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Abstract. A photodeposition process of Pt metal particles on anatase TiO2 in the aqueous 

solution of H2PtCl6 (precursor) and methanol (reductant) was studied using transmission 

electron microscopy, UV-vis spectroscopy and X-ray absorption fine structure spectroscopy. 

These analyses proposed the photodeposition mechanism of Pt on TiO2 by the photogenerated 

electrons: the photo-assisted adsorption of Pt4+ complexes on TiO2 through the ligand exchange 

at the initial stage, followed by the successive rapid reduction of Pt4+ to Pt0 to grow the Pt 

metal particles, which gives small and almost uniform size of Pt metal nanoparticles. 

1. Introduction 

Photoreduction is one of the most popular methods for recovering noble metals, removing metal 

cations from aqueous effluents and preparing metal-loaded photocatalysts [1-5]. The UV irradiation on 

a semiconductor material such as TiO2 photocatalyst can form photoexcited electrons on the surface, 

which can reduce some kinds of metal cations having appropriate redox potential to produce metal 

particles on the surface. The interaction between the semiconductor and the metal could play an 

important role for the photocatalytic activity, since the support-metal junction could influence the 

electronic properties of them, the electron transfer between them and the morphology of the metal 

particles [6,7]. However, there are only a few studies dealing with the mechanism of the 

photodeposition process and the structure of the photodeposited metal species [8-10]. 

Recently, Ohyama et al.[8] studied the photodeposition process of Rh metal particles on TiO2 using 

in situ time-resolved energy dispersive X-ray absorption fine structure spectroscopy (DXAFS) and 

reported that the RuCl3 precursor was reduced to form Rh metal particles where the coordination 

number of the reduced Rh atom increased proportionally with the photoirradiation time, suggesting 

that fine Rh metal particles with uniform size appeared one after another. In the present study, we 

examined the photodeposition processes of Pt metal particles on anatase TiO2 by means of XAFS, 

together with UV-vis spectroscopy and transmission electron microscopy. 
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2. Experimental 
Photodeposition of Pt metal particles on TiO2 was carried out as follows: H2PtCl6·6H2O powder of 

13.4 mg was dissolved in a methanol aqueous solution of 60 mL (the mixture of 50 mL of distilled 

water and 10 mL of methanol). 1.0 g of an anatase TiO2 sample (Kishida Kagaku Co., BET surface 

area was 5.3 m2/g) calcined at 673 K in air was suspended in the aqueous solution of the Pt precursor. 

The suspension was irradiated for various periods (0–180 min) with a 300 W Xe lamp equipped with a 

band path filter (ca. 340±30 nm, 30 mW/cm2), and then filtered and washed with purified water. 

UV-vis diffuse reflectance spectra were measured by a JASCO V-670 spectrometer. TEM images 

were obtained with a JEOL JEM-2100M transmission electron microscope operating at an accelerating 

voltage of 200 kV. TEM samples were prepared by depositing drops of methanol suspension 

containing small amounts of the sample powders onto a carbon-coated copper grid and allowing the 

methanol to evaporate in air. The XAFS measurements at the Pt L3-edge were carried out at BL-9C 

[11] of the Photon Factory at the High Energy Accelerator Research Organization (KEK, Tsukuba 

Japan, proposal number 2011G575 and 2014G548) with a Si(111) double-crystal monochromator in 

the fluorescence mode by using a Lytle detector filled with an Ar(100%) flow with a Ga filter (μt＝6). 

Ion chamber of the I0 detector was filled with a N2(85%)/Ar(15%) flow. The above UV-vis, TEM and 

XAFS measurements were conducted ex-situ for the Pt species deposited/adsorbed on TiO2 samples.  
 

3. Results and discussion 

Difference UV-vis spectra of the Pt/TiO2 samples are shown in Figure 1. The difference spectrum 

of each sample was obtained by subtracting UV-vis spectrum of the pristine TiO2 sample. As shown in 

Figure 1, the spectra of the Pt/TiO2 samples prepared by photodeposition for 5, 10, 15 min showed a 

band around 400 nm, which would be attributed to the Pt precursors and possibly increasing Pt 

metallic clusters on the TiO2 surface. Note that the band became broader and flat feature for the 

Pt/TiO2 samples prepared by photodeposition for 20 min, which would originate from metal 

nanoparticles. This means that the aggregation of Pt atoms occurred under photoirradiation. After that, 

the band intensity increased with the further photoirradiation whereas the flat spectral profile did not 

change. These results suggest that the number or the particles size of the Pt nanoparticles on the 

surface increased with photoirradiation time. 

The size of the Pt nanoparticles was observed by TEM measurements. Although the Pt particles 

were not observed in the Pt/TiO2 samples prepared by photodeposition for less than 20 min, the Pt 

nanoparticles were observed and the average size increased from ca. 3.3 to 4 nm with the increase of 

the photoirradiation time more than 25 min as shown in Figure 2. As mentioned, the absorbance 

clearly became large as shown in Figure 1, though the size did not varied so drastically as shown in 

Figure 2. These results suggest that the number of the Pt nanoparticles with similar size of ca. 3–4 nm 

increased during the photoirradiation after 20 min.  
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 Figure 2. Variation of the average Pt particle 
size with photoirradiation time. The sizes 
were obtained from TEM images. 

Figure 1. Difference diffuse reflectance UV-Vis 

spectra of a series of Pt species on TiO2 by 
photodeposition for 5, 10, 15, 20, 25, 30, 60 
and 180 minutes. 
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We also investigated the photodeposition process of 

the Pt metal nanoparticles by XAFS spectroscopy. Figure 

3(A) shows normalized Pt L3-edge XANES spectra of the 

Pt/TiO2 samples together with Pt foil and PtO2 as 

references. Note that these XANES spectra were 

normalized by the jump of Pt L3-edge, i.e., normalized by 

a Pt atom on the TiO2 surface. The sharp and narrow 

absorption band at an absorption edge, which is called 

white line [12], corresponds to the electronic transition 

from 2p3/2 core level states to 6s and 5d orbitals of Pt 

atoms mainly. The large area of L3 edge absorption 

around 11565 eV for PtO2 results from the vacancy in the 

5d orbital of Pt atoms. As shown in Figure 3(A), the 

feature of XANES spectrum of the TiO2 sample 

adsorbing the Pt precursor before photoirradiation was 

almost similar to that of the reference PtO2 sample, 

meaning that the adsorbed Pt species also had similar 

octahedral structure as PtO2. Only the difference between 

the two spectra was the very small peak around 11.545 

keV, which is assignable to L2 edge absorption (11.54 

keV) of tungsten as an impurity in the TiO2 support. The 

small peak was clearly observed for the Pt/TiO2 samples 

prepared by the photodeposition for 0, 5, 10 and 15 min, 

suggesting that the amount of Pt4+ precursors stabilized 

on TiO2 surface were still small in the initial stage of the 

photodeposition. 

The energy position of the main peak of XANES 

shifted to lower X-ray energy with the elongation of 

photoirradiation time, indicating a decrease in the ratio of 

Pt4+ ions by reduction. Figure 3(B) shows the variation of 

the spectral shape in this process, where the XANES 

spectra changed from that of Pt4+ ion to that of Pt0 with 

an isosbestic point, indicating that Pt4+ ions were reduced 

to Pt0 without through any stable intermediates. This 

means that the photoreduction from the adsorbed Pt 

species to metallic Pt nanoparticles take place drastically.  

Actually, all XANES spectra of the Pt/TiO2 samples were reproduced with the linear combination 

of two XANES spectra of PtO2 and Pt metal, and the fractions of the Pt4+ ion and the Pt0 atom for all 

the Pt/TiO2 samples were directly evaluated as shown in Figure 4. Pt4+ was the main component in the 

Pt/TiO2 samples prepared by photodeposition for 0, 5, 10, and 15 min while the reduction of Pt4+ to Pt0 

occurred drastically after 15 min and almost completed after 30 min. Here, we also evaluated the 

height of edge jump in the raw XAFS spectra of the Pt/TiO2 samples recorded in the fluorescence 

mode in order to compare the amount of the Pt species deposited on these samples. Figure 5 shows the 

variation of the relative height of the edge jump with the photodeposition time. As is evident from 

Figures 4 and 5, in the initial stage before 15 min, the valence of the adsorbed Pt species was almost 

tetravalent and the amount of the Pt species increased. It is clear that ca. 20 % of Pt4+ complexes were 

adsorbed on the TiO2 before photodeposition (0 min) and the Pt4+ complexes increased to ca. 50 % by 

photo-assisted adsorption after 15 min. In the successive period for 20–30 min, the amount of the 

adsorbed Pt species drastically increased and the reduction of Pt4+ to Pt0 drastically occurred on the 

photoirradiated TiO2. After that, the faction of Pt0 atoms gradually increased by further photoreduction. 

These results lead us to speculate the Pt deposition mechanism on the TiO2 surface. On the whole, 
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Figure 3. Pt L3-edge XANES spectra of Pt 
Pt/TiO2 samples under photoirradiation for 

0, 5, 10, 15, 20, 25, 30, 60 and 180 
minutes together with a Pt foil and PtO2.  
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photoexcited electrons reduce the Pt precursor ([Pt(IV)Cl6]2- + 4 e− → Pt(0) + 6 Cl−), while positive 

holes oxidize methanol in the solution. The details for the photoreduction would be described as 

follows: (i) during the induction period, the photoexcited electron would stabilize the precursor with 

ligand-exchange at the surface ([Pt(IV)Cl6]2− + -OHs
− + e− + H+→ [Pt(IV)Cl5Os]ad

2− + Cl− + H2), 

where the initial amount of the adsorbed Pt complex would be limited by the amount of the surface 

adsorption sites.  (ii) the surface Pt4+ complex would be further reduced by the photoexcited electrons 

to form the Pt metal seeds ([Pt(IV)Cl5Os]ad
2− + 3 e−→ Pt(0)Os + 5 Cl−), and (iii) further photoexcited 

electrons would drastically reduce the residual Pt4+ complexes over the Pt metal seeds to grow itself 

and to form the Pt metal particles, where the photoexcited electron could be effectively lead to the Pt 

metallic particles to accelerate the reduction rate of the residual Pt4+ complex. The growth of the Pt 

particles could be limited by the amount of the Pt complexes in the solution.  

We have started to investigate the effects of the amount of the Pt precursors and the kind of TiO2 

structural phase on the photodeposition process as well as the morphology of the Pt particles on TiO2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusion 

We studied photodeposition process of Pt particles on an anatase TiO2 sample.  The Pt4+ precursors 

were found to be photo-adsorbed on the TiO2 surface through ligand exchange at the initial stage. 

After the formation of the metallic Pt seeds, they were drastically reduced to form the Pt metal 

particles with almost similar size of 3–4 nm in the present condition. 
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Figure 4. Dependence of the fractions of Pt 
metal and Pt4+ ions on the photoirradiation 
time. 

Figure 5. Dependence of the relative height 
of the edge jump on the photoirradiation 
time. 
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