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Abstract With the advent of high-throughput and imaging core level spectroscopies (including 

X-ray absorption spectroscopy, XAS, as well as electron energy loss spectroscopy, EELS), 

automated data processing, visualisation and analytics will become a necessity. As a first step 

towards these objectives we examined the possibilities and limitations of a simple automated 

XANES peak fitting procedure written in MATLAB, for the parametrisation of XANES 

features, including ionisation potentials as well as the energies and intensities of electronic 

transitions. Using a series of Au L3-edge XANES reference spectra we show that most of the 

relevant information can be captured through a small number of rules applied to constrain the 

fits. Uncertainty in this strategy arises mostly when the ionisation potential (IP) overlaps with 

weak electronic transitions or features in the continuum beyond the IP, which can result in 

ambiguity through multiple equally good fits.  

1. Introduction
Core level spectroscopies such as electron energy loss spectroscopy (EELS) and X-ray absorption 

spectroscopy (XAS) provide element specific chemical information. The robustness of these 

spectroscopies has enabled their use across a broad range of applications, including for example oil, 

gas, nuclear fuel and waste processing research, materials science, electrochemistry, crystallisation, 

biological and geochemical speciation as well as conservation and restoration of heritage objects. A 

current trend is to develop high-throughput functionality, which will enable exploration of more 

applications for these spectroscopies. Some imaging [3-5] and quick scanning EXAFS facilities [6-8] 

are already providing hundreds and thousands of XANES spectra within minutes to hours. As such, it 

would be useful to have access to algorithms that permit an initial assessment of such datasets by 

automated parametrisation for subsequent classification. This would also pave the way to a fuller 

interpretation of chemical contrast in XANES images. 

The fine-structure features in the near-edge region of EELS and XAS (inclusive of XANES and 

NEXAFS) arise from electronic transitions to bound states and thus contain rich information about the 

local structure and the chemical state of the probed element. XANES spectra of transition metals are 
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often used for fingerprinting and to determine the oxidation state and coordination geometry (e.g., 

octahedral vs. tetrahedral) from known spectral characteristics [9]. We have already shown that 

through deconvolution (peak fitting) of spectral features and subsequent assignment of bound state 

transitions to these features the interactions of small organic molecules such as protonation, 

intermolecular solvent-solute hydrogen bonding and solute-solute interaction can be studied in detail 

[10, 11]. In fact, peak fitting is the only way to determine energies, intensities and widths of the most 

prominent absorption features. 

Functional peak fitting programs for XANES analysis are currently available [12-16], but to enable 

automated fitting of large numbers of spectra reliable principles allowing both flexibility and 

robustness are required. The increasing need to process larger numbers of spectra has led us to explore 

the use of an automated peak fitting procedure based on a simple heuristic approach to obtain the 

energetic positions and intensities of XANES absorption features by use of a MATLAB script. It 

builds on the use of a script we recently reported as part of a time-resolved quick EXAFS study of Pd 

nucleation [17]. In this work we discuss the possibilities and limitations of such an approach by 

reference to a set of Au L3-edge XANES spectra from various reference compounds. We would like to 

stress that the aim of this work was not to provide a definite general XANES fitting tool, but to 

explore the possibilities and limitations of using a few heuristic rules to constrain an automated fitting 

procedure. 
 

2. The Peak Fitting Algorithm 
We focused on the parametrisation of the XANES region based on the determination of energies, 

intensities and widths of the most prominent features. For this we chose to simulate any absorption 

feature below the ionisation potential (IP) with  pseudo-Voigt functions [18, 19], while the absorption 

edge jumps/IPs were modelled using error functions [15]. This represented a pragmatic and heuristic 

choice based on our finding that this combination fitted most reference spectra well. In the energy 

region from just below to slightly above the IP, absorption features due to electronic transitions 

overlap with EXAFS and multiple scattering features such as shape resonances. Fine structure beyond 

the IP and in the continuum was modelled using Gaussian peak functions, but we stress that this was 

done only to remove the EXAFS background which extends into the XANES region, to increase the 

reliability of the fits of interest in the XANES region, and not to analyse or parametrise the EXAFS 

part of the spectrum. These Gaussian components of the fits have no physical meaning. 

To optimise the fit a MATLAB 

default trust-region-reflective algorithm 

was applied, as this method allows 

boundary limits to be specified. The 

variables to be optimised during fitting 

were the number of absorption features 

to model and then for each fitted 

function the full width at half maximum 

(FWHM), the centroid energy, the area 

and for pseudo-Voigt functions, the 

Lorentzian/Gaussian ratio η. Using an 

arctangent instead of an error function 

resulted in slightly different but still 

consistent results for IP positions and the 

absorption features related to transitions 

to bound states (not shown), albeit with 

overall worse fit quality. Energy 

boundaries and constraints were 

imposed to ensure that the automated 

fitting results retained physical meaning. 

 

 

 

 

 

 

 

 

 

Figure 1. The peak fitting algorithm 
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In other words, by constraining the fits with a few heuristic ‘rules’, the parameter landscape available 

for an automated fit was reduced considerably, reflecting prior knowledge about relationships between 

XANES absorption features, chemical state and local structure. 

To start with, we assumed that any absorption maximum located at a lower energy than the step 

function modelling the IP must correspond to the excitation of a core electron to an unoccupied bound 

electronic state (Rule #1). In order to determine the FWHM for the error function and the pseudo 

Voigt functions an initial guess and lower boundary limit was obtained from tabulated natural line 

width data [20]. These are independent of the electronic structure in the valence region (Rule #2). By 

way of example, in the samples examined here the natural line width for Au L3 is 5.41 eV therefore the 

allowable range in the subsequent fitting error function was constrained from 5.41 eV to 10 eV and for 

the pseudo-Voigt functions from 5.41 eV to 15.41 eV. Rule #3 imposes that electronic transitions must 

be separated from each other by a threshold value, to prevent overfitting, e.g. 3.5 eV for the initial 

guess (grey arrows, figure 1) and 7 eV for the subsequent guess (blue arrows, figure 1) gave good 

results for all Au L3-edge spectra. Aside from the FWHM limit in Rule #2, the height of the IP error 

functions was fixed at 0.8 for all the Au L3-edge spectra to enable the use of the non-negative 

Gaussian functions to fit oscillatory fine structure in the continuum range (Rule #4). For the set of data 

discussed here the FWHM of the electronic transition features tends to increase with photon energy 

due to increased lifetime broadening [21]. If necessary in a specific data set this trend could also be 

imposed as Rule #5. 

The resulting algorithm is summarised in figure 1. In a first optimisation loop, the number of peaks 

to be fitted and their centroids are guessed from the first derivative of the smoothed experimental 

spectrum. A peak centroid is then assigned to each maximum in the spectrum. The initial guess for the 

IP is the edge inflection point of the experimental spectrum (E0) + 10 eV. In the subsequent 

minimisation loop (blue arrows in figure 1) the difference between the experimental spectrum and the 

fitted line shapes is examined, and Gaussians are added where the deviation between experiment and 

fit is larger than a threshold value, while maintaining Rules #1 and #3.  
  

3. Results and Discussion 
The peak fitting algorithm was tested on a series of Au L3-edge reference spectra. Fitting each 

spectrum using the code took at most a few seconds on a computer with a first generation Intel i3 

processor. For comparison, we also generated manual (non-automatic) best fits for all spectra using 

Athena in the Demeter software package [13]. The full experimental methodology, results and the 

MATLAB code are given in the supporting information (SI).  

For gold foil, [AuCl2]
–
 and Au2S, good agreement was achieved between automatic and manual 

best fits (figure 2) producing similar error and pseudo-Voigt function parameters in the XANES 

region. For [Au(CN)2]
–
, [Au(CN)4]

–  
and [AuCl4]

–,
, similarly good agreement in the XANES region 

can be achieved, although with more than one way to fit the data. For [Au(CN)4]
–
, both the automatic 

fit with three pseudo-Voigt functions and the manual fit with two pseudo-Voigt functions seem 

equally reasonable. For [Au(CN)2]
–
 and [AuCl4]

–
, the manual best fits model the regions around 

11,930 and 11,926 eV, respectively, better because a weak secondary pseudo-Voigt function improves 

the fit. The contribution of this transition was too low to be picked up by the automated algorithm. The 

parameters determined for the strong white line and the IP in these examples are still in good enough 

agreement to be of analytical value. A similar situation was encountered for [AuBr4]
–
 (SI B). A similar 

but more severe case is [Au(OH)4]
–
, which has a secondary and even what appears to be weak tertiary 

contribution to the white line just below the IP, which are not correctly identified by the automated 

algorithm. 
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4. Conclusions  
The heuristic automated peak fitting procedure parametrises most of the essential electronic structure 
and chemical state information at the Au L3-edge with minimal user input. For the test set of Au L3-
edge XANES spectra the fits were excellent for most of the compounds while for others some further 
refinement is required through inclusion of secondary white line features. The method has the 
flexibility to be applied to different edges through the use of the necessary edge-specific boundary 
limits. We plan to implement the method in a more open language such as Python. We believe that 
such simple automation procedures will already be useful for the initial stages of data analysis for 
large bodies of spectra, e.g. filtering and classification of datasets or interpreting chemical contrast in 
imaging data more quantitatively. Through further advancement of this technique the methodology 
could ultimately also be linked with molecular modelling and simulation for deeper understanding of 
the variations in peak positions and intensities in the XANES region. 
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