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Flocking for multi-robots without distinguishing
robots and obstacles
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Abstract—Most existing studies of multiple mobile robots assume that
robots can distinguish between other robots and obstacles. However, if a
flocking algorithm were available that did not require this ability, easier
implementation could be expected. In this paper, we propose a flocking
algorithm that does not distinguish between a robot and an obstacle.
In other words, all detected objects are regarded as obstacles in the
proposed algorithm. Thus, velocity information on neighboring robots
is not required. We also show that the proposed algorithm maintains
the desired properties of existing flocking algorithms, even though only
limited information is used in the proposed algorithm. Furthermore,
unlike many previous studies, the effectiveness of the algorithm is
demonstrated not only by simulations, but also in real robot experiments.
In the experiments, neighboring robots and obstacles are detected using
only laser range finders, since the robots do not need to distinguish
between another robot and an obstacle.

Index Terms—multi-robot system, flocking, cohesion, velocity consen-
sus, obstacle avoidance.

I. INTRODUCTION

For decades, flocking behavior observed in nature has inspired
researchers in many different fields (see e.g. [1]–[4]). In the field
of control theory, feedback control algorithms to achieve flocking
behavior have been proposed, and the stability of the closed-loop
has been analyzed [5]–[15]. Related topics such as consensus [16]–
[19] and formation control of multi-agent systems [20]–[26] have
been studied intensively. This paper focuses on flocking algorithms
based on the classical model by Reynolds [1], which consists of
three heuristic rules: 1) Separation: steer to avoid crowding local
flockmates; 2) Alignment: steer towards the average heading of local
flockmates; 3) Cohesion: steer to move toward the average position
of local flockmates.

Tanner et al. [9]–[11] proposed a decentralized control law consist-
ing of a velocity feedback term for alignment and a position feedback
term based on an artificial potential field to achieve separation and
cohesion. Olfati-Saber[12] suggested that an additional feedback
term to track a virtual leader was necessary to avoid fragmentation
for a generic set of initial states. A flocking algorithm capable
of performing obstacle avoidance was also presented by creating
a virtual agent on the boundary of each nearby obstacle. Su et
al. [13] considered the case where only a small fraction of agents
have information about the virtual leader, and provided a stability
analysis of the main algorithm in [12] for a free space. Furthermore,
Zavlanos et al. [14] proposed a flocking algorithm that guaranteed
the connectivity of a proximity-based graph. In [15], a connectivity-
preserving flocking algorithm without velocity measurements was
proposed.

One of the possible applications of flocking algorithms is coop-
erative control of mobile robots. Although the flocking algorithms
mentioned above assume the ability to distinguish between a neighbor
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and an obstacle, this is not as easy for robots as it is for animals such
as birds. A reason is that laser range finders, which are commonly
used on robots, cannot distinguish obstacles and other robots, since
they only return range data. Furthermore, it is often difficult to extract
the velocity information of each neighbor from sensor data, which is
required in the existing flocking algorithms.

In this paper, we propose a flocking algorithm that does not
distinguish between a robot and an obstacle. In other words, all
detected objects are regarded as obstacles in the proposed algorithm.
Thus, velocity information on neighboring robots is not required.
We also give theoretical results on the stability of the closed-loop
system, which is divided into two parts. The first part considers the
case where no obstacle exists in the neighborhood of each robot.
Although the proposed method is developed to apply in the presence
of obstacles, the stability analysis in the case of no obstacle is still
meaningful, since velocity matching of robots is typically achieved
only after the robots avoid all obstacles. The second part gives
analysis in the presence of obstacles in the neighborhoods of the
robots. Unfortunately, our analysis suggests that the velocity matching
is difficult to be guaranteed in this case. Instead, we derive conditions
for the closed-loop system to be dissipative, and provide results
on group cohesion and collision avoidance when the closed-loop
system is dissipative. Furthermore, unlike many previous studies,
we demonstrate the effectiveness of the algorithm is demonstrated
not only with simulations but also in real robot experiments. In the
experiments, neighboring robots and obstacles are detected using only
laser range finders, since robots do not need to distinguish between
other robots and obstacles.

II. PROBLEM SETTING

Consider n robots, which we call α agents. Let qi(t) ∈ Rm denote
the position at time t of a point that is fixed on robot i (i = 1, . . . , n).
The movement of robot i is described as

q̇i = pi, ṗi = ui (1)

where ui ∈ Rm and pi ∈ Rm denote the control input and velocity,
respectively, of α agent i. We assume that there are ` static obstacles
in the environment. Thus, when an α agent and an obstacle are not
distinguished, we refer to them as object j (j = 1, . . . , n + `).
Without loss of generality, we assume that objects 1, . . . , n are α
agents. The shape of objects is assumed to be convex.

We also assume that α agents are able to detect an object within a
given maximum range, r. The set of neighbors of robot i is defined
as the following set of detected objects

Ni := {j ∈ {1, . . . , n+ `}\{i} : ‖q̂ij − qi‖ < r}, (2)

where q̂ij is the closest point on the object j to qi. We also define
the following subsets of Ni

Nα
i := {j ∈ {1, . . . , n}\{i} : ‖q̂ij − qi‖ < r} (3)

Nβ
i := {j ∈ {n+ 1, . . . , n+ `} : ‖q̂ij − qi‖ < r} (4)
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which are the sets of the α agents and the obstacles, respectively, in
Ni. Furthermore, we define

Sα
i := {1, . . . , n}\{i}, Sβ := {n+ 1, . . . , n+ `}

Si := Sα
i ∪ Sβ = {1, . . . , n+ `}\{i}, i = 1, . . . , n

for later use.
As in previous studies [12], [13], a virtual leader, called a γ agent,

is introduced to represent the target position and velocity of the group.
More precisely, the γ agent is a point described as

q̇γ = pγ , ṗγ = uγ (5)

where qγ ∈ Rm and pγ ∈ Rm are the position and velocity of the
γ agent. The control input uγ ∈ Rm is decided depending on the
target trajectory of the group.

In this paper, we propose a control algorithm for α agents to
follow the γ agent without distinguishing between obstacles and other
α agents in the neighborhood. The algorithm must be constructed
without losing the desirable properties guaranteed with the previous
algorithms [12], [13].

III. OVERVIEW OF PREVIOUS FLOCKING ALGORITHMS IN

OBSTACLE ENVIRONMENTS

Our flocking algorithm is constructed by modifying the control law
in [12], which considers obstacle environments. In this section, we
give a brief overview of the algorithm in [12], for the sake of clarity.

In previous studies, including [12], an α agent and an obstacle in
the neighborhood are distinguished in the flocking algorithm. Thus,
Nα

i in (3) and Nβ
i in (4) are used in the algorithm instead of Ni in

(2). Since an α agent is assumed to be a particle, qj (j = 1, . . . , n)
is equal to the position of the particle α agent j. Thus, q̂ij in (3),
which is the closest point to qi on α agent j, is equal to qj .

The control input ui is composed of three terms as follows.

ui = uα
i + uβ

i + uγ
i . (6)

The term uα
i in (6) can be divided into two components as

uα
i = fg

i + fd
i .

The first component fg
i is defined as

fg
i := −cα1

∑
j∈Nα

i

∇qiψα(‖qj − qi‖σ) (7)

where cα1 > 0 is a feedback gain and ψα is an artificial potential
function for collision avoidance with neighbors. Furthermore, ‖z‖σ
is defined as

‖z‖σ =
1

ε1

[√
ε22 + ε1‖z‖2 − ε2

]
(8)

for positive constants ε1 and ε2. (ε1 = 0.1 and ε2 = 1 are used
in [12].) The reason why ‖qj − qi‖σ is used in (7) instead of the
Euclidean norm is that ‖qj − qi‖σ is differentiable everywhere while
‖qj − qi‖ is not for qi = qj . Since the desired interagent distance is
given as dα, the artificial potential function ψα(z) in (7) has the mini-
mum value at z = ‖dα‖σ , where ‖dα‖σ =

(√
ε22 + ε1d2α − ε2

)
/ε1.

For collision avoidance, the value of ψα(z) monotonically increases
as z goes from z = ‖dα‖σ to z = 0. In order to avoid the
discontinuity of fg

i at ‖qj − qi‖ = r, the potential function ψα

is decided such that the gradient of ψα(z) vanishes for z ≥ ‖r‖σ .
For further details on how to construct ψα(z), see [12].

The second component fd
i is introduced for velocity matching with

other α agents as

fd
i := cα2

∑
k∈Nα

i

aij(q)(pj−pi), q := col{q1,· · ·, qn} (9)

Fig. 1. Position and velocity of β-agent (existing method).

Fig. 2. Position and velocity of β-agent (proposed method).

where cα2 > 0 is a feedback gain and aij(q) is defined as

aij(q) = ρh(‖q̂ij − qi‖σ/rσ) (10)

by using the bump function

ρh(z) :=


1, z ∈ [0, h)
1
2

[
1 + cos(π z−h

1−h
)
]
, z ∈ [h, 1]

0, otherwise

(11)

for h ∈ (0, 1). Since aij(q) is a positive definite function that
decreases as ‖qj − qi‖σ grows, a larger control input is generated to
match the velocity with a closer agent.

We next define uβ
i in (6). When an α agent detects an obstacle, it

generates a virtual agent called a β agent at the closest point on the
obstacle. We refer to the β agent generated on obstacle j ∈ Nβ

i as
β agent ij. In the case where an obstacle is an infinite wall (see Fig
1 for an example of m = 2), the position of the β agent ij is q̂ij ,
and the velocity is

p̂ij = pi − sijs
T
ijpi (12)

where sij is a unit vector from q̂ij to α agent i. As illustrated in Fig.
1, p̂ij in (12) is the projection of pi onto the wall. By using q̂ij and
p̂ij , the term uβ

i in (6) is defined as

uβ
i = −cβ1

∑
j∈N

β
i

∇qiψβ(‖q̂ij − qi‖σ)

+cβ2
∑

j∈N
β
i

aij(q)(p̂ij − pi) (13)

where ψβ is a repulsive potential function for obstacle avoidance. For
a given positive constant dβ(< r), the value of ψβ(z) monotonically
increases as z goes from z = ‖dβ‖σ to z = 0. The gradient of ψ(z)
vanishes at z = ‖dβ‖σ and remains zero for z > ‖dβ‖σ .

The term uγ
i is introduced to track the γ agent. In [12], the

following uγ
i is used for flocking with obstacle avoidance.

uγ
i = −cγ1µ(qi − qγ)− cγ2 (pi − pγ) (14)

where µ(z) := z√
1+‖z‖2

, and cγ1 , c
γ
2 > 0 are feedback gains.
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IV. PROPOSED METHOD

A distinguishing feature of the proposed method as compared to
the standard method in Section III is that an α agent generates a β
agent on each object in the neighborhood, regardless of whether the
object is an α agent or an obstacle. While q̂ij is generated in the
same way as in Section III, the velocity p̂ij of β agent ij is

p̂ij = pi − sijs
T
ijpi + sijs

T
ijpγ (15)

where

sij :=

{
qi−q̂ij

‖qi−q̂ij‖
, if ‖qi − q̂ij‖ 6= 0

0, otherwise.
(16)

The difference from velocity p̂ij in (12) is that the third term is added
on the right hand side of (15). As illustrated in Fig. 2, the third term
sijs

T
ijpγ in (15) is the projection of pγ onto the line connecting qi

and q̂ij , as shown by the dash-dotted line in Fig. 2. By using q̂ij and
p̂ij , the proposed control law is described as

ui = uβ
i + uγ

i (17)

uβ
i = −cβ1

∑
j∈Ni

∇qiψ(‖q̂ij − qi‖σ)

+cβ2
∑
j∈Ni

aij(q)(p̂ij − pi) (18)

where Nβ
i in (13) is replaced by Ni, since an α agent and an obstacle

are not distinguished. The definition of aij and uγ
i are the same as

in (10) and (14), respectively. The artificial potential function ψ is
defined in the same way as ψβ in [12], although a slightly simplified
definition is used for ψ. More precisely, for a given positive constant
d(< r), ψ(z) is defined as

ψ(z) =

∫ z

dσ

φ(s)ds (19)

using dσ := ‖d‖σ and the following function φ(z)

φ(z) := ρh(z/dσ) φ0(z) (20)

φ0(z) :=
−1

z + ε0
, ε0 > 0 (21)

where a small number ε0 is added in the denominator of φ(z) to
prevent φ(z) from diverging as z → 0. Since φ(z) = 0 for z ≥ dσ ,
the gradient of ψ(z) vanishes for z ≥ dσ . It is seen from φ0(z) < 0
(z ≥ 0) that ψ(‖q̂ij − qi‖σ) monotonically decreases for 0 < ‖q̂ij −
qi‖σ < dσ . Fig. 3 illustrates ψ(z) and ρ(z/dσ) for dσ ' 1.5 and
ε0 = 0.001.

One of the differences between the proposed algorithm and that
described in Section III is that the proposed algorithm determines the
control input by generating a β agent not only for an obstacle but
also for an α agent in the neighborhood. Thus, information on the
velocities of other α agents is not required to determine the control
input. Another difference is that the velocity of a β agent in (12) is
modified by adding the third term on the right hand side in (15). The
purpose of this modification is to maintain the desirable properties
of the algorithms in [12], [13], as described in the next section.

V. STABILITY ANALYSIS

As described in Section IV, the proposed algorithm does not use
the velocity information of other α agents and generates a β agent
for an α agent in the neighborhood, since all detected objects are
regarded as obstacles. Thus, it is important to discuss if the proposed
algorithm using such limited information guarantees stability results
similar to those of the previous studies.

In [12], theoretical results on group cohesion, velocity matching,
and collision avoidance were provided in the case of no obstacles
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Fig. 3. ψ(z) (left) and ρ(z/dσ) (right) for dσ ' 1.5 and ε0 = 0.001.

and particle α agents. Those results were derived in the case where
the velocity of the γ agent is time varying. However, a limitation is
that the relationship between the asymptotic velocity of α agents and
the γ agent’s velocity is not clear. Su et al. [13] modified the results
of [12] so that all α agents asymptotically had the same velocity as
the γ agent’s, by assuming the γ agent has a constant velocity. As in
[13], we assume that the γ agent has a constant velocity and prove
similar results on group cohesion, velocity matching, and collision
avoidance.

Although the proposed method is developed to apply in obstacle
environments, stability analysis in the case of no obstacles is still
meaningful. A reason is that velocity matching of robots is typically
achieved only after the robots avoid all obstacles, as seen in the
simulation and the experiment in Sections VI-VII. Since the robots
do not distinguish between other robots and obstacles, they do not
recognize if all obstacles are avoided. As a result, the robots keep
using the proposed method, even if there are no more obstacles
around them. Furthermore, since the proposed algorithm is quite
different from the previous ones, it is not straightforward to prove
stability results similar to those in the previous studies. Theorem 1
below suggests that the properties such as velocity matching are not
proved, if we adopt the velocity of β agents in (12), in the same way
as in [12]. In other words, it is necessary to add the term sijs

T
ijpγ

to (12), as described in (15), to obtain Theorem 1.
In the presence of obstacles, [12] discusses conditions for the

system of α agents to be dissipative, while it is difficult to prove the
properties such as velocity matching. Similarly, we derive conditions
for the proposed algorithm to make the system dissipative, and give
results on group cohesion and collision avoidance when the system
is dissipative.

Before presenting the stability analysis, we define the Hamiltonian
as

H(q, p) =
1

2

n∑
i=1

[
Ui(q) + (pi − pγ)

T (pi − pγ)
]

(22)

where

Ui(q) = cβ1

(
V α
i (q) + 2V β

i (q)
)
+ 2cγ1ψγ(‖qi − qγ‖) (23)

V α
i (q) =

∑
j∈Sα

i

ψ(‖q̂ij − qi‖σ) (24)

V β
i (q) =

∑
j∈Sβ

ψ(‖q̂ij − qi‖σ), ψγ(z) :=
√

1 + z2 − 1. (25)

We also define the Hamiltonian at t = 0 as H0.
In the case of particle α agents, q̂ij in (24) is equal to qj . Further,

in the absence of obstacles, V β
i (q) = 0 in (23), since Sβ is empty.

In such cases, we obtain the following result.
Theorem 1: Suppose that each α agent is a particle and consider an

environment without obstacles. We also assume that pγ is constant,
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and that the initial Hamiltonian H0 is finite. Then, the following
statements hold.

i) The distance between each α agent and the γ agent is not greater

than

√(
H0

c
γ
1
+ 1

)2

− 1.

ii) The velocities of all α agents approach the desired velocity pγ
asymptotically.

iii) The position of each α agent asymptotically converges to
an equilibrium point satisfying ∇U(q) = 0 where U(q) =∑n

i=1 Ui(q).
iv) If H0 < cβ1 (k + 1)ψ(0) for some positive integer k, then at

most k distinct pairs of agents could possibly collide (k = 0
guarantees a collision free motion).

Proof: See Appendix A.
We next present a result in the presence of obstacles. In the same

way as in [12], we consider two types of obstacles, for which the
position of the β agent and its derivative are derived as follows.

i) For an obstacle with a hyperplane boundary that has a unit
normal aj and passes through a fixed point yj , it holds that

q̂ij = (I − aja
T
j )qi + aja

T
j yj , ˙̂qij = (I − aja

T
j )pi. (26)

ii) For a spherical obstacle with radius Rj centered at yj , we have

q̂ij = λqi + (1− λ)yj , ˙̂qij = λ(I − aja
T
j )pi. (27)

where λ := Rj/‖qi − yj‖ and aj := (qi − yj)/‖qi − yj‖.

In both cases, sij in (16) coincides with aj , and is perpendicular to
˙̂qij .

Theorem 2: Under the assumptions in Theorem 1, except that there
are two types of obstacles described above, we have Ḣ(q, p) ≤ 0, if

n∑
i=1

cβ1pTγ ∇qiV
β
i − cβ2

∑
j∈Si

aij
(
sTij p̃i

)2 − cγ2 p̃
T
i p̃i

 ≤ 0 (28)

where p̃i := pi−pγ . Furthermore, if there exists a finite time t1 ≥ 0
such that Ḣ(q, p) ≤ 0, ∀t ≥ t1, the following statements hold for
t ≥ t1.

i) The distance between each α agent and the γ agent is not greater

than

√(
H1

c
γ
1
+ 1

)2

− 1, where H1 is the value of Hamiltonian
at t1.

ii) If H1 < cβ1 (k+1)ψ(0) for some positive integer k, then at most
k collisions (inter agent collision or collision with an obstacle)
occur concurrently (k = 0 guarantees a collision free motion).

Proof: See Appendix B.
While the second and the third terms in the brackets in (28) do

not have positive values, the first term

n∑
i=1

cβ1p
T
γ ∇qiV

β
i = cβ1

n∑
i=1

∑
j∈Sβ

pTγ ∇qiψβ(‖q̂ij − qi‖σ) (29)

might have a positive value. The value of (29) increases when
obstacles in the neighborhood of each α agent are located in the
direction of pγ , i.e., the direction in which each α agent should move.
Since the left hand side of (28) is equal to Ḣ , the positive value of
(29) makes it more difficult for Ḣ ≤ 0 to hold. Furthermore, even if
H converges, it does not mean that velocity matching is achieved, if
(29) has a positive value. Thus, velocity matching is not guaranteed
before all obstacles in the environment are avoided. In other words, if
robots permanently encounter obstacles, velocity matching is difficult
to be achieved.
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Fig. 4. Snapshots of a simulation.
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Fig. 5. Minimum distance between objects (simulation).

VI. SIMULATION

In this section, we show simulation results in the case of a two-
dimensional space, i.e., m = 2. The values of the design parameters
are set as ε0 = 0.001, ε1 = 0.1, ε2 = 0.01, h = 0.2, d = 0.8, r =

1.0, cβ1 = 2.5, cγ1 = 0.2, cβ2 = 2
√
cβ1 , and cγ2 =

√
cγ1 . The initial

position of each α agent is randomly generated, while the initial
velocity is zero. The γ agent moves from the origin along the x axis
at a constant velocity of 0.1 m/s. The step size of the simulation is
0.1 s.

Fig. 4 shows snapshots of a simulation in the presence of a
diamond-shaped obstacle and 20 α particle agents. The positions of
an α agent and the γ agent are shown by “◦” and “.”, respectively.
If a pair of α agents are interacting, i.e., the distance is less than
r, they are connected by a line segment. Fig. 5 shows the minimum
distance from the α-agents to nearby objects, i.e., nearby α agents
and obstacles. It is shown from this figure that there is no collision
with obstacles or other α agents. The average of the velocity of the
α agents is shown by the solid line in Fig. 6. We also compute the
sample standard deviation ŝ of the velocities of α agents at each
time step, and show the ±ŝ interval by the dash-dotted lines. This
figure demonstrates that the velocity of each α agent converges to the
velocity of the γ agent shown in the dashed line after the obstacle
avoidance at around 30-80 s.

We next show simulation results in the presence of multiple
obstacles. A problem in this case is that if the distance between
two obstacles is too small, even a single particle α agent cannot pass
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Fig. 7. Obstacles with the minimum distance δ in multiple obstacle cases.

between the obstacles due to strong repulsive forces from them. As
a result, the two obstacles constitute one concave obstacle that traps
α agents. To illustrate this problem, we performed simulations for
different values of the minimum distance δ of the uniformly placed
fifteen obstacles as shown in Fig. 7. In Fig. 8, we show the average
and standard deviation of the rate of α agents that passed through
the obstacle area without being trapped, for 100 initial positions of
α agents generated randomly. The simulation results show that it is
difficult for α agents to pass between obstacles for δ < 1.4. Fig.
9 shows the average and standard deviation of the the minimum
distance between objects, i.e., α agents and obstacles, which implies
that the collision avoidance performance is not significantly affected
by δ. It is also seen from Fig. 9 that as the number of the α-
agents increases, the minimum distance between objects decreases. A
possible reason for this is that an α agent in the front side of the group
is pushed toward an obstacle by a larger number of other α-agents. In
all cases, the minimum distance between objects is larger than 0.47,
which implies that collision avoidance is achieved. Furthermore, the
velocity and position error between the leader and each α-agent that
passed through the obstacle area are less than 4.4×10−2 m/s and 2.9
m respectively at the final simulation time (300 sec), which implies
that velocity matching and group coherence are achieved. An example
of paths of α agents for δ = 1.4 and n = 20 is shown by blue
lines in Fig. 10. If the distance between obstacles is large enough
for an α agent to pass through, no significant difference between
performances in single and multiple obstacle cases is found from
these simulation results except for the increase in the number of the
split/rejoin maneuvers for obstacle avoidance that are similar to the
one in Fig. 4.

The algorithm is also tested for different layouts of obstacles other
than that in Fig. 7. The positions of fifteen obstacles are selected
from randomly generated coordinates such that the minimum distance
between obstacles does not exceed δ = 1.4 in order to make sure
that robots can pass between obstacles. The initial states of α-

1 1.2 1.4 1.6 1.8 2

0

20

40

60

80

100

R
at

e 
o

f 
u

n
tr

ap
p

ed
 a

g
en

ts
 [

%
]

Distance between obstacles δ [m]

n = 20
n = 10
n =  1

Fig. 8. Rate of α agents that are not trapped in the obstacle area.

1 1.2 1.4 1.6 1.8 2
0.3

0.4

0.5

0.6

D
is

ta
n

ce
 t

o
 o

b
je

ct
 [

m
]

Distance between obstacles δ [m]

n = 20
n = 10
n =  1

Fig. 9. Minimum distance between objects in multiple obstacle cases.

agents are also selected randomly. We performed 100 simulations
in each case of n = 1, n = 10 and n = 20. In all cases,
the minimum distance between objects is larger than 0.44, which
implies that collision avoidance is achieved. Furthermore, the velocity
and position error between the leader and each α-agent are less
than 4.0 × 10−2 m/s and 2.6 m respectively at the final simulation
time (500 sec), which implies that velocity matching and group
coherence are achieved. From these results, the effectiveness of the
proposed algorithm has been verified except for in the cases where
the minimum distance between obstacles is too small for a robot to
pass through. To overcome the problem that robots are trapped by
obstacles, an emergency algorithm is required to detect and escape
from such a deadlock situation, although we do not focus on that in
this paper.

VII. EXPERIMENT

The proposed method was applied to a group of 8 robots. For each
robot, we used a mobile robot platform (Kobuki, Yujin Robot). The
model of this robot is described asẊi

Ẏi

φ̇i

 =

cosφi 0
sinφi 0
0 1

[
vi
ωi

]
, i = 1, . . . , 8 (30)

where (Xi, Yi) denotes the position of the center of the axle and φi

is the orientation of robot i. The control inputs of this system are the
translational and angular velocities (vi, ωi). To obtain the model as
in (1) for this system, we define qi := [Xi+ l cosφi, Yi+ l sinφi]

T ,
which is the point with an offset l = 0.1 [m] from the center of the
axle. Since it holds from (30) that

q̇i = Bi

[
vi
ωi

]
= pi, Bi :=

[
cosφi −l sinφi

sinφi l cosφi

]
(31)
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Fig. 11. Snapshots of an experiment.
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Fig. 10. Example of paths of α agents for δ = 1.4 (simulation).

we obtain

wi = B−1
i pi, wi := [vi, ωi]

T . (32)

Thus, pi is computed by numerical integration of ṗi = ui. We then
apply wi obtained by (32) to the system. It should be noted that
although this is a simple way to linearize the system as in (1), it has
a limitation that the internal dynamics in terms of φi is not always
stable (i.e., the robots possibly spin about qi) [27]. The position and
orientation of the vehicle are measured by Gyrodometry [28] based
on a gyro sensor (CRS09-22, Silicon Sensing Systems). Two laser
range finders (URG-04LX, Hokuyo) are used to detect objects around
each robot, since the field of view of each sensor is 240 deg. Point
clouds from laser range finders on each robot are classified in such a
way that two points of distance less than a given threshold (0.05 m)
belong to the same group. Each group of point clouds is recognized
as one object, and the closest point in each group is used as q̂ij
(j ∈ Ni, i = 1, . . . , 8). The control input wi above is computed by
a computer (BOXDC53427HYE, Intel) mounted on each robot. The
same values of the design parameters in the control law as in Section
VI are used.

Fig. 11 contains snapshots of an experiment in the presence of
an obstacle; Fig. 12 shows the minimum distance from the center
of a robot to objects (i.e., nearby robots and obstacles). Since each
robot has a circular shape with a radius of less than 0.18 m, Fig. 12
indicates that no collision occurred. The average velocity of the α
agents is shown by the solid line in Fig. 13, and the dash-dotted lines
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Fig. 12. Minimum distance between agents and obstacles (experiment)
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indicate the ±ŝ interval for the sample standard deviation ŝ of the
velocities of α agents. The figure demonstrates that the velocity of
each α agent is kept around the velocity of the γ agent shown in the
dashed line after the obstacle avoidance at around 20-65 s, although
some small fluctuation in the velocities are inevitable, unlike in the
simulation.
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VIII. CONCLUSIONS

In this paper, we have proposed a flocking algorithm that does
not distinguish between robots and obstacles. Since all detected
objects are regarded as obstacles in the proposed algorithm, velocity
information on the neighboring robots is not necessary. We have
demonstrated that the proposed algorithm maintains the desired prop-
erties of existing flocking algorithms despite the limited information
used. The effectiveness of the algorithm has been demonstrated
by both simulations and real robot experiments in the presence of
a single obstacle. We have also verified by simulations that the
proposed algorithm is effective in multiple obstacle cases, if the
distance between obstacles is large enough for an α agent to pass
through. On the other hand, if the distance between two obstacles is
too small, α agents are trapped by the two obstacles that constitute
one concave obstacle. To overcome this problem, we need to add
an emergency algorithm for robots to detect and escape from such a
deadlock situation, which is a possible future work.

APPENDIX A
PROOF OF THEOREM 1

We first show that Ḣ(q, p) ≤ 0. In the case of no obstacles and
particle α agents, Ui(q) in (23) is written as

Ui(q) = cβ1V
α
i (q) + 2cγ1ψγ(‖q̃i‖) (33)

V α
i (q) =

∑
j∈Sα

i

ψ(‖qj − qi‖σ) =
∑
j∈Sα

i

ψ(‖q̃j − q̃i‖σ) (34)

where q̃i := qi − qγ . Differentiating Ui gives
n∑

i=1

U̇i(q) = cβ1

n∑
i=1

∑
j∈Sα

i

(
˙̃qTi ∇q̃iψ(‖q̃j − q̃i‖σ)

+ ˙̃qTj ∇q̃jψ(‖q̃j − q̃i‖σ)
)
+ 2cγ1

n∑
i=1

˙̃qTi ∇q̃iψγ(‖q̃i‖)

= 2cβ1

n∑
i=1

˙̃qTi ∇qiV
α
i (q) + 2cγ1

n∑
i=1

˙̃qTi µ(q̃i). (35)

From the assumption that pγ is constant, we have

˙̃pi = ṗi − ṗγ = ṗi = ui. (36)

Thus, it holds from ˙̃qi = p̃i that

Ḣ(q, p) =

n∑
i=1

p̃Ti

[
cβ1∇qiV

α
i (q) + cγ1µ(q̃i) + ui

]
. (37)

In the case of no obstacles and particle α agents, the control input
ui in (17) can be written as

ui = −cβ1
∑

j∈Nα
i

∇qiψ(‖qj − qi‖σ)

+cβ2
∑

j∈Nα
i

aij(q)(p̂ij − pi)− cγ1µ(q̃i)− cγ2 p̃i (38)

by replacing q̂ij and Ni in (18) by qj and Nα
i , respectively. Further,

since it follows from the definitions of ψ and aij that

∇qiψ(‖qj − qi‖σ) = 0, aij(q) = 0, ∀j /∈ Nα
i (39)

we can replace Nα
i in (38) by Sα

i . Thus, we have

ui =− cβ1∇qiV
α
i (q) + cβ2

∑
j∈Sα

i

aij(q)(p̃ij − p̃i)

− cγ1µ(q̃i)− cγ2 p̃i (40)

where p̃ij := p̂ij − pγ which is rewritten as

p̃ij = p̃i − sijs
T
ij p̃i (41)

from (15). By substituting (40) into (37), we have

Ḣ(q, p) =

n∑
i=1

cβ2 ∑
j∈Sα

i

aij(q)p̃
T
i (p̃ij − p̃i)− cγ2 p̃

T
i p̃i

 . (42)

It holds from (41) that

p̃Ti (p̃ij − p̃i) = −p̃Ti sijsTij p̃i = −
(
sTij p̃i

)2 ≤ 0. (43)

Thus, since cβ2 > 0 and aij(q) ≥ 0, the first term in the right hand
side of (42) is not positive. Therefore, since −cγ2 p̃Ti p̃i ≤ 0 for the
second term, we have Ḣ(q, p) ≤ 0.

Once Ḣ(q, p) ≤ 0 is proved, the statements i)-iv) can be proved
in the same way as in [13], as briefly described below.

i) It holds from Ḣ(q, p) ≤ 0 that H(q(t), p(t)) ≤ H0 at t ≥ 0.
Since V α

i (q) ≥ 0, p̃Ti p̃i ≥ 0, and cβ1 , c
γ
1 > 0 in (22), we have

cγ1ψγ(‖qi − qγ‖) ≤ H(q, p) ≤ H0. (44)

Thus, from the definition of ψγ in (25), we obtain

‖q̃i‖ = ‖qi − qγ‖ ≤

√(
H0

cγ1
+ 1

)2

− 1 (45)

which completes the proof of i). Similarly, it holds from (22) that

p̃Ti p̃i ≤ 2H(q, p) ≤ 2H0 (46)

which implies

‖p̃i‖ = ‖pi − pγ‖ ≤
√
2H0. (47)

ii) From Ḣ(q, p) ≤ 0, the following set Ω is an invariant set.

Ω =

{[
q̃T , p̃T

]T
: H(q, p) ≤ H0

}
(48)

Since (45) and (47) imply that the relative position and velocity from
each agent to the γ agent is bounded, Ω is a compact set. From
the LaSalle Invariance Principle [29], all trajectories of the α agents
that start from Ω will converge to the largest invariant set inside the
following region S.

S =

{[
q̃T , p̃T

]T
: Ḣ(q, p) = 0

}
(49)

Since Ḣ = 0 implies p̃i = 0, i = 1, 2, · · · , n from (42)-(43), it is
proved that ii) is satisfied.

iii) From ii) proved above, it holds asymptotically that p̃i = 0, i.e.
pi = pγ . Then, since ui = ṗi = ṗγ = 0 under the assumption that
pγ is constant, it holds from (40) that

0 = −cβ1∇qiV
α
i (q)− cγ1µ(q̃i). (50)

Therefore, since it holds that∑
j∈Sα

i

∇qiUj = cβ1
∑
j∈Sα

i

∑
k∈Sα

j

∇qiψ(‖qk − qj‖σ)

= cβ1
∑
j∈Sα

i

∇qiψ(‖qi − qj‖σ) = cβ1∇qiV
α
i (q) (51)

we have

∇qiU(q) =

n∑
j=1

∇qiUj(q) = ∇qiUi(q) +
∑
j∈Sα

i

∇qiUj(q)

= 2
(
cβ1∇qiV

α
i (q) + cγ1µ(q̃i)

)
= 0 (52)

for Ui in (23), which implies that iii) is satisfied.
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iv) For a proof by contradiction, suppose that more than k distinct
pairs of α agents collide at a time t∗. Since qi = qj when a pair of
α agents (i, j) collide, we obtain

H(q, p) ≥ cβ1
2

n∑
i=1

∑
j∈Sα

i

ψ(‖qj − qi‖σ) ≥ cβ1 (k + 1)ψ(0).

Thus, it holds from H0 ≥ H(q, p) that H0 ≥ cβ1 (k + 1)ψ(0). This
contradicts the assumption that H0 < cβ1 (k + 1)ψ(0). Hence, it is
proved that iv) is satisfied.

APPENDIX B
PROOF OF THEOREM 2

By differentiating V β
i in (25), we have

V̇ β
i =

∑
j∈Sβ

(
˙̂qTij∇q̂ijψ + q̇Ti ∇qiψ

)
. (53)

It follows from the definition of ψ in (19) that

∇q̂ijψ(‖q̂ij − qi‖σ) =
φ(‖q̂ij − qi‖σ)√
ε22 + ε1‖q̂ij − qi‖2

(q̂ij − qi) (54)

which is parallel to sij in (16) and perpendicular to ˙̂qij in (26) and
(27). Thus, we have ˙̂qTij∇q̂ijψ = 0, which implies

V̇ β
i = q̇Ti ∇qiV

β
i (q) = ˙̃qTi ∇qiV

β
i (q) + q̇Tγ ∇qiV

β
i (q). (55)

Therefore, it follows from (37) and (55) that

Ḣ(q, p) =

n∑
i=1

p̃Ti

[
cβ1

(
∇qiV

α
i (q) +∇qiV

β
i (q)

)
+ cγ1µ(q̃i) + ui

]
+

n∑
i=1

cβ1p
T
γ ∇qiV

β
i (q). (56)

Since ui in (17) can be written as

ui = −cβ1
(
∇qiV

α
i (q) +∇qiV

β
i (q)

)
+ cβ2

∑
j∈Si

aij(q)(p̂ij − pi)− cγ1µ(q̃i)− cγ2 p̃i (57)

it holds from (15) and (56) that

Ḣ(q, p) =

n∑
i=1

cβ1pTγ ∇qiV
β
i (q)− cβ2

∑
j∈Si

aij
(
sTij p̃i

)2 − cγ2 p̃
T
i p̃i

 .
Therefore, Ḣ(q, p) ≤ 0, if (28) is satisfied. Once Ḣ(q, p) ≤ 0
is proved, i) can be proved in the same way as in Theorem 1 by
replacing H0 by H1.

To prove ii) by contradiction, suppose that more than k collisions
occur at a time t∗. Then, we have

H(q, p) ≥ cβ1

n∑
i=1

 ∑
j∈Sα

i

ψ(‖qj − qi‖σ)
2

+
∑
j∈Sβ

ψ(‖qj − qi‖σ)


≥ cβ1 (k + 1)ψ(0) (58)

which implies H1 ≥ cβ1 (k+1)ψ(0). This contradicts the assumption
that H1 < cβ1 (k + 1)ψ(0). Hence, it is proved that ii) is satisfied.

REFERENCES

[1] C. W. Reynolds, “Flocks, herds, and schools: A distributed behavioral
model,” Comput. Graph., vol. 21, no. 4, pp. 25–34, Jul, 1987.

[2] T. Vicsek, A. Czirok, E. B. Jacob, I. Cohen, and O. Schochet, “Novel
type of phase transition in a system of self-driven particles,” Phys. Rev.
Lett., vol. 75, no. 6, pp. 1226–1229, Aug., 1995.

[3] J. Toner and Y. Tu, “Flocks, herds, and schools: A quantitative theory
of flocking,” Phys. Rev. E, vol. 58, no. 4, pp. 4828–4858, Oct, 1998.

[4] A. Mogilner and L. Edelstein-Keshet, “A non-local model for a swarm,”
J. Math. Biol., vol. 38, pp. 534–570, 1999.

[5] N. E. Leonard and E. Friorelli, “Virtual leaders, artificial potentials
and coordinated control of groups,” in Proc. 40th IEEE Conf. Decision
Control, Dec. 2001, pp. 2968–2973.

[6] Y. Liu, K. M. Passino, and M. M. Polycarpou, “Stability analysis
of M-dimensional asynchronous swarms with a fixed communication
topology,” IEEE Trans. Autom. Contr., vol. 48, no. 1, pp. 76–95, Jan.
2003.

[7] V. Gazi and K. M. Passino, “Stability analysis of swarms,” IEEE Trans.
Autom. Contr., vol. 48, no. 4, pp. 692–697, Apr. 2003.

[8] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Trans. Autom.
Contr., vol. 48, no. 6, pp. 988–1001, Jun. 2003.

[9] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Stable flocking of mobile
agents, part II: Dynamic topology,” in Proc. 42nd IEEE Conf. Decision
Control, Dec. 2003, pp. 2016–2021.

[10] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and
switching networks,” IEEE Trans. Autom. Contr., vol. 52, no. 5, pp.
863–868, May 2007.

[11] H. G. Tanner, “Flocking with obstacle avoidance in switching networks
of interconnected vehicles,” in Proc. IEEE Int. Conf. Robot. and Autom.,
Apr. 2004, pp. 3006–3011.

[12] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms
and theory,” IEEE Trans. Autom. Contr., vol. 51, no. 3, pp. 401–420, Mar.
2006.

[13] H. Su, X. Wang, and Z. Lin, “Flocking of multi-agents with a virtual
leader,” IEEE Trans. Autom. Contr., vol. 54, no. 2, pp. 293–307, Feb.
2009.

[14] M. M. Zovlanos, H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Hybrid
control for connectivity preserving flocking,” IEEE Trans. Autom. Contr.,
vol. 54, no. 12, pp. 2869–2875, Dec. 2009.

[15] H. Su, X. Wang, and G. Chen, “A connectivity-preserving flocking al-
gorithm for multi-agent systems based only on position measurements,”
International Journal of Control, vol. 82, no. 7, pp. 1334–1343, Jul.
2009.

[16] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Contr., vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[17] W. Ren and R. W. Beard, “Consensus seeking in multi-agent systems
under dynamically changing interaction topologies,” IEEE Trans. Autom.
Contr., vol. 50, no. 5, pp. 655–661, May 2005.

[18] W. Ren, “On consensus algorithms for double-integrator dynamics,”
IEEE Trans. Autom. Contr., vol. 53, no. 6, pp. 1503–1509, Jul. 2008.

[19] J. Qin, W. Zheng, H. Gao, “Consensus of multiple second-order vehicles
with a time-varying reference signal under directed topology,” Automat-
ica, vol. 47, no. 9, pp. 1983–1991, 2011.

[20] J. P. Desai, J. P. Ostrowski, and V. Kumar, “Modeling and control of
formations of nonholonomic mobile robots,” IEEE Trans. Robot. Autom.,
vol. 17, no. 6, pp. 905–908, Dec. 2001.
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