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The influence of the finite width of ρ meson on the pion momentum distribution is studied quantitatively 
in the framework of the S-matrix approach combined with a blast-wave model to describe particle 
emissions from an expanding fireball. We find that the proper treatment of resonances which accounts 
for their production dynamics encoded in data for partial wave scattering amplitudes can substantially 
modify spectra of daughter particles originating in their two body decays. In particular, it results in 
an enhancement of the low-pT pions from the decays of ρ mesons which improves the quantitative 
description of the pion spectra in heavy ion collisions obtained by the ALICE collaboration at the LHC 
energy.
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Recent measurements of the transverse momentum, pT -dis-
tributions of identified particles produced in 

√
sN N = 2.76 TeV

Pb + Pb collisions at CERN Large Hadron Collider (LHC) [1] re-
vealed an excess of low-momentum (pT � 0.3 GeV) pions over the 
conventional fluid-dynamical calculations [1–3].

It is well known that pions originating from decays of reso-
nances have a steeper pT -distribution than the thermal pions [4], 
and that they provide a dominant contribution to the spectrum 
at low transverse momentum. Thus, resonance decays require a 
particular attention when modeling spectra of particles originat-
ing from an expanding thermal fireball.

In fluid-dynamical calculations, the interacting hadrons are usu-
ally described by the hadron resonance gas (HRG), where the 
system is modeled as a gas of free hadrons with resonances 
considered as particles with vanishing widths. This approxima-
tion yields reasonable description of the bulk properties of the 
hadronic medium [5–8]. The HRG model also provides a very sat-
isfactory description of particle yields measured in heavy ion col-
lisions [9–17], as well as the hadronic equation of state and some 
fluctuation observables obtained in lattice QCD (LQCD) [18–22]. 
However, as we show in this letter, when pT -differential observ-
ables are involved, a more refined approach may be necessary.

To properly address the dynamics of hadrons, the effect of res-
onance width must be included. A conventional way is to impose 
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a Breit–Wigner distribution on the resonance mass. Unfortunately, 
this approach proves to be too crude in many circumstances. For 
example, for a broad resonance like the σ meson [23], or the (yet-
to-be-confirmed) κ meson [24], the Breit–Wigner approach can 
give misleading results on the resonance contribution to the ther-
modynamics.

We thus take a more fundamental approach to evaluate the 
properties of interacting hadrons based on the S-matrix formu-
lation of Dashen, Ma and Bernstein [25]. For elastic scatterings, 
the interaction part of the partition function reduces to the Beth–
Uhlenbeck form for the second virial coefficient, expressed in 
terms of the scattering phase shifts [26]. In the context of heavy-
ion physics, this approach has been applied to evaluate the con-
tribution of π N [5,27,7], ππ [5,23], and π K interactions [5,24] to 
the thermodynamics of hadronic matter, and to analyse the reso-
nance production [28].

In this letter, to make the effects of resonance width on parti-
cle pT -spectra more tractable, we concentrate on the ππ system. 
As shown in Refs. [5,23], the effects of the scalar–isoscalar and 
the scalar–isotensor channels largely cancel each other. This can-
cellation remains when the single particle distribution of pions is 
evaluated. Thus for our purposes it is sufficient to consider only 
the vector–isovector channel, i.e. the channel of the ρ meson.

In the S-matrix formalism, the density of states per unit vol-
ume and unit invariant mass M , assuming thermal equilibrium at 
temperature T , is given by [26,5,7,28]
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. (Colour online.) Left: pT spectra of π+ originating from decays of ρ , the π K (S- and P-wave) system, and the �(1232)-channel of π N using both the S-matrix 
treatment and the zero width approximation at T = 155 MeV temperature. The contribution from ρ decays is calculated also using the relativistic Breit–Wigner description 
of ρ ’s. Right: Contributions to pion density from various sources as function of freeze-out temperature. In this calculation, the η and ω resonances have zero widths, and the 
S-matrix treatment has been applied to the system of ρ , and to the processes indicated as “other”: the system of ππ (S-wave), π K (S- and P-wave) and the �(1232)-channel 
of π N (see text). In both figures, solid and dashed lines correspond to results of the S-matrix approach and the conventional zero-width approximation, respectively.
dnI J

dM
=

∫
d3 p

(2π)3

1

2π
B(M) f (E(M, p), T ), (1)

where f is the Bose–Einstein or Fermi–Dirac distribution, and 
B(M) is an effective spectral weight,

B(M) = 2
dδI J

dM
, (2)

derived from the scattering phase shift δI J , of the isospin I and 
spin J channel.

In the elastic region (M � 1 GeV), the empirical phase shift 
[29–31] of the (I = 1, J = 1) channel can be effectively described 
by a phenomenological formula, inspired by a one-loop perturba-
tive calculation of the ρ self-energy [32,33],

δ11(M) = tan−1

(
− 2

3M

α0

1 + c p2
CM

p3
CM

M2 − m2
0

)
, (3)

where pCM(M) = 1
2

√
M2 − 4m2

π is the center-of-mass momentum 
of the scattering pions, and α0 = 3.08, m0 = 0.77 GeV, and c =
0.59 GeV−2 are the model parameters chosen to reproduce not 
only the phase-shift data, but also the known value of the P-wave 
scattering length. The phase shift and the scattering length are re-
lated as

a1
1 = δ11

p3
CM

∣∣∣∣
pCM→0

. (4)

We constrain the scattering length to a1
1 = 0.038 m−3

π , matching 
the experimental value and chiral perturbation theory prediction 
a1

1 = 0.038(2) m−3
π [34] and 0.037(10) m−3

π [35,36], respectively. 
This requirement is essential for the correct description of the 
near-threshold behaviour of the density function, introduced in 
Eq. (2).

An important feature of the current approach is the use of the 
effective spectral weight B(M) instead of the standard spectral 
function. This effective weight includes contributions from both a 
pure ρ state and the correlated ππ pair. The latter tends to shift 
the strength of the weight function towards the low invariant-mass 
region [7]. Such a shift can potentially translate into an enhance-
ment of the low-pT daughter pions from the decays of ρ mesons.
To quantify this expectation, we evaluate the distribution of ρ ’s 
using the Cooper–Frye description [37], with the thermal distribu-
tion augmented by the effective spectral weight B in Eq. (2), as

dNρ

dy pT dpT dφ
=

∫
dMρ

∫
dσμpμ

ρ
1

2π
B(Mρ)

× dρ

(2π)3
fρ(p · u, T ),

(5)

where fρ, dρ are respectively the Bose–Einstein distribution and 
the spin degeneracy for ρ , and u is the flow velocity. In the case 
of a static source, the integration over the surface, 

∫
dσμpμ , be-

comes a simple multiplication by the volume of the system, V , 
and by the energy of the particle, E . The momentum spectrum of 
the decay pions can be evaluated by applying the conventional de-
cay kinematics [4,38,39] to the distribution of ρ ’s from Eq. (5). For 
a static source, one gets

dNde
π

dy pT dpT dφ
= V

∫
dMρ

1

2π
B(Mρ)

× Mρ

2 pπ pCM

E+
ρ∫

E−
ρ

dEρ Eρ
dρ

(2π)3
fρ(E(Mρ), T ),

(6)

where

E±
ρ = Mρ

2 m2
π

(Eπ Mρ ± 2pπ pCM). (7)

We evaluate the pT distributions at T = 155 MeV, in the vicinity of 
the pseudocritical temperature obtained in the lattice formulation 
of QCD [40,41].

In Fig. 1-left we show the rapidity and azimuthal angle inte-
grated transverse momentum spectra of π+ originating from ρ
decays. The ρ ’s are treated as zero-width particles, particles with 
the standard Breit–Wigner width, or according to the S-matrix 
approach introduced in Eq. (6). The latter description leads to a 
substantial enhancement of the pion decay spectra. The effect is 
most prominent in the low-pT region of the decay pions, where 
at pT ≈ 0 one observes a factor of two increase of the differential 
pion yield. Note that at larger values of the transverse momentum 
the spectrum of decay pions is practically unaffected by the width 
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Fig. 2. (Colour online.) Left: The pT distribution of positive pions in 0–10% most central √sN N = 2.76 TeV Pb + Pb collisions as measured by the ALICE collaboration [1,45], 
and fitted using a blast-wave model. Right: The mT distribution of positive pions, protons and � baryons in 0–10% most central √sN N = 2.76 TeV Pb + Pb collisions as 
measured by the ALICE collaboration [1,45], and fitted using a blast-wave model. In both panels the solid lines correspond to the S-matrix approach result and the dashed 
lines to the conventional zero-width approximation.
of ρ . For future reference, we also present results on decay π+
spectra from the system of π K interaction (sum of S- and P-wave) 
and from π N interaction in the �-channel. In all the channels 
studied we find overall enhancement of low-pT pions in the S-
matrix approach compared to the zero-width results. Nevertheless, 
the difference is most noticeable in the ρ sector.

To illustrate the effect of leading resonances on the pion yield 
in the HRG, we show in Fig. 1-right the temperature dependence 
of the contributions from various sources to pion density after res-
onance decays. For this analysis, we have included the three-body 
decays of zero-width η and ω (with branching ratios of 0.228 and 
0.893, respectively). Furthermore, we have applied the S-matrix 
treatment to the ππ (S-wave) and π K (S- and P-wave) systems 
and the �(1232)-channel of π N . At T = 155 MeV, when no heav-
ier resonances are included, the relative abundance of π+ from 
ρ decay is 25.1%, while the thermal pion yield remains dominant 
at 49.4%. Three-body decays considered constitute 12.2%, and the 
sum of the rest of two-body channels we treated give 13.3% of the 
total yield. The S-matrix treatment significantly affects the yield 
of pions from ρ decays, resulting in its increase by approximately 
15%, whereas the effect is smaller for other channels considered. 
However, because of the contribution from all the other sources, 
the overall change in the final pion yield due to the S-matrix ap-
proach is only a few per cent.

In general, on the level of particle yields, and at higher temper-
atures T > 100 MeV, the zero-width treatment of resonances gives 
comparable results to the S-matrix approach [5] despite the fact 
that the phase shifts in most cases do not resemble a step function 
and the assumption of a zero (and at times even a narrow) width 
is strictly speaking not justified. However, as already seen in Fig. 1, 
essential differences can appear when pT -differential observables 
of individual resonance channels are studied. Evidently, the more 
physical treatment by the S-matrix formulation is needed for pre-
cision calculations of particle spectra, as e.g. in modeling data in 
heavy-ion collisions.

In a realistic heavy-ion collision, however, the situation is fur-
ther complicated by the expansion of the system, and the presence 
of all the other resonances. To gauge whether the S-matrix descrip-
tion of ρ mesons would affect the pion distributions observed in 
heavy-ion collisions, we describe the system using a blast-wave 
model [42]. There, the thermal source is assumed to be a boost-
invariant [43] cylindrically symmetric transversely expanding tube 
of radius R , from which particles are emitted at constant longitu-
dinal proper time τ with the radial flow velocity v(r) = vmax(r/R).

We calculate the distributions of all the resonances in the Par-
ticle Data Book up to the 2 GeV mass, apply the two- and three-
body decay kinematics, and sum the contributions to the spec-
trum of thermal pions. We take advantage of the recent finding 
in the dynamical model calculations in heavy-ion collisions that 
the pion pT -distribution changes only very little during the sub-
sequent evolution in the hadronic phase [44]. Thus, we fix the 
freeze-out temperature at T = 155 MeV, which coincides with the 
chiral crossover in LQCD. The further parameters of the blast-wave 
model, τ = 13.7 fm, R = 10 fm, and vmax = 0.8 were chosen to get 
the best description of spectra for positive pions in 0–10% most 
central 

√
sN N = 2.76 TeV Pb + Pb collisions as measured by the 

ALICE collaboration. The above freeze-out temperature and the re-
sulting volume of the fireball, V � 4300 fm3, are consistent with 
that obtained previously in the HRG model description of hadron 
production yields and some fluctuation observables in heavy-ion 
collisions at the LHC [10,22].

The resulting pion distribution is shown in the left panel of 
Fig. 2. In this calculation the conventional zero-width treatment 
of ρ ’s leads to a distribution which underestimates the data in 
the low-pT region (pT � 200 MeV). When ρ mesons are treated 
according to the S-matrix description, there is a clear, up to 7%, 
increase of the low-pT pions, which is sufficient to reach the data.

To check further the quality of the model parametrisation, we 
also show in the right panel of Fig. 2 the pion, proton and �

baryon distributions in a broader mT -range. As seen in this fig-
ure, the pion data are well described up to mT � 2 GeV, and the 
model predictions are also consistent with the data for the � dis-
tribution. These results verify the chosen values for temperature 
and volume, and they are also consistent with the idea that �

baryons hardly rescatter in the hadronic phase [47,46], and thus 
their spectra are fixed at the phase boundary [47]. On the other 
hand, the proton distribution is steeper than the data, and the 
overall yield of protons is larger than the experimental value. The 
observed deviation on the level of proton yield is already discussed 
in the literature [10]. The deviations in the proton spectrum could 
be possibly due to their further rescattering during evolution in 
the hadronic phase [46,48].

In conclusion, we have investigated how the explicit treatment 
of the ρ-meson width affects the pion yield and pT distribution 
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in 
√

sN N = 2.76 TeV Pb + Pb collisions at LHC. We have used the 
S-matrix approach to describe ρ mesons, and found that compared 
to the conventional zero-width treatment the pion yield increases, 
particularly at low values of transverse momentum. This indicates 
that the observed enhancement of low-pT pions may be possibly 
explained in fluid-dynamical calculations by a proper implemen-
tation of the width of resonances within the S-matrix approach. 
However, the S-matrix treatment of ρ ’s alone may not be fully suf-
ficient.

A natural extension of this work is to apply a more complete 
model for the fluid dynamical calculations [49–53], as well as, to 
account for a possible medium modification on the phase shifts. 
Essential in-medium effects for ρ mesons are suggested by studies 
based on many-body Green’s function [33,54–58]. This, together 
with the S-matrix treatment of three-body decays, can presum-
ably further increase the pion yields in the low-pT region. We 
leave this as a matter of future investigation. Nevertheless, even 
in their present level, our results demonstrate the importance of 
the proper treatment of resonances in modeling heavy-ion colli-
sions, and the need to improve on the customary hadron resonance 
gas models for precision calculations of particle spectra at low val-
ues of transverse momentum. These studies are also important in 
hydrodynamics-cascade hybrid models [51,59] for particle produc-
tion in heavy ion collisions when describing particalization of the 
fluid as an input to hadronic transport.
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