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ABSTRACT

Given an ensemble of forecasts, it is possible to determine the leading ensemble singular vector (ESV), that is,

the linear combination of the forecasts that, given the choice of the perturbation norm and forecast interval,

will maximise the growth of the perturbations. Because the ESV indicates the directions of the fastest growing

forecast errors, we explore the potential of applying the leading ESVs in ensemble Kalman filter (EnKF) for

correcting fast-growing errors. The ESVs are derived based on a quasi-geostrophic multi-level channel model,

and data assimilation experiments are carried out under framework of the local ensemble transform Kalman

filter. We confirm that even during the early spin-up starting with random initial conditions, the final ESVs of

the first analysis with a 12-h window are strongly related to the background errors. Since initial ensemble

singular vectors (IESVs) grow much faster than Lyapunov Vectors (LVs), and the final ensemble singular

vectors (FESVs) are close to convergence to leading LVs, perturbations based on leading IESVs grow faster

than those based on FESVs, and are therefore preferable as additive inflation. The IESVs are applied in the

EnKF framework for constructing flow-dependent additive perturbations to inflate the analysis ensemble.

Compared with using random perturbations as additive inflation, a positive impact from using ESVs is found

especially in areas with large growing errors. When an EnKF is ‘cold-started’ from random perturbations and

poor initial condition, results indicate that using the ESVs as additive inflation has the advantage of correcting

large errors so that the spin-up of the EnKF can be accelerated.

Keywords: singular vector, dynamic sensitivity, ensemble Kalman filter, data assimilation

1. Background

In ensemble Kalman filter (EnKF), covariance inflation is a

common strategy to compensate for the under-estimation of

ensemble-based background error covariance due to the use

of a limited ensemble size and imperfect models. Covariance

inflation can be classified into three types. Multiplicative

covariance inflation (Anderson and Anderson, 1999) in-

creases the amplitude of the error covariance without

modifying the structure, so that the weight given to the

overconfident model state is reduced. Additive covariance

inflation (Whitaker et al., 2008) aims to perturb the subspace

spanned by the ensemble vectors and better capture the

sub-growing directions that may be missed in the original

ensemble. Finally, Zhang et al. (2004) relaxed the analysis

ensemble vectors to the background ensemble so that the

subspace of the ensemble space is not over-shrunk. Con-

sidering that the issue of rank deficiency becomes even more

harmful when EnKF is performed with a small ensemble

size, additive inflation is expected to be particularly bene-

ficial for improving the EnKF performance. Whitaker et al.

(2008) found that additive inflation was more effective than

multiplicative inflation. The concept of additive inflation

was demonstrated in Corazza et al. (2003) with a quasi-

geostrophic (QG) channel model. Adding a small amount of

the random perturbations on the bred vectors (BV) helps

BVs capture sub-growing directions so that BVs better

project on the background errors. In Yang et al. (2006,

2009), Corazza et al. (2007), Kalnay et al. (2007), random

perturbations are used as the additive covariance inflation in

the EnKF assimilation framework. However, in realistic

models, using randomperturbations to perturb the ensemble

may introduce directions that are irrelevant with respect to

the underlying background flow. This noise can even be

accumulated in areas with sparse observations. To generate
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proper additive inflation for realistic models, Houtekamer

et al. (2005) generated additive errors according to the 3D-

Var errors covariance structures. Instead of using the large-

scale and barotropic structures based on the 3D-Var errors

covariance, Whitaker et al. (2008) generated additive noise

by selecting random differences between adjacent 6-hourly

analyses the NCEP/NCAR reanalysis, aiming to emphasise

growing baroclinic synoptic-scale structures in middle

latitudes. Although both methods should lead to more

realistic model error statistics, it is not clear whether the

additive perturbations are added in the ‘desired’ areas where

errors are flow-dependently growing and dynamically active.

To make the additive inflation effectively improve the

capture of growing errors, we propose that additive pertur-

bations should also be flow-dependent, instead of inflating

the full space spanned by the ensemble vectors. To achieve

this, perturbations that aim to represent the fast-growing

errors should be applied to enlarge the error covariance. In

this study, we propose that forecast sensitivities associated

with fast-growing errors can be applied as additive inflation,

so that the ensemble vectors can efficiently project on the

subspace associated with the dynamically growing errors.

Perturbations associated with fast-growing errors have

been extensively studied for applications such as improv-

ing the performance of ensemble prediction and targeting

observations. Two methods that aim to capture the sub-

space of growing errors in the ensemble prediction systems

are singular vectors (SV, Buizza et al., 1993; Buizza and

Palmer, 1995), the computation of which is based on the

tangent linear and adjoint models, and BVs (Toth and

Kalnay, 1993, 1997) that use a fully non-linear model. SVs

are a set of perturbation vectors that will maximise the

growth of the perturbations given the choice of initial/final

norms (the metric to measure the size of the perturbation)

and optimisation period. The structures of SVs are very

sensitive to the choice of initial and final norms and

optimisation period (Errico and Vukicevic, 1992). For the

purpose of operational forecasting, ECMWF uses the

total energy norm at the initial time so that the energy

spectrum of the initial SV best matches the spectrum of

analysis errors estimated from analysis differences (Palmer

et al., 1998). For tropical cyclone (TC) track prediction,

moist and dry SVs derived in Japan Meteorology Agency

(JMA) target on the TC-associated and mid-latitude regions

(Yamaguchi et al., 2009) and moist SVs are computed with

the moist total energy norm (Barkmeijer et al., 2001). The

breeding cycle for deriving BV is a non-linear, finite-time,

finite-amplitude generalisation of the method used to

obtain the leading Lyapunov Vector (LV) (Kalnay and

Toth, 1994). Independent from the choice of norms, BV

captures the growing errors of interest with physically

meaningful breeding parameters, including the breeding

rescaling amplitude and interval (Peña and Kalnay, 2004;

Yang et al., 2006). BVs with a regional rescaling were

introduced in the NCEP ensemble forecasting system (Toth

and Kalnay, 1997). A study by Yang (2005, Appendix B)

has shown that BV and final SV are similar in shape and

both strongly project on the background errors, which are

the errors from a short-range forecast used as the initial

guess in assimilation cycles. This confirms that both BVs

and final SVs are strongly related to the dynamically grow-

ing errors. In addition to SV and BV, the ETKF rescaling

scheme, which is regarded as the generalised breeding

approach (Bojarova et al., 2011), also seeks to represent

the dynamical growing perturbations.

For targeting observations, perturbations indicating fast-

growing errors within an optimisation period can also be

used to determine the sensitivity area that contributes to

the forecast errors in the target region. Deploying addi-

tional observations in these areas can improve the forecast

in the target region (Palmer et al., 1998; Bishop and Toth,

1999; Gelaro et al., 1999; Bishop et al., 2001). Adjoint fore-

cast sensitivity has been applied to answer questions such

as ‘what would be the optimal initial analysis perturbation

that leads to the best 3-d forecast?’ (Rabier et al., 1996).

For regional weather prediction, adjoint-based forecast

sensitivity has also been well explored for understanding

typhoon development (Chen et al., 2009, 2011; Wu et al.,

2009; Doyle et al., 2012; Ito and Wu, 2013). Without the

need of an adjoint, Bishop and Toth (1999) derived the

ensemble-based SV and discussed the relationship between

the ensemble-based prediction error covariance matrix and

SV for measuring maximum growth. Enomoto et al. (2006,

2015) re-formulated ensemble singular vector (ESV) using

a Lagrange multiplier in a simplified setting. Given an

ensemble of forecasts, the ensemble sensitivities can be

derived as a linear combination of the forecasts that, given

the choice of the perturbation norm and forecast interval,

will maximise the growth of the perturbations. Therefore,

the leading ESV indicates the directions of the fastest

growing forecast errors. With a dry total energy norm,

ESV has been used to investigate the sensitivity of atmo-

spheric predictability for a stratospheric sudden warming

event (Nishii and Nakamura, 2010) and a blocking event

(Matsueda et al., 2011).

In this study, we use the forecast sensitivity based on

Enomoto et al. (2006, 2015). We refer to such ensemble

sensitivity as the ESV sensitivity. We derive the ESVs

from the ensemble in the EnKF assimilation implemented

in a QG model (Rotunno and Bao, 1996), and explore

whether these ESVs are related to the forecast errors, and

whether they can be used in the EnKF system for further

improving the analysis accuracy and help to capture

the growing errors while the ensemble perturbations are

building up the flow-dependent structures during the

EnKF’s spin-up period.

2 S.-C. YANG ET AL.



The paper is organised as follows. Section 2 presents

the derivation of ESV and the local ensemble transform

Kalman filter (LETKF) method implemented in the QG

model. The QG model used in this study is introduced in

Section 3 and the characteristics of the ESVs derived with

this QG model are discussed in Section 4. Section 5 shows

results of applying ESV as additive inflation in the QG-

LETKF framework. Finally, a summary and conclusions

are presented in Section 6.

2. Methodology

2.1. Ensemble singular vector

Assume we have an ensemble of m members with an initial

state {y1,. . .yi,. . .ym} at time t0, and a final state {z1,. . .zi,. . .zm}

at time t0�Dt, where zi ¼ M
t0!t0þDt

ðyiÞ is the integration of

the initial state yi with the non-linear model M. The initial

and final perturbations are defined with respect to the

ensemble mean: dyi ¼ yi � �y are the initial state perturba-

tions and dzi ¼ zi � �z are the final state perturbations. With

M representing the tangent linear model of the non-linear

model M, the final perturbation can be approximated as

dzi ¼ M
t0!t0þDt

dyi for all i (1)

Equation (1) assumes that the forecast integration (Dt)
is not too long, so that the evolution of the perturbations is

approximately linear. We note that the same constraint is

needed in the adjoint-based sensitivity analysis method. To

measure the size of perturbations, matrices CI and CF are

used to respectively define the initial and final norms of

model states or perturbations, so that dyk k ¼ dyT CIdy and

dzk k ¼ dzT CF dz.

We want to find an initial state perturbation dy such

that the norm of the final state perturbation dz will be

maximised among all perturbations of the same initial size 1.

Using Lagrange multipliers [e.g. eq. (6.3.30) in Kalnay,

2003], a cost-function for optimisation can be defined as:

Fðdy; kÞ ¼ dzT CF dzþ kð1� dyT CIdyÞ (2)

Given the relationship between dz and dy, from eq. (1),

eq. (2) can be solved as an eigenvector problem:

MT CF Mdy ¼ kCIdy (3)

Enomoto et al. (2006, 2015) re-formulated this for an

ensemble of forecasts: Given the initial and final perturba-

tions, the corresponding matrices of perturbations are

defined as:

Y ¼ dy1; dy2; � � � ; dym½ �; Z ¼ dz1; dz2; � � � ; dzm½ � (4)

We want to find the optimal linear combination of the

perturbations such that

dy ¼ Yp; dz ¼ Zp (5)

where p ¼ p1; p2; � � � ; pm½ � is the coefficients vector. Note

that the coefficient vector, p, is the same for the initial and

final perturbations because of eq. (1), which requires the

forecast interval to be enough short to assure that the

forecast evolution stays close to linear.

From eqs. (1) to (4) we can write the function to be

maximised with a fixed perturbation norm:

Fðp; kÞ ¼ pT ZT CF Zpþ kð1� pT YT CI YpÞ (6)

Making the differential with respect to p equal to zero,

we obtain

YT CI Y
� ��1

ZT CF Z
� �

p ¼ kp (7)

Equation (7) is the same as eq. (9) in Enomoto et al.

(2006), and eq. (12) in Matsueda et al. (2011) (except for the

absence of the norms C). By definition, the eigenvector

associated with the largest eigenvalue l1 and the resulting

initial ensemble singular vector (IESV) leads to the max-

imum growth of the corresponding final ensemble singular

vector (FESV). With eq. (7), we can find m pairs of initial

and final ensemble SVs (IESVi and FESVi, for i�1 to m)

and IESV1 indicates the fastest growing perturbation.

Also, note that the initial and final norms, CI and CF do

not need to be the same, and that they can include, for

example, a mask to project only on the region of interest. If

the interest of the forecast is certain types of scales, one

may consider applying any kind of low/high pass filters to

the ensemble and construct the ESV based on these filtered

perturbations.

Using eq. (7) [as with the adjoint sensitivity in eq. (3),

Rabier et al., 1996] one can formulate the response to

general questions such as: ‘What change in the initial

conditions in a certain region will have maximum impact

on the vorticity of the final forecast in another region?’

Given that these ensemble SVs will provide the directions

of fast-growing errors, we propose to test the use of ESVs

as additive inflation for EnKF assimilation.

2.2. LETKF and running in place

The LETKF (Hunt et al., 2007) belongs to the square

root type of EnKFs and it updates the ensemble mean

and perturbation according to the local information of the

background (a short-range forecast) and observations. In

the LETKF, optimal weights for the background ensemble

perturbations are derived, so that this linear combination

of the ensemble perturbations minimises the analysis error

variance (in the local domain). With K background

ESV AS EnKF’S ADDITIVE INFLATION 3



ensemble members at time tn, the analysis ensemble

perturbation (deviations from the ensemble mean) at the

analysis time tn are computed as follows:

Xa
n ¼ Xb

nWa
n (8)

Here, Xb
n ¼ dxb;1

n½ � . . . dxb;k
n½ � is the matrix of the back-

ground perturbations whose columns are the vectors of

ensemble perturbations with respect to the ensemble mean:

that is, dxb;k
n ¼ xb;k

n � xb
n, where xb;k

n is the kth background

ensemble member and xb
n is the background ensemble

mean. Similar definitions are applied to the analysis

ensemble mean (xa
n) and perturbations (Xa

n). The analysis

perturbation weight matrix Wa
n is computed by:

Wa
n ¼ Iþ 1

ðK � 1Þ
YbT

n R�1Yb
n

" #�1
2

(9)

Here, Yb
n ¼ dyb;1

n

� �
. . . dyb;k

n

� �
is the matrix of the back-

ground ensemble perturbations in observation space where

dyb;k
n ¼ hðxb;k

n Þ � hðxb
nÞ, superscript T stands for matrix

transpose, R is the observation error covariance matrix

and hð�Þ is the observation operator that converts a

variable from model to observation space.

The analysis ensemble mean at time tn is obtained from

xa
n ¼ Xb

nwa
n þ xb

n; (10)

where

wa
n ¼ P̂a

nYbT
n R�1 yo

n � �yb
n

� �
(11)

In eq. (11), yo
n and yb

n ¼ hðxb
hÞ are the column vectors

for the observations and the background ensemble mean

in observation space, respectively. Equations (8)�(11)
provide the basic formulas of the standard LETKF.

The R-localisation method (Hunt et al., 2007; Greybush

et al., 2011) is adopted, which increases observation errors

as the distance between the observation and analysis

grid increases. Multiplicative covariance inflation is

applied on the background ensemble perturbations, as

X0bn ¼ ð1þ DÞXb
n and D is the inflation factor. Additive

inflation is applied by adding new perturbations (Qn) onto

the analysis ensemble perturbations. Through non-linear

integration, the additive inflation can have impact on the

background ensemble perturbations.

X0
a

n ¼ Xa
n þQn (12)

Based on the framework of the standard LETKF,

Kalnay and Yang (2010) proposed the running in place

(RIP) method to accelerate the spin-up period of an EnKF

when initialising the assimilation from a state far from the

true dynamics (e.g. a cold start), or when the background

error statistics suddenly change (e.g. a rapid regime change

in the dynamics). Below, RIP is described briefly within the

LETKF framework. Further details are presented in

Kalnay and Yang (2010) and Yang and Kalnay (2012).

The RIP scheme has two steps: (1) the use of the no-cost

smoother derived with the latest observational and dyna-

mical information to adjust the ensemble at a time earlier

than the current analysis time, and (2) a forward integra-

tion of these smoothed (improved) ensemble states to the

current analysis time and assimilation of the same set of

observations. In Kalnay and Yang (2010), these two steps

are repeated iteratively for a window between the previous

and current analysis times, (tn�1, tn). We note that with a

dynamically complex model such as a regional weather

model, the window for applying the no-cost smoother can

be shorter than the analysis interval, given the non-linearity

of the mesoscale dynamics (Yang et al., 2012).

In step (1), the no-cost smoother applies the LETKF

weights derived at tn to the analysis ensemble at the

previous analysis time tn�1, as indicated in eqs. (13) and

(14) below. These weights carry the information about the

later observations and dynamical uncertainties so that the

mean and ensemble anomalies can be smoothed:

xa;iþ1
n�1 ¼ xb;i

n�1 þ Xb;i
n�1wa;i

n (13)

Xa;iþ1
n�1 ¼ Xb;i

n�1Wa;i
n (14)

At the ith iteration, the weights (wa;i
n and Wa;i

n ) obtained

during the LETKF analysis computation at tn are applied

to the mean and the perturbations of the model ensemble at

tn�1 (x
b;i
n�1 and Xb;i

n�1). Equations (13) and (14) start at i�0,

where wa;0
n and Wa;0

n are the weight coefficients from the

standard LETKF (with the observation assimilated once)

and xb;0
n�1 and Xb;0

n�1 are the mean and the perturbations of

the final analysis ensemble derived at the previous analysis

cycle at tn�1.

In step (2), a forward integration of the ensemble states

from tn�1 to tn provides the new background ensemble

(xb;iþ1
n ) for the next iteration. The LETKF computation is

repeated to obtain the new analysis ensemble (xa;iþ1
n ) and

weight coefficients (wa;iþ1
n and Wa;iþ1

n ). Following Kalnay

and Yang (2010), the iteration procedure is repeated until

the improvement of the observational increment in the new

iteration is less than 5%:

With RIP, the accuracy of the mean state and ensemble-

based background error covariance are both improved

simultaneously to capture the underlying true dynamics, as

represented by the observations. Also, the RIP method has

been proposed to serve as a generalised outer-loop to deal

with the non-linearity and non-Gaussianity issues that may

lead to filter divergence (Yang and Kalnay, 2012; Yang

et al., 2013).

4 S.-C. YANG ET AL.



3. QG channel model and experimental setup

ESVs are computed under the framework of LETKF

implemented on a QG model (Rotunno and Bao, 1996).

The dimensional values for the model parameters are the

same as in Morss (1998). There are 64 grid points in the

zonal direction, 33 grid points in the meridional direction,

and a total of seven vertical levels, including the bottom,

top and five internal levels. The non-dimensional time

step is 0.1, about 30 min. The prognostic variables are

potential vorticity (q) at the interior levels, and potential

temperature (u) at the bottom and top levels. The govern-

ing equations are:

@q

@t
þ v � rq¼ ð � s�1 þDÞðq� qref Þ

@h

@t
þ v � rh ¼

�C @2

@x2 þ @2

@y2

� �
/þ ð � s�1 þDÞðh� href Þat the bottom

ð � s�1 þDÞðh� href Þ at the top levels

8
<

:

(15)

q is defined through the stream-function f, as q ¼ byþ
@2/=@z2 þr2/. The velocity and temperature are ob-

tained through the stream-function (SF): u; v; hð Þ ¼
�@/=@y; @/=@x; @/=@zð Þ. In eq. (15), qref and uref are the

zonal mean reference state for potential vorticity (PV) and

temperature, t is the relaxation time, D denotes the fourth-

order horizontal diffusion, and G controls the Ekman

pumping at the bottom level. Further details about the

mathematical formulation and the numerical schemes are

described in Rotunno and Bao (1996). The forcing and

dissipation included in the model are specified as in

Snyder et al. (2003).

With a perfect model configuration and observation

system simulation experiments (OSSEs), Yang et al. (2009)

showed that the analysis derived from the QG-LETKF was

more accurate than the analyses from the QG-3D-Var or

from the QG-4D-Var with a short assimilation window

(12 h), but was comparable with the QG-4D-Var analysis

with a 24-h assimilation window, which requires more

computational time.

When the model is initialised from a very inaccurate

state (e.g. climatology), the QG-LETKF system needs a

very long spin-up period to converge to its asymptotic level

of performance. This is because the flow-dependent error

covariance used in the LETKF system can effectively

estimate the observation corrections only after the ensem-

ble perturbations capture the structures of the growing

errors. During the spin-up, the accuracy of analysis mean

state is far from the asymptotic level of performance.

Ensemble perturbations evolved upon such poor mean

state cannot capture well the structures of the dynamically

growing errors and thus the background error covariance

based on these ensemble perturbations is very suboptimal

in representing the flow-dependent uncertainties. As a

result, the observations are less effectively assimilated

with the poor background error covariance and thus the

system takes time to correct the analysis accuracy. As

shown in Kalnay and Yang (2010) and Section 5.3, such

long EnKF’s spin-up can be significantly accelerated with

the RIP method so that the spin-up period becomes even

shorter than those required for the variational-based

methods.

We propose to apply additive inflation with ESVs within

the LETKF and LETKF-RIP frameworks with 20 ensem-

ble members. Following the OSSE setup in Yang et al.

(2009), the data assimilation experiments in this study are

performed for 150 d using a 12-h analysis cycle (i.e. 300

analysis cycles). There are 64 ‘rawinsonde’ observations,

randomly distributed in the model domain. The observa-

tions are vertical profiles of zonal and meridional wind com-

ponents and temperature, generated by adding random

Gaussian errors on the truth. The observation error covari-

ance is constructed following Dey and Morone (1985),

where the observation error is assumed to be uncorrelated

between observations and between different variables. Only

vertical correlations for the same variable are considered.

The observation error is 0.8m s�1 for the zonal wind,

0.5m s�1 for the meridional wind and 0.88C for temperature.

Details of the QG assimilation setup can be found in Yang

et al. (2009). The performance of this assimilation system

is measured by the RMS analysis error, defined as the

domain-averaged RMS difference of the model variables

(PV and temperature) between the analysis and truth.

4. The ESVs in the QG model

4.1. Characteristics of the ESVs and their relationship

with the background errors

The initial and final ESVs are derived within the QG-

LETKF system. To initialise the experiment, the mean state

of the ensemble is initialised from a 3D-Var solution

(Morss, 1998) and the initial perturbations are sampled

from the 3D-Var error covariance. To illustrate how

quickly the leading FESV can project on the fast-growing

error, Fig. 1 compares the leading ESV, ensemble pertur-

bations from the first ensemble member and errors of the

mean state. In the following, the background and analysis

ensemble perturbations are referred to as BP and AP

respectively. In Fig. 1, the left panel shows the leading

IESV, the analysis errors and AP at the initial time (t � 1),

and the right panel shows the leading FESV, the back-

ground errors and BP 12-h later (t � 2). Since the system is

initialised from a 3D-Var analysis and the errors from the

mean state are mixed with the growing (with dynamically

stretching) and non-growing errors (isotropic-like), as

shown in Fig. 1a. At such early time of assimilation, the

ESV AS EnKF’S ADDITIVE INFLATION 5



ensemble perturbations are still strongly dominated by the

3D-Var Gaussian structures (contours in Fig. 1a) and they

are not yet able to represent the locations and structure of

analysis error. In Fig. 1c, the analysis errors at t�1 are

compared with the first initial SV (IESV1), which being an

IESVs is not similar to the analysis errors either. The right

top and bottom figures show the effect of 12 h of dynamic

evolution, with the colours being the background (forecast)

error after 12 h in Fig. 1b and d. In Fig. 1b, the per-

turbation from the first background ensemble member has

done a fair job in representing the true background errors.

In contrast, in Fig. 1d, the fastest growing FESV1 is

representing exceedingly well the true forecast errors.

Although the ESVs are derived from the same set of

ensemble perturbations, FESV1 at this early time already

projects very strongly on the background errors, identifying

the locations and stretching directions of fast-growing

errors (e.g. area near x�52, y�18 in Fig. 1d). This suggests

that even at the early time of model forecast and assimila-

tion, when ensemble is starting to develop the structures

related to growing errors, the computation of the leading

ESV can help to efficiently estimate the shapes of the

fast-growing errors. The fastest growing modes eventually

correspond to the uncertainty pattern that determines the

background errors. In addition to the leading ESV, FESV2

to FESV5, identified as growing ESVs, also project strongly

on different parts of the dominant errors, as highlighted

by the green boxes in Fig. 2. Therefore, these large errors

with growing property can be derived by constructing the

ESVs. In principle, perturbations containing very little

energy, perturbations projecting on poorly observable direc-

tions or perturbations corresponding to the phenomena
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Fig. 1. (a) Analysis ensemble perturbation (contour) and analysis errors (colour shading) at t�1 and (b) and background ensemble

perturbation (contour) and background errors (colour shading) at t�2. (c) and (d) are the same as (a) and (b), except that the contours are,

IESV1 and FESV1, respectively. The contour interval is 0.004.
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‘not-of-interest’ may also project on these ESVs. As a conse-

quence, several ESVs with growing modes may be needed to

project well on different parts of the background error.

Even well after the LETKF has spun up, the leading

FESVs can still better estimate the fast-growing errors

based on the well-developed ensemble, as will be discussed

later. According to the temporal mean singular values, there

are on the average 10 growing modes from all the available

ESVs, as shown in Fig. 3, in which the growth rates are

computed based on PV (in red) and SF (in blue) norms. In

comparison, the ensemble perturbations exhibit modes

growing moderately. Figure 3 also indicates that when using

10 vectors for perturbations, the first 10 FESVs will be more

effective to capture the growing errors than using 10 BPs.

To investigate the relationship between FESVs and

background errors, we compute the local angle between

the background error and the subspace of FESVs or BPs.

This also indicates the extent to which the background

error lies in the subspace spanned by these vectors (Corazza

et al., 2003). As shown in eq. (16), the computation is done

by sequentially removing the projection from each vector

on background errors. In eq. (16), vi; e0h i denotes the inner
product between the vector of background error, e0,

and the ith ensemble vector, vi. e? is the remaining part

unexplained by the vectors and the calculation is initialised

from e?�e0. cos
2 (u) denotes the percentage of the explained

variance.

e0 ¼ e0 � e0; vih i vi

vik k
2

i ¼ 1; � � � ;K

cos2ðhÞ ¼ 1� e0k k2
.

e0k k
2

(16)

Fig. 2. Background errors (colour shading) and (a) FESV2, (b) FESV3, (c) FESV4 and (d) FESV5 at t�2. Green boxes indicate areas

where FESV projects well on the background errors. The contour interval is 0.004.
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The computation of eq. (16) is done sequentially with a

9�9 local box centred at each analysis grid point and K

is the number of the total vectors. For K�1, the local

vectors (V1,V2,. . .Vk) are orthogonalised before the com-

putation to avoid double counting. Figure 4 shows the time

series of the mean of the local explained variance from

using the leading and first 10 FESVs, in comparison with

the one derived from using the same number of BP vectors.

To avoid over-representation of certain ensemble members,

the BP vectors are randomly chosen from the 20 ensemble

perturbations. As shown in Fig. 4a, the FESV1 has larger

explained variance most of the times than using one BP.

Even though, FESV1 occasionally, has less explained vari-

ance than BP (e.g. at the 10th analysis cycle), other FESVs

help capture the growing errors. For example, the ex-

plained variance with the first 10 FESVs at the 10th

analysis cycle becomes larger than the one derived with

10 BPs (Fig. 4b). With 10 vectors, it is clear that the back-

ground error is better confined with the subspace spanned

by the 10 FESVs than the space by 10 BPs. In other

words, the subspace spanned by the FESVs with growing

modes always represents better the background errors than

the BPs. It would be more efficient to make corrections

using a subspace that better encompasses the background

errors. In Section 5, these growing ESVs will be used to

enhance the structures of ensemble instead of uniformly

enlarging the amplitude of BPs like the multiplicative

inflation.
The amount of explained variance is strongly related

to the amplitude of the errors, which is also associated with

the strength of dynamical instability. The background error

is more strongly confined in the subspace of FESVs when

the dynamical instability becomes stronger. Therefore, it is

expected that using ESVs as the additive inflation may have

advantage in regions with large growing errors.

4.2. ESVs with different norms

In Section 4.1, the IESVs and FESVs were derived with the

L2 norm, which can also be defined as the PV norm. The

ESVs can be derived with different choice of initial and

final norms, as indicated in eq. (7). In the following, we

demonstrate that the structures of the ESVs are sensitive to

the choice of norms by comparing the ESVs derived from

the PV and SF norms. We saw in Fig. 3 that the growth

rate of the fastest growing SVs is larger for the PV norm

than for the SF norm.

It is well known that, in general, initial SVs grow very

fast and are very sensitive to the choice of norm. Final SVs,

by contrast, evolve to become close to the local leading LV

therefore grow more slowly (like LV) and are much less

sensitive to the choice of norm (e.g. Norwood et al., 2013).

This is also observed among ESVs. Figure 5 shows the

ESV1 for potential temperature at the bottom level derived

from the PV and SF norms. FESV1 from two norms are

generally similarities over the areas of dominant structures,

while the PV- and SF-based IESV1 are, as expected for

initial SVs, much less similar. Also, the IESV1 with the

SF norm has some structures that are less stretched than

the IESV1 with the PV norm. The similarity between the

PV- and SF-based FESV1 suggests that they are dominated

by the same instabilities associated with the local leading

LVs, and thus indicate the growing errors at the same

areas.

Results from Fig. 5 also reflect the fact that SVs are

sensitive to the choice of norms and that it is straight-

forward to change the choice of norms with the ensemble-

based method. The PV-based FESVs show larger projections

on the background errors (figure not shown), indica-

ting a closer relationship to the background errors. This

is expected since the PV-based norm uses the pertur-

bations of the prognostic variables of the model. On

the average, the PV-based ESV1 has a larger growth rate

than the SF-based ESV1, as shown in their singular values

(Fig. 3). Therefore, we expect that the PV-based ESV1

grows faster and better represent the fast growing errors.

The efficiency of the data assimilation scheme depends on

how well the observations can correct the growing errors
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Fig. 3. Time mean growth rates of the 20 ESVs based on the

potential vorticity and stream-function norms and ensemble

perturbations from 300 analysis cycles. An ESV with a growth

rate larger than one indicates a growing mode.
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during the forecast-analysis cycles. Although the observing

network used in these experiments is dense enough to

constrain the large-scale error growth, the uncorrected

errors (analysis errors) are dominated with flow-dependent

structures, giving the basis for the fast growing errors

during the forecast step. Given our purpose of capturing

the fast growing errors in the prognostic variables of the

QG model, it is reasonable to apply the PV-based ESVs

to enhance the ensemble perturbations during the EnKF

assimilation.

In the following, the ESVs are incorporated in the back-

ground error covariance used in the assimilation to better

capture the structures of flow-dependent fast growing errors.

For this purpose, the set of ESVs are used as the flow-

dependent additive covariance inflation for the QG-LETKF

and QG-LETKF-RIP frameworks.

Fig. 4. Time series of the improvement of the projection of the background errors on the FESVs compared with the BPs. (a) leading

FESV compared with a BP and (b) 10 FESVs compared with 10 BPs.
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5. Using ESVs as additive inflation in the EnKF

framework

5.1. Results with the regular LETKF framework

In the original LETKF framework, the additive covariance

inflation is performed by adding a set of random perturba-

tions onto the analysis ensemble. The random perturba-

tions are white Gaussian noise. Through the non-linear

forecast, the additive perturbations are expected to help the

ensemble better capture the growing directions that were

originally missed in subspace spanned by the ensemble

perturbations (Corazza et al., 2003). To show the impact of

IESV1 for potential temperature (PV vs. SF norm) (a)

(b)
FESV1 for potential temperature (PV vs. SF norm) 
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using additive covariance inflation, four experiments are

conducted within the LETKF framework. The control ex-

periment (CNTL) uses only the multiplicative covariance

inflation and the amount of inflation is a function of the

vertical levels to consider the errors distribution (Yang

et al., 2009). The multiplication inflation ranges from 8.4%

at the bottom level to 13.8% at the top levels. In addition

to the multiplicative inflation used in CNTL, the other

experiments also use additive inflation, including random

perturbations, all IESVs, 10 IESVs and 10 FESVs. In the

following, these experiments are denoted as RDM, IESVall,

IESV10 and FESV10. The amplitude of the additive per-

turbations is 2% of the analysis ensemble perturbations.

In IESV10, the positive�negative pairs of the first 10

IESVs, recognised as the growing modes in Fig. 3, are

used to form the Qn in eq. (12). Although ESVs have the

structures associated with the errors, we observe that the

signs of the local ESVs are not always consistent with

the sign of the errors. In FESV10, the additive inflation

is then composed of the first 10 FESVs and applied on the

background ensemble. Besides, in all the ESV-associated

experiments, the order of ESVs is randomised before they

are applied as the additive inflation so that each ensemble

member has the same chance to use the leading IESV,

instead of having only the first ensemble member with the

privilege of boosting its perturbation into the growing

errors.

Figure 6 is a schematic plot of how IESVs are applied as

the additive inflation for the background error covariance

used in the LETKF framework. In the IESVall and IESV10

experiments, IESVs are added on the analysis ensemble.

The reason that we apply IESVs on the analysis ensemble

instead of adding FESVs on the background ensemble is

because that by adding perturbations on the analysis

ensemble, the IESVs (which grow faster than the FESVs)

can be integrated with the fully non-linear model, which

allows adding a non-linear component in the evolution of

IESVs. However, we should note that these IESVs are

derived based on the previous APs at the previous analysis

time and BPs at the current analysis time (eq. 7) because at

ti the IESVs are not yet available. Therefore if we want to

use perturbations that will grow fast and become non-

linear, we need to perturb with the IESVs derived from the

previous window. As shown in Fig. 6, the analysis ensemble

at time ti is perturbed by the IESVs derived based on

the ensemble evolutions between time ti�12 and ti. At the

next analysis time (ti�12), the new background ensemble,

denoted as X?b in Fig. 6, will be perturbed through the

non-linear evolution of IESV. Given that it is the ‘current’

analysis accuracy that we want to improve, it is not feasible

to apply the current IESVs as the additive inflation since

the acquisition of the current IESV requires the current

analysis ensemble and the following 12-h ensemble forecasts.

Despite the shift of the reference state 12-h back, we find

no significant difference in its application as additive

inflation because the structure of IESV does not change

rapidly in 1 d for a QG model. We found that the structures

of FESVs are similar to the structures of IESVs after a 12-h

integration starting with either the correct reference state

or the reference state shifted 12 h later, especially in the

areas with large amplitudes where fast growing instabilities

take place.

Figure 7 shows the time series of RMS of the total anal-

ysis errors and Table 1 lists out the mean RMS analysis

errors from all experiments. We note that, all LETKF ex-

periments with 20 members converge to an error level much

lower than the 3D-Var analysis error (grey line in Fig. 7a).

However, the RMS errors occasionally spike in the CNTL

analysis, which uses just multiplicative inflation. With

additive inflation, RDM improves the CNTL performance

and successfully reduces the amplitude of the large errors.

This confirms that by applying random perturbations as

the additive inflation, we gain better chance of capturing

FESV1(ti)IESV1(ti –12)

Xa(ti) + IESV1(ti–12)
Xb´(ti + 12)

Xa(ti)
Xb(ti + 12)

ti+12titi–12

Fig. 6. A schematic plot for applying IESVs as the additive inflation in the LETKF assimilation framework.
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the subspace of the growing errors and can further im-

prove the analysis accuracy. Particularly, the RMS errors of

IESV10 and IESVall are both even smaller than the RDM

when the CNTL RMS errors are large, for example. the

110th to 140th and 180th to 202th analysis cycles. How-

ever, using the first 10 IESVs as additive inflation has

a better performance than the one using all IESVs. This

suggests that more effective corrections are obtained when

using structures associated with dominant errors to en-

hance the background error covariance.

To emphasise the catastrophic error growth charac-

terised by rapid error growth and large error amplitudes,

we define a mask according to the CNTL analysis and

forecast errors. The mask is defined as the model grids that

have errors grow rapidly during the first 12-h forecast

(lnð e1k k= e0k kÞ > 0:5, where e0 and e1 are the analysis error

and 12-h forecast errors, respectively) and have 48-h error

amplitude larger than two standard deviations of the domain

mean 48-h forecast error. Based on this mask, Fig. 7b

shows the RMS analysis error difference between the ex-

periments with additive inflation and the CNTL. Negative

and positive differences indicate improvement and degra-

dation, respectively. As shown in Fig. 7b, experiments with

additive inflation are all very successful for reducing such

large errors most of the time and IESV10 generally has

smaller errors than RDM does, as also shown in Table 1.
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With IESV10, the improvement is almost 30%, compared

with a 20% improvement obtained with RDM. We should

note that, RDM, occasionally, has errors larger than

CNTL (e.g. at the 187th analysis cycles), indicating that

random perturbations fails to represent these large errors

at these times. In contrast, IESV10 successfully reduces

large growing errors at these analysis times. All the ESV-

incorporated experiments show improvement over RDM

for the large growing errors but using the first 10 IESVs as

the additive inflation is most effective (see Table 1).

However, when 10 non-growing IESVs (NGIESV10) are

used as additive inflation, the performance is worse than

IESVall. This again confirms that the structures used for

additive inflation can have a large impact on improving the

LETKF performance and the effect will be limited when

augmenting the background error covariance with struc-

tures less relevant to errors. Furthermore, the advantage of

IESV10 can be attributed to improvement in the back-

ground ensemble for representing the errors as well as to

the orthogonality in the ESVs (Annan, 2003). The im-

provement in the analysis also affects the subsequent

accuracy of the 12-h forecast, that is, the background state.

IESV10, which constrains better the growing modes,

provides the most improvement for the background state

and shows the best performance among all analysis systems

shown in Table 1.

To illustrate the ability of IESV10 in removing grow-

ing errors, Fig. 8 compares the background error and

analysis increment at four consecutive analysis times

derived from CNTL, RDM and IESV10. Because of the

use of a flow-dependent background error covariance, the

analysis increments derived from the LETKF assimilation

are expected to exhibit structures related to the background

errors. Nevertheless, there are still some areas that have

almost no analysis increments (corrections) on the back-

ground errors (e.g. the box area in Fig. 8a). Without

removing the background errors completely, these errors in

the box area reside, grow and propagate with the under-

lying flow (Fig. 8a�d). The LETKF system with multi-

plicative inflation is able to provide the analysis corrections

related to these growing errors later at t�81, but the

amplitude is not large enough to remove these large errors.

Comparing Fig. 8a and e, the analysis increments are

generally similar, and the one derived from RDM did not

particularly show an advantage of correcting the back-

ground errors at this time, indicating that there is no

significant difference in the ensemble-based background

error covariance between CNTL and RDM. With IESV10,

the analysis increment derived at t�79 shows corrections

in the box area and thus have much smaller background

errors at t�80 than the other two experiments. With the

proper corrections at t�81, the background errors are

further removed at t�82, while the box area of CNTL

and RDM is still dominated by large growing errors. The

example in Fig. 8 suggests that during an event of cata-

strophic error growth, using growing IESVs as the additive

inflation can better capture the subspace of growing errors

than the random perturbations and thus the observations

can provide effective correction, resulting in a more accu-

rate analysis.

Removing the growing errors with large amplitudes is

important to reduce the forecast errors at long forecast

times. Figure 9 shows the time mean RMS errors for the

forecasts initialised from the analysis means of CNTL,

RDM and IESV10. Figure 9 is computed based on the

mask of large errors with fast growth rate used in Fig. 7b to

emphasise the catastrophic errors. As shown in Fig. 9, the

result with the CNTL forecast not only has the largest

errors but also the slope of the error growth increases after

the 12-h forecast time, indicating that these incompletely

removed growing errors keep amplifying through non-

linear dynamics. With additive inflation, not only the

performance is improved with a smaller RMS error, the

error growth rate is also decreased. This again suggests that

the additive inflation we applied helps to project more

efficiently on the subspace of the dominating errors so that

the analysis increments can effectively correct them and

alleviate growth of large errors. Although the random

perturbations have already done a generally good job in

reducing the forecast errors, the IESVs provides better

corrections for growing errors, especially during the first

12-h forecast and thus continuously improve both the

accuracy of the initial and later forecast state. As indicated

by the red dashed lines on Fig. 9, the error growth (the

slope of the RMS error) during the first 12 forecast hour is

the smallest with IESV10. We note that the advantage of

using additive inflation can be accumulated through the

analysis-forecast cycles and therefore it is difficult to

quantify how long the effect of additive inflation persists.

Compared with IESV10 that perturbs the analysis

ensemble, FESV10 directly perturbs the background en-

semble with perturbations that grow slower because they

are close to converging to the LVs. Result from FESV10

shows comparable mean analysis accuracy with the RDM

Table 1. Time mean analysis and background errors of all experiments

�10�2 CNTL RDM IESVall IESV10 NGIESV10 FESV10 IESV10_NRO

RMSE (analysis/background) 6.4 (7.5) 5.8 (6.7) 5.9 (6.8) 5.6 (6.4) 6.3 (7.2) 5.9 (6.9) 6.5 (7.4)

RMSE_Large (analysis/background) 13.0 (18.3) 10.8 (14.8) 9.7 (13.4) 9.1 (12.2) 9.9 (13.8) 10.3 (14.4) 10.7 (14.8)
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analysis and not as good as IESV10 (Table 1). However, we

should note that using the first 10 FESVs is still very

effective in correcting errors during the periods with large

errors, as shown in Fig. 7b. The difference between IESV10

and FESV10 suggests that the space spanned by the

background ensemble can be further perturbed by the

growth of the non-linear component, giving more chances

to capture the growing errors.

We also note that when applying ESVs as the additive

inflation, it is essential to randomise the order of ESVs

so that the chance for all the ensemble members to be

perturbed by the fast growing modes is the same. Without

such procedure, there is limited improvement from using

ESVs, as indicated by the IESV10_NRO experiment in

Table 1.

5.2. Spectral analysis

To further understand what have been corrected with the

ESV-based additive inflation, a spectral analysis is per-

formed for the analysis increments, forecast and analysis

errors. As mentioned in Yang et al. (2009) and shown in

Fig. 10a, forecast and analysis errors in this model are

characterised by large- to mid-scale structures (global wave-

number smaller than 50). With the observing network used

in this study, the corrections are mainly characterised by

structures with wavenumber smaller than 15, correspond-

ing to the dominant structures of the errors, and are effec-

tive enough to constrain the growing errors. By halving the

number of observations, the error growth for wavenumber

smaller than 10 almost doubles. Also, in Fig. 10a, addi-

tional noises with small amplitude in the analysis errors

are introduced during the assimilation step, but they are

damped after the model integration.

Compared with CNTL and RDM, forecast and analysis

errors of IESV10 show smallest amplitudes at all scales

(Fig. 10c and d), and such advantage is particularly evident

at large- to mid-scales. As shown in Fig. 10b, the analysis

increment derived from IESV10 is characterised by large-

to mid-scale structure (wavenumber smaller than 20),

corresponding to the scales of the growing part of the

errors shown in Fig. 10a. This is another evidence that the

Fig. 8. (a)�(d) Background error (shading) and analysis increment (contour, black: positive, grey: negative) of potential temperature at

the bottom level from the CNTL experiment from t�79 to t�82. Figure 8(e)�(h) are the same as Fig. 8(a)�(d) except that they are derived
from the RDM experiment. Figure 8(i)�(k) are the same as Fig. 8(a)�(d) except that they are derived from the IESV10 experiment. The

contour interval is 0.005, and the solid and dashed thick lines denote iso-lines of 0.005 and �0.005, respectively.
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ESV-based additive inflation is more effective in correcting

the growing errors than the random perturbations.

5.3. Results with the LETKF-RIP framework

In realistic application of the EnKF, the ensemble is often

initialised from a condition far from the nature, for ex-

ample, a model state without TCs or strong convection for

regional assimilation and prediction. Therefore, a spin-up

period is required for building up the flow-dependent

characteristic of the ensemble perturbations before the

EnKF system can achieve its asymptotic level of perfor-

mance. The LETKF-RIP method (Kalnay and Yang, 2010,

Section 2.2) is proposed to catch up the true dynamics by

repeatedly using observations and iteratively improving the

non-linear evolution of the ensemble. During RIP itera-

tions, the smoothed analysis ensemble at the previous

analysis time step is obtained with a ‘no-cost smoother’

and the accuracy of the smoothed mean state is improved

due to observation information from a later time (Kalnay

et al., 2007). It is expected that an improved mean state at

the previous analysis time can lead to a dynamical evolu-

tion closer to the truth. Therefore, the ensemble perturba-

tions, re-evolving upon this improved mean state, can

better represent the flow-dependent dynamic uncertainties,

that is, an improved background error covariance. In the

LETKF-RIP system presented in Kalnay and Yang (2010),

the smoothed analysis ensemble is perturbed by a small

amount of random perturbations to avoid having the

smoothed analysis evolve into the same current analysis

ensemble (see Appendix A in Kalnay and Yang, 2010).

Through perturbing the smoothed analysis ensemble and

non-linear integration, the ensemble space can be perturbed

to better capture the growing errors. Instead of using

random Gaussian perturbations as in Kalnay and Yang

(2010), we propose to further improve the flow-dependent

characteristics of the ensemble perturbations with the first

10 ESVs so that the observations can be more effectively

used and the spin-up of the LETKF system can be further

shortened.

For the QG experiments using the LETKF-RIP method,

the mean of the ensemble is initialised from the climatology

state to highlight the issue of spin-up problem and the

advantage of using a proper background error covariance.

In contrast with the standard LETKF method, the additive

inflation will be used to perturb the smoothed analysis

during the RIP iterations, as the step (1) in Section 2.2.

In the original LETKF-RIP method, random Gaussian

perturbations with amplitude 20% of the variance of the

analysis ensemble perturbations are added on the smoothed

analysis ensemble.

In the following, results from three experiments are

discussed: (1) the standard LETKF, (2) the LETKF-RIP

with the random perturbations as the additive inflation

for the smoothed analysis and (3) same as (2) except the

additive perturbations are based on the first 10 IESVs.

These experiments are referred to as CNTL-noRIP, RIP-

RDM and RIP-IESV, respectively.

In CNTL-noRIP, the amount of multiplicative inflation

is much larger than the ones used in RIP-RDM and RIP-

IESV to avoid filter divergence. Nevertheless, the standard

LETKF system still requires a long period to converge

to its asymptotic level of performance, as indicated by the

black line in Fig. 10. This is because that the initial en-

semble is too poor, resulting in a poor background error

covariance for assimilating observations and thus the

observations cannot effectively correct the model state.

As demonstrated in Kalnay and Yang (2010), RIP-RDM

(the blue line in Fig. 11) successfully accelerates the spin-up

period by simultaneously improving the accuracy of the

mean state and the flow-dependent properties carried by

the ensemble perturbations. RIP-IESV (the red line in Fig. 11)

further improves the analysis accuracy during the spin-

up period. In other words, using IESVs as the additive

perturbations allows the LETKF-RIP scheme uses obser-

vations even more effectively and further accelerates the

spin-up of the LETKF system. We note that after spin-up,

both the RIP-related experiments converge to an accuracy
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Fig. 9. Time mean RMS analysis/forecast errors at different

forecast lead times with the mask of large errors. The red dashed

line is the error of IESV10.
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level of RMSE�0.0044, which is more accurate than

the one obtained with CNTL-noRIP (RMSE�0.0053). The

CNTL_noRIP has a larger RMSE is mainly because the

use of a larger inflation so that the LETKF can converge;

such larger inflation should be adaptively tuned after the

system has spun up.

Figure 12 shows an example of the background error

(colour) and analysis increment (contour) of the potential

temperature at the bottom level at t�26. In Fig. 12a, we

changed the scale of the CNTL-noRIP error and increment

by a constant factor of 0.5 to have comparable ranges as

those of the RIP-related experiments. At this early time

of the assimilation experiment, the corrections with large

amplitudes are not collocated well with large background

errors (e.g. area near x�47, y�24) and thus the fast

growing errors are not corrected effectively yet with the

available observations. At this time, large errors appear at

the areas with strong gradient of the potential temperature
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(figure not shown). Compared with Fig. 12a, the analysis

corrections from the RIP-related experiments are smaller

in the interior region where the observations locate and

correspond well to the shapes and locations of the large

background errors. However, at some areas (e.g. x�23,

y�20), the analysis corrections do not correspond well

with the background errors and thus the errors cannot be

effectively removed with available observations. Compared

with RIP-RDM, RIP-IESV is able to better correct the

large interior errors, giving better correspondence between

corrections and errors. This again confirms that by apply-

ing the fast growing errors as the additive perturbations,

the background ensemble can more effectively capture the

subspace of the growing errors so that the observations can

be better used for analysis correction. We also note that, in

RIP-IESV, the background errors near the northern and

southern boundaries are smaller than those shown in RIP-

RDM. This indicates that the error correlations away from

observations are now more reliable and thus the corrections

at far distance are more effective.

6. Summary and conclusion

In this study, we propose to use ESVs as additive co-

variance inflation. The derivation of ESVs was originally

proposed by Enomoto et al. (2006, 2015) to use a set of

ensemble forecasts, involving initial and final perturbations,

to find the SV-like vectors that will have the maximum

perturbation growth, given a chosen norm and optimisation

period. Here, the ESVs are used to help the ensemble

perturbations better capture the subspace of the growing

errors, compared with the random perturbations that aim to

capture the missing or sub-growing directions randomly.

The derivations of ESV and assimilation experiments

are carried out within the QG-LETKF framework. The

derivations of ESVs involve the analysis perturbations

at the previous analysis times (initial) and background

perturbations at the current analysis time (final). Since

ESVs are derived from the LETKF ensemble, it is almost

cost-free to identify the growing modes.

During the first analysis cycle of the LETKF assimila-

tion, the leading FESV is already able to effectively capture

the structure of the growing error related to background

instabilities while the ensemble perturbations are still

Fig. 11. Time series of the RMS analysis error of the potential

temperature at the bottom level.

Fig. 12. Analysis increment (contours) and background error

(colour shading) of the potential temperature at the bottom level at

t�26 from (a) CNTL-noRIP, (b) RIP-RDM and (c) RIP-IESV. For

Fig. 12, the scale is twice as shown. The contour interval is 0.075.
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developing these structures. Averagely, there are 10 growing

modes in the pairs of ESVs derived from the QGmodel with

20 ensemble members. In terms of the relationship between

the background errors, FESVs and ensemble perturbations,

results suggest that the background error is better confined

in the subspace spanned by the FESVs of growing modes

than the subspace of the background ensemble perturba-

tions with the same number of vectors. In addition, results

also show that the structures of ESVs are sensitive to the

choice of norm. The SF-based ESV1 has less-stretched

structures and a slower growth rate smaller than the PV-

based ESV1. Therefore, the PV-based ESVs are the natural

choice for augmenting the background error covariance and

for the purpose of capturing the fast growing errors during

analysis corrections. Since IESVs grow much faster than

LVs, and FESVs are close to convergence to LVs, perturba-

tions based on leading IESVs grow faster than those based

on FESVs, and are therefore preferable as additive infla-

tion, even though they are not available at the beginning of

the analysis window. For this reason, and since the leading

ESVs do not change much over a window length of 12-h, we

use the IESVs corresponding to the previous window.

Results show that all the experiments associated with

additive covariance inflation can successfully improve the

accuracy of the LETKF analysis compared with only

using multiplicative inflation (CNTL). By better removing

the growing errors in the analysis, the forecast errors at

long forecast times are also reduced and the error growth

rate becomes slower, compared with the CNTL forecast.

Applying ESVs for additive inflation generally improves

the LETKF analysis performance, whether perturbing the

analysis ensemble with IESVs or the background ensemble

with FESVs. Results also suggest that for making the

growing modes effective as additive inflation, it is important

to randomise the order of the ESVs so that each member has

equal chance to be perturbed by the fast-growing modes.

When using IESVs as the additive inflation, which grow

faster, the subspace of the ensemble for capturing grow-

ing errors can be further expanded through non-linear

evolution. Therefore, IESVs as the additive inflation (applied

on the analysis ensemble) outperforms than the ones with

FESVs (applied on the background ensemble). Among the

experiments, significant improvement is further obtained

when only the first 10 IESVs, identified as growing modes,

are used, and the benefit is most evident at the area

with large errors. Although FESV10 shows a comparable

accuracy with the RDM, the overall performance for areas

with large growing errors is still better than RDM. Finally,

by improving the analysis accuracy, the advantage of using

additive inflation can last till 2-d forecast and using ESV is

even more advantageous, especially during the first 12-h

forecast.

To show that using IESVs as additive perturbations

can improve the flow-dependent structures associated with

background instabilities, the IESVs are used in the LETKF-

RIP system to perturb the smoothed analysis ensem-

ble during the RIP iterations. The LETKF-RIP method

(Kalnay and Yang, 2010) aims to accelerate EnKF’s spin-up

when the system is initialised from a state far from the

truth (e.g. a cold start). Random perturbations, originally

adopted in Kalnay and Yang (2010), are added on the

smoothed analysis ensemble to avoid the smoothed analysis

ensemble at previous analysis time evolving into the same

analysis ensemble at the current analysis time. Through non-

linear dynamics, these perturbations grow and stimulate the

ensemble to better capture the dynamical growing errors

and effectively use the observations. Results show that by

using the first 10 IESVs, the LETKF’s spin-up time is even

shorter and more effectively corrects the growing errors.

This again confirms that IESVs can be used to enhance the

ensemble perturbations and help to better capture the

subspace of growing errors.

In this work, the idea of using ESVs as the flow-

dependent additive inflation is demonstrated with the QG

model with simple dynamics. Such method can be easily

implemented in any ensemble-based data assimilation frame-

work, with negligible additional computational cost. In real

applications with complex model, it may occur that some

of the dynamical growing modes associated with model

uncertainties are not captured if using the same model to

generate the ensemble forecast. To consider the effect of the

model errors in the ensemble, EVSs could be derived by

performing ensemble forecasting with different convection,

PBL and microphysics parameterisation schemes (Fujita

et al., 2007) or with stochastic physics like the stochastic

kinetic energy backscatter scheme (Lang et al., 2012).

Further investigations such as the optimisation period

for deriving ESVs or the possibility of capturing growing

error in a target area such a hurricane will be carried out

with realistic models with full physics and dynamics to

understand the feasibility of this approach in realistic

EnKF applications.
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