25 

h. 
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Fig. 2. Selected cross-sectional FE-SEM images of annealed Sn–Fe films. (a) pure Sn, (b) 

2h-annealed, (c) 4h-annealed, (d) 10h-annealed, and (e) 25h-annealed. 
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Fig. 3. (a) and (b) Initial charge–discharge curves of Sn–Fe films at a current density of 84.7 mA 

(g-Sn)–1. (c) and (d) Cycle characteristics of these Sn–Fe films for 100 cycles. 
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Fig. 4. Comparison of the XRD patterns of Sn–Fe films before and after 100 cycles of 

charge–discharge. (a) pure Sn, before, (b) pure Sn, after, (c) 2h-annealed, before, (d) 2h-annealed, 

after, (e) 4h-annealed, before, (f) 4h-annealed, after, (g) 10h-annealed, before, (h) 10h-annealed, after, 

(i) 25h-annealed, before, (j) 25h-annealed, after. 
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Fig. 5. Representative surface SEM and EDX mapping images of Sn–Fe films before and after 100 

cycles of charge–discharge. (a) and (c) pure Sn, before, (b) and (d) pure Sn, after, (e) 2h-annealed, 

before, (f) 2h-annealed, after, (g) 4h-annealed, before, (h) 4h-annealed, after, (i) 10h-annealed, 

before, (j) 10h-annealed, after, (k) 25h-annealed, before, (l) 25h-annealed, after. 
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Fig. 6. Selected cross-sectional SEM images of Sn–Fe films after 100 cycles of charge–discharge. (a) 

pure Sn, (b) 2h-annealed, (c) 4h-annealed, (d) 10h-annealed, (e) 25h-annealed. 
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Fig. 7. (a) XPS depth profiles of 25h-annealed Sn–Fe films and (b) comparison of the XRD patterns 

of 25h-annealed Sn–Fe film electrodes before and after 40sec-etching. Inset shows the enlarged 

views of the red rectangular region. 
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Fig. 8. (a) Initial charge–discharge curves of the 25h-annealed film and FeSn2 film. Current density: 

84.7 mA (g-Sn)–1. Cut-off voltages: 0.005–1.200 V. (b) Charge–discharge curves of the 25h-annealed 

film and FeSn2 film. Cycle number: 1st, 2nd, and 5th. (c) Cycle characteristics of these Sn–Fe films 

for 25 cycles. 
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Fig. 9. (a) XRD patterns of FeSn2 film before and after charge–discharge test. (b) Enlarged views of 

the XRD patterns of FeSn2 film before and after 25 cycles of charge–discharge. 
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Fig. 10. Representative cross-sectional FE-SEM images of FeSn2 film (a) before and (b) after 25 

cycles of charge–discharge. 
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Fig. 11. A selected cross-sectional FE-SEM image and EDX mapping for the 25h-annealed film after 

25 cycles of charge–discharge. 


