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Abstract. Ag loaded Ga2O3 (Ag/Ga2O3) shows photocatalytic activity for reduction of CO2 with 

water. Ag L3-edge XANES and K-edge EXAFS spectra were measured for various Ag/Ga2O3 

samples, which suggested that structural and chemical states of Ag species varied with the 

loading amount of Ag and the preparation method. The Ag species were metallic Ag particles 

with an AgGaO2-like interface structure in the sample with high loading amount of Ag while 

predominantly Ag metal clusters in the sample with low loading amount of Ag. The XANES 

feature just above the edge represented the interaction between the Ag species and the Ga2O3 

surface, showing that the Ag metal clusters had more electrons in the d-orbitals by interacting 

with the Ga2O3 surface, which would contribute the high photocatalytic activity. 

1. Introduction 

An increasing concentration of atmospheric CO2 has become a concern for our planet. One of the 

solutions for this problem, photocatalytic reduction of CO2 to other useful chemicals has attracted much 

attention [1–4]. For the CO2 reduction, an external energy and an appropriate catalyst are required, since 

CO2 is one of the most stable molecules. Recently, it has been reported that Ag loaded Ga2O3 (Ag/Ga2O3) 

shows the photocatalytic activity for reduction of CO2 with water to produce CO [5–7]. In our previous 

study [8], we found that the chemical state of Ag species in as-prepared Ag/Ga2O3 samples affected the 

formation process of the reaction intermediate, which were closely related to the CO production 

efficiency. However, it is still unclear how the structural and chemical states of the Ag species as well 

as Ag–Ga2O3 interaction change with the loading amount of Ag. In the present study, Ag L3-edge and 

K-edge XAFS analysis was applied to investigate the structural and chemical states of the Ag species, 

which provided us meaningful information for understanding the photocatalysis of Ag/Ga2O3 samples. 

 

16th International Conference on X-ray Absorption Fine Structure (XAFS16) IOP Publishing
Journal of Physics: Conference Series 712 (2016) 012074 doi:10.1088/1742-6596/712/1/012074

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 

 

 

 

 

 

2. Experimental 

Ag/Ga2O3 samples were prepared by an impregnation (IMP) method and a photodeposition (PD) method. 

Generally, it is expected that IMP method provides Ag ions well interacting with the Ga2O3 support 

while PD method is suited to the formation of metallic Ag species. For IMP method, a mixture of Ga2O3 

powders and an aqueous solution of AgNO3 was magnetically stirred and dried, followed by calcination 

at 673 K for 2 h. The loading amounts of Ag were 0.1, 0.2, 0.5, 1.0 and 5.0 wt%. For PD method, a 

mixture of a Ga2O3 powder and an aqueous solution of AgNO3 with ethanol was magnetically stirred 

and photoirradiated for 3 h, followed by filtration. The loading amounts of Ag were 0.1 and 1.0 wt%. 

Ag L3-edge XAFS measurements were carried out in a fluorescent X-ray yield mode and in a total 

electron yield mode at the beam line 6N1 at the Aichi Synchrotron Radiation Center (Proposal No. 

2503042). Ag K-edge XAFS spectra were measured at the NW10A station at the Photon Factory in the 

High Energy Accelerator Research Organization in the fluorescence mode with a 19 element solid state 

Ge detector and in a transmission mode (Proposal No. 2014G547). 

3. Results and discussion 

In our previous study [8], TEM and HAADF-STEM 

measurements revealed that around 1 nm sized Ag clusters 

were formed predominantly in a 0.1 wt% Ag/Ga2O3 (IMP) 

photocatalytic active sample while Ag particles with the 

size of several–several tens nm in a 1.0 wt% Ag/Ga2O3 

(IMP) sample. In a 5.0 wt% Ag/Ga2O3 (IMP) sample and a 

1.0 wt% Ag/Ga2O3 (PD) sample, large Ag particles with the 

size of over 30 nm were observed. After heating the 1.0 

wt% Ag/Ga2O3 (PD) sample at 673 K for 2 h, the average 

Ag particle size became smaller as 1–2 nm and they were 

highly dispersed on the Ga2O3 surface. 

In the present study, the Ag species in the Ag/Ga2O3 

samples were investigated in detail by Ag L3- and K-edge 

XAFS spectroscopy. Figure 1 shows the spectra of the 

Ag/Ga2O3 samples together with Ag foil and Ag2O as 

references. We tried to simulate the XANES spectra of the 

Ag/Ga2O3 samples by using the reference spectra, but the 

fitting was not sufficient, indicating that the Ag species in the Ag/Ga2O3 samples were not a simple 

mixture of metal and oxides. As is evident from figure 1, the XANES spectrum of the 0.1 wt% Ag/Ga2O3 

(IMP) sample has no distinct peaks, which originates from highly dispersed Ag species such as 1 nm 

sized Ag clusters [8]. With increasing the loading amount of Ag, the feature of XANES changed 

gradually to the characteristic one of an Ag bulk.  

Note that the peak at 3353 eV grew with the loading amount of Ag up to 1.0 wt%, and then decreased 

with 5.0 wt% loading. This peak has been assigned to the transition from 2p to unoccupied 4d states [9]. 

The peak was clearly shown in the spectrum of Ag2O. Therefore, in the Ag/Ga2O3 samples with higher 

loading amount of Ag up to 1.0 wt%, most of Ag species would be partially oxidized. As for the 5.0 

wt% Ag/Ga2O3, XANES spectra could be measured both in a fluorescent X-ray yield mode (FY) and a 

surface sensitive total electron yield mode (TEY) as shown in figures 1e and 1f. The former spectrum 

(FY) was similar to that of an Ag bulk, suggesting that Ag species was metallic. Nevertheless, a small 

peak at 3353 eV evidenced the existence of oxides. In the latter spectrum (TEY), this peak was clearly 

seen and more thorough observation suggested that double peaks at 3364 and 3380 eV became intense, 

which were similar to the characteristic feature of 1.0 wt% Ag/Ga2O3. This result indicates that the Ag 

species in the 5.0 wt% Ag/Ga2O3 sample is almost metallic Ag like an Ag bulk, but the surface is slightly 

oxidized. In addition, it is also suggested that the Ag species in 1.0 wt% Ag/Ga2O3 would be partially 

oxidized Ag particles or a mixture of the metallic and oxidized species, which will be discussed below.  

 
Figure 1. Ag L3-edge XANES spectra 

of the Ag/Ga2O3 (IMP) samples (a–f), 

Ag foil (g) and Ag2O (h). Ag loading 

(wt%): 0.1 (a), 0.2 (b), 0.5 (c), 1.0 (d), 

5.0 (FY) (e) and 5.0 (TEY) (f). 
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Figure S1 in the 

supporting information 

shows the Ag L3-edge 

XANES spectra of the 

0.1 and 1.0 wt% 

Ag/Ga2O3 (PD) 

samples. Since both the 

spectra were very 

similar to that of an Ag 

bulk, the Ag species in 

the 0.1 and 1.0 wt% 

Ag/Ga2O3 (PD) 

samples were metallic 

Ag. It was also 

confirmed that the 

broad feature shown in 

the XANES of the 0.1 

wt% Ag/Ga2O3 (IMP) 

sample was not due to 

the low loading amount of Ag. Figure S1, c–f shows the Ag L3-edge XANES spectra of the 1.0 wt% 

Ag/Ga2O3 samples prepared by the PD method, followed by heating in air for 2 h at various temperatures, 

referred to as Ag/Ga2O3 (PD-H). A small shoulder around 3353 eV would indicate some oxidized moiety 

in the samples. With increasing the heating temperature, the XANES feature became broad gradually 

and at more than 573 K, the spectra were similar to that of the 0.1 wt% Ag/Ga2O3 (IMP) sample. 

Considering the TEM results in our previous study [8], the spectral change is assignable to the decrease 

of the Ag particle size by heating at more than 573 K. The decrease of the practice size suggests the 

strong interaction between the Ag particle and the Ga2O3 surface.  

In Figure 2, the characteristic XANES feature just above the edge would represent the interaction 

between the Ag species and the Ga2O3 surface. The Ag/Ga2O3 samples showed lower absorption around 

3350–3365 eV than that of an Ag bulk. This feature was most significant for the 0.1 wt% Ag/Ga2O3 

(IMP) sample and the 1.0 wt% Ag/Ga2O3 heated at 623 K (PD-H) sample. Similar features around 3350–

3365 eV were reported for Au–Ag alloys and Ag clusters on Au rods by some researchers [10–12]. They 

concluded that the electron density in the d-orbital of the Ag atom increased by transferring electrons 

from Au to Ag. Therefore, in the present 0.1 wt% Ag/Ga2O3 (IMP) sample and the 1.0 wt% Ag/Ga2O3 

(PD-H) sample, the Ag species would probably accept more electrons in the d-orbitals from the Ga2O3 

surface as the result of the strong interaction.  

Figure 3 shows radial structure functions (RSF) obtained by Fourier transform of k3-weighted Ag K-

edge EXAFS (Figure S2 in supporting information) in the region of k = 3.15–11.80 Å-1. The small peak 

around 1.7 Å was assigned to the Ag–O pair and/or side lobes, and this peak was larger for the 0.5 wt% 

Ag/Ga2O3 (IMP), the 1.0 wt% Ag/Ga2O3 (IMP) and the 1.0 wt% Ag/Ga2O3 (PD-H) samples. The peak 

around 2.5–3 Å observed for all the Ag/Ga2O3 samples should correspond to the Ag–Ag pair. As for the 

Ag/Ga2O3 (IMP) samples, this peak grew with the loading amount of Ag, although it became broader 

and shifted to longer R region for the 0.5 and 1.0 wt% Ag/Ga2O3 (IMP) samples. 

We also performed curve-fitting analysis on the back Fourier-transformed EXAFS from the first and 

the second coordination shells (R = 1.35–3.35 Å) as summarized in Table S1 in supporting information. 

The average Ag–Ag distance was estimated to be ca. 2.89 Å for the 0.1, 0.2 and 5.0 wt% Ag/Ga2O3 

(IMP) samples, which was in good agreement with that of the Ag foil. Note that the photocatalytically 

active Ag clusters formed predominately in the 0.1 wt% Ag/Ga2O3 (IMP) sample were metallic. The 

average coordination number for the Ag–Ag shell (CNAg) for 5.0 wt% Ag/Ga2O3 (IMP) was close to 

that of Ag foil, suggesting the large Ag metal particles, while the CNAg values for the 0.1 and 0.2 wt% 

Ag/Ga2O3 (IMP) samples were 4.3 and 6.5, respectively, which were significantly smaller than that of 

  

Figure 2. Ag L3-edge XANES 

spectra of the 0.1 wt% Ag/Ga2O3 

(IMP) sample (a), the 1.0 wt% 

Ag/Ga2O3 (PD-H)  sample (b), the 

5.0 wt% Ag/Ga2O3 (IMP) sample 

(c) and Ag foil (d).  

Figure 3.  Radial structural functions 

of Ag2O (a), the Ag/Ga2O3 (IMP) 

samples (b–f), the Ag/Ga2O3 (PD, PD-

H) samples (g, h) and Ag foil (i). Ag 

loading (wt%): 0.1 (b), 0.2 (c), 0.5 (d), 

1.0 (e), 5.0 (f), 1.0 (g) and 1.0 (h). 
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the Ag foil. The geometrical calculation for the 0.1 wt% Ag/Ga2O3 (IMP) sample demonstrated that the 

Ag species with the CNAg values of 4.3 would be smaller than 1 nm, such as metallic cluster, which was 

quite consistent with the HAADF-STEM result of this sample [8].  

On the other hand, the 0.5 and 1.0 wt% Ag/Ga2O3 (IMP) samples had two types of short (2.89 Å) 

and long (3.05 Å) Ag–Ag pairs. The latter was longer than that of Ag metal and similar to the Ag–Ag 

distance (3.03 Å) in AgGaO2 [13]. The Ag–O pair with 2.10–2.12 Å in length which was longer than 

those of Ag2O and AgO and similar to the Ag–O distance (2.10 Å) in AgGaO2 [13]. These suggest that 

a part of Ag atoms at the interface between the Ag metal particle and the Ga2O3 surface would be in an 

AgGaO2-like structure as a result of well interaction with the Ga2O3 surface and other part would form 

Ag metal particles. In the cases of the 1.0 wt% Ag/Ga2O3 (PD) and the 1.0 wt% Ag/Ga2O3 (PD-H) 

samples, the average Ag–Ag distance was estimated to be 2.89 Å for both samples and CNAg for the 

former and the latter samples to 11.9 and 7.3, demonstrating that the large Ag metal particles changed 

to small ones by heating. It is also noteworthy that the Ag–O pair was found only for the 1.0 wt% 

Ag/Ga2O3 (PD-H) sample and the 0.5 and 1.0 wt% Ag/Ga2O3 (IMP) samples. Since another Ag–Ag pair 

of long distance was not recognized for the 1.0 wt% Ag/Ga2O3 (PD-H) sample, this Ag–O bond might 

be formed by the interaction of small Ag metal particles with Ga2O3 support.  

4. Conclusion 
We investigated the structural and chemical states of the Ag species as well as its interaction with the 

Ga2O3 surface by measuring Ag L3 and K-edge XAFS of the Ag/Ga2O3 samples. There were some kinds 

of Ag species such as around 1 nm sized Ag metal cluster in the Ag low loading samples and metallic 

Ag particles in the Ag high loading samples. The AgGaO2-like interface structure would be formed 

between metallic Ag particles and the Ga2O3 surface, observed in the 0.5 and 1.0 wt% Ag/Ga2O3 (IMP) 

samples. In the 0.1 wt% Ag/Ga2O3 sample that was photocatalytically active sample, the Ag metal 

clusters with the size of around 1 nm were formed predominantly, and they probably accepted more 

electrons in the d-orbitals by the interaction with the Ga2O3 surface. These differences in structural and 

chemical states of the Ag species would affect the photocatalytic activity of CO2 reduction with water. 
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