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Abstract

In this thesis, we study the construction of twisted triple product p-adic L-functions for
automorphic forms on GL2 {F�GL2 {Q, where F {Q is a real quadratic field. By means of a
special value formula proved by Ichino, we construct p-adic L-functions along Hida families
of modular forms on GL2 {Q � GL2 {F , or on the multiplicative group of the product of
definite quternion algebras B{Q � B bQ F {F , which interpolate the central values of the
twisted triple product L-functions.

Sometimes, the arithmetic of special values of L-functions can be studied via different
constructions of the associated p-adic L-functions. For example, the Kubota-Leopodlt p-
adic L-fucntion for a Dirichlet character can be constructed by using Stickelberger elements,
or the constant term of an Eisenstein series on GL2 {Q, and different constructions lead
to different proofs of the Iwasawa main conjecture for the Dirichlet character. Mazur-
Tate-Teitelbaum p-adic L-function for an elliptic modular form can be constructed via the
Rankin-Selberg method, or the constant term of an Eisenstein series on Up2, 2q. In many
cases, the Iwasawa main conjecture for an elliptic modular form is eventually proved by
combining works of Kato, who uses the Rankin-Selberg method, and Skinner-Urban, who
use the Eisenstein series. An explicit interpolation formula is an essential ingredient in
the comparison of p-adic L-functions constructed via different methods. In this thesis, we
obtain interpolation formulas for the twisted triple product p-adic L-functions. We expect
the formula will have applications to the arithmetic of special values of such L-functions
and the Selmer groups of the tensor product of Galois representations associated with an
pair of an elliptic modular form and a Hilbert modular form.

The main innovation of this thesis is to prove explicit interpolation formulas for twisted
triple product p-adic L-functions by computing local period integrals which appear in
Ichino’s formula. In general, when the local representation at p of the specialization of a
Hida family is highly ramified, it is difficult to compute the local period integrals directly.
To overcome this difficulty, we prove a splitting formula which reduces the computation of
the local period integrals to that of Rankin-Selberg type integrals which are more easily
computed.
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CHAPTER 1

Introduction

The special value of an L-function is one of the main themes in number theory, and
the study of p-adic L-functions is an important branch. In this thesis, we construct p-adic
L-functions for twisted triple product automorphic forms, which is autmorphic forms on
GL2 {F � GL2 {Q where F {Q is a real quadratic extension. More precisely, we construct
p-adic L-functions along Hida families of modular forms on GL2 {Q and GL2 {F , or of
automorphic forms on the multiplicative groups of definite quternion algebras B{Q and
BbQF {F , which interpolate the central values of the L-functions of twisted triple product
automorphic forms along Hida families.

Our main innovation is to prove explicit interpolation formulas for p-adic L-functions
by computing Ichino’s formula (Section 1.1). Generally speaking, the local component at
p of an automorphic representation obtained as a specialization of a Hida family is highly
ramified, so that it is difficult to directly compute the local period integral which appears
in Ichino’s formula. To overcome the difficulty, we prove a splitting formula which reduce
the computation of the local period integral to that of Rankin-Selberg type integrals which
can be by far more easily computed (Section 1.1.1).

Recently, Darmon and Rogtger construct p-adic L-functions for split triple product
automorphic forms, namely p-adic L-functions interpolating L-functions of modular forms
on GL3

2 {Q in [DR14]. They prove a formula which said a special value of the p-adic L-
function at a point outside its interpolation range is described as the image of the p-adic
Abel-Jacobi map of a diagonal cycle on a product of Kuga-Sato varieties. It is an important
new aspect of p-adic L-functions, but they don’t give an explicit interpolation formula in
their paper. However, explicit interpolation formulas give us a lot of information. For
example, it enables us to identify p-adic L-functions obtained by different constructions,
to observe exceptional zero phenomenas, p-integrality of special values of L-functions, and
so on. The explicit interpolation formulas of p-adic L-functions for ordinary split triple
product automorphic forms are given by Hsieh [Hsi], and our result is its twisted analogue.

In [GS15], they constructe split triple product p-adic L-functions along Coleman fam-
ilies.

1.1. Ichino’s formula

In order to construct p-adic L-functions, existence of a special value formula for a L-
function is essential. In our case, we use Ichino’s formula [Ich08]: Let E :� Q�F . Let D
be a quaternion algebra over Q of discriminant N� which is the product of prime numbers
at which B is ramified. We denote DF :� D bQ F . Let Π � b1

vΠv be an irreducible
unitary cuspidal automorphic representation of GL2pAEq with central character trivial on
A�

Q. Here, we diagonally embeds AQ into AE. We assume that there exists an irreducible

unitary automorphic representation ΠD of D�pAEq associated with Π through the Jacquet-
Langlands correspondence. We define an element

I P HomD�pAQq�D�pAQq
�
ΠD ⊠ pΠDq_,C�

1



2 1. INTRODUCTION

by

Ipϕ⊠ ϕ1q :�
»
A�QD�pQqzD�pAQq

»
A�QD�pQqzD�pAQq

ϕpxqϕ1pyq dxdy,

for ϕ P ΠD and ϕ1 P pΠDq_, where p�q_ denotes the contragredient representation of p�q,
and dx and dy are the Tamagawa measures on A�

QzD�pAQq. We define an element

B P HomD�pAEq
�
ΠD b pΠDq_,C�

by

Bpϕ, ϕ1q :�
»
A�EDpEqzDpAEq

ϕpxqϕ1pxqdx,

for ϕ P ΠD and ϕ1 P pΠDq_, where dx is the Tamawagawa measure. For each place v of Q,
we fix an element

Bv P HomD�pAEv q
�
ΠD
v b pΠD

v q_,C
�
,

where Ev :� E bQ Qv, and assume that for almost all v,

Bvpϕv, ϕ1vq � 1

for any b1
vϕv P b1

vΠ
D
v and b1

vϕ
1
v P b1

vpΠD
v q_. Then there exists C1 P C� such that

B � C1

¹
v

Bv.

For b1
vϕv P b1

vΠ
D
v and b1

vϕ
1
v P b1

vpΠD
v q_, we define

IΠDv
pϕq :� ζQvp2q

ζEvp2q
Lp1,AdΠvq
Lp1{2,Πvq

»
Q�
v zD�pQvq

BvpΠD
v pgqϕv, ϕ1vq dvg,

Here, Lps,AdΠvq and Lps,Πvq are the L-functions defined by representations Cb3 and

Liep pGq{LiepZp pGqq of LG � GL2pCq3 ⋊ GalpQ{Qq, respectively, where G :� ResE{F GL2,pG be the dual group of G, and GalpQ{Qq acts on pG as S3 through the permutation of
SpecpE bQ Qq. Ichino’s formula [Ich08] is stated as follows:

Theorem 1.1.1 ([Ich08]). For ϕ � b1
vϕv P ΠD and ϕ1 � b1

vϕ
1
v P pΠDq_ such that

Bpϕ, ϕ1q � 0,

we have
Ipϕ, ϕ1q
Bpϕ, ϕ1q �

C

2c
� ζEp2q
ζF p2q �

Lp1{2,Πq
Lp1,AdΠq �

¹
v

IΠDv
pϕv, ϕ1vq

Bvpϕv, ϕ1vq
,

where c is the number of the connected component of SpecpEq and C P C� is a constant
depending on D and the choice of measures tdvxuv.

Regarding the precise description for the constant C, see the proceeding paragraph
of Theorem 6.1.1. In our case, the quaternion algebra D is either a definite quaternion
algebra, namely, DpRq is a division algebra, or the matrix algebra. By the above theorem,
we find that we have to do two things: to compute the local period integral IΠDv

on the
right hand side, and to construct an element of an Iwasawa algebra interpolating the global
period integral I on the left hand side.
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1.1.1. Computations on local period integrals. In general situation, it is difficult
to compute the the local period integral IΠDv

directly. At the following places: archimedean
places, a places at which the exponent conductor of the local representation is at most one,
and places dividing N�, it is computed directly by Chen-Cheng [CC16], so we have to
compute it when the local representation at v is highly ramified at a non-archimedean
place. To compute the local period integral, we prove a splitting formula. Let us explain
it:

Let F2{F1 be a quadratic extension of fields which are finite extensions over Qp for
a prime number p. We fix an element ξ P F�

2 with trF2{F1pξq � 0. We fix a non-trivial
additive character ψ : F1 Ñ C�, and we define ψξpxq :� ψptrF2{F1pξxqq for x P F�

2 . For
each i � 1, 2, we denote by | � |Fi the non-archimedean absolute value on Fi such that
|p|Fi � # pOFi{pOFiq�1. Let qi be the order of the residue field of Fi, and we define

ζFipsq :�
1

1� q�si
.

Let µ, ν : F�
1 Ñ C� be quasi-characters. We assume that µ � χ1|�|λ1F1

and ν � χ2|�|λ2F1
for

some unitary characters χ1, χ2 on F
�
1 , and for some complex numbers λ1, λ2 P C satisfying

|Repλ1q|, |Repλ2q|   1

2
.

Let Ind
GL2pF1q
BpF1q pµ⊠ νq and Ind

GL2pF1q
BpF1q pµ�1⊠ ν�1q be the induced representations normalized

by the modulus character of the group of upper triangular matrices BpF1q �
"� � �

0 �

*

,

which are models of the principal series representations πpµ, νq and πpµ�1, ν�1q, respec-
tively. Namely, Ind

GL2pF1q
BpF1q pµ⊠ νq and Ind

GL2pF1q
BpF1q pµ�1 ⊠ ν�1q are C-vector spaces of locally

constant functions f on GL2pF1q such that

f

��
a b
0 d



g



� µpaqνpdq|ad�1|1{2F1

fpgq,

f

��
a b
0 d



g



� µ�1paqν�1pdq|ad�1|1{2F1

fpgq

for g P GL2pF1q, a, d P F�
1 and b P F1, respectively. For f P Ind

GL2pF1q
BpF1q pµ ⊠ νq, rf P

Ind
GL2pF1q
BpF1q pµ�1 ⊠ ν�1q, and g P GL2pF1q, we define

Φf, rf pgq :�
»
K

fpkgq rfpkq dk,
where K :� PGL2pOF1q, and dk is the invariant measure on PGL2pF1q with volpK, dkq � 1.

Let π2 be an irreducible tempered admissible representation of GL2pF2q with central
character ω2 : F�

2 Ñ C�. We assume that pω2q|F�
1
µν is trivial on F�

1 . We denote by

W pπ2, ψξq and W pπ_2 , ψξq the Whittaker models of π2 and π_2 associated with ψξ, respec-
tively, where π_2 denotes the contragredient representation of π2. For W P W pπ2, ψξq,�W P W pπ_2 , ψξq, and g P GL2pF2q, we define

ΦW,�W pgq :�
»
F�
2

W

��
a 0
0 1



g


�W �� �a 0
0 1




d�a,
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where d�a is the invariant measure on F�
2 with volpO�

F2
, d�aq � 1. For W P W pπ2, ψξq,�W P W pπ_2 , ψξq, f P Ind

GL2pF1q
BpF1q pµ⊠ νq, and rf P Ind

GL2pF1q
BpF1q pµ�1 ⊠ ν�1q, we define

ΨpW, fq :�
»
NpF1qzPGL2pF1q

W pgqfpgq dg,

rΨp�W, rfq :� »
NpF1qzPGL2pF1q

�W pηgq rfpgq dg,
where η :�

� �1 0
0 1



and NpF1q :�

"�
1 �
0 1


*
.

We put

Π :� W pπ2, ψξq⊠ Ind
GL2pF1q
BpF1q pµ⊠ νq,

which is an irreducible admissible representation of GL2pF2q � GL2pF1q. We define two
parings

IGP, IRS : Π� Π_ ÝÑ C
by

IGPpW ⊠ f,�W ⊠ rfq :� |ξDF2{F1 |1{2F2

ζF1p1q
ζF2p1q

»
PGL2pF1q

ΦW,�W pgqΦf, rf pgq dg,
IRSpW ⊠ f,�W ⊠ rfq :� ΨpW, fqrΨp�W, rfq,

where DF2{F1 is a generator of the different ideal of F2{F1. Here,“GP” (resp. “RS”) stands
for “Gross-Prasad” (resp. “Rankin-Selberg”). The main result is the equality between
these parings:

Theorem 1.1.2 (see Theorem 5.1.1). We have

IGP � IRS.

We note that the IGP is the same up to scalar as IΠDv
and the Ψ and rΨ of the right hand

side is much easier to compute (see also Theorem 5.4.1). In the split case (i.e. F2 � F1�F1),
an analogue of Theorem 1.1.2 was proved by Hsieh in [Hsi], which generalizes the result
of Michel-Venkatesh [MV10, Lemma 3.4.2].

1.2. Hida families and main results

For simplicity, we assume that the class number of F is one, and the prime number p
is inert in F for ease of notations. We fix embeddings Q ãÑ C and Q ãÑ Cp, where we fix

an algebraic closure Q of Q, and Cp is the completion of an algebraic closure of Qp. Let H
be the upper half plane. Let fpzq be an elliptic cusp form of weight k1 and let gpz1, z2q be
a Hilbert cusp form of weight pk2, k3q (for the precise definition, see Section 4.1.1). They
are analytic functions on z P H and pz1, z2q P H2, respectively. We assume that f and g
are normalized cuspidal Hecke eigenforms with trivial central characters, new outside p,
and ordinary at p, namely, their Fourier coefficients at p are p-adic units as elements of
Cp via the above embedding. In this thesis, we construct a p-adic L-function interpolating
Lp1{2, f � gq when one of the following two conditions holds:

(1) k1 ¥ k2 � k3 (called the unbalanced condition with respect to k1)
(2) k1   k2� k3, k2   k1� k3, k3   k1� k2 (called the balanced condition) and f has

a Jacquet Langlands lift of a definite quaternion algebra.
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We note that each case of (1) and (2) corresponds to the sign of the local root number at
the archimedean place of the twisted triple product L-function associated with f and g.
In the case (1), the sign is �1, and in the another case (2), it is �1. By Loke’s theorem
[Lok01], we see that the sign controls on which algebraic group the local period integral
is zero at the archimedean place. Thus to construct a nonzero p-adic L-function, we need
different Hida theories on a different algebraic groups for cases (1) and (2).

1.2.1. A Main result for the unbalanced case. In this case, we use the Hida
theory on GL2. We assume that f is spherical outside p. It is known that

a
�
1, 1fHpδpk1�k2�k3q{2z1

g|Hq
� � pf,Hpδpk1�k2�k3q{2z1 g|Hqq

pf, fq ,

where ap1, �q denotes the first Fourier coefficient of the modular form, δz1 is the Maass-
Shimura operator along the variable z1, H is the holomorphic projection, 1f is the idem-
potent of the Hecke ring associated with f , and p�, �q is the Petersson inner product. By

definition, pf,Hpδpk1�k2�k3q{2z1 g|Hqq2 is just the global period integral which appear in Ichino’s
formula. Thus we develop the nearly ordinary Hida theory by means of Wiles’ formulation
[Wi88], which regards the Hida family as the p-adic deformation of Fourier coefficients.
For Hida families F and G run through f and g respectively, we define the (square root
of) p-adic L-function by

LppF b G q :� ap1, 1FΘpG qq P FracpI1 b I2q,

where Θ is a deformation of the Maass-Shimura operators to adjust weights (Definition
4.5.1), and I1 and I2 are coefficient rings of F and G , respectively. For any arithmetic
point P (resp. Q) (see Section 4.4.1) of I1 (resp. I2) , we denote the specialization at
P (resp. Q) by FP (resp. GQ). Let πFP

and πGQ are unitary cuspidal representations
associated with FP and GQ, respectively. We have the following result:

Theorem 1.2.1 (Theorem 6.2.5). Let P bQ P X pI1 b I2q be an element such that
P |G � PkP ,wP ,ω1,1 and Q|G � PkP�2rσ�tF ,wP�rσ,ω2,1 for some r ¥ 0, we have

pP bQqpLp

�
F b G q2�

� 2r�4
?
D

2wP |Q�2tF�rσ
p apFP , pq2cpω1qεRSp1{2,AsπGQ,p b µFP,p

, ψ,
?
D
�1q

�
�
Lp1, µFP

ν�1
FP
qLp0, µFP

ν�1
FP
q

Lp1{2,AsπGQ,p b µFP,p
q

�2

� Lp1{2, πFP
b πGQ b?

ωPωQ
�1q

D � ΩpP q2 ,

where D P Z¡0 is the discriminant of F {Q, and cpω1q is the exponent of p of conductor

of ω1. We assume that πFP ,p is the irreducible subquotient of Ind
GL2pF1q
BpF1q pµP ⊠ νP q. The

complex number ΩpP q P C� is nonzero and defined by

ΩpP q :� 2kP |Q pcpω1qppkP |Qq{2�1q εp1{2, πFP
q ��FP ,�FP

�
Γ0ppcpω1qq,



6 1. INTRODUCTION

where we define �F : the new form associated with the ordinary form FP ,

Γ0ppcpω1qq :�
"
x P SL2pZq

���� x � � � �
0 �



mod pcpω1q

*
,

��FP ,�FP

�
Γ0ppcpω1qq :�

»
Γ0ppcpω1qqzH

�����FP

��
y x
0 1



����2 dx dyy2
.

For the notations we don’t explain, see Section 6.2. We remark that we can see the
Euler factor which can cause the exceptional zero in the above theorem. We note that the
denominator of the p-adic L-function is controlled by the congruence number (see Remark
6.2.6).

1.2.2. A main result for the balanced case. In this case, we need Hida theory for
the multiplicative group on a definite quaternion algebra. Let fB and gB be the Jacquet-
Langlands lifts on the definite quaternion algebra B. Mainly, we follow the method of
[GS15]. In their article, they construct a triple product p-adic L-function for general
finite slope modular forms along a Coleman’s famiy, but they treat only the case that the
base field is Q, and we can’t consider the integrality of the special value of L-functions
in their frame work. Thus we develop a theory measure valued form theory for definite
quaternion algebra over any general totally real field. For Hida families Φ1 and Φ2 running
through fB, gB respectively, we construct an element LppΦ1 b Φ2q in the fractional field
of an Iwasawa algebra I. The interpolation formula is as follows:

Theorem 1.2.2 (Theorem 6.3.1). Let P P X pIq such that P |GE
� Pk1,w1,ω1 �

Pk2,w2,ω2 with ωi � pωi,1q and k1   k2,σ � k2,ρ, k2,σ   k1 � k2,ρ, and k2,ρ   k1 � k2,σ hold.
We have

P pLppΦ1 b Φ2qq
�C 1D�k�1�1

p �
¹
q|N�

eqpF {Qq

� EppΠP q
Epπ1,P ,AdqEpπ2,P ,Adq �

�
Lp1{2, µ1,Pν2,P q

Lp1{2,Asπ2,P b µ1,P qLp1{2, µ�1
1,Pν

�1
2,P q

�2

� Lp1{2,ΠP q
Lp1,AdΠP q .

Here, C2 is a nonzero rational number depending only on Φ1 and Φ2, eqpF {Qq is the
ramified index of F {Q at q,

EppΠP q :�
εRSp1{2,Asπ2 b µ1, ψ?D�1qεp1{2, µ�1

1 ν�1
2,P , ψ

�1q
εp1{2, µ1ν2,P , ψq

and Epπi,P ,Adq is that defined in Proposition 5.3.1.

For the notations we don’t explain, see Section 6.3. We remark that we can see the
Euler factor which can cause the exceptional zero in the above theorem. We note that the
denominator of Lp has an explicitly constructed and we can see its behavior.

1.3. Basic notations

Let F be a totally real field and p be a prime. Let AQ be the adèle ring over Q. Let
AQ,f the finite part of AQ. We fix an algebraic closure of F denoted by Q and we denote
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by C the fields of complex numbers. We fix Cp which is the completion of an algebraic
closure of Qp. We define the additive valuation

ordp : Cp ÝÑ QY t8u such that ordpppq � 1, ordpp0q � 8
and define the multiplicative valuation

|x|p :� p�ordppxq P R¥0.

For a finite Qp-algebra L and for x P L, we define

|x|L :� |NL{Qppxq|p.
We fix embeddings ιp : Q ãÑ Cp, ι8 : Q ãÑ C and an isomorphism ι : Cp � C such that the
diagram

Cp

F ãÑ Q

ιp 55llll

ι8
))SSS

S � ι
C

is commutative.
We denote by IF :� t σ : F ãÑ Cp u (or I if there occurs no confusion) the set of the

embeddings from F into Cp. We identify the set IF with the set of the embeddings from F
into C via the isomorphism Cp � C. We denote by ZrIF s the free abelian group generated
by IF :

ZrIF s :�
à
σPIF

Zσ.

We denote by kσ P Z the σ-component of k P ZrIF s, namely, k �
¸
σ

kσσ. We define an

element tF P ZrIF s (we denote it by t if there occurs no confusion) by

tF :�
¸
σPIF

σ.

Let F1{F2 be two totally real fields. For k P ZrIF2s, we denote by k|F1 P ZrIF1s the following
element

k|F1 :�
¸
σPIF1

���� ¸
τPIF2
τ |F1�σ

kτ

���
σ.
For any z � pzσqσPI P F bQ Cp �

¹
σPIF

Cp, we define

zk :�
¹
σPI

zkσσ P Cp

We define several rings as follows

Fp :� F bQ Qp �
¹
p�p

Fp

OFp :� OF bZ Zp �
¹
p�p

OFp

kFp :� OFp{JpOFpq �
¹
p�p

OFp{ϖpOFp ,

where JpOFpq is the Jacobson radical of OFp and ϖp P OFp is a uniformizer.
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For any abelian profinte group H, we denote by Hppq a unique p-Sylow group. We
define the projection from H to Hppq by

x � y : H ÝÑ Hppq.
Let

e : AQ{Q ÝÑ C
be a unique additive character such that for x8 P R,

epx8q � e2π
?�1x8 .

Let

Piccyc : A�
Q{Q� ÝÑ Z�p ; x ÞÑ x�1

p |x|�1
AQ,f

τ : A�
Q{Q� ÝÑ Z�p ; x ÞÑ x ϵcycpxq y ϵcycpxq�1

be the cyclotomic character and Teichmüller character, respectively.
For a Q (resp. Qp)-algebra L, we denote by OL the integral closure of Z (resp. Zp) in

L.
For any finite Q-algebra L, we define

AL :� AQ bQ L,

AL,f :� AQ,f bQ L,

L�� :� t x P L� | σpxq P R¡0 for any Q-algebra homomorphism σ : LÑ C u,
O�
L,� :� O�

L X L��,

eL : AL{L
TrL{QÝÑ AQ{Q eÝÑ C

ϵcyc,L : A�
L{L�

NL{QÝÑ A�
Q{Q� ϵcycÝÑ Z�p ,

τL : A�
L{L�

NL{QÝÑ A�
Q{Q� τÝÑ Z�p .

For any place v of Q, we define

ev :� e|Qv : Qv ÝÑ C�.

For a finite Qq-algebra L
1, though it’s rather abuse of notation, we define

eL : L
TrL{QvÝÑ Qv

evÝÑ C�.

We define several algebraic groups over Z as follows: for any Z-algebra R,

NpRq :�
"�

1 R
0 1


*
,

tNpRq :�
"�

1 0
R 1


*
,

T pRq :�
"�

R� 0
0 R�


*
.

For any algebraic group G over F , we use the following notation: let U � GpAF q be a
subgroup. For any nonzero ideal a � OF , we define subgroups of U by

Ua :� t u P U | ul � 1 for any prime ideal l � a u,
U a :� t u P U | ul � 1 for any prime ideal l � a u.
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When a � paq for some a P OF , we usually omit to write “p” and “q,” namely, we
denote U paq and Upaq by Ua and Ua, respectively.

Let R be a ring, G a group and let M be a RrGs-module. For a group homomorphism
ϵ : GÑ AutRrGspMq, we denote by M rϵs the space

t x PM | g � x � ϵpgqx u.





CHAPTER 2

A review of I-adic forms on definite quaternion algebras over
totally real fields

2.1. Quaternioic automorphic forms

2.1.1. The generity of quaternionic automorphic forms. Let B be a definite
quaternion algebra over F of discriminant d, which is ramified at all of infinite places and
prime ideal of F dividing n�. We assume that p is prime to d. Suppose that n� is prime to

p. We denote BbF AF,f by pB, where AF,f is the finite adèle ring over F . For any subgroup

S � p pB�q, we denote by XpSq the following quotient space:

XpSq :� B�z pB{S.
In the case Sp � 1, we define a right action of GL2pFpq on XpSq by a natural way. For any
nonzero prime ideal q not dividing d, we fix an isomorphism and embedding

iq : B bF Fq � M2pFqq ãÑ M2pCq,(2.1.1)

where M2p�q means the matrix ring. We always identify B bF Fq with M2pFqq and occa-
sionally omit to write iq.

We define the most general form of quaternionic automorphic forms:

Definition 2.1.1. Let U � pB� be an open compact subgroup andM an left Up-module.
The M-valued p-adic quaternionic modular form of level U is a map ϕ from XpUpq to M
satisfying

ϕpbuq � u�1ϕpbq,
where b P XpUpq, and u P Up. We denote by SpU,Mq the space of M -valued p-adic
quaternionic modular forms of level U .

Definition 2.1.2. Let U,U 1 � pB� be open compact subgroups and g P pB. Let M be
a ZrUp, U 1

p, gps-module. We define an homomorphism

rU 1gU s : SpU,Mq ÝÑ SpU 1,Mq
by �rU 1gU sϕ�pbq :�¸

i

pgiqpϕpbgiq,

where b P pB�, ϕ P SpU,Mq and gi are defined by the following finite decomposition:

U 1gU �
§
i

giU.(2.1.2)

Let A be a commutative ring and SymmpAq the space of two variable A-coefficient
homogeneous polynomials of degree m. This module has a left action of semigroup M2pAq
define by

γfpX,Y q :� f ppX,Y qγq � fpaX � cY, bX � dY q,
11
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where γ �
�
a b
c d



P M2pAq and f P SymmpAq. Suppose that A is a Zpqq-algebra with

m   q. We define a perfect paring

x �, � ym : SymmpAq � SymmpAq ÝÑ A(2.1.3)

by

xX iY m�i, XjY m�j ym :�
$&%
p�1qii!j!
m!

pi� j � mq
0 pi� j � 0q

This pairing satisfies
x γf, γg ym � detpγqmx f, g ym

for any γ P M2pAq and f, g P SymmpAq. Let M be an A-module, and we define

SymmpMq :� SympAq bAM.

As above, SymmpMq has the action of M2pAq and an M -valued pairing.

Let A be a ring and M be an A-module. For any n �
¸
σ

nσσ P ZrIs, we define

SymnpMq :�â
σPI

SymnσpMq,

where the tensor products are taken over A. We denote the indeterminates by Xσ, Y σ.

This module has a natural left action of semigroup
¹
σPI

M2pAq. We also define the paring

for A which is a Zpqq-algebra with m   q

x �, � yn :�â
σ

x �, � ynσ : SymnpMq bA SymnpMq ÝÑM.

Note that when A � Cp, the natural embedding FbQQp ãÑ FbQCp induces an embedding¹
p�p

M2pFpq ãÑ
¹
σPI

M2pCpq.

In particular, via this embedding and ip above, Sym
npMq has an action of pB�

p .
We fix a non empty (not necessarily whole) set t p1, . . . , pm u of prime ideals above p,

and define

p :�
m¹
i�1

pi.

For n P ZrIs, the perfect pairing x �, � ynσ for σ P Ip induce

x �, � yp : Symn � Symn ÝÑ Symnp

.

We fix a open compact subgroup Σ � pB� such that

Σp �
¹
p�p

i�1
p

�
GL2pOFpq

�
,

Σp �
¹
p�p

i�1
p

�
GL2pOFpq

�
.

We always denote by s or s1 the elements ofà
p�p

Zp
� � F�

p {O�
Fp

�
.



2.1. QUATERNIOIC AUTOMORPHIC FORMS 13

For s �
¸
p�p

spp, we define

ps :�
¹
p�p

psp

and denote by s1 ¥ s (resp. s ¡ s1) if

s1 � s Pà
p�p

Z¥0p presp. à
p�p

Z¡0pq.

We define the following open compact subgroups for s as above

Σ0ppsq :� KB
0 ppsq X Σ,

Σ1ppsq :� KB
1 ppsq X Σ

Σppsq :� KBppsq X Σ,

where

KB
0 ppsq :�

$''&''%u P pB
��������
$&% iqpuqq P M2pOFqq

iqpuqq �
� � �

0 �



mod psM2pOFqq if q � d

uq P tmaximal order of B bF Fq u if q | d

,//.//-
KB

1 ppsq :�
"
u P KB

0 paq
����iqpuqq � � � �

0 1



mod psM2pOFqq for q � d

*
KBppsq :�

"
u P KB

0 paq
���� iqpuqq � �

1 �
0 1



mod psM2pOFqq for q � d

*
.

Let

∆ppqp :�
" �

a b
c d



P M2pOFpq

���� c P pOFp , d P O�
Fp
, ad� bc � 0

*
.

We define

Cl�F pΣppsqq :� A�
F,f{F�pA�

F,f X ΣppsqqRI
¡0

Gs :� Cl�F pΣppsqq � Σ1ppsq{Σppsq.
Definition 2.1.3. Let R � Cp be a subring and let A be a R-module. Let k, w P ZrIs

such that k � 2t ¥ 0 and 2w � k P Zt. Let ω :� pω, ω1q : Gs Ñ AutRpAq be a pair
of group homomorphisms. For any s ¥ 0, we define the spaces of A-coefficient p-adic
quaternionic automorphic forms of weight pk, wq by SpΣppsq, Symk�2tpAq b dett�wq. We
denote it by Sk,wpΣppsq;Aq. We also define the space of A-coefficient p-adic quaternionic
forms of weight pk, wq and fo character ω or ω by.

Sk,wpΣppsq, ω;Aq
:�  

f P Sk,wpΣppsq;Aq
�� fpbzq � ϵcyc,F pzqrk�2wsωpzqfpbqfor z P A�

F

(
Sk,wpΣppsq,ω;Aq
� Sk,wpΣppsq, ω, ω1;Aq
:�  

f P Sk,wpΣppsq, ω;Aq
�� fpbuq � ω1pdetpuqqu�1fpbq for u P Σ1ppsq

(
Remark 2.1.4 (The relation to usual automorphic forms). The relation between

p-adic automorphic forms and automorphic forms over B� is given as follows: let k, w P
ZrIs such that k�2t ¥ 0 and 2w�k P Zt and let ω � pω, ω1q : Gs Ñ C� be a pair of group
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homomorphims. For any commutative ring A, we denote by ρAk,w the action of M2pAq on
Symk�2tpAq b det t�w. For an open compact subgroup U � pB�, we define

A u
k pΣppsq, ωq

:�
"
f : B�zB�pAF q ÝÑ Symk�2tpCq

���� fpbuq � fpbq for any u P Σppsq
fpzbq � ωpzqfpbq for any z P A�

F

*
.

A u
k pΣppsq,ωq :�

 
f P A u

k

�� fpbuq � ω1pdetpuqqfpbq for any u P Σ1ppsq
(
.

Using the identification ι : Cp � C, the following two morphism are inverses to each other:

Sk,wpΣppsq, ω;Cpq // A u
k pΣppsq, ωq

ϕ � //

P

ϕupbq :� ρCk,wpb�1
8 qι�ρCpk,wpbpqϕpbf q�| detpbq| rk�2ws

2
AF ,

P

A u
k pΣppsq, ωq // Sk,wpΣppsq, ω;Cpq

; f � //

P pfpbq :� ρ
Cp
k,wpb�1

p qι�1
�
fpbf q

�| detpbf q|� rk�2ws
2

AF,f ,
P

where we use the same notation ι to describe the identifcation Symk�2tpCpq � Symk�2tpCq
induced from ι : Cp � C. We note that for ϕ1, ϕ2 P Sk,wpΣppsq, ωq, we have

xϕu1pbq, ϕu2pbqyk�2t � ϵ
r2w�ks
cyc,F pNrdB{F pbqqxϕ1pbq, ϕ2pbqyk�2t.(2.1.4)

2.2. Hida theory for definite quaternion algebras for totally real fields I

We fix a finite flat Zp-algebra O � Cp containing σpOF q for all σ P I and a uniformizer
ϖ P O. We denote by K the fraction field. For a prime ideal p � p of F ,

Ip :� t σ P I | σ factor through Fp u .
For n P ZrIs and for any ideal a � p, we denote

Ia :�
§
p�a
Ip

na :�
¸
σPIa

nσσ,

na :�
¸
σRIa

nσσ.

In particular, we have n �
¸
p�p
np.

2.2.1. Normalized Hecke operators. We define the normalized Hecke operators:

Definition 2.2.1. Let A be am O-module. Let k, w P ZrIs satisfying k � 2t ¥ 0,
s ¡ 0 and x an element of OFp such that xtp � 0. For ϕ P Sk,wpΣppsq;Aq, we define the
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normalized Hecke operator T0pxq as follows:�
T0pxqϕ

�pbq :�¸
i

�
detpγiqx�1

�t�w
ϕpbγiqppX,Y qγiq,

where b P pB� and γi is determined from the following decomposition:

Σppsq
�
x 0
0 1



Σppsq �

§
i

γiΣppsq.

Note that
�
detpγiqx�1

�t�w P O� is regarded as a scalar morphsim in AutOpAq.
Lemma 2.2.2. Let ? � 0,1 or H. The right coset decomposition of (2.1.2) for U 1 �

Σ?ppsq, U � Σ0pps1q X Σ?ppsq with s1 ¥ s ¥ 0 and g �
�
x 0
0 1



p

with x P ps
1�sOFp such

that xtp � 0 is explicitly given as follows:

Σ?ppsq
�
x 0
0 1



p

Σ0pps1q X Σ?ppsq �
§

pcpqp�p

¹
p�p

γcpΣ0pps1q X Σ?ppsq,

where the index pcpqp�p runs over¹
sp¡0

OFp{xOFp �
¹
sp�0

OFp{xOFp

§ ¹
sp¡0

OFp{xOFp �
¹
sp�0

pOFp{xOFp .

We define γp for p � p with sp ¡ 0 by

γcp :�
�
xp cp
0 1



p

for cp P OFp{xOFp .

The γp for p � p such that sp � 0 are defined by

γcp :�
�
xp cp
0 1



p

for cp P
�
left hand side of OFp{xOFp

�
γcp :�

�
1 0
cp xp



p

for cp P
�
right hand side of pOFp{xOFp

�
.

The point is that γc are independet of s and ? � 0, 1.H.

Proof. Put U 1 � Σ?ppsq, U � Σ0pps1qXΣ?ppsq and g �
�
x 0
0 1



p

. We have bijections

U 1{U 1 X gUg�1 � U 1gU{U ; ru1s ÞÑ ru1gs.
On the other hand, we have

U 1{U 1 X gUg�1 � tγcuc .
Combining these explicit bijections, we have the formula. □

Theorem 2.2.3. Let A be an O-module and k, w P ZrIs such that k � 2t ¥ 0 and
s ¥ 0. Let ω � pω, ω1q : Gs Ñ AutOpAq be a pair of group homomorphisms. Then the
space Sk,wpΣppsq,ω;Aq is stable under the normalized Hecke operator T0pxq. Moreover,
For s1 ¥ s, if x P ps

1�sOFp such that xtp � 0, we have

T0pxq
�
Sk,wpΣpps1q,ω;Aq� � Sk,wpΣppsq,ω;Aq

Proof. It follows by direct computation and Lemma 2.2.2. □
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Let r be a positive integer such that s ¥ °
p�p rp ¡ 0. Let

ω : Cl�F pΣ0ppsqq ÝÑ pO{ϖrOq� � AutO
�
ϖ�rO{O�

,

ω1 : O�
Fp
ÝÑ pO{ϖrOq�.

For n P ZrIps, we define

χn : O�
Fp
ÝÑ pO{ϖrOq�;x ÞÑ xn mod ϖrO.

Theorem 2.2.4. For k, w P ZrIs such that k � 2t and 2w � k � 2pα � 1qt for some
α P Z. Fix an element x0 P psO�

Fp
. We define two homomorphisms between spaces of

automorphic forms of different weights

ι : Sk,w
�
Σppsq, ω, ω1;ϖ�rO{O� ÝÑ S2tp�kp,αtp�wp

�
Σppsq, ω, ω1χwp�αtp ;ϖ

�rO{O�
π : S2tp�kp,αtp�wp

�
Σppsq, ω, ω1χwp�αtp ;ϖ

�rO{O� ÝÑ Sk,w
�
Σppsq, ω, ω1;ϖ�rO{O�

as follows:

ιpϕqpbq :� xϕpbq, Xkp�2tp yp,

πpϕqpbq :�
¸

cPOFp{psOFp
ϕ

�
b

�
x0 c
0 1



p



� pcX � Y qk�2t.

The homomorphisms ι and π are well-defined. Moreover they satisfy the following formula:

ι � π � T0px0q,
π � ι � T0px0q.

Proof. Put

ω2 :� ω1χwp�αtp
For the first statement, note that since s ¥ °

p�p rp ¡ 0, consider two Σ1ppsq- homomor-
phisms

i : Symk�2tpϖ�rO{Oq b dett�w // Symkp�2tppϖ�rO{Oq b dett�w

f � //

P

fp

P

j : Symkp�2tppϖ�rO{Oq b dett�w // Symk�2tpϖ�rO{Oq b dett�w;

g � //

P

gXkp�2tp ,

P

where fp is an element of ZrtXσ, YσuσPIps given by substituting 0 for Xσ and 1 for Yσ

for σ P Ip and τx0 :�
�

0 1
x0 0



p

. It immediately follows that ι is well-defined since ι is

induced by i. For π, consider

W : S2tp�kp,w
�
Σppsq, ω, ω2;ϖ�rO{O�

/ / S2tp�kp,w
�
Σppsq;ω, ω|O�

Fp
pω2q�1;ϖ�rO{O�

ϕ

P

� // rb ÞÑ τx0ϕpbτx0qs,

P

We claim that �
Σppsq

�
0 1
1 0



p

Σppsq
�
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induces

Sk,w
�
Σppsq;ω, ω|O�

Fp
pω2q�1;ϖ�rO{O� ÝÑ Sk,w

�
Σppsq, ω, ω2;ϖ�rO{O�

In fact, since

Σppsq
�

0 1
1 0



p

Σppsq �
§

cPOFp{psOFp

�
c 1
1 0



p

Σppsq

for any u P Σ1ppsq, there exists c1 P OFp{psOFp and uc P Σ1ppsq such that

u

�
c 1
1 0



p

�
�
c1 1
1 0



p

�
0 1
1 0



p

uc

�
0 1
1 0



p

,�
Σppsq

�
0 1
1 0



p

Σppsq
�
ϕpbuq �

¸
c

ωpωω2�1q�1pdetpucqqu�1

�
c1 1
1 0



p

ϕ

�
b

�
c1 1
1 0



p



.

Since detpucq � detpuq, we have the claim. Clearly,

ϖ �
�
Σppsq

�
0 1
1 0



p

Σppsq
�
� j� �W,

where j� is a homomorphism between the space of automorphic forms induced by j. Thus

ϖ is well-defined. Since s ¥
¸
p�p

rp, the second assertion follows immediately from the

definition of T0px0q (Definition 2.2.1)
□

Lemma 2.2.5. Let k, w P ZrIs such that k � 2t ¥ 0. Suppose that 2w � k P Zt and s
is sufficiently large. Then the natural homomorphism

Sk,wpΣppsq;Oq bO ϖ
�rO{O ÝÑ Sk,wpΣppsq;ϖ�rO{Oq

is an isomorphism.

Proof. Let A � O or ϖ�rO{O. Since we have a finite decomposition

pB� �
m§
i�1

B�tiΣppsq,

we have an injection of O-modules

Sk,wpΣppsq;Aq ãÑ
mà
i�1

Symk�2tpOq; ϕ ÞÑ pϕptiqqmi�1.

The image of it is actually

mà
i�1

�
Symk�2tpAq b dett�w

�∆i ,
where ∆i :� t�1

i B�ti X Σppsq. Put
∆i :� ∆i{Σppsq XO�

F,�.
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Since 2w�k P Zt, ΣppsqXO�
F,� trivially acts on Symk�2tbdett

w

. The action of ∆i factors

through ∆i. By considering the group cohomology of ∆i, we have an exact sequence

0 ÝÑ Sk,wpΣppsq;Oq bO ϖ
�rO{O ÝÑ Sk,wpΣppsq;ϖ�rO{Oq

ÝÑ
mà
i�1

H1
�
∆i, Sym

k�2tpOq b dett�w
�
.

For any s and i,

ΣppsqA�
F,f{A�

F,f

£
t�1
i

pB�tiA�
F,f{A�

F,f

is a finite subset of pB�{A�
F,f . Thus for sufficiently large s, we have

∆i � ΣppsqA�
F {A�

F

£
t�1
i B�tiA�

F {A�
F � t1u

and we’ve proved the required result. □

2.2.2. Hida’s ordinary idempotents.

Proposition 2.2.6. Suppose that k�2t ¥ 0. Let A be a finite O-algebra and x P OFp

such that xtp � 0. We have the following assertions:

(1) the limit lim
nÑ8

T0pxqn! exists in EndO pSk,wpΣppsq;Aqq. We denote the limit by ex

call it Hida’s ordinary idempotent associated with x,
(2) the endomorphism ex is an idempotent, and
(3) the endomorphism ex depend only on the class of x in a quotient set

kFp{k�Fp
�
¹
p�p
t 0, 1 u.

Proof. For the statement (1) and (2), let H be the O-algebra generated by T0pxq in
EndO

�
Sk,wpΣppsq;Aq

�
. Since H is a finite over O, we have a decomposition

H � H1 � � � � �Hm,

where Hi is a finite local O-algebra. Let ϵi P H be am idempotent element corresponding

to Hi and describe T0pxq as
m̧

i�1

hiϵi. Since

lim
nÑ8

hn!i �
#
1 hi P H�

i

0 otherwise,

the limit of T0pxqn! exists and is clearly idempotent. For the assertion (3), since if x, y P OFp

such that xt, yt � 0, we have

T0pxyq � T0pxqT0pyq � T0pyqT0pxq.
Thus we have

exy � exey � eyex.

For z P O�
Fp
, we have ez � 1. Thus we have the assertions. □
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Definition 2.2.7. Let ω � pω, ω1q : Gs Ñ AutOpAq be pair of group homomorphisms.
Let A be a finite O-module, k, w P ZrIs such that k � 2t ¥ 0 and s ¡ 0. We define

Sord
k,w

�
Σppsq;A� :� epSk,w

�
Σppsq;A�,

Sord
k,w

�
Σppsq, ω;A� :� epSk,w

�
Σppsq, ω;A�,

Sord
k,w

�
Σppsq,ω;A

�
:� epSk,w

�
Σppsq,ω;A

�
,

where ep � lim
nÑ8

T0pxqn! is the Hida’s idempotent associated with x P pOFp such that

xtp � 0. Note that ep is independent of the choice of x by Proposition 2.2.6 (3).

In the ordinary part, we have the following important theorems:

Theorem 2.2.8. LetA be a finiteO-module and s1 ¥ s ¡ 0. be group homomorphisms.
Then for k, w P ZrIs such that k � 2t ¥ 0 and 2w � k P Zt we have an isomorphism

Sord
k,w

�
Σppsq;A� � Sord

k,w

�
Σpps1q;A�.

Proof. It follows immediately from Thorem 2.2.3. □
Theorem 2.2.9. Let ω � pω, ω1q : Gs Ñ pO{ϖrOq� be pair of group homomorphisms.

Let s ¥
¸
p�p

rp and let For k, w P ZrIs such that k� 2t ¥ 0 and 2w�k � 2pα� 1qt for some

α P Z, we have an isomorphism

Sord
k,w

�
Σppsq,ω;ϖ�rO{O� � Sord

2tp�kp,αtp�wp

�
Σppsq, ω, ω1χwp�αtp ;ϖ

�rOω{Oω

�
induced from ι defined in Theorem 2.2.4.

Proof. It follows immediately from Theorem 2.2.4 □

2.2.3. The control theorem.

Definition 2.2.10. We define

G :� lim
ÐÝ
s

Gs.

We have a G-action on p-adic automorphic forms as follows:

Definition 2.2.11. Let k, w P ZrIs such that k � 2t ¥ 0 and 2w � k P Zt. For s ¥ 0
and an O-module A, we define a continuous action of pz, uq P G on ϕ P Sk,w

�
Σ0ppsq;A

�
by

pz, uqϕpbq :� ϵ
r2wp�wps
cyc,F pzz�1

p qϕpbzuq
Definition 2.2.12. For any ring R, we define the complete group ring rΛR byrΛR :� RrrGss � lim

ÐÝ
s

RrGss.

Remark 2.2.13. Since G � Zmp � t torsion elements u, rΛO is a finite flat extension of

a ring isomorphic to OrrX1, . . . , Xmss. In particular, rΛO is a finite product of complete
noetherian local rings with finite residue fields.

Definition 2.2.14. We define the weight space

X :� HomcontipG,C�
p q.



20 2. A REVIEW OF I-ADIC FORMS ON DEFINITE QUATERNION ALGEBRAS

For any subring R � OCp , we have a natural bijection

X � HomR-conti

�rΛR,Cp

�
.

For P P X , we denote by PR the kernel of R-algebra homomorphism corresponding to P .

Let kp, wp P ZrIps such that 2wp � kp P 2pα � 1qtp. For kp, wp P ZrIps with 2wp �
wp � kp � kp P Zt, the homomorphism

Pkp,wp : G Q pz, aq ÞÑ ϵ
rkp�2wps
cyc,F pzpqawp�tp P O�

induces an element of X (in case Ip � H, we set α � 1). For any finite order character

ω � pω, ω1q : G ÝÑ C�
p ,

We denote Pkp,wppz, aqωpz, aq by Pkp,wp,ωpz, aq. We define spωq ¡ 0 by

spωq :� min
s¡0

 
s
�� ω factors through Gs

(
.

Definition 2.2.15. We define

X arith
kp,wp � X

by

X arith
kp,wp :�

$&%Pkp,wp,ω

������
kp, wp P ZrIps such that
k � 2t ¥ 0 and 2w � k P 2Zt pk :� kp � kp, w :� wp � wpq
ω : G ÝÑ C�

p : finite order character

,.- .

We call Pkp,wp,ω an arithmetic point of weight pkp�kp, wp�wpq and character ω � pω, ω1q.
Lemma 2.2.16. Let kp, wp P ZrIps with 2wp � kp P 2Ztp and let

F � X arith
kp,wp

be a subset defined by

F :�
!
P2tp,pr2wp�kps{2�1qtp,ω

���ω : G ÝÑ C�
p : finite order character

)
Then we have £

PPF
PR � t0u

in rΛR for any subring R � OCp .

Proof. Note that rΛR is regarded as the space of R-valued measures on G. By the
(p-adic) Stone-Weierstrass theorem [?], the Cp-algebra generated by F is dense in the space
of Cp-valued functions on G. Thus we have the lemma. □

Definition 2.2.17. For kp, wp P ZrIps with 2wp � kp P Ztp, we define

Vkp,wppΣqO :� lim
ÝÑ
r

lim
ÝÑ
s

S2tp�kp,tp�wp

�
Σppsq, ϖ�rO{O�

,

V ord
kp,wppΣqO :� lim

ÝÑ
r

lim
ÝÑ
s

Sord
2tp�kp,tp�wp

�
Σppsq, ϖ�rO{O�

.

If Ip � H, we simply denote them by V pΣqO and V ordpΣqO, respectively.
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Theorem 2.2.18. Let kp, wp P ZrIps such that 2wp� kp � 2pα� 1qtp for some α P Z
Let Pkp,wp,ω P X arith

kp,wp be an arithmetic point. Then we have�
V ord
kp,wppΣqO bO Oω

�rPkp,wp,ωs �
�
Sord
kp�kp,wp�wp

�
Σppspωqq;Oω

�bO K{O
	
rωs,

where Oω � Cp is an O-algebra generated by the image of ω.

Proof. Put ω :� pω, ω1q. Fix r ¡ 0 and put k :� kp � kp, w :� wp � wp. Let
s ¥ maxtspωq, ru be sufficiently large. Note that

Sord
2tp�kp,αtp�wp

�
Σppsq, ω, ω1χwp�αtp ;ϖ

�rOω{Oω

�
� Sord

2tp�kp,tp�wp

�
Σppsq;ϖ�rOω{Oω

�rPkp,wp,ωs.
By Theorem 2.2.9, we have

Sord
2tp�kp,αtp�wp

�
Σppsq, ω, ω1χwp�αtp ;ϖ

�rOω{Oω

� � Sord
k,w

�
Σppsq,ω;ϖ�rOω{Oω

�
.

For large s, by Lemma 2.2.5, we have

Sord
k,w

�
Σppsq,ω;ϖ�rOω{Oω

� � �
Sord
k,w

�
Σppsq;Oω

�bOω ϖ
�rOω{Oω

� rωs.
On the other hand, by applying Theorem 2.2.8, we have

Sord
k,w

�
Σppsq;Oω

� � Sord
k,w

�
Σppspωqq;Oω

�
.

Thus by taking limit along s and r, we have the theorem. □
The space V ordpΣqO has a continuous action of G and is regarded as a rΛ-module.

Definition 2.2.19. For kp, wp P ZrIps with 2wp � kp P 2Ztp, we define the followingrΛO-module:

Vkp,wppΣqO :� Homcont

�
Vkp,wppΣqO, Qp{Zp

�
Skp,wppΣ; rΛOq :� HomrΛO

�
Vkp,wppΣqO, rΛO bO D�1

K{Qp

	
V ord
kp,wppΣqO :� Homcont

�
V ord
kp,wppΣ; rΛOq, Qp{Zp

	
Sord
kp,wppΣ; rΛOq :� HomrΛO

�
V ord
kp,wppΣ; rΛOq, rΛO bO D�1

K{Qp

	
If Ip � H, we simply denote them by V pΣ; rΛOq, SpΣ; rΛOq, V ordpΣ; rΛOq and SordpΣ; rΛOq,
respectively.

Theorem 2.2.20. Let kp, wp P ZrIps with kp � 2tp ¥ 0 and 2wp � kp � 2pα � 1qtp.
Assume that for any finite order character ω : G ÝÑ C�

p ,

S2tp�kp,αtp�wp

�
Σppspωqq,ω;Oω

�bO K{O is divisivle.(2.2.1)

Let rΛO �
¹
j

Λj

be the finite decomposition such that Λj are local rings and put uj P rΛO as the idempotent

corresponding to Λj. Then the space ujS
ord
kp,wppΣ; rΛOq is free of finite rank over Λj. For

any P � Pkp,wp,ω P X arith
kp,wp , we have an isomorphism

Sord
kp,wp

�
Σ; rΛO

�L
POS

ord
kp,wp

�
Σ; rΛO

� � Sord
kp�kp,wp�wp

�
Σppspωqq,ω;Oω

�
,

where Oω � Cp is the algebra generated by the image of ω.
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Proof. For the first assertion, it suffices to prove that ujV
ord
kp,wppΣq is free of finite rank

over Λj. By Lemma 2.2.16, there exists an arithmetic point Q :� P2t,αtp,η
on G such that

QO P SpecpΛjq.
The dual of Theorem 2.2.18 is described as

V ord
kp,wppΣqO

L
QOV

ord
kp,wppΣqO � V ord

kp,wppΣqOη
L
QOηV

ord
kp,wppΣqOη

�
Sord
2tp�kp,pα�1qtp�wp

�
Σppspηqq;Oη

�_
xηpgq � gygPGSord

2tp�kp,pα�1qtp�wp

�
Σppspηqq;Oη

�_ ,
where p�q_ means HomOp�,D�1

K{Oq. Here, DK{Qp is the different ideal of K over Qp and the

trace TrK{Qp induces a natural isomorphism

D�1
K{Qp � HomcontpK{O,Qp{Zpq.(2.2.2)

Thus we conclude that, for any j, ujV
ord
kp,wppΣqO is finite over Λj. Let κj be the residue field

of Λj and let

m :� dimκjV
ord
kp,wppΣqO bΛj κj.

Then for any finite character ρ : G ÝÑ C�
p , we put

RO :� pP2tp,αtp,ρ
qO P SpecpΛjq.

By the assumption (2.2.1), the module

V ord
kp,wppΣqO

L
ROV

ord
kp,wppΣqO

is torsion free and we have

m � rankOV
ord
kp,wppΣqO

L
ROV

ord
kp,wppΣqO.

Take a surjection
Ψ: Λmj ÝÑ ujV

ord
kp,wppΣqO,

Since for any ρ, we have proved

KerpΨq � ROΛ
m
j ,

by Lemma 2.2.16, we have
KerpΨq � t0u.

It is the required result. For the second assertion, suppose P � Pkp,wp,ω P SpecpΛjq, the
dual of Theorem 2.2.18 for P is described as follows:

ujV
ord
kp,wppΣqO

L
POujV

ord
kp,wppΣqO � Sord

kp�kp,wp�wp

�
Σppspωqq,ω;Oω

�_
Since ujV

ord
kp,wppΣqO is free of finite rank over Λi, we have

Sord
kp,wppΣ; rΛOq

L
POS

ord
kp,wppΣ; rΛOq

� HomrΛO

�
V ord
kp,wppΣqO

L
POV

ord
kp,wppΣqO,ΛO{PO bD�1

K{Qp



� HomOω

�
Sord
2tp�kp,pα�1qtp�wp

�
Σppspωqq;Oω

�_
xωpgq � gygPGSord

2tp�kp,pα�1qtp�wp

�
Σppspωqq;Oω

�_ ,D�1
K{Qp

�
� Sord

kp�kp,wp�wp

�
Σppspωqq,ω;Oω

�
□
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Remark 2.2.21. Let pB� �
m§
i�1

B�tiΣ

be a decomposition. Then the assumption (2.2.1) satisfies if each

∆i :� ΣX t�1
i Bti

is torsin free modulo center, namely ∆i � O�
F . and p is odd. In fact, for Ptp,αtp,ψ P X arith

kp,wp ,
the module

S2tp�kp,αtp�wp

�
Σppspψqq;Oω

�bO K{Orωs
is isomorphic to

mà
i�1

�
Sym2tp�kp,αtp�wppOωq bO pK{Oq b detpα�1qtp�tp�wp�kpω


O�
F

.

and is divisible since p is odd and ψpO�
F,� XGq � 1. If we were to define the G as

Gs :� ClF pΣppsqq � pOFp{psOFpq�,
G :� lim

ÐÝ
s

Gs,

where ClF pΣppsqq :� A�
F,f{F�AF,f X Σppsq, we could prove a weaker version of Theo-

rem 2.2.20 in the same manner. (We have to modify the definition of arithmetic points
by changing the condition “k � 2w P Zt” to “k � 2w P 2Zt if Ip � H.”) Under this
modification, we prove the control theorem even if p is even.

Definition 2.2.22. Let I be a rΛO-algebra. We define the space of I-adic forms by

Sord
kp,wppΣ; Iq :� HomrΛO

�
V ord
kp,wppΣqO, I

�
.

Remark 2.2.23. Under the assumption of Theorem 2.2.20, we have

Sord
kp,wppΣ; Iq � Sord

kp,wppΣ; rΛOq brΛO
I.

2.2.4. A reformulation of SpΣ; Iq. In this section, we assume that every prime above
p divides p. It means that all of the conditions of upper p (for example, 2wp� kp P 2Ztp)
are empty. We omit to write notations involved with upper p such a kp, wp, tp and we
simply write k, w, t, . . . instead of kp, wp, tp, . . . . We fix a finite product of noetherian

complete local rΛO-algebras with finite residue fields and denote it by I. Let

Ps :� Ker
�rΛO ÝÑ OrrGsss

	
We define

PicOXpΣppsqq :�
à

xPXpΣppsqq
Ox

be a free abelian group generated by elements of XpΣppsqq. Since we have a natural perfect
pairing

PicOXpΣppsqq � S2t,t

�
Σppsq;K{O� ÝÑ K{O; px, ϕq ÞÑ ϕpxq,

the following isomorphism holds:

V pΣqO � lim
ÐÝ
s

PicOXpΣppsqq.



24 2. A REVIEW OF I-ADIC FORMS ON DEFINITE QUATERNION ALGEBRAS

Therefore, for a rΛO-algebra I, we have

SpΣ; Iq � HomrΛO

�
lim
ÐÝ
s

PicOXpΣppsqq, I
�
.

Theorem 2.2.24. We have isomorphisms

SpΣ, Iq � lim
ÐÝ
s

HomOrGss
�
PicOXpΣppsqq, I{PsI

�
� C0pXpΣpNpOFpqq; IqG

:�
"

f : XpΣpNpOFpqq ÝÑ I
continuous

���� t � fpxtq � fpxq
for x P XpΣpNpOFpqq, t P G

*
where the topology on I is defined by giving the discrete topology to each I{PsI.

Proof. For the first isomorphism,

SpΣ; Iq � HomrΛO

�
lim
ÐÝ
s1

PicOXpΣpps1qq, I
�

� HomrΛO

�
lim
ÐÝ
s1

PicOXpΣpps1qq, limÐÝ
s

I{PsI
�

� lim
ÐÝ
s

HomOrGss
�
lim
ÐÝ
s1

PicOXpΣpps1qq, I{PsI
�

� lim
ÐÝ
s

HomOrGss
�
PicOXpΣppsqq, I{PsI

�
.

For the second isomorphism, since

HomOrGss
�
PicO Σppsq, I{PsI

�
�
"
f : XpΣppsqq ÝÑ I{PsI

���� fpxtq � t�1fpxq
for x P XpΣppsqq, t P Gs

*
,

we prove that the canonical inclusion

lim
ÐÝ
s

"
fs : XpΣppsqq ÝÑ I{PsI

���� fspxtq � t�1fspxq for x P XpΣppsqq, t P Gs

*
ãÑ

"
f : XpΣpNpOFpqq ÝÑ I
continuous

���� fpxtq � t�1fpxq
for x P XpΣpNpOFpqq, t P G

*
.

is surjective. In fact, let f be an element of right hand side. Consider the right action of
Gs on XpΣppsqq and describe the right coset decomposition as

XpΣppsqq � x1Gs \ � � � \ xrGs.

We choose a lift yi P XpΣpNpOFpqq of xi and define for t P Gs

fs : XpΣppsqq ÝÑ OrGss; xit ÞÑ t�1fpyiq mod Ps.

Clearly, fs commutes with the action of Gs. We claim that, for s1 ¡ s, there exists a
Gs1-equivariant function fs1 : XpΣpps1qq ÝÑ I{Ps1I such that

XpΣpps1qq

��

fs1 // I{Ps1I

��
XpΣppsqq fs // I{PsI
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is commutative. Let rxi P XpΣpps1qq be a lift of xi. We also have

XpΣpps1qq � rx1Gs1 \ � � � \ rxrGs1 .

We define f 1s by
fs1prxit1q � t1�1

fpyiq
for t1 P Gs1 . Thus we have a projective system pfsq of the left hand side. Since f is a
continuous function, we conclude that lim

ÐÝ
fs � f . □

Let x P OFp such that xt � 0. For any function f P C0
�
XpΣpNpOFpqq; I

�
, we define

T0pxqf by

T0pxqfpbq :�
¸

cPOFp{xOFp
f

�
b

�
x c
0 1




.

If f P SpΣ; Iq, T0pxqf is also in SpΣ; Iq. Moreover, T0pxqn!f converges for any f and induces
an operator ex on SpΣ; Iq, which is in fact the limit of Hida’s idempotents ex. In particular,
f P SordpΣ; Iq if and only if epf � f , where ep :� lim

n
T0ppqn!.

Remark 2.2.25. Let P � Pk,w,ω P X arith. The inverse of the isomorphism of Theorem
2.2.20

Sord
�
Σ; rΛOω

�{POωS
ord

�
Σ; rΛOω

� � Sord
k,w

�
Σppspωqq,ω;Oω

�
is described as follows: let ϕ P Sord

k,w

�
Σppspψqq;Oψ

�rψs. We define fϕ P Sord
�
Σ; rΛO{POrΛO

�
by

fϕpbq :� xXk�2t, ϕpbq yk�2t P Oψ � rΛO{POrΛO

for b P XpΣpNpq. As in Remark 2.2.23,

Sord
�
Σ; rΛO{POrΛO

� � Sord
�
Σ; rΛO

�brΛO
rΛO{PO.

Thus the required inverse is the following correspondence

ϕ ÞÑ fϕ mod POψS
ord

�
Σ; rΛOψ

�
.

2.3. Hida theory for definite quaternion algebras for totally real fields II

In this section, we treat general p. We fix a finite product of noetherian complete local
ZprrGss-algebras with finite residue fields and denote it by I.

2.3.1. The generality of measure valued form. Let T pOFpq act I via the following
homomorphism:

T pOFpq Q pt1, t2q ÞÑ pt2�1
, t�1

1 t2q P G,

where t2 is the image of t2 in Cl�F pΣppsqq. We fix a uniformizer ϖp of OFp for each p � p
and denote pϖpqp�p by ϖp. We define a subgroup

Π :�
¹
p�p

�
ϖZ

p 0
0 1



� GL2pFpq.

Definition 2.3.1. We define

M :� GL2pOFpq{tNpOFpq

�

M :� GL2pFpq{Π tNpFpq



26 2. A REVIEW OF I-ADIC FORMS ON DEFINITE QUATERNION ALGEBRAS

Then we have the following fibration

T pOFpq ÝÑM ÝÑ P1pFpq.
We write p � p1 � � � pm and define

S � t p1, . . . , pm u.
As a set, we consider P1pFpq as

�
Fp�Fpzt p0, 0q u

�{F�
p and we take open coverings tUAuA�S

and tU�
AuA�S of P1pFpq as follows: for any subset A � S, we define anate system of P1pFpq

by

φA : UA :�±
pPAOFp �

±
pPSzAOFp

� //
±

pPA
�
OFp � t1u��±

pPSzA
�t1u �OFp

�
,

U�
A :�±

pPAOFp �
±

pPSzA pOFp

� //
±

pPA
�
OFp � t1u��±

pPSzA
�t1u � pOFp

�
Let µ : M ÝÑ P1pFpq be the projection. Then M is a locally trivial T pOFpq-bundle
described by

UA � T pOFpq � µ�1
�
UA

�
pz, rt1, t2sq ÞÑ

� �
1 zp
0 1



pPA

�
0 1
1 zp



pPSzA

�
t1 0
0 t2


 �
,

φ�1
A pφApUAq X φBpUBqq � T pOFpq � φ�1

B pφApUAq X φBpUBqq � T pOFpq
pz, tq ÞÑ � pzpqpPSzpA△Bqpz�1

p qpPA△B, p�z�1
p , zpqpPA△Bt

�
,

where A,B � S and A△B :� AYBzAXB. From now on, we use these local coordinates
for local computations. We define an I-bundle E over P1pFpq by

E :�M�T pOFp q I.

(The topology on P1pFpq is the usual totally disconnected topology.) The I-bundle E is
also described as follows: let

ν : E ÝÑ P1pFpq
be the structure morphism. Then E is also defined as

ν�1
�
UA

�
:� UA � I

iAB : ν
�1pUA X UBq � ν�1pUB X UAq;

pz, λq ÞÑ � pzpqpPSzpA△Bqpz�1
p qpPA△B, pz�1

p ,�z2pqpPA△Bλ
�
.

Note that Γ
�
P1pFpq,E

�
is described by the following exact sequence:

0 // ΓpP1pFpq,E q //
±

A�S C0
c pUA; Iq //

±
A,B�S C0

c pUA X UB; Iq

pfAqA�S
� //

P �
fA|UAXUBpzq � piABq�fB|UAXUB

�
A,B�S .

P

LetM�T pOFp qI be a T pFpq�T pOFp qI-bundle. Then GL2pFpq acts on Γ
�
P1pFpq,M�T pOFp qI

�
from the right naturally. Now Γ

�
P1pOFp

�
,E q has an action of M2pOFpq X GL2pFpq as in

Definition 2.3.2 below.
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Definition 2.3.2. We regard Γ
�
P1pFpq,E

�
as a subspace of Γ

�
P1pFpq,M �T pOFp q I

�
.

For u P M2pOFpq XGL2pFpq and f P Γ
�
P1pFpq,E

�
, we define

pfuqpzq :� pu�1 � 1qfpuzq1fpuzqPpu�1qE pzq.
Since

M2pOFpq XGL2pFpq �
"
u P GL2pFpq

���� pu�1 � 1qpMzMq �MzM
*
,

the associativity of the action of Definition 2.3.2 follows.

Proposition 2.3.3. Let f P Γ
�
P1pFpq,E

�
. The action of u P M2pOFpq X GL2pFpq is

described as follows: for u �
�
a b
c d



P Σ0ppq, we have

pfuq|U�
A
pzq �

�
pczp � dq�1,

pczp � dq2
detpuq



pPA

�
pbzp � aq�1,

pbzp � aq2
detpuq



pPSzA

� f |U�
A

���
azp � b

czp � d



pPA

;

�
dzp � c

bzp � a



pPSzA

�

.

For u �
�

0 1
1 0



, we have

pfuq|UApzq � f |USzApzq.
For u �

�
ϖp 0
0 1



, we have

pfuq|UApzq �
#
f |U�

A

�rpϖpzpqpPA; pϖ�1
p zpqpPSzAs

�
1U�

A
pzq if p P A

0 if p R A.
Let ΓpUS ;E q and ΓpU�

H;E q be the sets of sections of E Ñ P1 on US and U�
H, respectively.

We regard them as sub I-modules of ΓpP1pFpq,E q by zero-extension. Then both space are
stable under the action of ∆ppq. Let JpIq be the Jacobson radical of I. For any open subset
U � P1pFpq, we define a system of neighborhoods of 0 of ΓpU,E q by tΓpU,E bIJpIqnq um¥0

and regard ΓpU,E q as a continuous I-module.

Remark 2.3.4. We regard ΓpP1,E q as a C0pP1; Iq-module. Here C0pP1; Iq has a natural
right action of GL2pFpq induced from the left action on P1. Let f P ΓpP1,E q and ξ P
C0pP1; Iq. For u P M2pOFpq XGL2pFpq, we have

pξfqu � ξu � fu.
Remark 2.3.5. For open subset U � P1pFpq, we have

ΓpU,E bI JpIqnq � JpIqnΓpU,E q.
In fact, since I is noetherian, JpIqn is finitely generated. Let JpIqn � pa1, . . . , amq. Then
we have a surjection

Im pa1,...,amqÝÑ JpIqn ÝÑ 0.

In general, for an I-module M , since E bI M is flasque, we have H1pU, E bI Mq � 0. Thus
we have an exact sequence

ΓpU,E qm pa1,...,amqÝÑ ΓpU,E b JpIqnq ÝÑ 0,

namely, we have ΓpU,E bI JpIqnq � JpIqnΓpU,E q.
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Definition 2.3.6. We define

DpIq :� HomI-cont

�
Γ
�
P1pFpq,E

�
, I



,

DpOFp , Iq :� HomI-cont

�
Γ
�
US ,E

�
, I



.

The space DpIq (resp. DpUS , I) has a natural left action of M2pOFpq X GL2pFpq (resp.
∆ppq). For µ P DpIq, U � P1pFpq and f P ΓpP1,E q , we usually denote µpf1Uq by»

U

f dµ.

Thus we have the spaces for big quaternionic automorphic forms:

Definition 2.3.7. For kp, wp P ZrIps with kp � 2tp ¥ 0, we define

Dkp,wppIq :� DpIq bZp Sym
kp�2tppOq b det t

p�wp

,

Dkp,wppOFp , Iq :� DpOFp ; Iq bZp Sym
kp�2tppOq b det t

p�wp

.

We consider Dkp,wp (resp. Dkp,wppOFp , I)) as a left GL2pOFpq (resp. Σ0ppq)-module by the
usual action.

We define the Hecke operators as follows:

Definition 2.3.8. Let Φ P SpΣ,Dkp,wppIqq (resp. Φ P SpΣ,Dkp,wppOFp , Iqq). For g P
M2pOFpq XGL2pFpq (resp. g P ∆ppq), we define

UpgqΦpbq :�
¸
i

giΦpbgiq,

where gi are defined by the decomposition

ΣgΣ �
§
i

giΣ

�
resp. Σ0ppqgΣ0ppq �

§
i

giΣ0ppq


.

In particular, when g �
�
πsp 0
0 1



for the πp fixed in the beginning of the section, we

denote Upgq by T0pπspq and call it the normalized Hecke operator.

For f P ΓpUS ,E q, we define rf P ΓpP1pFpq,E q by

rf |UA �
#
f if A � S
0 if A � S.

The correspondence f ÞÑ rf is the section of the restriction ΓpP1,E q ÝÑ ΓpUS ,E q. It
induces a Σ0ppq-homomorphism

Dkp,wppIq ÝÑ Dkp,wppUS , Iq.(2.3.1)

Theorem 2.3.9. The natural homomorphism induced from (2.3.1)

r : S
�
Σ,Dkp,wppIq� ÝÑ S

�
Σ0ppq,Dkp,wppUS , Iq

�
is an isormopshim and commutes with T0pπspq for s ¥ 0.
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Proof. We construct the inverse of r. Let Φ P S�Σ0ppq,Dkp,wppUS , Iq
�
. Let

Σp �
§
i

γiΣ0ppqp

be a decomposition. For ϕ P Γ
�
P1pFpq,E

�
, we define rΦ by»

P1

ϕ drΦpbq �¸
i

»
US

ϕ|γ�1
i pzq dΦpbγiqpzq.

Then rΦ P S�Σ,Dkp,wppIq� and Φ ÞÑ rΦ is the inverse to r. For the commutativity with
T0pxq, it follows from Lemma 2.2.2. □

We also define the ordinary part of S
�
Σ,DpIq� by

Definition 2.3.10. Let kp, wp P ZrIps with kp � 2tp ¥ 0. Let x P pOFp with xt � 0.

We define the ordinary part of S
�
Σ,Dkp,wppIq� by

Sord
�
Σ,Dkp,wppIq� � 8£

n�1

T0pϖpqnS
�
Σ,Dkp,wppIq�.

Note that the ordinary part is independent of the choice of x.

Theorem 2.3.11. Let kp, wp P ZrIps with kp � 2tp ¥ 0. Let Φ P Sord
�
Σ,Dkp,wppIq�.

If »
rOFp�t1u s

1 dΦ � 0,

we have

Φ � 0.

Proof. For s PÀp�p Z¡0p, let

Ps � Ker

�rΛO ÝÑ OrGss


.

Since

S
�
Σ,Dkp,wppIq� � lim

ÐÝ
s

S
�
Σ,Dkp,wppI{PsIq

�
We can replace I with I{PsI. Thus we fix s and assume that

PsI � 0.

In addition, by Theorem 2.3.9, it suffices to prove that rpΦq � 0. For t P À
p�p Z¡0p, we

put

Lt :�
¸

γP∆ppq
I1rptOF�t1uspγzq � ΓpUS ,E q.

Since PsI=0, Lt is stable under the action of ∆ppsq (see 2.3.3), where

∆ppsq :�
" �

OFp OFp

psOFp O�
Fp


 *
.

We define

Mt :� S

�
Σ0ppsq, HomIpLt, Iqq bZp Sym

kp�2tppOq b det t
p�wp
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and T0pϖpq on Ms in the similar manner. By Lemma 2.2.2, the natural homomorphism

ct : S
�
Σ0ppq,Dkp,wppOFp ; Iq

� ÝÑMt

satisfies
ct � T0pϖpq � T0pϖpq � ct.

Moreover, since
�
t Lt is dense in Γ

�
US ,E

�
,£

t

Kerpctq � 0.

The assumption for Φ means Φ P Kerpc0q. Let x P psOFp with xt � 0. For any σi of the
decomposition

Σ0ppsq
�
x 0
0 1



Σ0ppsq �

§
i

σiΣ0ppsq,

we have
σiLs � L0.

Thus T0pxqcspΦq � 0. Since Lt is free of finite rank over I, the limit

ex :� lim
n
T0pϖpqn!

exists at Mt and T0pxq acts on cs
�
Sord

�
Σ,Dkp,wppIq�� as an isomorphism. Thus we have

ctpΦq � 0 and conclude that Φ P �tKerpctq � t0u, namely, Φ � 0. □
Remark 2.3.12. By the proof above, Hida’s idempotent

ep : S
�
Σ,Dkp,wppIq� ÝÑ Sord

�
Σ,Dkp,wppIq�

exists as a limit of a normalized Hecke operator limn T0pxqm!.

Corollary 2.3.13. Let kp, wp P ZrIps with kp � 2tp ¥ 0. On Sord
�
Σ,Dkp,wppIq�, for

any x P pOFp with xt � 0, T0pxq acts as an isomorphism.

Proof. It suffice to prove T0pxq acts as an injective homomorphism. Let

Φ P Sord
�
Σ,Dkp,wppIq�

and suppose
T0pϖpqΦ � 0.

Let x P pOFp with xt � 0. Since

0 �
»
rpOFp�t1u s

1 dT0pxqΦpbq �
»
rOFp�t1u s

1 dΦ

�
b

�
x 0
0 1




,

we have Φ � 0 by Theorem 2.3.11. □
On the ordinary part, we have good expressions for integrations:

Theorem 2.3.14. Let kp, wp P ZrIps with kp � 2tp ¥ 0. Let Φ P Sord
�
Σ,Dkp,wppIq�.

For f P Γ
�
P1pFpq;E

�
, we have»

r t1u�ϖspOFp s
fpr1; zsq dΦpbqpzq � p1,�1q

»
rOFp�t1u s

fpτ�ϖsprz; 1sq dT0pϖs
pq�1Φpbτ�ϖspqpzq,»

rϖspOFp�t1u s
fprz; 1sq dΦpbqpzq �

»
rOFp�t1u s

fprϖs
pz; 1sq dT0pϖs

pq�1Φpbqpzq,
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where τ�ϖsp :�
�

0 1
ϖs

p 0



.

Proof. We only need to prove the first formula. It suffice to prove that»
r t1u�ϖspOFp s

ϕpr1; zsq dT0pxqΦpbqpzq � p1,�1q
»
rOFp�t1u s

ϕpτ�ϖsprz; 1sq dΦpbτ�ϖspqpzq.

It follows from Lemma 2.2.2 and Proposition 2.3.3. □

In the end of this section, we define the specialization map. For r ¥ 0, we define

X pIq :� HomO-contipI,Cpq,
X arith

kp,wppIq :�
 
P P X pIq ��P |G P X arith

kp,wp

(
X arith

kp,wppIq¥r :�
 
P P X arith

kp,wppIq
��P |G � Pkp,wp,ω with kp ¥ rtp

(
,

where, we denote by P |G the composition GÑ I� PÑ C�. We define

Definition 2.3.15. Let I be a topological rΛO-algebra. Let Φ P S�Σ;Dkp,wppIq� and

P P X arith
kp,wppIq with P |G � Pkp,wp,ω (ω � pω, ω1q). We define

SpP pΦq :� P

�»
rOFp�t1u s

pzX � Y qkp�2tp dΦ



P Sk,w

�
Σppspωqq, ω, ω1;Oω

�
.

For s ¥ spωq, we define

xSppsqP pΦq � P

�»
r t1u�psOFp s

pX � zY qkp�2tp dΦ



P Sk,w

�
Σppsq, ω, ωω1�1;Oω

�
.

Proposition 2.3.16. For the specialization map , we have

SpP �T0pϖs
pq � T0pϖs

pq � SpP .
Proof. It follows by direct computations. □

Proposition 2.3.17. Let Φ P SpΣ;Dkp,wppIqq and P P X arith
kp,wppIq with P |G � Pkp,wp,ω.

For a polynomial hpT q P Cpr tTσuσPIp s in p#Ipq-variables such that the degree of zσ is
smaller than or equal to kσ, we have

P

�»
rOFp�t1u s

hppzσqσPIpq dΦ


� @

hp�Y {XqXkp�2tp , SpP pΦq
D
k�2t

.

For s ¥ spψq, we have

P

�»
r t1u�psOFp s

hppzσqσPIpq dΦ


�
AxSppsqP pΦq, hp�X{Y qY kp�2tp

E
k�2t

.

In the ordinary part, we have the following propositions:

Proposition 2.3.18. Let Φ P Sord
�
Σ;Dkp,wppIq� and P P X arith

kp,wppIq with P |G �
Pkp,wp,ω. We have

xSppsqP pΦqpbq � pϖs
pqwp�tpτ�ϖsp SpP

�
T0pϖs

pq�1Φpbτ�ϖspq
�
,
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where τ�ϖsp :�
�

0 1
�ϖs

p 0



. In particular, we have

P

�»
rt1u�psOFp s

hpzq dΦpbq


� x τ�ϖsp SpP pT0pϖs

pq�1Φpbτ�ϖspq, hp�X{Y qY kp�2tp yk�2t.

Proof. It follows immediately from Theorem 2.3.14 □

Proposition 2.3.19. We assume that there exists a subset Y � X arith
kp,wppIq satisfying£

PPY
KerpP q � 0,(2.3.2)

Then for any z P AF,f and Φ P SordpΣ;Dkp,wppIqq, we have

Φpbzq � pz, 1qΦpbq.(2.3.3)

Moreover, for any r ¥ 0, if £
PPY XX arith

kp,wp pIq¥r
KerpP q � 0,(2.3.4)

The formula (2.3.3) holds for not necessarily ordinary Φ P SpΣ;Dkp,wppIqq.

Proof. For any b P pB, P P Y , we have

SpP pΦqpbzq � SpP ppz, 1qΦqpbq � 0.

Thus by Theorem 2.3.11, we have the first assertion. The second assertion follows from
the density of polynomials by p-adic Weirestrass theorem ([?]). □

2.4. I-adic Petersson inner product for measure valued forms

In this subsection, we fix kp, wp P ZrIps with kp � 2wp ¥ 0, 2wp � kp P Ztp, and a
finite product of noetherian complete local ZprrGss-algebras with finite residue fields and
denote it by I. We define

G :� B�{ZpB�q,
G8 :� GpF bQ Rq,
ΓbH :� b�1GpF qbXHG8 pH � GpAF,f q : open compact subgroupq,

where ZpB�q is the center of B�. Throughout this section, we make the following assump-
tion:

Assumption 2.4.1. For any Φ P SpΣ,Dkp,wppIqq and z P A�
F,f ,

Φpbzq � pz, 1qΦpbq

for all b P pB� (See Proposition 2.3.19).
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2.4.1. I-adic Petersson inner products.

Definition 2.4.2. We define a GL2pOFpq-invariant open compact subset of P1pFpq �
P1pFpq by

V :�
"�px; yq, pz;wq� P P1pOFpq2

���� xw � yz P O�
Fp

*
.

Let

j : O�
Fp
ÝÑ G; x ÞÑ px�1, x2q.

Definition 2.4.3. We define

D P Γ
�
P1pFpq2, E bI E

�
by the zero extension of an element of ΓpV,E bI E q defined by

D|VXUA�USzApz, wq :� j
�p1� zpwpqpPA � pzpwp � 1qpPSzA

�
,

where A � S. We note that tV X UA � USzAuA�S is an open covering of V .

Proposition 2.4.4. Let GL2pOFpq act on Γ
�
P1pFpq2,E bI E

�
diagonally. For any

u P GL2pOFpq, we have

D|u � �
detpuq�1, 1

�
D.

Remark 2.4.5. The sectionD satisfying the formula in Proposition 2.4.4 is determined
unique up to scalar. In fact, suppose D1 satisfies the same formula as D. Then we have

D1�p1; 0q, p0; 1q�D�pa; cq, pb; dq� � pad� bc, 1q
�
a b
c d



D1�p1; 0q, p0; 1q�

� D1�pa; cq, pb; dq�.
Thus

D1 � D1�p1; 0q, p0; 1q� �D.
Definition 2.4.6. Let Φ,Ψ P S�Σ,Dkp,wppIq�. For open compact subgroups H1, H2 �

Σp and z P P1pFpq � P1pFpq, we define

βz
H1,H2

pΦ,Ψqpbq :� x �, � ykp�2tp �
�»

H1�H2z

Dpz, wq dΦpbqpzq bΨpbqpwq



P I.

Here, we denote by x �, � ykp�2tp the homomorphism induced from the pairing

Symkp�2tppIq � Symkp�2tppIq ÝÑ I

of (2.1.3).

The function βz
H1,H2

pΦ,Ψq satisfies the following formula.

Proposition 2.4.7. Let z P P1pFpq and H1, H2 � Σp open compact subgroups. Let
Φ,Ψ P SpΣ,Dkp,wppIqq. For any u P Σp such that upH1 �H2zq � H1 �H2z, we have

βz
H1,H2

pΦ,Ψqpbuq � �
detpupq, 1

�
detpupq�2wp�kpβz

H1,H2
pΦ,Ψqpbq.

Proof. We have the formula by simple computation using Proposition 2.3.3. □
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Definition 2.4.8 (I-adic Petersson inner product). For Φ,Ψ P SpΣ, η,Dkp,wppIqq,
we define

BIpΦ,Ψq :�
¸

bPGpF qzGpAF q{Σ

1

#ΓbΣ

�
NrdB{F pb�1q, 1� βz

Σ�ΣpΦ,Ψqpbq

P I
�"

1

#ΓbΣ

*
b

�
,

where z P P1pFpq � P1pFpq and BI is independent of the choice of z.

We have the following key lemma:

Lemma 2.4.9. Let z � pz1, z2q P P1pFpq2. Then, for Φ,Ψ P S�Σ,Dkp,wppIq�, the sum¸
bPB�A�F z pB{Σ0ppsq

1

#ΓbΣ0ppsq

�
NrdB{F pb�1q, 1� βz

Σ0ppsqp,Σp
pΦ,Ψqpbq

is independent of s. Similarly, the sum¸
bPB�A�F z pB{Σ0ppsq

1

#ΓbΣ0ppsq

�
NrdB{F pb�1q, 1� βz

Σp,Σ0ppsqppΦ,Ψqpbq,

is independent of s.

Proof. Hs :� Σ0ppsq. We only prove the first formula. The second formula can be
proved in the same way. Denote the first sum by IHs . We prove, for any s,

IΣ � IHs .

Define a finite subset t gi u � Σp by

Σp �
m§
i�1

giHs.

By definition, we have
m̧

i�1

�
NrdB{F pbgiq, 1

�
βz
Hs,Σp

pΦ,Ψqpbgiq �
�
NrdB{F pbq, 1

�
βz
Σp,Σp

pΦ,Ψqpbq.

Thus

IHs �
¸
i,j

1

#Γ
tigj
Hs

#ΓtiΣ X gjHsg
�1
j

#Γ
tigj
Σ

�
NrdB{F ptigjq, 1

�
βz
Hs,Σp

pΦ,Ψqptigiq

� IΣ.

□
Corollary 2.4.10. Let the assumptions be as in Definition 2.4.8. Let Φ,Ψ be elements

of S
�
Σ,Dkp,wppIq�. For any P P X pIq with P |G � Pkp,wp,ω P X arith

kp,wp and for any s ¥ spψq,
we have

P pBIpΦ,Ψqq �
¸

bPB�A�F z pB{Σ0ppsq
ω�1ϵ

r2wp�kps
cyc,F pNrdB{F pbqq

A
SpP pΦqpbq, xSppsqP pΨqpbq

E
k�2t

� 1

volpΣ0ppsqq
»
B�A�F zBpAF q

ω�1pNrdB{F pbqq
A
SpP pΦqupbq,xSppsqP pΨqupbq

E
k�2t

db,

where the notation p�qu is as in Remark 2.1.4.
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Proof. It follows from the following elementary formula: for f, g P SymrpQq for some
integer r ¥ 0, we have

xfpX1, Y1qgpX2, Y2q, pX1Y2 �X2Y1qryr,r � xf, gyr,
which follows by the uniqueness of a invariant paring on SymrpQq. □

Corollary 2.4.11. Let the assumptions be as in Definition 2.4.8. Let Φ P S�Σ,Dkp,wppIq�
and Ψ P Sord

�
Σ,Dkp,kppIq

�
. For any P P X pIq such that P |G � Pkp,wp,ω,ω1 P X arith

kp,wp and
for any s ¥ spω, ω1q, we have

P pBIpΦ,Ψqq
�

¸
bPB�A�F z pB{Σ0ppsq

pϖs
pqwp�tpω�1ϵ

r2wp�kps
cyc,F pNrdB{F pbqq

� x SpP pΦqpbq, τ�ϖspSpP pT0pϖs
pq�1Ψpbτ�ϖspqq yk�2t

�
»
B�A�F zBpAF q

ω�1pNrdB{F pbqq
A
SpP pΦqupbq, Tkpϖs

pq�1SpP
�
Ψqupbτ�ϖspq

�E
k�2t

db,

where p�qu is as in Remark 2.1.4, which is an element of A u
k pΣppsq, ωq and for any ϕ P

A u
k pΣppsq, ωq and x P OFp such that xtp � 0, we define

Tkpxqϕpgq :� |ϖp|r2w�ks{2AF

¸
i

ϕpgσiq,

where

Σppsq
�
x 0
0 1



Σppsq �

§
i

σiΣppsq

2.4.2. The lifing to Hida families of quaternionic automorphic forms. We
discuss about the Hecke equivalence of the I-adic Petersson inner product. Let a � OF be

a nonzero ideal. We define an order pRpaq called the Eichler order of level n by

pRpaq :�¹
q�d

i�1
q

�" �
a b
c d



P M2pOFqq

���� c � 0 mod aOFq

*

�
¹
q|d

 
the maximal order of B bF Fq

(
.

We define open compact subgroups of pB�. For any nonzero ideal a � OF prime to pn�,
we define

KB
0 paq :� pRpaq�,(2.4.1)

KB
1 paq :�

"
u P KB

0 paq
���� iqpuq � � � �

0 1



pmod aM2pOFqqq for q � d

*
,(2.4.2)

KBpaq :�
"
u P KB

0 paq
���� iqpuq � �

1 �
0 1



pmod aM2pOFqqq fo q � d

*
.(2.4.3)

We fix a nonzero ideal n � OF prime to pn�, and assume that

K1pnqB � Σ � KB
0 pnq.

Let a � OF be a nonzero ideal. Let ∆paq � pB be a semigroup defined by

∆paq :�
"
x P pB ���� iqpxq � �

a b
c d



such that c P aOFq , d P O�

Fq
for all q � a

*
.
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We recall the definition of Hecke operators on the space S
�
Σppsq,M�

(Definition 2.1.1) for
s ¡ 0 and a ∆ppsnq-module M .

Definition 2.4.12. Let M be a ∆ppsnq-module. We define operators T paq, Upbq and
Upxq acting on the space SpΣppsq,Mq for nonzero ideals satisfying pa, pnq � 1, b|n and
x P OFp , x

t � 0 as follows:


 (Definition of T paq): Let pa, pnq � 1. Let apd P �Apd
F,f

��
and bn P pB�

n such that

apdNrdBnpbnqOF � a.

We define

T paq :�
�
Σppsq

�
apd 0
0 1



bn Σppsq

�
.


 (Definition of Upbq): Let b|n. Let apnd P �Apnd
F,f

��
with

apndOF � b.

We define

Upbq :�
�
Σppsq

�
apnd 0
0 1



Σppsq

�
.


 (Definition of Upxq): Let x P OFp with xtp � 0. We define

Upxq :�
�
Σppsq

�
x 0
0 1



Σppsq

�
.

Proposition 2.4.13. Let M be a ∆ppsnq-module. The assocative algebra generated
by T paq, T pa, aq, Upbq and Upxq over Z in EndpSpΣppsq,Mq is commutative.

Proof. See [Hi91, Proposition 1.1]. □
Definition 2.4.14. We define I-adic Hecke algebra hBpn; Iq by the I-algebra generated

by T paq, Upbq and Upxq in EndIpSpΣppsq,Dkp,wppIqq.
We also define the ordinary part of I-adic Hecke algebra hord

B pn; Iq by the I-algebra
generated by T paq, Upbq and Upxq in EndIpSordpΣppsq,Dkp,wppIqq. According to Remark
2.3.12, if we put ex � limn T0pxqn! P hBpn; Iq is the ordinary idempotent (x P pOFp with
xtp � 0),

exhpn; Iq � hordpn; Iq
Theorem 2.4.15. We assume there exists Y � X arith

kp,wp with (2.3.2). For Φ,Ψ P
Sord

�
Σ,Dkp,wppIq� and T P hord

B pn; Iq, we have

BIpTΦ,Ψq � BIpΦ, TΨq.
If for any r ¥ 0, p2.3.4q holds, we have the same formula for any Φ,Ψ P S�Σ,Dkp,wppIq�
and T P hBpn; Iq Φ P S�Σ,Dkp,wppIq�.

Proof. It follows from Corollary 2.4.10. □
Theorem 2.4.16. Let ϕ P Sord

k,wpΣppsq,ω;OOrωsq be a p-adic quaterninic automorphic

form which is new at each place dividing n. There exists finite rΛO-algebra I which is
integrally closed domain and Φ P SpΣppsq;Dkp,wppIqq such that there exists P P Xkp,wppIq
with P |G � Pkp,wp,ω such that

SpP pΦq � ϕ.

Proof. It follows from the same argument preceding [Wi88, Theorem 1.4.1]. □
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2.5. The relation between measure valued form and SpΣ; Iq and the control
theorem

In this section we assume that every prime above p divides p. It means that all of
the conditions on upper p (for example, 2wp � kp P 2Ztp) are empty. We omit to write
notations involved with upper p such as kp, wp, tp, and we simply write k, w, t, . . . instead

of kp, wp, tp, . . . . We fix a finite product of noetherian complete local rΛO-algebras with
finite residue fields, and denote it by I.

Recall the identification

SpΣ; Iq �
"

f : XpΣpNpOFpqq ÝÑ I
continuous

���� t � fpxtq � fpxq for x P XpΣpNpq, t P G

*
as in Theorem 2.2.24.

Definition 2.5.1. We define a I-module homomorphism

Sp : S pΣ,DpIqq ÝÑ SpΣ; Iq
by

Φ ÞÝÑ
�
b ÞÑ

»
rOFp�t1u s

1 dΦpbq
�
.

Since Sp commutes with normalized Hecke operators, we also define

Spord : Sord pΣ,DpIqq ÝÑ SordpΣ; Iq.
Proposition 2.5.2. Let P P X arithpIq such that P |G � Pk,w,ω. The following diagram

S pΣ;DpIqq Sp //

SpP
��

SpΣ; Iq
P�
��

Sk,w
�
Σ0ppspωqq,Oω

�rψs xXk�2t, � y
// SpΣ; I{P Iq

is commutative. Here, for f P Symk�2tpOωq, xXk�2t, � y means the value fp0, 1q P Oω. (It
is actually abuse of notation. In fact, the pairing x �, � yk�2t of (2.1.3) is only defined over
Oψ under the assumption k ¤ pt� 1.)

Proof. It follows immediately form the definitions. □
We focus on the ordinary part. Then we have the following result:

Theorem 2.5.3. The homomorphism Spord is an isomorphism.

Proof. The injectivity follows by Theorem 2.3.11. We prove the surjectivity. Let
f P SordpΣ; Iq. By Theorem 2.2.24, f is described as an element

pfsqsPZ¡0 P lim
ÐÝ
s

HomOrGss

�
ep PicOX

�
Σppsq�, I{PsI
,

where ep is Hida’s ordinary idempotent. For s1 PÀp�p Z¡0p, let

Ls1 :�
¸

γP∆ppq
I{PsI1rps1OF�t1u spγzq � ΓpOFp ,E bI I{PsIq.

The space Ls1 is free of finite rank over I{PsI, in fact

Ls1 :�
à

γPΣ0ppq{Σ0ppqXtΣ0pps1 q
I{PsI1rps1OF�t1u spγzq.
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Let δs
1

0 P HomIpLs1 , I{Ps1q defined by

δs
1

0

�
1rps1OF�t1u spγzq

� � #
1 if γ P Σ0ppq X tΣ0pps1q,
0 if γ R Σ0ppq X tΣ0pps1q.

For b P XpΣpq, we define

Φspbq :�
¸

cPOFp{psOFp

�
T0pϖs

pq�1fs
��
b

�
ϖs
p c
0 1




�
��

1 c
0 1



δs0



P HomI

�
Ls, I{PsI

�
,

where, we denote pϖsp
p qp�p P OFp by ϖs

p. By Lemma 2.2.2, for any u P Σ0ppq, we have

Φspbuq � u�1Φspbq.
We prove �

Φspbq
�
s
P lim

ÐÝ
s

HomI
�
Ls, I{PsI

� � DpOFp ; Iq.

Let s1 ¡ s. By using Lemma 2.2.2, the image of Φs1 in HomIpLs, I{PsIq is¸
cPOFp{psOFp

¸
dPOFp{ps1�sOFp

�
T0pϖs1

p q�1fs
��
b

�
ϖs
p c
0 1


�
ϖs1�s
p d
0 1





�
��

1 c
0 1


�
1 ϖs

pd
0 1



δs0



�

¸
cPOFp{psOFp

¸
dPOFp{ps1�sOFp

�
T0pϖs1

p q�1fs
��
b

�
ϖs
p c
0 1


�
ϖs1�s
p d
0 1





�
��

1 c
0 1



δs0



� Φs.

Thus have

Φ :� lim
ÐÝ
s

Φs P S
�
Σ0ppq, DpOFp ; Iq

�
satisfying SppΦq � f . Let Φpnq be a measure valued form obtained from the T0pxq�nf by
using the same construction above. Clearly T0pxqnΦpnq � Φ, thus

Φ P Sord
�
Σ0ppq, DpOFp , Iq

�
.

□

Corollary 2.5.4. Let P P X pIq with P |G � Pk,w,ω. The ordinary specialization map
induces the following isomorphism:

Spord
P : Sord pΣ,DpIqq bI I{KerpP q �ÝÑ Sk,w,ψpΣppspωqq,ω;P pIqq

Proof. It follows from Proposition 2.5.2, Theorem 2.5.3 and Theorem 2.2.20. (See
Remark 2.2.25.) □

Remark 2.5.5. Corollary 2.5.4 is the control theorem for measure valued forms. The
following formula

KerpSpord
P q � KerpP qSord

�
Σ,DpIq�
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can be proved for any I. However, for the surjectivity of SpP , it seems difficult to prove it
without Therem 2.5.3 and Theorem 2.2.20. In fact, since DpW ;Oq is generated by Dirac
measures, the image of

ρk,w,ω : DpW ;Oq ÝÑ Symk�2tpOωq
is the same as

OωrΣ0ppqsY k�2t � Symk�2tpOωq.
In general, the left hand side is not equal to Symk�2tpOωq.





CHAPTER 3

Construction of three-variable p-adic L-functions for balanced
triple product

In this chapter we assume that every prime above p divides p. It means that all of
the conditions on upper p (for example, 2wp � kp P 2Ztp) are empty. We omit to write
notations involved with upper p such as kp, wp, tp, and we simply write k, w, t, . . . instead

of kp, wp, tp, . . . . We fix a finite product of noetherian complete local rΛO-algebras with
finite residue fields, and denote it by I.

Assume that p is odd. Let E is a totally real cubic étale algebra over F , namely, E is
one of the following F -algebras:

E �
$&% F1 � F1 � F1 (F1 � F ),

F1 � F2 (F1 � F and F2 is a totally real quadratic extension over F ),
F3 (F1 � F and F3 is a totally real cubic extension over F ).

We denote BFi :� B bF Fi. Let

IF :� I � tσ : F ãÑ Cp : field embeddingu
IFi :� tσ : Fi ãÑ Cp : field embeddingu

ZrIFis :�
à
σPIFi

Zσ

tFi :�
¸
σPIFi

σ P ZrIFis.

Let

Ep :� E bF Fp

Ep :� E bQ Qp

For each p � p, Ep is isomorphic to F 3
p or Fp�K 1

p or K
2
p , where K

1
p (resp. K

2
p ) is a quadratic

(resp. cubic) extension over Fp. We fix an isomorphism between them (we fix them more
precisely in Section 3.3) We fix a finite flat Zp-algebra O � Cp containing all conjugation
of OE. Fix nonzero ideals n1,1, n1,2, n1,3, n1 � OF1 , n2 � OF2 and n3 � OF3 , which are prime
to p. We define an open compact subgroup of B�pAF,f bF Eq by

ΣE :�

$'&'%
K
BF1
1 pn1,1q �K

BF1
1 pn1,2q �K

BF1
1 pn1,3q if E � F1 � F1 � F1,

K
BF1
1 pn1q �K

BF2
1 pn2q if E � F1 � F2,

K
BF3
1 pn3q if E � F3,

Σ :� ΣE X pB�.

We assume that (by taking sufficiently small ΣE) for any b P pB,

Γb
ΣEX pB� :� pb�1B�bA�

F,f X ΣEA�
F,f q{A�

F,f � t1u.(3.0.1)

41
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Put

Cl�FipΣpp8qq :� lim
ÐÝ
s

Cl�FipΣppsqq

Cl�EpΣpp8qq :�

$'&'%
Cl�F1

pΣpp8qq � Cl�F1
pΣpp8qq � Cl�F1

pΣpp8qq if E � F1 � F1 � F1,

Cl�F1
pΣpp8qq � Cl�F2

pΣpp8qq if E � F2 � F1,

Cl�F3
pΣpp8qq if E � F3.

We define

GFi :� Cl�FipΣpp8qq �O�
Fp

GE :�

$'&'%
GF1 �GF1 �GF1 if E � F1 � F1 � F1,

GF2 �GF1 if E � F2 � F1,

GF3 if E � F3,

We embed GF into GE diagonally. Let

Cl�FipΣpp8qq � Cl�FipΣpp8qqppq ` Z 1
i

be a decomposition where Z 1
i � Cl�FipΣpp8qq is a finite group of order prime to p. For

j � 1, 2, 3 and i � 1, 2, 3, we fix a character

χ1,j : Cl�F1
pΣpp8qq ÝÑ Z 1

1 ÝÑ C�
p ,

χi : Cl�F1
pΣpp8qq ÝÑ Z 1

i ÝÑ C�
p ,

χ : Cl�EpΣpp8qq ÝÑ C�
p

:�

$'&'%
pχ1,1, χ1,2, χ1,3q if E � F1 � F1 � F1,

pχ1, χ2q if E � F1 � F2,

χ3 if E � F1.

We make the following assumption on χ:

χpCl�F pΣpp8qqq � 1,

in particular, for any x P Cl�F pΣpp8qq, the image of x P Cl�EpΣpp8qq is contained in the
p-sylow group Cl�EpΣpp8qqppq. Let

χp : O�
Ep
ÝÑ Cl�EpΣpp8qqppq χÝÑ C�

p .

We fix a finite OrrGF1ss-algebra I1,j for j � 1, 2, 3 such that on each algebra Z 1
1 acts as

χ1,j and we also fix a finite OrrGFiss-algebra Ii for i � 1, 2, 3 such that on each algebra Z 1
i

acts through χi. We define

I :�

$'&'%
I1,1pbOI1,1pbOI1,1 if E � F1 � F1 � F1,

I1pbOI2 if E � F1 � F2,

I3 if E � F3.

Let

Ep :� GL2pOEpq{tNpOEpq �T pOEp q I

be the I-bundle defined as in the same manner in Section 2.3.
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3.1. The definition of the section δ

At first, for each type of Ep listed as below, we define δp P ΓpP1pEpq,Epq and then we
define a unique element (up to scalar)

δ :�
¹
p�p

δp P ΓpP1p pEpq,EEq
satisfying for u P GL2pOFpq � ΣEp,

δ|upzq � pdetpuq� 1
2 , 1qδpzq.(3.1.1)

3.1.1. Ep � Fp � Fp � Fp case. Let

V E
p :�

"
ppx1; y1q, px2; y2q, px3; y3qq P P1pOFpq3

����xiyj � yixj P O�
Fp

for i, j � 1, 2, 3, i � j

*
and let

V1 :� V E
p X �t1u �OFp

�� �
OFp � t1u�� �

OFp � t1u�
V2 :� V E

p X �
OFp � t1u�� �t1u �OFp

�� �
OFp � t1u�

V3 :� V E
p X �

OFp � t1u�� �
OFp � t1u�� �t1u �OFp

�
be an open covering. We define δp P ΓpP1pEpq,Epq as the zero extension of a unique element
element of ΓpV E

p ,Epq satisfying (3.1.1) and

δp|V3pzq �χp

�
z1 � z2
1� z2z3

,
z1 � z2
1� z1z3

, 1


�1

�
�� A

pz1�z2qp1�z1z3q
1�z2z3 , pz1�z2qp1�z2z3q

1�z1z3 , p1�z2z3qp1�z1z3q
z1�z2

E� 1
2
,�

pz1�z2qp1�z1z3q
1�z2z3 , pz1�z2qp1�z2z3q

1�z1z3 , p1�z2z3qp1�z1z3q
z1�z2

	
�� P GE �O�

Ep

where z � pz1, z2, z3q P O3
Fp
.

3.1.2. Ep � Fp �K 1
p case (K 1

p{Fp is a quadratic extension). We fix ξp P K 1
p such

OK1
p
� OFprξps and trK1

p{Fp
pξpq � 0. We denote by ς P GalpK 1

p{Fpq the generator. Let

V E
p :�

"
ppx1; y1q, px2; y2qq P P1pOFpq � P1pOK1

p
q
���� x2y1 � y2x1,

pxς2y2�yς2x2q
2ξp

P O�
Fp

*
and let

V 1
1 :� V E

p X �
OFp � t1u�� �t1u �OK1

p

�
V 1
2 :� V E

p X �t1u �OFp

�� �
OK1

p
� t1u�

be an open covering. We define δp P ΓpP1pEpq,Epq as the zero extension of a unique element
element of ΓpV E

p ,Epq satisfying (3.1.1) defined by

δp|V 1
1
pzq � δp|V 1

2
pzq �χp

�
1,

z2 � zς2
2ξpp1� zς2z1q


�1

�
�� �

2ξpp1�zς2z1qp1�z2z1q
pz2�zς2q ,

pz2�zς2qp1�z2z1q
2ξpp1�zς2z1q

	� 1
2
,�

2ξpp1�zς2z1qp1�z2z1q
pz2�zς2q ,

pz2�zς2qp1�z2z1q
2ξpp1�zς2z1q

	
�� P GE �O�

Fp

where z � pz1, z2q P OFp �OK1
p
.
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3.1.3. Ep � K2
p case (K2

p {Fp is a cubic extension). Let �K2
p be a Galois closure of

K2
p over Fp. Fix a generator ρ of unique normal subgroup of Galp rK2{Fpq. Let θp be a

element of OK2
p
such that OK2

p
� OFprθps Let

V E
p :�

"
px; yq P P1pOK2

p
q
���� pθρp � θρ

2

p q
�1pxyρ � yxρ

2q P O�
K2

@

*
Let

V 2
1 :� V E

p X rOK2
p
� t1us

V 2
2 :� V E

p X rt1u �OK2
p
s

be an open covering. We define δp P ΓpP1pEpq,Epq as the zero extension of an element of
ΓpV E

p ,Epq defined by

δp|V 2
1
pzq � δp|V 2

2
pzq �χp

�
θρp � θρ

2

p

zρ � zρ2

��1

�

����
B

pθρp�θρ
2

p qpz�zρqpz�zρ2 q
pθp�θρpqpθp�θρ

2
p qpzρ�zρ2 q

F� 1
2

,�
pθρp�θρ

2

p qpz�zρqpz�zρ2 q
pθp�θρpqpθp�θρ

2
p qpzρ�zρ2 q



���� P GE �O�

Fp

Note that δp is independent of the choice of the generator ρ.

3.2. The construction of Theta element

We give an important property of δ again:

Proposition 3.2.1. Let δ as above. For u P GL2pOFpq � ΣEp, we have

δ|upzq � pdetpuq� 1
2 , 1qδpzq

Remark 3.2.2. Any section defined by zero extension of Γp±p V
E
p ,EbEbE q satisfying

the property of this proposition is uniquely determined up to scalar.

Now we define the theta element.

Definition 3.2.3. Let

Φ1,j P S
�
K
BF1
1 pn1,jq;DpI1,jq

	
for j � 1, 2, 3 and let

Φi P S
�
K
BFi
1 pniq;DpIiq

	
for i � 1, 2, 3. We put

Φ :�

$'&'%
Φ1,1 b Φ1,2 b Φ1,3 if E � F1 � F1 � F1,

Φ1 b Φ2 if E � F1 � F2,

Φ3 if E � F3.

We define the theta element ΘΦ P I by

ΘΦ :�
¸

bPA�F,fB�z pB�{Σ

�
NrdB{F pbq� 1

2 , 1
	 »

P1pO
pEp
q
δpzqdpΦpbqqpzq.
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We also define the square root of p-adic L-function

L B
p pΦq :�

Θ2
Φ

BIpΦ,Φq ,

where

BIpΦ,Φq :�

$'&'%
±3

j�1 BI1,jpΦ1,j,Φ1,jq if E � F1 � F1 � F1,

BI1pΦ1,Φ1qBI2pΦ2,Φ2q if E � F1 � F2,

BI3pΦ3,Φ3q if E � F3.

3.3. The interpolation of Theta elements

We fix a uniformizer ϖp of OFp for each p � p and denote pϖpqp�p P OFp by ϖp.

3.3.1. E � F1 � F1 � F1 case. Let Σ1,j � pB� be an open subgroup and Φ1,j P
S
�
Σ1,j, η

pjq
1 ,DpIq� as in Definition 3.2.3 (j � 1, 2, 3). For each p, we choose a canonical

isomorphism

Ep � F 3
p .

For n1, n2, n3 P Z¥0rIF1s, we denote the indeterminate by

Symn1pCpq bCp Sym
n2pCpq bCp Sym

n3pCpq
�â

σPI
CprXσ

1 , Y
σ
1 sn1σ

bCp CprXσ
2 , Y

σ
2 sn2σ

bCp CprXσ
3 , Y

σ
3 sn3σ

.

It has natural GL2pE bF Cpq �
±

σPI GL2pCpq3-action.
Lemma 3.3.1. For any s ¡ 0, we have

ΘΦ �
¸

bPA�F,fB�z pB�{Σ0ppsq
pNrdB{F pbq� 1

2 , 1q
»
rOFp�t1us�rOFp�t1us�rt1u�psOFp s

δpzqdpΦpbqqpzq,

Proof. It’s proved in the same way of the proof of Lemma 2.4.9 □

Theorem 3.3.2. Assume Φ
p1q
1 ,Φ

p2q
1 are ordinary and there exists aj P I� such that

T0pϖpqΦ1,j � aj,pΦ1,j

for j � 1, 2. For any P P X pIq such that P |GE
� Pk1,w1,ω1,ω11

� Pk2,w2,ω2,ω12
� Pk3,w3,ω3,ω13

with 2wi � ki � αit1 and
3̧

i�1

αi P 2Z. For any s ¥ spωj, ω1jq (j � 1, 2, 3q, we have

P pΘΦq

� pω1ω2ω3q1{2pϖs
pq#

�
OFp{psOFp

��
#
�
OFp{psOFp

�
p�1qk3volpΣ0ppsqq

±
p�p a

sp
1,ppP quasp2,ppP qu

»
A�FB�zB�pAF qB

∆k, SpP pΦ1,1qupx
�

1 ϖ�s
p

0 1



q b SpP pΦ1,2qupxq bxSppsqP pΦ1,3qupx

�
ϖ�s
p 0
0 1



q
F
k��2t�

� pω1ω2ω3q�1{2pNrdB{F pxqqdx
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where the symbol p�qu is that explained in Remark 2.1.4 and k� :� k1 � k2 � k3, t
� :�°

σEÑC σ.

∆k � pX2Y3 �X3Y2qk�1�tpX1Y3 �X3Y1qk�2�tpX1Y2 �X2Y1qk�3�t

:�
¹
σPI
pXσ

2 Y
σ
3 �Xσ

3 Y
σ
2 qpk

�
1 qσ�1pXσ

1 Y
σ
3 �Xσ

3 Y
σ
1 qpk

�
2 qσ�1pXσ

1 Y
σ
2 �Xσ

2 Y
σ
1 qpk

�
3 qσ�1

with k�i :� k1 � k2 � k3
2

� ki

pω1ω2ω3q1{2 :�
�
ω1ω2ω3τ

�pα1�α2�α3q
F

	1{2
τα1�α2�α3
F

ai,ppP qu :� ϖ
tF�wi
p |ϖp|r2wi�kis{2AF aj,ppP q

Proof. We denote by F px, y, zq the function on BpAF1q3A
∆k, SpP pΦp1q

1 qupxq b SpP pΦp2q
1 qupyq bxSppsqP pΦp3q

1 qupzq
E
.

Since for pz1, z2, z3q P O2
Fp
� psOFp such that z1 � z2 P O�

Fp
,

P

�Bpz1 � z2qp1� z1z3q
1� z2z3

,
pz1 � z2qp1� z2z3q

1� z1z3
,
p1� z2z3qp1� z1z3q

z1 � z2

F� 1
2

, 1

�2

� ω1ω2ω
�1
3 pz1 � z2qχ pz1 � z2, z1 � z2, 1q2

� ϵ
2r2w�1�k�1 s
cyc,F p1� z2z3qϵ2r2w

�
2�k�2 s

cyc,F p1� z1z3qϵ2r2w
�
3�k�3 s

cyc,F pz1 � z2q,

where w�
i :� w1�w2�w3

2
� wi, we have

P

�Bpz1 � z2qp1� z1z3q
1� z2z3

,
pz1 � z2qp1� z2z3q

1� z1z3
,
p1� z2z3qp1� z1z3q

z1 � z2

F� 1
2

, 1

�

� �
�
pω1ω2ω

�1
3 q�1{2pz1 � z2qχ pz1 � z2, z1 � z2, 1q�1

�ϵr2w�1�k�1 scyc,F p1� z2z3qϵr2w
�
2�k�2 s

cyc,F p1� z1z3qϵr2w
�
3�k�3 s

cyc,F pz1 � z2q

�
,

where pω1ω2ω
�1
3 q�1{2 :� pω1ω2ω

�1
3 τα1�α2�α3

F q1{2τ�α1�α2�α3
F . By substituting p1, 0, 0q for

pziqi, we found the sign is �.

P pΘΦq � 1

volpΣ0ppsqq
±

p�p a
sp
1,ppP quasp2,ppP qu

»
A�FB�zB�pAF q

¸
c1,c2POFp{psOFp

c1�c2PpOFp{psOFp q�

� p�1qk3pω1ω2ω
�1
3 q�1{2ω11ω

1
2ω

�1
3 ω13pc1 � c2q

� F px
�
ϖs
p c1
0 1



, x

�
ϖs
p c2
0 1



, xqpω1ω2ω3q�1{2pNrdpxqqdx
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By using the right invariance of the measure, we have

P pΘΦq � 1

volpΣ0ppsqq
±

p�p a
sp
1,ppP quasp2,ppP qu

»
A�FB�zB�pAF q

¸
c1,c2POFp{psOFp

c1�c2PpOFp{psOFp q�

� p�1qk3pω1ω2ω
�1
3 q�1{2ω11ω

1
2ω

�1
3 ω13pc1 � c2q

� F px
�
ϖs
p c1 � c2
0 1



, x

�
ϖs
p 0
0 1



, xqpω1ω2ω3q�1{2pNrdpxqqdx

� p�1qk3# �
OFp{psOFp

��
#
�
OFp{psOFp

�
volpΣ0ppsqq

±
p�p a

sp
1,ppP quasp2,ppP qu»

A�FB�zB�pAF q
F px

�
ϖs
p 1
0 1



, x

�
ϖs
p 0
0 1



, xqpω1ω2ω3q�1{2pNrdpxqqdx

� p�1qk3ω1ω2ω3q1{2pπspq#
�
OFp{psOFp

��
#
�
OFp{psOFp

�
volpΣ0ppsqq

±
p�p a

sp
1,ppP quasp2,ppP qu»

A�FB�zB�pAF q
F px

�
1 ϖ�s

p

0 1



, x, x

�
ϖ�s
p 0
0 1



qpω1ω2ω3q�1{2pNrdpxqqdx

□
Corollary 3.3.3. Assume Φ

p1q
1 ,Φ

p2q
1 and Φ

p3q
1 are ordinary and

T0pϖpqΦ1,j � a1,j,pΦ1,j

for j � 1, 2, 3 and p � p. For any P P X arithpIq such that P |GE
� Pk1,w1,ω1,ω11

�Pk2,w2,ω2,ω12
�

Pk3,w3,ω3,ω13
. Then we have

P pΘΦq

�pω1ω2ω3q1{2pϖs
pq#

�
OFp{psOFp

��
#
�
OFp{psOFp

�
p�1qk3volpΣ0ppsqq

±
p�p a

sp
1,ppP quasp2,ppP quasp3,ppP qu

»
A�FB�zB�pAF qB

∆k, SpP pΦ1,1qupx
�

1 ϖ�s
p

0 1



q b SpP pΦ1,2qupxq b SpP pΦ1,3qupx

�
0 ϖ�s

p

ϖs
p 0



q
F
k��2t�

� pω1ω2ω3q�1{2pNrdB{F pxqqdx
where the notations are as in Theorem 3.3.2.

3.3.2. E � F1 � F2 case. Let Σi be an open subgroup and Φi P SpΣi;DpIqq as in
Definition 3.2.3 (i � 1, 2). Let ς be the generator of GalpF2{F q and for σ P IF , fix σ P IF2

such that σ|F � σ. For ni P Z¥0rIFis, we define the indeterminate by

Symn1pCpq bCp Sym
n2pCpq �

â
σPI

CprXσ
1 , Y

σ
1 sn1σ

bCp CprXσ
2 , Y

σ
2 sn2σ

bCp CprXσς
2 , Y

σς
2 sn2σς

It has natural GL2pE bF Cpq �
±

σPI GL2pCpq3-action.
Lemma 3.3.4. For any s ¥ 0, we have

ΘΦ �
¸

bPA�F,fB�z pB�{Σ0ppsq

�
NrdB{F pbq� 1

2 , 1
	 »

rt1u�psOFp s�rOyF2p�t1us
δpxq dpΦpbqqpxq,
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Proof. It’s proved in the same way of the proof of Lemma 2.4.9 □

For each p � p splitting completely in F2, we define

ξp :�
�
2�1,�2�1

� P OF2p
� O2

Fp
.

We note that we have the following description of the restriction of δ on rt1u � psOFps �
rOxF2p

� t1us X±
p�p V

E
p :

δpz1, z2q �χ
�
1,

z2 � zς2
2ξp1� zς2z1q


�1

�
�� A

2ξp1�zς2z1qp1�z2z1q
pz2�zς2q ,

pz2�zς2qp1�z2z1q
2ξp1�zς2z1q

E� 1
2
,�

2ξp1�zς2z1qp1�z2z1q
pz2�zς2q ,

pz2�zς2qp1�z2z1q
2ξp1�zς2z1q

	
��

where

ξ :� pξpqp�p P OEp .

Theorem 3.3.5. Assume Φ2 are ordinary and

pϖpqΦ2 � a2,pΦ2

for some a2,p P I�. Let P P X pIq such that P |GE
� Pk1,w1,ω1,ω11

�Pk2,w2,ω2,ω12
with 2wi�ki �

αiti for i � 1, 2 and α1 P 2Z. For any s ¥ spψ1q,
¸
p�p
eppF2{F q�1spψ2qpp (eppF2{F q is the

ramification index at p) , we have

P pΘΦq

� #
�
OFp{psOFp

��
#
�
OFp{psOFp

�
p�1qk1volpΣ0ppsqq

±
p�p a

sp
2,ppP qu»

A�FB�z pB�

B
∆ξ
k,
xSppsqP pΦ1qupxq b SpP pΦ2qupx

�
ϖs
p ξ
0 1



q
F
k��2t�

pω1ω2q�1{2pNrdB{F pxqqdx
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where the symbol p�qu is that explained in Remark 2.1.4 and

ξ � pξpqp�p

with ξp :�
#
the ξp defined in 3.1.2 if p does not split in F2

p2�1,�2�1q if p splits completely in F2

∆ξ
k :�

¹
σPI
p2ξppσqq1�k�1,σpXσ

2 Y
σς
2 �Xσς

2 Y
σ
2 qk

�
1 σ

�1

� pXσς
2 Y

σ
1 �Xσ

1 Y
σς
2 qk�2 σ�1pXσ

2 Y
σ
1 �Xσ

1 Y
σ
2 qk

�
2 σς

�1

with

$''''''&''''''%

k�1 σ :� k1σ � k2σ � k2σς
2

� k1σ,

k�2 σ :� k1σ � k2σ � k2σς
2

� k2σ,

k�2 σς :�
k1σ � k2σ � k2σς

2
� k2σς ,

ppσq is a prime such that σ factor through Fppσq,

pω1ω2q1{2 :�
�
ω1ω2τ

�pα1�2α2q
F

	1{2
τα1�2α2
F ,

ai,ppP qu :� ϖ
tF�wi
p |ϖp|r2wi�kis{2AF ai,ppP q.

Proof. Set elements of ZrIs as follows:
h2 :�

¸
σPI

k2σσ,

v2 :�
¸
σPI

w2σσ,

h3 :�
¸
σPI

k2σςσ.

v3 :�
¸
σPI

w2σςσ.

We denote by F 1px, yq the function on BpAF2q �BpAF1q
F 1px, yq :�

A
∆ξ
k,
xSppsqP pΦ1qupxq b SpP pΦ2qupyq

E
.

Since for any pz1, z2q P OF1,p �OF2,p such that z1 P psOF1,p and z2 � z2

P

�B
2ξp1� zς2z1qp1� z2z1q

pz2 � zς2q
,
pz2 � zς2qp1� z2z1q

2ξp1� zς2z1q
F� 1

2

, 1

�2

� ω1ω
�1
2

�p2ξq�1pz2 � zς2q
�
χ
�
1, p2ξq�1pz2 � zς2q

�2
� ϵ

2r2w�1�k�1 s
cyc,F1

�p2ξq�1pz2 � zς2q
�
ϵ
2r2v�2�h�2 s
cyc,F2

p1� zς2z1qϵ2r2v
�
3�h�3 s

cyc,F2
p1� z2z1q,

we have

P

�B
2ξp1� zς2z1qp1� z2z1q

pz2 � zς2q
,
pz2 � zς2qp1� z2z1q

2ξp1� zς2z1q
F� 1

2

, 1

�
� pω1ω

�1
2 q1{2 �p2ξq�1pz2 � zς2q

�
χ
�
1, p2ξq�1pz2 � zς2q

�
� ϵ

r2w�1�k�1 s
cyc,F1

�p2ξq�1pz2 � zς2q
�
ϵ
r2v�2�h�2 s
cyc,F2

p1� zς2z1qϵr2v
�
3�h�3 s

cyc,F2
p1� z2z1q,
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where

pω1ω
�1
2 q1{2 :�

�
ω1ω2τ

�pα1�2α2q
F

	1{2
τα1�2α2
F

Thus we have

P pΘΦq � p�1qk1
volpΣ0ppsqq

±
p�p a

sp
2,ppP qu

»
A�FB�zB�pAF q

¸
cPOF2 p{psOF2 p

c�cςPpOFp{psOFp q�

� pω1ω
�1
2 q1{2ω11�1ω2ω

1
2
�1

�p2ξq�1pc� cςq�
� F 1px, x

�
ϖs
p c
0 1



qpω1ω2q�1{2pNrdB{F pxqqdx

� p�1qk1
volpΣ0ppsqq

±
p�p a

sp
2,ppP qu

»
A�FB�zB�pAF q

¸
c1,c2POFp{psOFp
c2PPpOFp{psOFp q�

� pω1ω
�1
2 q1{2ω�1

1 ω11ω
1
2

�p2ξq�1pc2q
�

� F 1px, x
�
ϖs
p c1 � c2ξ
0 1



qpω1ω2q�1{2pNrdB{F pxqqdx

By changing variable, we have □

� p�1qk1# �
OFp{psOFp

��
#
�
OFp{psOFp

�
volpΣ0ppsqq

±
p�p a

sp
2,ppP qu

�
»
A�FB�zB�pAF q

F 1px, x
�
ϖs
p ξ
0 1



qpω1ω2q�1{2pNrdB{F pxqqdx.

Thus we have the formula.

Corollary 3.3.6. Assume Φ1,Φ2 are ordinary and

T0pϖpqΦi � ai,pΦi

for some ai P I�. For any P P X pIq such that P |GE
� Pk1,w1,ω1,ω11

� Pk2,w2,ω2,ω12
with

2wi � ki � αiti for i � 1, 2. Then we have

P pΘΦq

� #
�
OFp{psOFp

��
#
�
OFp{psOFp

�
p�1qk1volpΣ0ppsqq

±
p�p a

sp
1,ppP quasp2,ppP qu

»
A�FB�zB�pAF qB

∆ξ
k, SpP pΦ1qupxτ�ϖsq b SpP pΦ2qupx

�
ϖs
p ξ
0 1



q
F
k��2t�

pω1ω2q�1{2pNrdB{F pxqqdx,

where the notations are as in Theorem 3.3.5



CHAPTER 4

A review of I-adic forms on GL2 over totally real fields

4.1. Hilbert modular forms and q-expansions

4.1.1. Definitions of modular forms. We fix non zero ideals n, n1 � OF such that
n � n1 � 1 (we will assume that n is prime to p and n1 � pγ for sufficiently large γ from
Section 4.2 below). Recall I :� tσ : F ãÑ Cp � C : embeddings of fieldsu. Let

GL�2 pRq :�
 
g P GL2pRq

�� detpgq ¡ 0
(

and let

H :�  
z P C

��Impzq ¡ 0
(

be the upper half plane and we identify H with GL�2 pRq{R�SO2pRq by

GL�2 pRq Q
�
a b
c d



ÞÑ a

?�1� b

c
?�1� d

P H.

For δ �
��

aσ bσ
cσ dσ




σPI

P GL�2 pRqI and z � pzσqσPI P HI , we define

jpδ, zq :� pcσzσ � dσqσPI P CI � F bQ C.

For any fractional ideals a, b. we define subgroup Γ1pn, n1; aq � GL2pF q, which is discrete
in GL�2 pRqI , by

Γ1pn, n1; aq :�
$&%
�
a b
c d



P
�

OF a�1

nn1a OF


 ������
ad� bc P O�

F,�
d � 1 mod n
a � d � 1 mod n1

,.- .

Let k, w P ZrIs. For each C-valued function f on HI and for γ P GL�2 pRqI , we define

f |k,wγpzq :� jpγ, zq�k detpγqwfpγpzqq.
Definition 4.1.1. Let k, w P ZrIs such that k ¡ 0 and 2w�k P Zt. Let a be a nonzero

fraction ideal of OF . We define the space of classical Hilbert modular forms by$'''''''''&'''''''''%
f : HI ÝÑ C

: holomorphic

���������������

1) f |k,wγ � f for γ P Γ1pn, n1; aq
2) For any α P GL2pF q XGL�2 pRqI , f |k,wα has

the following type of Fourier expansion:

f |k,wα � ap0, f |k,wαq �
¸
ξPF�

�

apξ, f |k,wαqeF pξzq,

where eF pξzq � exp

�
2π
?�1

¸
σPI

ξσzσ

�

,/////////./////////-
.

We denote the space by Mk,wpΓpn, aqq.
51
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Remark 4.1.2. Let f P Mk,wpΓ1pn, n1; aqq. For any α P GL2pF q X GL�2 pRqI , there
exists a nonzero ideal n1 and a fractional ideal a1,f |k,w P Mk,wpΓ1pn, n1; a1qq. For ϵ P O�

F,�
such that ϵ � 1 mod n1, we have

f |k,wαpϵzq � ϵ�wf |k,wαpzq.
In particular, unless w P Zt, we have

ap0, f |k,wαq � 0.

For a nonzero ideal a � OF , let

Cl�F paq :�
tthe group of fractional ideals prime to au 

x P F�
�
��|x� 1|Fq   1 for q|a( .

For k, w P ZrIs, a complex valued function f on GL2pAF q and g � pgf , g8q P GL2pAF,f q �
GL�2 pRqI , we define

f |k,wgpxq :� j
�
g8, p

?�1qσ
��k

detpg8qwfpxg�1q.
For each nonzero ideal a � OF , we define several open compact subgroups of GL2pAF,f q as
follows:

K0paq :�
"
u P GL2pxOF q

����uq � � � �
0 �



mod aM2pOFqq for q � 0

*
,

K1paq :�
"
u P K0paq

����uq � � � �
0 1



mod aM2pOFqq for q � 0

*
,

Kpaq :�
"
u P K0paq

����uq � �
1 �
0 1



mod aM2pOFqq for q � 0

*
.

For b � OF be a ideal prime such that a� b � p1q, we define

K1pa, bq :� K1paq XKpbq.
Definition 4.1.3. Let k, w P ZrIs such that k ¥ 0 and 2w � k � αt for some α P Z.

Let U � GL2pAF,f q be a nonempty open compact subgroup. We define the space of Hilbert
modular forms weight pk, wq, level U denote by Mk,wpUq as follows:$'''''&'''''%

f : GL2pAF q ÝÑ C
: smooth

�����������

1q fpagq � fpgq for a P GL2pF q
2q f |k,wu � f for u P U � pR�SO2pRqqI

3q Bfxpzq
Bz � 0 for x P GL2pAF,f q

4q When F � Q, there exists C ¡ 0 such that
|fxpzq|   C for all x P GL2pAF,f q

,/////./////-
,

where fx is define as a well-defined function on HI

fxppzqσPIq � j
�
g8, p

?�1qσ
�k

detpg8q�wfpxg8q
with g8 P GL�2 pRqI such that z � g8p

?�1qσ. We also define the space of cusp forms of
weight pk, wq and level U by

Sk,wpUq :�
"
f P Mk,wpUq

����»
AF {F

f

��
1 a
0 1



g



da � 0 for g P GL2pAF q

*
.
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Remark 4.1.4. Let n1 be a nonzero ideal such that n � n1 � p1q. By strong approxi-
mation theorem, we have a decomposition

GL2pAF q �
#Cl�F pn1q§

i�1

GL2pF qtiK1pn, n1qGL�2 pRqI ,

where ti �
�
a�1
i 0
0 1



for an ai P AF,f . Then we have an isomorphism

Mk,wpK1pnqq �
#Cl�F pn1qà

i�1

Mk,w pΓ1pn, n1; aiOF qq ; f ÞÑ pftiq#Cl�F pn1q
i�1 .

Through the isomorphism, Sk,wpKpnqq correspond to a space such that

ap0, fti |k,wαq � 0

for any i � 1, . . . ,#Cl�F pnq and α P GL2pF q X GL�2 pRqI . In particular, by Remark 4.1.2,
unless w P Zt. , we have

Mk,wpK1pn, n1qq � Sk,wpK1pn, n1qq.
We introduce the notion of nearly Hilbert holomorphic modular forms including the

usual Hilbert modular forms.

Definition 4.1.5. Let k, w,m P ZrIs such that k,m ¥ 0 and 2w � k � αt for some
α P Z. Let U � GL2pAF,f q a open compact subgroup. We define the space of nearly
holomorphic Hilbert modular forms” of weight pk, wq, order ¤ m, and level n denote by
Nk,w,mpUq as the space consisting of smooth function

f : GL2pAF q ÝÑ C

satisfying

(1) fpagq � fpgq for a P GL2pF q
(2) f |k,wu � f for u P U � pR�SO2pRqqI
(3) For x P GL2pAF,f q, a function fx on HI defined below has the following type of

Fourier expansion

fxpzq � ap0, fxq
�p4πyq�1

�� ¸
ξPLpxq

apξ, fxq
�p4πyq�1

�
eF pξzq,

where z � x � y
?�1 (x P RI , y P RI

¡0), Lpxq is a lattice of F depending on x,
apξ, fxqpY q P CrtYσuσPIs is rF : Qs-variable polynomial such that the degree in Yσ
is less than mσ and

eF pξzq � exp

�
2π
?�1

¸
σPI

ξσzσ

�
.

The function fx is define as a well-defined function on HI by

fxppzqσPIq � j
�
g8, p

?�1qσ
�k

detpg8q�wfpxg8q
with g8 P GL�2 pRqI such that z � g8p

?�1qσ.
We define an action of Cl�F pnn1q called the diamond.
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Definition 4.1.6. Let k, w, α,m be as in Definition 4.1.5. For a class ras P Cl�F pnn1q
and for f P Nk,w,mpK1pn, n1qq, we define

f |xayk,w :�
#
|a�1|αAF,ff |k,wa�1 if a is prime to nn1

0 otherwise,

where a P AF,f is an element such that ann1 � 1 and

a � aOF .

Proposition 4.1.7. The both of the spaces of Hilbert modular forms and cusp forms
are invariant under the diamond operators: for a nonzero prime ideal q being prime to n,

Mk,wpK1pn, n1qq|xqyk,w � Mk,wpK1pn, n1qq,
Sk,wpK1pn, n1qq|xqyk,w � Sk,wpK1pn, n1qq.

Let C8pGL2pAF qq be the space of smooth function on GL2pAF q. The Lie algebra
gl2pRqI b C is acting on C8pGL2pAF qq. For each σ P I, we define Rσ P gl2pRq bR C by

Rσ :� � 1

8π

�
1

?�1?�1 �1



For r P Z¥0rIs, we define
Rr :� pRrσ

σ qσPI P gl2pRqI b C.
Regarding nearly holomorphic Hilbert modular forms, the following are well known:

Proposition 4.1.8. Let f P Nk,w,mpK1pn, n1qq be a nearly holomorphic Hilbert modular
form. For r P Z¥0rIs, we have

Rrf P Nk�2r,w�r,m�rpK1pn, n1qq.
Moreover, if k �¡ 2m, we have

Nk,w,mpK1pn, n1qq � t0u
and if k ¡ 2m, we have the following isomorphismà

m¥r¥0

Mk�2r,w�rpK1pn, n1qq � Nk,w,mpK1pn, n1qq

P P

pfrqr ÞÑ
¸

m¥r¥0

Rrfr.

Remark 4.1.9. Let x P GL2pAF,f q and σ P I, the differential operator Rσ is described
as

pRσfqxpzq � 1

2π
?�1

�
kσ
z � z

� B
Bzσ



fxpzq.

Definition 4.1.10. Let f P Nk,w,mpK1pn, n1qq with k ¡ 2m. By the second assertion
of Proposition 4.1.8, f can be described as

f �
¸

m¥r¥0

Rrfr,

where fr P Mk�2r,w�rpK1pn, n1qq. We define the holomorphic projection of f by

Hpfq :� f0.
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We define the two type of operators T pyq and T pa, bq acting on Nk,w,mpK1pn, n1qq.
Definition 4.1.11. Let k, w,m and n be as in Definition 4.1.5. Let f P Nk,w,mpK1pn, n1qq.

For a, b P A�
F,f � A�

F,f , we define

f |T pa, bqpgq :� 1

volpK1pn, n1qq
»
GL2pAF,f q

fpgx�1q1
K1pn,n1q

�
a�1 0
0 b�1



K1pn,n1q

pxqdx

� 1

volpK1pn, n1qq
»
GL2pAF,f q

fpgxq1
K1pn,n1q

�
a 0
0 b



K1pn,n1q

pxqdx.

For each element xq P OFq X F�
q for a nonzero prime ideal q, we define a well-defined

operator as follows:

T pxqq :�

$'&'%
T pxq, 1q if q|nn1,¸

i¥j¥0
i�j�ordqpxq

T pπiq, πjqq. if q � nn1,

� T pxq, 1q � xqyk,wT pxqπ�1
q q,

where πq is a prime element of OFq . Moreover, for x P xOF X A�
F,f , we define

T pxq :�
¹
q

T pxqq.

Note that for almost all q, T pxqq � 1 and the operator T pxq above is well-defined.

Proposition 4.1.12. Let k, w and n be as in Definition 4.1.5. Let πq be a prime
element of OFq . For r ¡ 1, we have

T pπrqq � T pπqqT pπr�1
q q � |πq|α�1

AF xqyk,wT pπr�2
q q

Proof. When q|nn1, we can deduce the statement easily from the following explicit
decomposition:

K1pn, n1q
�
πrq 0
0 1



K1pn, n1q �

§
uPOFq{πrqOFq

�
πrq u
0 1



K1pn, n1q.

Let q � nn1 and put K :� K1pn, n1qq � GL2pOFqq. Let f be a modular form and put

ϕ1pgq :� 1
K

�
πq 0
0 1



K
pgq

ϕ2pgq :� 1"|detpgq|�|πq|r
gPM2pOFq q

*pgq
By definition,

f |T pπqqT pπm�1
q qpgq � 1

volpK1pn, n1qqq
»
GL2pFqq

»
GL2pFqq

fpgx�1y�1qϕ2px�1qϕ1py�1qdxdy

� 1

volpK1pn, n1qqq
»
GL2pFqq

fpgyq
»
GL2pFqq

ϕ2pxqϕ1px�1yqdxdy

Let

ϕ3pgq :�
»
GL2pFqq

ϕ2pxqϕ1px�1gqdx.
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Since ϕ3 is left and right invariant under the action of K, we can describe ϕ3 as

ϕ3 �
¸

i¥� r�1
2

ai1
K

�
πi�r�1 0

0 π�i



K
.

Since

ai � 1

vol
�
K

�
πi�r�1 0

0 π�i

	
K
	 »

GL2pFqq
ϕ3pgq1

K

�
πi�r�1 0

0 π�i



K
pgqdg

and»
GL2pFqq

ϕ3pgq1
K

�
πi�r�1 0

0 π�i



K
pgqdg �

» »
ϕ2pxqϕ1pgq1

K

�
πi�r�1 0

0 π�i



K
pxgqdgdx

� vol
�
K

�
π 0

0 1

	
K
	 »

ϕ1pgq1
K

�
πi�r�1 0

0 π�i



K
p
�
π 0
0 1



gq

� vol
�
K

�
π 0

0 1

	
K
	

�
�
M2pOFqq X

�
π�1 0
0 1

	
K

�
πi�r�1 0

0 π�i

	
K
	

�

$''&''%
p|πq|�1

AF � 1qvol
�
K

�
πi�r�1 0

0 π�i



K



if 0 ¡ i ¥ � r�1

2

p|πq|�1
AF � 1q|πq|�m�1

AF if i � 0

0 if i ¡ 0,

Thus

ai �

$'&'%
|πq|�1

AF � 1 if 0 ¡ i ¥ � r�1
2

1 if i � 0

0 if i ¡ 0,

we have the proposition. □

4.1.2. Fourier expansions and the notion of coefficients of modular forms.
Let DF {Q be the different of F {Q and we fix an element d P A�

F,f such that

dOF � DF {Q.

We define

KF pnn1q :� A�
F XK1pn, n1q.

Proposition 4.1.13. Let k, w,m and n are as in Definition 4.1.5. For f P Nk,w,mpK1pn, n1qq,
we have the following form of Fourier expansion:

f

�
y x
0 1




�

$''''''&''''''%
|y|AF �

��� a0pyf , fqpp4πy8q�1q|y|β�1
AF

�
¸
ξPF�

�

apξyf , fqpp4πy8q�1qpξy8qw�teF p
?�1ξy8qeF pξxq

��� if w � βt

|y|AF
¸
ξPF�

�

apξyf , fqpp4πy8qpξy8qw�teF p
?�1ξy8qeF pξxq if w R Zt,
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where x P AF , y P A�
F with y8 P RI

¡0, eF : AF {F ÝÑ C� is a unique continuous group
homomorphism such that

eF pzq �
¹
σPI

e2π
?�1zσ

for z � pzσqσPI P F bQ R � RI � AF and

a0p�, fqpY q : AF,f{F�
�KF pnq ÝÑ C rtYσuσPIs

ap�, fqpY q : A�
F,f{KF pnq ÝÑ C rtYσuσPIs

are C rtYσuσPIs-valued continuous functions whose supports are"
x P A�

F

����|xq|q ¤ |d�1|q for all prime q

*
and the degree for Yσ is less than mσ.

Proof. It follows from Proposition 4.1.8 and [Hi86, Proposition 4.1]. □

We introduce the notion of normalized Hilbert modular forms as follows:

Definition 4.1.14. We call a Hilbert modular form f P Mk,w pK1pn,psqq is normalized
(at d�1) if

apd�1, fq � 1.

We note that the notion of normalized is depend on the choice of dp.
For each n P ZrIs, we define a field by

F n :� QptxnuxPF q.

We note that F n is the same as a number field fixed by

#
ς P GalpQ{Qq

����¸
σPI

nσpσ � τq � n

+
.

For any fractional ideal a � OF , we define a fractional ideal of OFn by

an :� xtanuaPay.
Definition 4.1.15. Let k, w,m and n be as in Definition 4.1.5. For any subring R � C

containing OFw , we define nearly holomorphic modular forms of R-coefficient by

Nk,w,mpK1pn, n1q;Rq

:�
"
f P Nk,w,mpK1pn, n1qq

���� a0px, fqpY q P RrY s
apx, fqpY q P pxdOF qt�w RrY s for x P A�

F,f

*
.

We note that the notion of the coefficient for modular forms is compatible with the
abstract scaler extensions as follows:

Theorem 4.1.16. Let k, w, n be as in Definition 4.1.3. For any subring R � C con-
taining OFw , we have

Mk,wpK1pn, n1q;OFwq bOFw R � Mk,wpK1pn, n1q;Rq
Proof. The theorem is deduced from the duality theorem ([Hi86, Theorem 5.1]). □

The actions of operators in Definition 4.1.11 are described as follows:
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Proposition 4.1.17. Let f P Nk,w,mpK1pn, n1qq with 2w � k � αt. Let πq be a prime
element of OFq . Then we have

a0py, f |T pπqqq � a0pπqy, fq|πq|β�1
AF 1t|yd|AF¤1upyq � a0pπ�1

q y, f |xqyk,wq|πq|α�βAF pw � βtq,
apy, f |T pπqqq � apπqy, fq1t|yd|AF¤1upyq � apπ�1

q y, f |xqyk,wq|πq|α�1
AF .

For a, b P
�xOF

	�
n1
,

a0py, f |T pa, bqq � a0pyab�1, f |k,wb�1q,
apy, f |T pa, bqq � apyab�1, f |k,wb�1q.

Theorem 4.1.18. Let k, w, n and n be as in Definition 4.1.3. For any nonzero prime
ideal q � OF , we have

Mk,wpK1pn, n1q;OFwq|xqyk,w � Mk,wpK1pn, n1q;OFwq
Mk,wpK1pn, n1q;OFwq|T pπrqq � qrpt�wqMk,wpK1pn, n1q;OFwq,

where πq is a prime element of OFq .

Proof. [Hi91, Theorem 2.2, (ii)]. □

4.2. The theory of p-adic modular forms

From now on, we assume that nonzero ideal n is prime to p. We fix a finite flat Zp-
algebra O � Cp containing all the conjugation of OF and fix a uniformizer π. We usually

use the symbol s �
¸
p�p
spp for the element of semigroup

à
p�p

Z¥0p and define the ideal

ps � OF by

ps :�
¹
p�p

psp .

4.2.1. The universal Hecke rings. For any ring R � Cp containing OFw (we will
mainly consider R as O), we define

Mk,wpK1pn,psq;Rq :� Mk,wpK1pn,psq;OFwq bOFw R,

Sk,wpK1pn,psq;Rq :� Sk,wpK1pn,psq;OFwq bOFw R.

Definition 4.2.1. Let k, w as in Definition 4.1.3. For x P xOF X A�
F,f , we define an

endomorphism of Mk,wpK1pn, n1q,Cpq by
T0pxq :� xw�tp T pxq.

We note that by Proposition 4.1.18, T0pxq is also defined as an endomorphism of the space
of cusp forms.

The operator above determines the endomorphisms of Mk,wpK1pn,psq,Orπ�1sq, but by
Theorem 4.1.18, it’s actually endomorphisms of Mk,wpK1pn,psq,Oq. For any ring R � Cp
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containing all the conjugation of OF , we define rings called R-coefficient Hecke rings by

Hk,wpK1pn,psq;Rq :� R
�
tT0pxquxPAF,f , tT pa, bqua,bPpyOF q�np

�
� EndR pMk,wpK1pn,psq;Rqq

hk,wpK1pn,psq;Rq :� R
�
tT0pxquxPAF,f , tT pa, bqua,bPpyOF q�np

�
� EndR pSk,wpK1pn,psq;Rqq

Let

Cl�F pnp8q :� lim
ÐÝ
s

Cl�F pnpsq

� A�
F,f

L
F�
�KF pnqppq,(4.2.1)

where the isomorphism (4.2.1) is induced from

Cl�F pnpsq � // A�
F {F�pA�

F,f XK1pn,psqqRI
¡0

a � //

P

ra�1s such that apn � 1 and aOF � a,
P

(4.2.2)

We define

G :� Cl�F pnp8q �O�
Fp

By Proposition 4.1.12, for each nonzero prime ideal q being prime to pn, the operator
|πq|αxqyk,w � ϵF,cycpπqq�αxqyk,w (πq is a prime element of OFq) is an element of each Hecke
ring. For any fractional ideal a being prime to np, we define a element of a Hecke ring by

xay :� ϵcyc,F paqαxayk,w,
where we regard ϵcyc,F as a continuous character of Cl�F pnp8q via the isomorphism (4.2.1).
We also define the action of x P O�

Fp
on each Hecke ring by T px, 1q. By the correspondence

G Q pz, aq ÞÑ T pa, 1qxzy, Hecke rings has a G-action and also Mk,w pK1pn,psq;Orωsq has a
G-action. We denote a quotient of G by

Gs :� Cl�F pnpsq �
�
OFp{psOFp

��
.

For any characters,

ω : Cl�F pnpsq ÝÑ C�,

ω1 :
�
OFp{psOFp

�� ÝÑ C�.

we define

Mk,wpK1pn,psq, ω, ω1;Orω, ω1sq

:�
"
f P Mk,wpK1pn,psq;Orω, ω1sq

���� pz, aqf
� ωpzqω1paqϵcyc,F pzqαf for pz, aq P G

*
,

Sk,wpK1pn,psq, ω, ω1;Orω, ω1sq

:�
"
f P Sk,wpK1pn,psq;Orω, ω1sq

���� pz, aqf
� ωpzqω1paqϵcyc,F pzqαf for pz, aq P G

*
,
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and also define

Hk,wpK1pn,psq, ω, ω1;Rrωsq :� Rrω, ω1s
�
tT0pxquxPAF,f , tT pa, bqua,bPpyOF q�np

�
� EndR pMk,wpK1pn,psq, ω;Rrωsqq ,

hk,wpK1pn,psq, ω, ω1;Rrω, ω1sq :� Rrω, ω1s
�
tT0pxquxPAF,f , tT pa, bqua,bPpyOF q�np

�
� EndR pSk,wpK1pn,psq, ω, ω1;Rrω, ω1sqq .

It is well known that the paring

xf, hy :� appd�1, f |hq
for f P Sk,w pK1pn,psq, ω, ω1;Rrω, ω1sq and h P hk,w pK1pn,psq, ω, ω1;Rrω, ω1sq is a perfect
pairing. Let

Mk,wpK1pn, p8q;Oq :�
¤
s

Mk,wpK1pn,psq;Oq,

Sk,wpK1pn, p8q;Oq :�
¤
s

Sk,wpK1pn,psq;Oq.

We define rings acting on the each space above by

Hk,wpK1pn, p8q;Oq :� lim
ÐÝ
s

Hk,wpK1pn,psq;Oq,

hk,wpK1pn, p8q;Oq :� lim
ÐÝ
s

hk,wpK1pn,psq;Oq.

Then both Hecke rings above has the continuous action of pz, aq P G via T pa, 1qxzy. For
the universal Hecke ring for cusp forms, we have the following theorem by Hida

Theorem 4.2.2 ([Hi89-1, Theorem 2.3]). For k, w P ZrIs satisfying the condition in
Definition 4.1.3, there exists a canonical isomorphism

hk,wpK1pn, p8q;Oq � h2t,tpK1pn, p8q;Oq
such that T0pyq and T pa, bq of the left hand side correspond to T0pyq and T pa, bq of the
right hand side.

Definition 4.2.3. We define the universal Hecke ring for cusp forms by

hpn;Oq :� h2t,tpK1pn, p8q;Oq.
4.2.2. The space of p-adic modular forms. Let

I :� Cl�F pnp8q \ A�
F,f{KF pnqppq.

For any subring R � Cp, we define C0
b pI, Rq by

C0
b pI, Rq :�

"
ϕ : I ÝÑ Cp

: continuous

���� ϕpIq � R
|ϕpyq|p is bounded for y

*
.

On C0
b pI,Cpq, we define the supremum norm || � ||p:

||ϕ||p :� sup
yPI

 |ϕpyq|p��y P I
(
.
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Definition 4.2.4. Let s �
¸
p�p
spp and k, w,m P ZrIs such that k ¥ 2t, 2w� k P Z and

m ¥ 0. Let f P Nk,w,mpK1pn,psq;Qq. We define a continuous function (depending on the
choice of d P AF,f )

app�, fq : I ÝÑ Cp rtYσuσPIs
by

appy, fq :�

$'&'%
a0py, fqϵβ�1

cyc,F pdyq if y P Cl�F pnp8q and w � βt

0 if y P Cl�F pnp8q and w R Zt
apy, fqpdyqw�tp if y P A�

F,f{KF pnqppq.
By the correspondence, f ÞÑ app�, fqpy�1

p q, we can embed Nk,w,mpK1pn,psq;Qq into

C0
b pI,Cpq for any k, w,m and n of Definition 4.1.5. In particular, we can embed Mk,wpK1pn, p8qq

into C0
b pI;Oq. Let Sk,w

�
K1pn, p8q;Q

�
be the closure of Sk,wpK1pn, p8q;Qq in C0

b pI;Cpq.
Then we have the following remarkable theorem:

Theorem 4.2.5. The space Sk,w

�
K1pn, p8q;Q

�
is independent of k, w if k ¥ 2t.

Definition 4.2.6. We define the space of p-adic modular forms by

M pnq :� the closure of
¸
k,w

k�2t¥0
2w�kPZt

Mk,w

�
K1pn, p8q;Q

�
in C0

b pI,Cpq,

and the space of p-adic cusp forms by

S pnq :� the closure of
¸
k,w

k�2t¥0
2w�kPZt

Sk,w

�
K1pn, p8q;Q

�
in C0

b pI,Cpq

�
Theorem 4.2.5

S2t,tpnp8;Qq.
For any subring R � Cp containing all the conjugation of OF , we define

M pn;Rq :� M pnq X C0
b pI;Rq,

S pn;Rq :� S pnq X C0
b pI;Rq.

Between the universal Hecke ring and p-adic cusp forms, there exists the following
duality:

Theorem 4.2.7 ([Hi91, Theorem 3.1]). The pairing

hpn;Oq bS pn;Oq ÝÑ O; T b f ÞÑ appd�1, f |T q
is a perfect pairing, namely, we have the following isomorphisms:

HomOphpn;Oq,Oq � S pn;Oq,
HomOpS pn;Oq,Oq � hpn;Oq.

Remark 4.2.8. There exists a duality theorem for p-adic modular forms (See [Hi91,
Theorem 3.1]).
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4.2.3. Several operations for p-adic modular forms. We fix a character

pω, ω1q : G ÝÑ C�
p

of finite image. In this section, we summarize several continuous operation defined on
C0
b pI,Cpq, which fix spaces of modular forms of character pω, ω1q.
4.2.3.1. Hecke operators. Let apyq P C0

b pI,Cpq. For q being prime to np, we define

a|T0pπqqpyq :� apπqyq1t|yd|AF¤1upyq � ϵcycpqqα�1ωpqqapπ�1
q yq,

T puqq :� 1,

where uq P O�
Fq
, πq is a prime element of OFq and pπq, 1q is the element of G. We note that

T0pπqq is independent of the choice of πq. For any r ¡ 0, and u P O�
Fq
, we define T0pπrquq

inductively by

T0pπrqq :� T0pπqqT0pπr�1
q uq � ϵcyc,F pqqα�1ωpqqT0pπr�2

q uq.
For q � pn and 0 � xq P OFq , we define

a|T0pxqqpyq :� apxqyq1t|yd|AF¤1upyq.

For x P xOF X A�
F,f , we define

T0pxq :�
¹
q

T0pxqq.

For a, b P xOF p, we define

a|T pa, bqpyq � ω1pab�1qapyab�1q.
Proposition 4.2.9. For f P Mk,w

�
K1pn, psq, ω, ω1;Q

�
. We have

appy, fq|T0pxq � appy, f |T0pxqq
appy, fq|T pa, bq � appy, f |T pa, bqq

Proof. It follows from Proposition 4.1.17. □

4.2.3.2. Twisted p-depletions. Let η1 : O�
Fp
ÝÑ C�

p be a character of finite image and let

η1p :� η1|OFp . We denote the conductor of η1p by pcpη
1q ¥ 0. We define a twisted p-depression

associated with apyq P C0
b pI,Cpq denoted by θ

ppq
η1 a by

θ
ppq
η1 apyq :�

#
η1pdypqapyq if |ypdp|AF � 1,

0 otherwise.

Proposition 4.2.10. For f P Mk,w

�
K1pn, psq, ω, ω1;Q

�
, we have

θ
ppq
η1 ap�, fq � app�, rθppqη1 fq

P Mk,w

�
K1pn,pmaxts,cpη1quq, ω, ω1η1;Q
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where cpη1q :� °
p�p cpη1pqp. and rθppqη1 is defined as follows: Let

rθppqη1p f �
$'''''&'''''%
f �

�
ϖ�1

p 0

0 1

�
pf |T0pϖpqq if cpη1pq � 0,

1

gpη1pq
¸

uPpOFp{pcpη1qOFpq�
η1�1

p puq
�

1 uϖ
�cpη1pq
p

0 1

�
f if cpη1pq ¡ 0,

where
gpη1pq :�

¸
uPpOFp{pcpη1qOFpq�

η1�1
p puqeF puϖ�cpη1pq

p d�1
p q.

Define rθppqη1 :�
¹
p�p

rθppqη1p
Proof. By direct computation, we have

θ
ppq
η1 app�, fq � app�, rθppqη1 fq.

□
4.2.3.3. Central twists. Let η : Cl�F pnp8q Ñ C�

p be a continuous character of finite

image. For apyq P C0
b pI,Cpq, we define a twist pab ηq of apyq by η by

pab η| � |βAF qpyq :� ηpyfdqϵcyc,F pydq�βapyq.
Here, we regard η as a continous group homomorphism on A�

F {F� via (4.2.1).

Proposition 4.2.11. For f P Mk,w

�
K1pn, psq, ω, ω1;Q

�
, we have

app�, fq b η| � |βAF � ηpdq|d|βAF app�, f b η| � |βAF q

P Mk,w�βt

�
K1pn,psq, ωη2, ω1η|�1

O�
Fp

;Q


,

where pcpηq � OF is the conductor of η at primes dividing p.

4.2.3.4. Differential operators. Let r P Z¥0rIs with r � 0. For apyq P C0
b pI, Iq, we define

Drapyq �
#
0 if y P Cl�F pnp8q,
apyqpdyqrp if y P A�

F,f{KF pnqppq.
The operator preserves the space of p-adic modular forms as explained below: let k, w,m
as in Definition 4.1.5. For f P Nk,w,m

�
K1pn,psq;Q

�
, we define an element of C0

b pI,Cpq by
appy, cpfqq :� appy, fqp0q.

Then we have

Theorem 4.2.12. For f P Nk,w,m

�
K1pn,psq;Q

�
with k ¡ 2m, the function app�, cpfqq

is an element of M pnq. In particular, for any f P Mk,w

�
K1pn,psq;Q

�
and r P Z¥0rIs with

r � 0, the function
app�, cpRrfqq � Drap�, fq

is also a p-adic modular form.

Proof. See [Hi91, p.369-370]. □
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4.2.4. The restriction map. We introduce a notion of restriction between Hilbert
modular forms of different base field. The notion is important to construct p-adic L-
function. In this section, we need to distinguish the base field F for each notion of Hilbert
modular forms for GL2 {F , for example, the set of embeddings from F into Cp, the space
of modular forms and so on. Thus, for each symbol X relating to the field F , we denote
by XF , for example,

IF :� tσ : F ãÑ Cp : field embeddingu ,

Mk,wpUqF :�
�

the space of Hilbert modular forms associated with GL2 {F
of weight k, w P ZrIF s and level U.



,

IF :� Cl�F pnp8q \ A�
F,f{KF pnqppq,

dF : the element of A�
F,f such that dFOF � DF {Q.

Let E{F be a extension of totally real fields. We assume that the fixed ring O is containing
all the conjugation ofOE. LetN � OE and n � OF be nonzero ideals such that n � OFXN
and both of them are prime to p.

Definition 4.2.13. Let a P C0
b pIE,Cpq such that there exists C ¡ 0 such that apyq � 0

if y P A�
F,f{KF pnq� and |y|AF,f ¡ C. We define ResE{F a P C0

b pIF ,Cpq by

ResE{F apyq �

$''&''%
ϵ
1�rE:F s
cyc,F pydF qapyq if y P Cl�F pnp8q
ϵ
1�rE:F s
cyc,F pydF q

¸
ηPE�

TrE{F pηq�1

apηyq if y P A�
F,f{KF pnqppq

Note that under the condition for support of the function apyq in the definition above, the

sum
¸
ηPE�

TrE{F pηq�1

apηyq is finite sum.

We have the following lemma:

Lemma 4.2.14. Let f P Mk,wpKpNqE;CpqE be a Hilbert modular form of weight
k, w P ZrI{Es and level N . We have

ResE{F app�, fq � |dF |rE:F s�1
AF pdE{F qw�tEp app�, f |GL2pAF qq,

where dE{F � dEd
�1
F

Proof. It follows by direct computations by definition. □
Corollary 4.2.15. For any f P M pNq, we have ResE{F f P M pnq.

4.3. Hida’s ordinary idempotents and the control theorems

The notations are as in the previous subsection.

Definition 4.3.1. Let p � p be a prime ideal. We define the p-ordinary idempotent
ep P hpn;Oq by

ep :� lim
nÑ8

T0pϖpqn!,
where ϖp is a prime element of OFp . We also define

e :�
¹
p�p

ep.
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It is well-known that ep exists and is independent of the choice of ϖp and satisfying

e2p � ep.

Definition 4.3.2. For any complete ring R � Cp containing O, We define the nearly
ordinary part of the universal Hecke ring and p-adic cusp forms by

hn,ordpn;Rq :� ephpn;Rq
S

n,ordpn;Rq :� S pn;Rq|ep
The ordinary part of universal Hecke ring is also a continuous OrrGss-module. Let

X :� HomcontpG,C�q
� HomO-cont pOrrGss,Cpq .

For each point P P X , we denote the kernel of the induced O-algebra homomorphism
P : OrrGss Ñ C by

PO :� KerpP q � OrrGss.
For k, w P ZrIs such that k � 2t ¥ 0 and a finite order character ω � ω1 : G ÝÑ C�

p , we
define Pk,w,ω,ω1 P X by

Pk,w,ω,ω1pz, aq � ωpzqω1paqϵF,cycpzqr2w�ksat�w.
We define the set of arithmetic points of X by

X arith :�
"
Pk,w,ω,ω1

���� k, w P ZrIs such that k � 2t ¥ 0, 2w � k � αt
ω � ω1 : G ÝÑ C�

p : finite order image

*
Theorem 4.3.3. The nearly ordinary part of hpn;Oq is finite over OrrGss and for any

P � Pk,w,ω,ω1 P X arith, we have

hn,ordpn;Oq bOrrGss κpPOq � ehk,w

�
K1pn,pspω,ω1qq, ω; FracpOqrω, ω1s

	
,

S
n,ordpn;Orω, ω1sqrPOrω,ω1ss � Sk,w

�
K1pn,pspω,ω1qq, ω, ω1;Orω, ω1s

	��� e,
where κpPOq is the residue field of the point PO and

spω, ω1q :� inf

$&%s Pà
p�p

Z¥1p ω � ω1 factors through Gs for s ¡ 0

,.-
4.4. The theory of I-adic forms

4.4.1. The definition of nearly ordinary I-adic forms. Recall

Gs :� Cl�F pnpsq �
�
OFp{psOFp

��
,

G :� lim
ÐÝ
s

Gs

� Cl�F pnp8q �O�
Fp
.

We fix an I noetherian complete semi-local continuous OrrGss-algebra. We remark that
I is not necessarily finite over OrrGss. If I is domain, we denote by L the fraction field
of I. For any O-algebra homomorphism P : I Ñ Cp, we denote by P |G the composition
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G Ñ I� PÑ C�
p . When P |G � Pk,w,ω,ω1 , we denote k, w, ω and ω1 by kP , wP , ωP , and ω1P ,

respectively. We define

X pIq :� tP : I ÝÑ Cp : continuous O-algebra homomorphismu
We assume that there exists a countable subset X arithpIq � X pIq satisfying£

PPX arithpIq
KerpP q � 0,(4.4.1)

P |G P X arith for any P P X arithpIq,(4.4.2)

P pIq is finite over Zp for any P P X arithpIq.(4.4.3)

Note that by (4.4.3), for any maximal ideal m � I, I{m is a finite field and in particular, I
is a compact ring.

Remark 4.4.1. When I is finite over OrrGss, we can take X arithpIq as the set 
P P X pIq��P |G P X arith

(
(4.4.4)

by Lemma 2.2.16.

We define a topology on II by the weak topology associated with maps

||P�||p : II ÝÑ Cp;F ÞÑ ||P � F ||p
for P P X arithpIq. Equivalently, the topology is same as that comes from the norm | � |w
defined by

|F |w :�
¸
i

2�i||Pi � F ||p.

Here we give an order along positive integers on X pIqarith and denote it by tPiu8i�1. It is
acutually a norm by the assumption above.

Proposition 4.4.2. The topology on II determined by the norm | � |w above is com-
polete.

Proof. Denote X airthpIq by tPiui¡0. Let tϕr � pϕrxqxPIu8r�1 � II be a Cauchy sequence
for the norm | � |w. Since the natural morphism

I ÝÑ lim
ÐÝ
n

I{ Xn
i�1 Pi,

has a dense image and rings of both sides are compact, it is isomorphism. For each x P I
and i ¡ 0, there exists ϕx P I such that lim

rÑ8
Pipϕrx�ϕxq � 0. Thus |pϕrxqxPI�pϕxqxPI|w Ñ 0

pr Ñ 8q. □
Definition 4.4.3. We define the space of I-adic form by

M pn; Iq :�  
F P II

�� P �F P M pnq for P P X arithpIq (
.

We define the space of nearly-ordinary I-adic forms by

S n,ordpn; Iq :�
"

F P II
���� P �F P S n,ord

kP ,wP
pnpγ, ωP , ω1P ;P pIqq|ep

for some γ ¥ spωP q for P P X arithpIq.
*
.

For ordinary I-adic modular form F and P P X arithpIq, we denote by FP the classical
modular form corresponding to P �F :

app�,FP q � P �F .
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Remark 4.4.4. Since for each F P S n,ordpn; Iq and P P X arithpIq, P �F is actually in
SkP ,wP pnpspωP q, ωP ;P pIqq (independent of γ !) by Theorem 4.3.3. Thus we have S n,ordpn; Iq
is closed subspace.

Remark 4.4.5. Let F P S n,ordpn; Iq. If I is finite over OrrGss, for any P P X pIq, we
have P � F P S pn;P pIqq

For I-adic form, we also define the notion of normalized:

Definition 4.4.6. Let F P M pn; Iq. We call F is normalized (at d�1) if

F pd�1q � 1.

Theorem 4.4.7. Assume that I is domain. The space S n,ordpn; Iq is torsion free finitely
generated I-module.

Proof. We only prove that S n,ordpn; Iq is finitely generated. Let mI be the maximal
ideal of I and let r :� dimI{mI h

n,ordpn;Oq bOrrGss I{mI. By the duality, for any P P
X arithpIqwe have

rankP pIq
�
epSkP ,wP pK1pn,pspωP ,ω1P qq, ωP , ω1P ;P pIq

	
¤ r.

Let f1, . . . , ft P S n,ordpn; Iq be elements which are linearly independent over L. There
exists y1, . . . , yt P I such that ∆ :� detppfipyjqqi,jq P L�. We write

∆ � a{b
for some a, b P I. By (4.4.1), there exists P P X arithpIq not containing ab � 0. Thus
P � f1, . . . P � ft P epSk,wpK1pn,pspωqq bO FracpOq are linearly indepenedent. Thus we
have t ¤ r. We can take a finite basis f1, . . . , ft of S n,ordpn; Iq bI L with t ¤ r. We define
∆ as above. Since

S n,ordpn; Iq � ∆�1pIf1 � � � � � Iftq,
and I is noetherian, we have the theorem. □

Theorem 4.4.8. If I is sufficiently large integrally closed domain, for any P P X arithpIq,
we have

S n,ordpn; Iq P�ÝÑ epS
n,ord
kP ,wP

pnpspωP q, ωP , ω1P ;P pIqq(4.4.5)

is surjective.

Proof. Let f P epS n,ord
kP ,wP

pnpspωP q, ωP , ω1P ;P pIqq. By [?, Corollary 2.2], the local vector
at p of F comes from the one dimentional eigen space of T pϖq, thus it suffice to prove that

for any vector f P epS n,ord
kP ,wP

pnpspωP q, ωP , ω1P ;P pIqq which is new out side p, there exists an

element F P S n,ordpn; Iq such that

P�pF q � f.

It follows from the same argument preceding [Wi88, Theorem 1.4.1]. □
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4.4.2. Hecke operators on II. We define the following action on II as follows: let
F P II. For q being prime to np, we define

F |T0pπqqpyq :� F pπqyq1t|yd|AF¤1upyq � ϵcycpqq�1prqs, 1qF pπ�1
q yq,

T puqq :� 1,

where uq P O�
Fq
, πq is a prime element of OFq and pπq, 1q is the element of G. We note that

T0pπqq is independent of the choice of πq. For any r ¡ 0, and u P O�
Fq
, we define T0pπrquq

inductively by

T0pπrqq :� T0pπqqT0pπr�1
q uq � ϵcycpqq�1prqs, 1qT0pπr�2

q uq.
For q � pn and 0 � xq P OFq , we define

F |T0pxqqpyq :� F pxqyq1t|yd|AF¤1upyq.

For x P xOF X A�
F,f , we define

T0pxq :�
¹
q

T0pxqq.

For a, b P xOF

�
pn, we define

F |T pa, bqpyq � pb, 1qF pyab�1q.
Proposition 4.4.9. Let F P M pn; Iq. For any P P X pIq, we have

P � pF |T0pxqq � pP � F q|T0pxq,
P � pF |T pa, bqq � pP � F q|T pa, bq.

Proof. It follows from Proposition 4.1.17. □
We give topologies defined by the operator norm to EndI pM pn; Iqq and EndI

�
S n,ordpn; Iq�.

We define I-adic Hecke algebra by

Hpn; Iq :� I
�
tT0pxquxPA�F,fXyOF , tT pa, bqua,bPyOF�pn

�
� EndI pM pn; Iqq ,

hn,ordpn; Iq :� I
�
tT0pxquxPA�F,fXyOF , tT pa, bqua,bPyOF�pn

�
� EndI

�
S n,ordpn; Iq� .

Then we have the following corollary:

Corollary 4.4.10. The ordinary idempotent

ep :� lim
nÑ8

T0pϖpqn!

is exists for each p � p. Put ep :�
±

p�p ep, then we have

P � ep � ep � P
for any P P X arithpIq

The relation between the universal Hecke algebra and I-adic Hecke algebra is as follws:

Theorem 4.4.11. Let I be a sufficiently large integrally closed domain as in Theorem
4.4.8. There exists a canonical surjection

j : hn,ordpn;Oq bOrrGss I ÝÑ hn,ordpn; Iq
such that T0pxq and T pa, bq of each side correspond to each other.
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Proof. By Lemma 2.2.16, Theorem 4.4.8 and Proposition 4.4.9, there are a natural
injection

hn,ordpn; Iq ãÑ
¹

PPX arithpIq
ephkP ,wP pK1pn,pspωP qq, ωP ;P pIqsq,

and a natural homomorphism

hn,ordpn;Oq bOrrGss I ÝÑ
¹

PPX arithpIq
eph2t,tpK1pn,pspωqq, ωP ;P pIqq.

The images of the homomorphisms above are the same. Thus we have the Theorem. □

By Theorem 4.4.11, we have a paring between nearly ordinary I-adic cusp forms and
universal Hecke algebra as for F P S n,ordpn; Iq and T P hn,ordpn;Oq,

xF, T y :� F |jpT qpd�1q P I.(4.4.6)

Clearly, for any X arithpIq, we have

P pxF, T yq � xP � F, T mod P y P P pIq.
By duarlity for usual modular form, the paring induce the follwing isomorphism:

S n,ordpn; Iq � HomI
�
hn,ordpn;Oq bOrrGss I, I

�
.(4.4.7)

4.4.3. Trace operators. Let m be a divisor of n. For f P Mk,w pK1pn,psq, ω, ω1q, the
natural homomorphism

Trn{mfpgq :� 1

rK1pm,psq : K1pn,psqs
¸

uPK1pm,psq{K1pn,psq
fpguq.

preserve the integrality, namely, let A :� rK1pm,psq : K1pn,psqs, we get the trace operator

Trn{m : Mk,w pK1pn,psq, ω, ω1;Oq ÝÑ A�1Mk,w pK1pm,psq, ω, ω1;Oq .

Since the trace operator commutes with T0pϖpq for p � p and preserves the space of
cuspforms, we have

Trn{m : S
n,ordpn;Oq ÝÑ A�1S

n,ordpm;Oq.
By Theorem 4.2.7, we have

Tr�n{m : A
�1hn,ordpm;Oq ÝÑ hn,ordpn;Oq.

By taking HomIpp�q bOrrGss I, Iq and (4.4.7), we finally obtain the I-adic trace operator:

TrIn{m : S n,ordpn; Iq ÝÑ A�1S n,ordpm; Iq.(4.4.8)

For any P P X arithpIq, we have

P � Trm{n � Trm{n � P.
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4.4.4. The restriction maps for I-adic forms. We define the I-adic version of the
restriction map defined in Section 4.2.4. In this section, we need to distinguish the base field
F for each notion of Hilbert modular forms for GL2 {F , for example, the set of embeddings
from F into Cp, the space of modular forms and so on. Thus, for each symbol X relating
to the field F , we denote by XF , for example,

IF :� tσ : F ãÑ Cp : field embeddingu ,

M pn; IqF :�
�

the space of I-adic modular forms associated with
Hilbert modular forms over GL2 {F .



,

IF :� Cl�F pnp8q \ A�
F,f{KF pnqppq,

dF : the element of A�
F,f such that dFOF � DF {Q.

Let E{F be a extension of totally real fields. We assume that the fixed ring O is containing
all the conjugation ofOE. LetN � OE and n � OF be nonzero ideals such that n � NXOF

and both of them are prime to p.

Definition 4.4.12. Let G P M pN ; IEqE. We define a element ResE{F G P M pn; IEqF
by

ResF2{F1 G pyq :� ϵ
1�rE:F s
cyc,F pydF q

¸
ηPpF2q�

TrE{F pηq�1

G pηyq.

Note that under the support of G is bounded , the sum
¸
ηPE�

TrE{F pηq�1

G pηyq is finite sum.

Then we have the following proposition:

Proposition 4.4.13. For G P M pN ; IEqE and P P X arithpIEq, we have the following
formula:

P � ResE{F pG q � ResE{F pP � G q
P MkP |F ,wP |F

�
n, ωP |A�F {F� , ω1P |O�

Fp

	
.

Proof. It follows from direct computations. □

4.5. Deformations of differential operators

In this section, we construct a homomorphism Θ which is important for constructing
p-adic L-functions.

Definition 4.5.1. Let G P M pn2; I2qF2 . We define ΘpG q P M pn2; I1 b I2qF2 (ΘpG q is
actually the element by Theorem 4.2.12) by

ΘpG qpyq :�
#��

xyy�1
p y 1

2 , dpyp

	
,
�
xyy�1

p y� 1
2 , pdpypq�1

		
G pyq if |ypdp|AF � 1,

0 otherwise,

where
��
xyy�1

p y 1
2 , dpyp

	
,
�
xyy�1

p y� 1
2 , pdpypq�1

		
is an element of GF2 �GF2 � pI1 b I2q�

and we regards Cl�F pnp8q as a quotient of A�
F via (4.2.1)

Then we have the following interpolation formula for pResF2{F1 ΘpG qq|ep as follows:



4.5. DEFORMATIONS OF DIFFERENTIAL OPERATORS 71

Theorem 4.5.2. Let G P M pn2; I2qF2 , For any arithmetic P b Q P X pI1pbOI2q with
wP � wQ ¥ 0, we have

P � pResF2{F1 ΘpG qq|ep
� ResF2{F1

�
DwP�wQθppq

pωPω�1
Q q� 1

2 ω1Pω
1
Q
�1
pP � G q


���� ep b �
ωPω

�1
Q

��� 12
AF1{F�

1

|�|αP�αQAF1

Here, αP � r2wP � kP s, αQ � r2wQ � kQs and we define

pω1ω
�1
2 q1{2 :� pω1ω

�1
2 τ

αQ�αP
F2

q1{2ταP�αQF2
.

For the notations, see Section 4.2.3. Since we assume p is odd now, pω�1
P ωQq 1

2 is well-
defined. Moreover, let gQ be a nearly ordinary cusp form obtained by specialization of G
at Q. Then there exists a nearly ordinary cusp form

hP,Q :�H
��

RwP�wQrθppq
pωPω�1

Q q� 1
2 ω1Pω

1
Q
�1
gQ


����
GL2pAF1 q

����� ep
�
b pωPω�1

Q q 1
2

���
AF1{F�

1

|�|αP�αQAF1

of

weight
�
kQ|F1 � 2wP |F1 � 2wQ|F1 , wP |F1 � pαP � αQq{2

�
,

character pωP , ω1P q ,
such that �pResF2{F1 ΘpG qq|ep

�
P
� |dF1 |AF,f pωPω�1

Q q 1
2 pdF1qpdF2{F1q

wQ�tF2
p ap�, hP,Qq,

where dF2{F1 � dF2d
�1
F1
.

Proof. It follows by direct computation by using Lemma 4.2.14 and [Hi91, Proposi-
tion 7.3]. □

Corollary 4.5.3. For any G P S pn2; I2qF2 , The element pResF2{F1 ΘpG qq|ep is an ele-
ment of S n,ordpn2 XOF1 ; I2qF1 .





CHAPTER 5

Integral formulas for computing local period integrals

5.1. An integral formula for triple local integrals and Rankin-Selberg local
integrals

In this section, F2{F1 denotes a quadratic extension of finite extension fields over Qp

for a prime number p. We fix a generator ϖFi P OFi of the maximal ideal OFi . When F2

is an unramified field extension over F1, we take ϖF2 � ϖF1 . We put qi :� #OFi{ϖFiOFi .
For x P F2, we denote by x the image of x under the non-trivial automorphism of F2 over
F1.

We fix a non-trivial additive character of F1

ψ : F1 ÝÑ C�.

For ξ P F�
2 with trF2{F1pξq � 0, we define an additive character of F2

ψξ : F2 ÝÑ C�; x ÞÑ ψptrF2{F1pxξqq,
which is trivial on F1. Note that the correspondence

ξ ÞÑ rx ÞÑ ψptrF2{F1pxξqqs
gives a bijection between the set of elements of F2 with trace-zero and that of additive
characters of F2 which are trivial on F1. A generator of the conductor of ψξ is given by
ϖcpψqξ�1D�1

F2{F1
, where cpψq is the exponent of the conductor of ψ, and DF2{F1 is a generator

of the different ideal of F2{F1. Note that the conductor of ψξ has a form of ϖr
F1
OF2 for

some integer r
Let π2 be an irreducible admissible representation of GL2pF2q with central character

ω2. For ξ P F�
2 with trF2{F1pξq � 0, let W pπ2, ψξq be the Whittaker model of π2 associated

with ψξ. For any non-archimedean local field L and irreducible admissible representation
π of GL2pLq, we define λpπq P R¥0 by

λpπq :�
#
0 if π is temperd,

maxt |Repλ1q|, |Repλ2q| u if π � πpχ1| � |λ1L , χ2| � |λ2L q is a principal series,

where χ1, χ2 are unitary characters. For any quasi-character η : L� Ñ C�, we define

λpηq � log |ηpπLq|L
logpqLq ,

where πL is a uniformizer of OL and qL is the order of the residue field of L.

Fix ξ P F�
2 with trF2{F1pξq � 0. For Whittaker functions W P W pπ2, ψξq and �W P

W pπ_2 , ψξq, we define

xW, �W y :�
»
F�
2

W

�
a 0
0 1


 �W � �a 0
0 1



d�F2

a,

ΦW,�W pgq :� xgW,�W y.
73
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Let G :� PGL2pF1q and K :� PGL2pOF1q. Let µ, ν : F�
1 Ñ C� be quasi-characters such

that pω2|F�
1
qµν is trivial on F�

1 . For f P Ind
GL2pF1q
BpF1q pµ⊠ νq and rf P Ind

GL2pF1q
BpF1q pµ�1 ⊠ ν�1q,

we define

xf, rfy0 :� »
K

fpkq rfpkq dk,
Φf, rf pgq :� xgf, rfy0.

Here, the dk is the invariant measure on G satisfying volpK, dkq � 1, and Ind
GL2pF1q
BpF1q pµ⊠νq

is the induction normalized by the modulus character of BpF1q � GL1pF1q, which is the
subgroup of upper triangular matrices.

For W P W pπ2, ψξq and f P Ind
GL2pF1q
BpF1q pµ⊠ νq, we define

Ψ
�
W, f

�
:�

»
NzG

W pgqfpgq dg,

rΨ�W, f� :� »
NzG

W pηgqfpgq dg,

where η :�
� �1 0

0 1



, and N :�

"�
1 �
0 1


*
is the subgroup composed of unipotent

upper triangular matrices.

For W P W pπ2, ψξq, �W P W pπ_2 , ψξq, f P Ind
GL2pF1q
BpF1q pµ ⊠ νq, and rf P Ind

GL2pF1q
BpF1q pµ�1 ⊠

ν�1q, we put

I
�
W ⊠ f,�W ⊠ rf� :� »

G

ΦW,�W pgqΦf, rf pgq dg.
Theorem 5.1.1. Assume

Λ :� maxtλpµq, λpνq u � 2λpπ2q   1

2
.

Then the integrals I
�
W ⊠ f,�W ⊠ rf�, Ψ�W, f�, and Ψ

��W, rf� converge absolutely, and we
have the following equality:

I
�
W ⊠ f,�W ⊠ rf� � |ξDF2{F1 |�1{2

F2

ζF2p1q
ζF1p1q

Ψ
�
W, f

� rΨ��W, rf�.
Proof. The absolute convergence of the above integrals is a consequence of the as-

sumption Λ   1{2 and [Bu97, Chapter 4, Proposition 4.7.2, Theorem 4.7.2 and Theorem
4.7.3].

We put q :� q1. We may assume ψ has a conductor OF1 . There exists ξ P F�
2 with

trF2{F1pξq � 0 and
ψpbq � ψξpa� bθq

for any a, b P F1, where θ P OF2 is an element with OF2 � OF1rθs. We note that the
conductor of ψξ is OF2 and |ξDF2{F1 |F2 � 1. We put

Kn :�
n¤
i�0

K

�
ϖi
F1

0
0 1



K.

We note that �
y x
0 1



P Kn ô q�n ¤ |y|F1 ¤ qn and |x|2F1

¤ qn|y|F1 .
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Let φn :� 1Kn be the characteristic function of Kn and let χn :� 1ϖnF1OF1
be the charac-

teristic function of ϖn
F1
OF1 . We put

In :�
»
G

ΦW,�W pgqΦf, rf pgqφ2npgq dg.

At first, we prove when F2{F1 is unramified. Formally, we have

In �
»
G

»
K

fpkgq rfpkq @π2pgqW, �WD
φ2npgq dk dg

�
»
K

»
K

»
F�
1

»
F1

f

��
y x
0 1



k1

 rfpkq

�
B
π2

��
y x
0 1



k1


W, π2pkq�WF

φ2n

�
y x
0 1



dF1x

d�F1
y

|y|F1

dk1 dk

�
»
K

»
K

fpk1q rfpkq »
q�2n¤|y|F1¤q2n

µpyq|y|�1{2
F1

�
»
F�
2

W

��
ay 0
0 1



k1

�W�� �a 0

0 1



k



�
»
F1

ψξpaxqχ�n�rordF1 pyq{2spxq dF1x d
�
F2
a d�F1

y dk1 dk.

Here, rrs is the smallest integer with rrs ¥ r. We put

Apk1, kq :�
»
q�2n¤|y|F1¤q2n

µpyq|y|�1{2
F1

»
F�
2

W

��
ay 0
0 1



k1

�W�� �a 0

0 1



k



� qn�rordF1 pyq{2s χn�rordF1 pyq{2s

�
a� a

θ � θ



d�F2

a d�F1
y dk1 dk.

Then we have

In �
»
K

»
K

fpk1q rfpkqApk1, kq dk1 dk,
Apk1, kq �

¸
mPZ

»
q�2n�m¤|y|F1¤q2n�m

µpϖ�m
F1
yq|ϖ�m

F1
y|�1{2
F1

�
»
O�
F2

W

��
uy 0
0 1



k1

�W�� �ϖm

F1
u 0

0 1



k



� qn�rordF1 pyϖ

�m
F1

q{2sχn�m�rordF1 pyϖ�m
F1

q{2s

�
u� u

θ � θ



d�F2

u d�F1
y.

Here ordF1 is the additive valuation such that ordF1pϖF1q � 1. Now, we focus on the
integration

Jm,n :�
»
q�2n�m¤|y|F1¤q2n�m

µpyq|y|�1{2
F1

»
O�
E

W

��
uy 0
0 1



k1

�W�� �ϖm

F1
u 0

0 1



k



� qn�rordF1 pyϖ

�m
F1

q{2sχn�m�rordF1 pyϖ�m
F1

q{2s

�
u� u

θ � θ



d�F2

u d�F1
y.

To confirm the commutation of the sum and integrations above, we prove the uniformly
convergence, namely, we claim that there exists a positive constant C ¡ 0 independent of
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k, and k1 such that»
q�2n�m¤|y|F1¤q2n�m

|ϖ�m
F1
y|λpπ1q�1{2
F1

»
O�
E

����W��
uy 0
0 1



k1

�W�� �ϖm

F1
u 0

0 1



k


����
� qn�rordF1 pyϖ

�m
F1

q{2sχn�m�rordF1 pyϖ�m
F1

q{2s

�
u� u

θ � θ



d�F2

u d�F1
y

¤ Cmq�mp2λpπ2q�λpπ1q�δ�1{2q

for any sufficiently small δ ¡ 0, where the constant C depends on δ.
Let us prove the claim. We take a sufficiently small open compact normal subgroup

H �GL2pOF2q such that

π2phqW � W, π2phq�W � �W for any h P H.
Since

|W | ¤
¸

σPGL2pOF2 q{H
|π2pσqW |,

|�W | ¤
¸

σPGL2pOF2 q{H
|π2pσq�W |,

we may assume that |W | and |�W | are GL2pOF2q-invariant. Thus there exists N ¡ 0 and
C1 ¡ 0 independent of m,n such that, for any k P GL2pOF2q and z P E�, we have����W��

z 0
0 1



k


����, �����W��
z 0
0 1



k


���� ¤ C1|z|�λpπ2q�δ�1{2
F2

1|z|¤qN(5.1.1)

for any sufficiently small δ ¡ 0. Here we use the result written in [Bu97, Chapter 4,
Proposition 4.7.2, Theorem 4.7.2 and 4.7.3].

We divide the integration as»
q�2n�m¤|y|F1¤q2n�m

�
»
q�2n�m¤|y|F1¤q2n�m
n�m¤rordF1 pyϖ�m

F1
q{2s

�
»
q�2n�m¤|y|F1¤q2n�m
n�m¡rordF1 pyϖ�m

F1
q{2s

� Im,n1 � Im,n2 .

Here, we denote by Im,n1 the first integration and by Im,n2 the second integration. For Im,n1 ,
by (5.1.1), there exists C2 ¡ 0 which is independent of m,n such that

Im,n1 ¤ C2mq
p2λpπ2q�λpπ1q�δ�3{2qm

�
»

q�2n�m¤|y|F1¤qN
n�m¤rordF1 pyϖ�m

F1
q{2s

|y|�2λpπ2q�λpπ1q�1{2
F1

|ordF1pyq| qn�rordF1 pyϖ
�m
F1

q{2s d�F1
y

¤
�
C2

»
|y|F1¤mintqN ,q�2n�m�1u

|y|�2λpπ2q�λpπ1q�1{2
F1

|ordF1pyq| d�F1
y

�
mqmp2λpπ2q�λpπ1q�δ�1{2q

We note that by this formula, we have

Im,n1 Ñ 0 if nÑ 8.(5.1.2)
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For Im,n2 , we have

I2 �
»
q�2n�m¤|y|F1¤q2n�m
n�m¡rordF1 pyϖ�m

F1
q{2s

|ϖ�m
F1
y|�1{2�λpπ1q
F1

»
O�
E

����W��
y 0
0 1



k1

�W�� �ϖm

F1
0

0 1



k


����
� qn�rordF1 pyϖ

�m
F1

q{2s χn�m�rordF1 pyϖ�m
F1

q{2s

�
u� u

θ � θ



d�F2

u d�F1
y

�
»
q�2n�m¤|y|F1¤q2n�m
n�m¡rordF1 pyϖ�m

F1
q{2s

|ϖ�m
F1
y|�1{2�λpπ1q
F1

�
»
O�
F�ϖ

n�m�rordF1
pyϖ�m

F1
q{2s

F1
OF

dF1u1 dF1u2

����W��
y 0
0 1



k1

�W�� �ϖm

F1
0

0 1



k


����
� qn�rordF1 pyϖ

�m
F1

q{2s d�F1
y,

�
�
1� 1

q


�1

qm
»
q�2n�m¤|y|F1¤q2n�m
n�m¡rordF1 pyϖ�m

F1
q{2s

|ϖ�m
F1
y|�1{2�λpπ1q
F1

�
����W��

y 0
0 1



k1

�W�� �ϖm

F1
0

0 1



k


���� d�F1
y.

By using (5.1.1), we have

Im,n2 ¤
��

1� 1

q


�1

C1

»
|y|F1¤qN

ordF1pyq |y|�2λpπ2q�λpπ1q�1{2 |y| d�F1
y

�
�mqmp2λpπ2q�λpπ1q�δ�1{2q

for any sufficiently small δ ¡ 0. We have proved the claim.
As above, we divide the integration Jm,n as

Jm,n �
»
q�2n�m¤|y|F1¤q2n�m
n�m¤rordF1 pyϖ�m

F1
q{2s

�
»
q�2n�m¤|y|F1R¤q2n�m
n�m¡rordF1 pyϖ�m

F1
q{2s

� Jm,n1 � Jm,n2 ,

where we denote by Jm,n1 the first integration and by Jm,n2 the second integration.
To prove the formula of Theorem 5.1.1, it suffices to prove that

Jm,n1 ÝÑ
nÑ8

0

Jm,n2 ÝÑ
nÑ8

ζF2p1q
ζF p1q

»
F�

µpyq|y|�1{2W
��

y 0
0 1



k1


d�F y,

�
»
O�
F

|ϖF1 |�m{2�W�� �ϖm
F1
u 0

0 1



k



d�Fu.
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By (5.1.2) and |Jm,n1 | ¤ Im,n1 , we immediately have the first assertion. For the second
assertion, by the same calculation as Im,n2 , we have

Jm,n2

� ζF2p1q
»
q�2n�m¤|y|F1¤q2n�m
n�m¡rordF1 pyϖ�m

F1
q{2s

|ϖ�m
F1
y|�1{2
F1

�
»
O�
F

»
ϖ
n�m�rordF1

pyϖ�m
F1

q{2s

F1
OF

W

��
ypu1 � u2θq 0

0 1



k1

�W�� �ϖm

F1
pu1 � u2θq 0
0 1



k



� qn�rordF1 pyϖ

�m
F1

q{2s dF1u2 dF1u1 d
�
F1
y.

Fix a sufficiently largeM ¡ 0 such that gW � W and g�W � �W for any g P
�

1�ϖM
F1
OE 0

0 1



.

We divide Jm,n2 as

Jm,n2 �
»

q�2n�m¤|y|F1¤q2n�m
n�m�rordF1 pyϖ�m

F1
q{2s¡M

�
»

q�2n�m¤|y|F1¤q2n�m
M¥n�m�rordF1 pyϖ�m

F1
q{2s¡0

� pJm,n2 q1 � pJm,n2 q2.
Here we denote by pJm,n2 q1 (resp. pJm,n2 q2) the first (resp. second) integration. For pJm,n2 q1,
we have

pJm,n2 q1 �ζF2p1q
»
q�2n�m�2M¤|y|F1¤q2n�m

µpyq|y|�1{2
F1

�
»
O�
F

W

��
yu1 0
0 1



k1


d�F1

y |ϖF1 |�m{2 �W�� �ϖm
F1
u1 0

0 1



k



dF1u1

� ζF2p1q
ζF1p1q

»
q�2n�m�2M¤|y|F1¤q2n�m

µpyq|y|�1{2
F1

W

��
y 0
0 1



k1


d�F1

y

�
»
O�
F

|ϖF1 |�m{2F1
�W�� �ϖm

F1
u1 0

0 1



k



d�F1

u1.

On the other hand, pJm,n2 q2 is estimated as follows (in the same manner as Im,n2 )

|pJm,n2 q2|

¤
��

1� 1

q


�1

C1

»
q�2n�m¤|y|F1¤q�2n�m�2M�1

ordF1pyq |y|�2λpπ1q�λpπ1q�1{2 |y| d�F1
y

�
�mqmp2λpπ2q�λpπ1q�δ�1{2q

Hence we have pJm,n2 q2 Ñ 0 (n Ñ 8). Therefore, The proof of Theorem 5.1.1 is complete
when F2{F1 is unramified.

Finally, we shall prove Theorem 5.1.1 when F2{F1 is ramified. We take θ as ϖF2 . By
the similar calculation as above, we have

Apk1, kq �
8̧

m�0

Jm,n,0 �
8̧

m�0

Jm,n,1.(5.1.3)
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where for ε � 0, 1, we put

Jm,n,ε

:�
»
q�2n�m¤|y|F1¤q2n�m

µpyq|y|�1{2
F1

»
O�
E

W

��
uϖε

F2
y 0

0 1



k1

�W�� �ϖm

F1
ϖε
F2
u 0

0 1



k




� qn�rordF1 pyϖ
�m
F1

q{2s χn�m�rordF1 pyϖ�m
F1

q{2s

�
ϖε
F2
u�ϖε

F2
u

ϖF2 �ϖF2

�
d�F2

u d�F1
y.

We can prove there exists C3 ¡ 0 which is independent of m,n such that

Jm,n,ε   C3mq
2λpπ2q�λpπ1q�δ�1{2

for any sufficiently small δ ¡ 0 in the same manner as before. Hence, the equality (5.1.3)
makes sense. Since

ϖF2u�ϖF2u

ϖF2 �ϖF2

is a unit, by the similar calculation as Jm,n1 , we have

Jm,n,1 ÝÑ 0 pn ÝÑ 8q.
For Jm,n,0, we can also apply the same method for the estimation of Jm,n (actually, the
calculation is slightly simpler since a� bϖF2 P O�

F2
if and only if a P O�

F1
), we have

Jm,n,0 ÝÑ
nÑ8

ζF2p1q
ζF1p1q

�
»
F�

µpyq|y|�1{2
F1

W

��
y 0
0 1



k1


d�F y»

O�
F

|ϖF1 |�m{2F1
�W�� �ϖm

F1
u 0

0 1



k



d�Fu.

The proof of Theorem 5.1.1 is complete. □

5.2. Asai L-functions and its functional equation.

5.2.1. Asai L-functions and Rankin-Selberg integrals. The notations are the
same as in the previous section. In this subsection, we define an Asai L-function using
Rankin-Selberg integrals. Let π2 be an infinite dimensional irreducible admissible repre-
sentation of GL2pF2q with central character ω2. As in previous section, we fix an element
ξ P F�

2 with trF2{F1pξq � 0.
Let SpF 2

1 q be the space of Bruhat-Schwartz functions on F 2
1 . For any Φ P SpF 2

1 q and
W P W pπ2, ψξq, we define a function on s P C by

Zps,W,Φq :�
»
NpF1qzGL2pF1q

W pgqΦpp0, 1qgq | detpgq|sF1
dg,

where we normalize the invariant measure so that volpGL2pOF1q, dgq � 1. We note that
Zps,W,Φq converges absolutely for sufficiently large Repsq, and is analytically continued
to the whole complex plane as a meromorphic function. Moreover, it is an element of
Crqs1, q�s1 s. The C-vector space generated by Zps,W,Φq’s forW P W pπ2, ψξq and Φ P SpF 2

1 q
is actually an ideal of Crqs1, q�s1 s. There exists P pXq P CrXs with P p0q � 1 such that this
ideal is generated by P pq�s1 q�1 (see [Kab04, p.801] or [Fl93, Appendix, Theorem]).

We define the Asai L-function by

LRSps,Asπ2q :� 1

P pq�s1 q .
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This function satisfies the following functional equation (see [Kab04, Theorem 3] or [Fl93,
Appendix, Theorem]):

Zp1� s,W b ω�1
2 , pΦq

LRSp1� s,Asπ_2 q
� ω2p�1qεps,Asπ2, ψ, ξq Zps,W,Φq

LRSps,Asπ2q ,(5.2.1)

where there exists c P C� and m P Z depending only on π2, ψ, and ξ such that

εRSps,Asπ2, ψ, ξq :� cq�ms1 ,

and pΦpx, yq :� »
F1�F1

Φpu, vqψpuy � vxq du dv.
Here du dv is the self-dual measure associated with F1 � F1 Ñ C; px, yq ÞÑ ψpx � yq. We
note that for any a P F�

1 , we have

εRSps,Asπ2, ψa, ξq � ω2
2paq |a|4s�2

F1
εRSps,Asπ2, ψ, ξq,

εRSps,Asπ2, ψ, aξq � ω2paq |a|2s�1
F1

εRSps,Asπ2, ψ, ξq,
where ψapxq :� ψpaxq.

There are other definitions of the Asai L-function. By applying the Langlands-Shahidi
method ([Sha90]) to Up2, 2q, we have another L-function whose inverse is an element of
Crqs1, q�s1 s. We denote it by

LLSps,Asπ2q.
Moreover, let ρ2 be the representation of the Weil-Deligne group of F2 corresponding to π2
via the local Langlands correspondence . We define the L-function

LGalps,Asπ2q
as the L-function for the multiplicative induction of ρ2 (see [Pra92, Section 7]).

It is known that LRS, LLS, and LGal are the same by [Hen10, Section 1.5, Théorèm],
[Mat09, Theorem 1.3], and [AR05, Theorem 1.6] (see also [?, Theorem 4.2] and the
paragraph following it). Therefore, we denote

Lps,Asπ2q :� LRSps,Asπ2q � LLSps,Asπ2q � LGalps,Asπ2q.
5.2.2. Intertwining operators and functional equations. We discuss the relation

between intertwining operators and functional equations. Put

γps,Asπ2, ψ, ξq :� εRSp1{2,Asπ2, ψ, ξq Lp1� s,Asπ_2 q
Lps,Asπ2q .

For any quasi-character µ0 : F�
1 ÝÑ C�, g P GL2pF1q, and Φ P SpF 2

1 q, we define an
element of

Ind
GL2pF1q
BpF1q p|�|s�1{2

F1
⊠ µ0|�|�s�1{2

F1
q

by

z
�
s, µ0, Φ

�pgq :� | detpgq|sF1

»
F�
1

pgΦqp0, tqµ�1
0 ptq |t|2sF1

d�F1
t.

By a direct computation, we have

Z
�
s, W, Φ

� � »
NpF1qzPGL2pF1q

W pgq zps, ω�1
2 ,Φqpgq dg

� Ψ
�
W, z

�
s, ω�1

2 , Φ
��
.
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For quasi-characters µ, ν : F�
1 Ñ C� with µ � ν, and for any element

h P Ind
GL2pF1q
BpF1q pµ⊠ νq,

we define
Mh P Ind

GL2pF1q
BpF1q pν ⊠ µq

by the analytic continuation of the following integral

Mhpgq :�
»
F1

h

�
τ1

�
1 x
0 1



g



dx,

where τ1 :�
�

0 1
�1 0



; see [Bu97, Section 4.5]). Hence we have

M : Ind
GL2pF1q
BpF1q pµ⊠ νq ÝÑ Ind

GL2pF1q
BpF1q pν ⊠ µq.

When µν�1 � | � |�1, it becomes an isomorphism. When µν�1 � | � |, it is a zero-
homomorphism. When µν�1 � | � |�1, it induces an isomorphism from the irreducible

quotient Ind
GL2pF1q
BpF1q pµ⊠ νq to the irreducible subspace of Ind

GL2pF1q
BpF1q pν ⊠ µq.

Lemma 5.2.1. Let µ, ν : F�
1 ÝÑ C� be quasi-characters such that µ � ν and pω2|F�

1
qµν

is trivial on F�
1 . We assume that

λpπ2q �maxtλpµq, λpνqu   1{2.
For W P W pπ2, ψξq and f P Ind

GL2pF1q
BpF1q pµ⊠ νq, we have

rΨ�W, Mf
� � µp�1qεp0,1, ψq γp1{2,Asπ2 b µ, ψ, ξq

γp0, µν�1, ψq Ψ
�
W, f

�
,

where Ψ and rΨ are as in Section 5.1 and τ1 :�
�

0 1
�1 0



.

Proof. Let
SpF 2

1 q0 :�
 
Φ P SpF 2

1 q
�� Φp0, 0q � 0

(
.

For any Φ P SpF 2
1 q0, the function s ÞÑ zps, µ,Φq is an entire function. The GL2pF1q-

invariant homomorphism

SpF 2
1 q0 Q Φ ÞÑ z

�
1{2, νµ�1, Φ

� P Ind
GL2pF1q
BpF1q p1⊠ νµ�1q

is surjective since this map is non-zero and the right hand side Ind
GL2pF1q
BpF1q p1⊠ νµ�1q is an

irreducible representation of GL2pF1q. We take an element Φ P SpF 2
1 q0 satisfying

z
�
1{2, νµ�1, Φ

� � f b µ�1.

On the other hand, by [Jac72, the proof of Theorem 14.7], for Φ P SpF 2
1 q, we have

z
�
1� s, µν�1, pΦ�b νµ�1 � νµ�1p�1qγp2s� 1, µν�1, ψq

εp0,1, ψq Mz
�
s, νµ�1, Φ

�
.

(Note that the measure used to define the intertwining operator satisfies volpOF , dxq � 1.
But in [Jac72], the self-dual measure associated with ψ is used for it. Thus there is a
difference between the above formula and that in [Jac72]). By the above formula, we have

rΨ�W, Mf
� � εp0,1, ψq

γp0, µν�1, ψqZ
�
1{2, W b ν, pΦ�.

By combining it with the functional equation (5.2.1), the assertion follows. □
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5.3. A relation between pairings on different models

The notations are the same as in the previous section. We denote F � F1. We define

Wf pgq :� εp0, ν�1, ψq�1 lim
NÑ8

»
ϖ�N
F OF

f

�
τ1

�
1 x
0 1



g



ψ�1pxq dx

for f P Ind
GL2pF q
BpF q pµ⊠ νq (for this integral, we do not need the condition µ � ν). The limit

exists and gives an element of the space of Whittaker functions W pπ, ψq, where π is the

unique irreducible infinite dimensional subquotient of Ind
GL2pF1q
BpF1q pµ ⊠ νq. For µ � ν, we

define a GL2pF q-invariant pairing
jπ : Ind

GL2pF q
BpF q pµ⊠ νq � Ind

GL2pF q
BpF q pν�1 ⊠ µ�1q ÝÑ C

by

jπpf, hq :�
»
K

fpkqMhpkq dk,
where K � PGL2pOF q and dk is normalized so that volpK, dkq � 1. The pairing jπ induces
an invariant pairing

jπ : π � π_ Ñ C
and we denote it by the same symbol jπ. Therefore, there exists a constant C P C such
that

C � jπpf, hq � iπpWf ,Whq.
The constant C can be determined explicitly as follows:

Proposition 5.3.1. Assume µ � ν. Then the constant C is described as

C � µp�1q Epπ,Adq,
where

Epπ,Adq :� εp0, π b ν�1, ψq
εp0, µ, ψq εp0, ν�1, ψqLp1, π_ b νqLp1,Adπq

ζF ptq
Lpt, π b ν�1q

����
t�0

,

�

$'''&'''%
εp0,1, ψq εp0, µν�1, ψq

εp0, µ, ψq εp0, ν�1, ψqLp1, µν�1qLp0, µν�1q if π � πpµ, νq,

εp0, Stb |�|�1{2
F , ψq

εp0, ν|�|�1
F , ψq εp0, ν�1, ψq if π � Stb ν|�|�1{2

F .

Proof. Let

Im :�
"
x P GL2pOF q

���� x � � � �
0 �



mod ϖm

F OF

*
.

We take a unique element

f P Ind
GL2pFq
BpFq pµ⊠ νq

characterized by

fpτ1q � 1,
nf � f for n P NpOF q,

f

��
1 0
u 1




� 0 for u P ϖFOF .
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The uniqueness follows from [Hi89-2, Corollary 2.2]. By the uniqueness, for sufficiently

large m P Z¡0, and for u �
�
a b
c d



P Im, we have

uf � µpdq νpaq f.
Thus we have

volpIm, dkq�1 jπ
�
τϖmF f, Mf b µ�1ν�1

�
�

¸
uPOF {ϖmF OF

τϖmF f

�
τ1

�
1 0
u 1




Mf b pµνq�1

�
τ1

�
1 0
u 1





�
¸

uPϖFOF {ϖmF OF

τϖmF f

��
1 0
u 1




Mf b pµνq�1

��
1 0
u 1




.

Here, τϖmF :�
�

0 1
�ϖm

F 0



and we denote the image of Im in K by Im. By using the

well-known formula for matrices:�
1 0
x 1



�
� �x�1 �1

0 �x

�

0 1
�1 0


�
1 x�1

0 1



,

all terms but τϖmF fp1q are zero. Since

Mf b pµνq�1p1q � 1,

volpIm, dkq � |ϖm
F |
ζF p2q
ζF p1q ,

We have

jπ
�
τϖmF f, Mf b µ�1ν�1

� � ν|�|1{2pϖm
F q

ζF p2q
ζF p1q .

On the other hand, note that

Wf

��
a 0
0 1




� εp0, ν�1, ψq�1 ν|�|1{2paq1

ϖ
cpψq
F OF

paq,

where cpψq is the exponent of the conductor of ψ. Thus for sufficiently large m P Z, we
have

ζF p1qLp1,Adπq
ζF p2q iπ

�
τϖmF Wf , Wfbµ�1ν�1

�
� εp0, µ�1, ψq�1

»
F�

τ1Wf

��
a 0
0 ϖm

F




ν|�|1{2p�aq1

ϖ
cpψq
F OF

paqµνp�aq�1 d�a

� εp0, µ�1, ψq�1 µp�1q ν|�|1{2F pϖm
F q

»
F�

τ1Wf

��
a 0
0 1




µ|�|1{2F paq d�a.

The last equality follows since the support of τ1Wf

��
a 0
0 1




is bounded and m is

sufficiently large. By the functional equation for an irreducible admissible representation
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of GL2pF q, it is equal to
εp0, µ�1, ψq�1 µp�1q ν|�|1{2F pϖm

F q

�
�
γp1� t, π b ν�1, ψq

»
F�

Wf

��
a 0
0 1




ν�1|�|1{2�tF paq d�a


����
t�1

� µp�1q ν|�|1{2F pϖm
F qLp1,Adπq Epπ,Adq.

Thus we have the desired formula. □

5.4. Epsilon-factors of Asai L-functions

We rewrite Theorem 5.1.1:

Theorem 5.4.1. Let π2 be an irreducible admissible representation over GL2pF2q with
central character ω2 and fix ξ P F�

2 with trF2{F1pξq � 0. Let µ, ν : F�
1 ÝÑ C� be a

quasi-character such that pω2|F�
1
qµν � 1. We assume that

maxtλpµq, λpνqu � λpπ2q   1

2
.

For any W P W pπ2, ψξq, �W P W pπ_2 , ψξq, f P Ind
GL2pF1q
BpF1q pµ ⊠ νq, and rf P Ind

GL2pF1q
BpF1q pν�1 ⊠

µ�1q, we have

I
π2⊠Ind

GL2pF1q

BpF1q
pµ⊠νq

�
W ⊠Wf , �W ⊠W rf

�
� |ξDF2{F1 |�1{2

F2

|ϖF1 |pcpµq�cpνqq{2F1
εRSp1{2,Asπ2 b µ, ψ, ξq

εp1{2, µ, ψq εp1{2, ν�1, ψqLp1{2,Asπ2 b µq2 Ψ
�
W, f

�
Ψ
��W, rf�.

Proof. When µ � ν, it follows from the formal calculations by applying Proposition
5.3.1, Theorem 5.1.1, and Corollary 5.2.1. By analytic continuation, the formula holds
even when µ � ν. □

Corollary 5.4.2. The notations are the same as in Theorem 5.4.1. If µ � ν (hence
ω2|F�

1
µ2 � 1), we have

εRS

�
1{2, Asπ2 b µ, ψ, ξ

� � 1.

Proof. We take a unique element

f P Ind
GL2pF1q
BpF1q pµ⊠ µq

characterized by

fpτ1q � 1,
nf � f for n P NpOF1q,

f

��
1 0
u 1




� 0 for u P ϖF1OF1 .

By a direct computation, we have

jπpf, fq � ζF p2q
ζF1p1q

,

iπ
�
Wf , Wf

� � ζF1p2q
ζF1p1q3

.
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Thus for h,rh P Ind
GL2pF1q
BpF1q p1⊠ 1q, we have

iπ1
�
Wh, Wrh

� � ζF p1q�2

»
K

hpkqrhpkq dk.
By applying Theorem 5.1.1 and Corollary 5.2.1, we have

Iπ2⊠π1
�
W ⊠Wf , �W ⊠W rf

�
� |ξDF2{F1 |�1{2

F2
|ϖ|pcpµq�cpνqq{2 Lp1{2,Asπ2 b µq�2Ψ

�
W, f

�
Ψ
��W, rf�.

Therefore by comparing this with the formula of the theorem above, we have the corollary.
□

Remark 5.4.3. Assume π2 is a distinguished discrete series representation. By com-
bining Corollary 5.4.2 with the result of Anandavardhanan [Ana08, Theorem 1.1], we
have

ω�1
2 pξq |ξ|�s�1{2

F2
εp1{2, χF2{F1 , ψq εRSps,Asπ2, ψ, ξq � εps,Asπ2, ψq.

where χF2{F1 is the quadratic character associated with the extension F2{F1 and the ε-
factor of the right hand side is defined from the Langlands-Shahidi method. We expect
that the above equality holds for any generic representation π2.





CHAPTER 6

Constructions of p-adic L-functions for twisted triple products

In this section, we assume that p is odd. Let F {Q be a real quadratic extension with
the discriminant D P Z¡0. Let IF � tσ, ρu be the set of embeddings from F to C. We
assume that p is not split and denote by p the prime ideal of OF above p.

For convenience, we give a table of local L-functions for a irreducible admissible repre-
sentation π over GL2pF q for a local field F below. Let q be the order of residue field of F
for each non-archimedean place v.

π Lps, πq Lps,Adπq
v   8 πpµ, νq Lps, µqLps, νq ζF psqLps, µν�1qLps, νµ�1q

Stb χ Lps� 1{2, χq ζF ps� 1q
v|8 σk�1 ΓCps� pk � 1q{2q ΓRps� 1qΓCps� k � 1q

(6.0.1)

Here, let η : F� ÝÑ C be a continuous group homomorphism if F is non-archimedean , we
define

Lps, ηq :�
#
p1� ηpϖqq�sq�1 if η is unramified,

1 otherwise,

ΓRpsq :� π�
s
2Γ

�s
2

	
,

ΓCpsq :� 2p2πq�sΓpsq

ζF psq :�

$'&'%
p1� q�sq�1 if F is non-archimedean,

ΓRpsq if F � R,
ΓCpsq if F � C.

6.1. The review of Ichino’s formula

Let F be a totally real fields and E a étale cubic algebra over F such that the image
of any F -algebra homomorphism E Ñ C is contained in R. Let D be a (not necessarily
definite) quaternion algebra over F of discriminant n� and let DE :� D bF E. Let Π �
b1
vΠv be an irreducible unitary cuspidal automorphic representation of GLpAEq with central

character trivial on A�
F . We suppose that there exists an irreducible unitary automorphic

representation ΠD of D�pAEq associated with Π by the Jacquet-Langlands correspondence.
We define the element of

I P HomD�pAF q�D�pAF q
�
ΠD ⊠ pΠDq_,C�

by

Ipϕ⊠ ϕ_q :�
»
A�FD�pF qzD�pAF q

»
A�FD�pF qzD�pAF q

ϕpxqϕ_pyq dxdy,

87



88 6. CONSTRUCTIONS OF p-ADIC L-FUNCTIONS FOR TWISTED TRIPLE PRODUCTS

for ϕ P ΠD and ϕ1 P pπDq_, where dx and dy are the Tamagawa measure on A�
F zDpAF q.

We define

B P HomD�pAEq�D�pAEq
�
ΠD ⊠ pΠDq_,C�

be an invariant pairing by

Bpϕ, ϕ1q :�
»
A�EDpEqzDpAEq

ϕpxqϕ1pxqdx,

for ϕ P ΠD and ϕ1 P pπDq_, where the measure dx is the Tamawagawa measure. For each
place v of F , we fix an element

Bv P HomD�pAFv q�D�pAFv q
�
ΠD
v ⊠ pΠD

v q_,C
�

and assume for any b1
vϕv P b1

vΠ
D
v and b1

vϕ
1
v P b1

vpΠD
v q_,

Bvpϕv, ϕ1vq � 1

for almost all v. Then there exists C1 P C� such that

B � C1

¹
v

Bv.

For b1
vϕv P b1

vΠ
D
v and b1

vϕ
1
v P b1

vpΠD
v q_,

IΠDv
pϕq :� ζFvp2q

ζEvp2q
Lp1,AdΠvq
Lp1{2,Πvq

»
F�
v zD�pFvq

BvpΠD
v pgqϕv, ϕ1vq dvx,

Here, let G :� ResE{F GL2 and let pG be the dual group. Lps,AdΠvq’s and Lps,Πvq’s are
defined by representations Cb3 and Liep pGq{LiepZp pGqq respectively of LG � GL2pCq3 ⋊
GalpF {F q, where GalpF {F q acts on it as S3 through the permutation of SpecpE �F F q.
The measures dvx are invariant measures defined as follows:


 In the case Fv is nonarchimedean and DpFvq is a division algebra, let Rv is the
max order of DpFvq and define dvx such that

volpO�
Fv
zR�

v , dvxq � 1.


 In the case Fv is nonarchimedean and DpFvq is a matrix algebra, we define dvx
satisfying

volpO�
Fv
zDpOFvq, dvxq � 1.


 In the case Fv � R and DpFvq is a division algebra, we define dvx such that

volpR�zDpRq, dvx{d�tq � 1,

where d�t is an invariant measure on R defined by d�t � dt{|t|R (Here, dt is a
invariant measure on R with volpr0, 1s, dtq � 1).


 In the case Fv � R and DpFvq is a matrix algebra, we define

dvx � 1

2π

dxdy

|y|2R
dθ

for the coordinate

x �
�

1 a
0 1


�
y 0
0 1


�
cos θ sin θ
� sin θ cos θ



pa P R, y P R�, θ P r0, 2πqq.

Here, dx and dy are a invariant measure on R such that the volume of r0, 1s is
one.
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We remark that by [IP, Lemma 6.1], we have

dx � CD{F
¹
v

1
dvx,

where
CD{F :� p4π2qrp2πqrF :Qs�r|dF |2AF,f ζ

p8q
F p2q�1

¹
v 8

DpFvq: division

pqv � 1q�1,

where dF P AF,f such that dFOF is equal to the absolute different ideal DF {Q, r is the
number of the infinite places v such that DpFvq are division algebras. Ichino’s formula
[Ich08] is as follows:

Theorem 6.1.1. For ϕ � b1
vϕv P ΠD and ϕ1 :� b1

vϕ
1
v P pΠDq_ such that

Bpϕ, ϕ1q � 0,

we have
Ipϕ, ϕ1q
Bpϕ, ϕ1q �

CD{F
2c

� ζEp2q
ζF p2q �

Lp1{2,Πq
Lp1,AdΠq �

¹
v

IΠDv
pϕv, ϕ1vq

Bvpϕv, ϕ1vq
,

where c is the number of connected components of SpecpEq.
6.2. Constructions of p-adic L-functions for unbalanced twisted triple

products

6.2.1. Setting. Let f0 P Sk,wpK1ppspω1q, ω1qqQ be normalized Hilbert cuspidal eigen-

form over Q and let g0 P Sh,vpK1ppspω2qq, ω2q{F be normalized at
?
D
�1
. Both of them are

ordinary at each place dividing p and new at each place dividing outside p. We assume
the following conditions:

k1 ¥ hσ � hρ,

ω1 � ω2|Cl�F1
pn1p8q,

where H is the subgroup of Cl�F pp8q � GF such that

Cl�F pp8q � Cl�F pp8qppq �H

is a decomposition into p-sylow group and the subgroup H composing of elements of order
being prime to p. Let I1 and I2 be a sufficiently large integrally closed domain. Suppose
that both of them are finite over a component of the normalizer of OrrGF ss and H acts on
both of I1 and I2 via χ. We denote by Ki the fraction field of Ii. We define X arithpIiq as
in (4.4.4).

6.2.2. The p-adic interpolation of Petersson inner products. Let

λ1 : h
n,ordp1;Oq ÝÑ I1

be a Hida family on the f0 and we denote by F P S n,ordpp1q; I1q the lift of f1 defined
by λ1. We note that for each P P X arithpI1q, the weight of the specialization P � F
is pkP |Q � 2tQ, wP |Q � tQq and its character is the restriction of pωP , ω1P q to GQ. Since

hn,ordpp1q;Oq has no nilpotent element, we have a decomposition as a K1-algebra

hn,ordpp1q;Oq bI1 K1 � K1 � B,
where the projection hn,ordpp1q;Oq Ñ K1 is identical to λ1. We denote by 1λ1 P hn,ordpp1q;OqbI1
K1 the idempotent corresponding to p1, 0q of the right hand side above. Let G P S n,ordpp1q; I2q
be a lift of g0, namely, P pG q � g0.
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Definition 6.2.1. We define the square root of p-adic L-function in K1pbOI2 as

LppF b G q :� @
1λ1 , ResF {Q pΘpG qq

�� epD ,
where the pairing is the one defined in (4.4.6).

For any nonzero ideal a P Z, let

τa,q :�
�

0 1
�qordqpaq 0



P GL2pQqq

τ8 :�
� �1 0

0 1



P GL2pRq

and define
τa :� τ8

¹
q

τa,q P GL2pAQq.

For f, g P Sk,wpK1ppsq, ω1q, we define

xf, gyps :�
»
PGL2pAF1 q

pτpsf1qpxqf2pxqω1pdetpxqq�1| detpxq|�r2w�ksAF1
dx,

where dx is the Tamagawa measure. We have the following interpolation formula by
Theorem :

Theorem 6.2.2. For P bQ P X arithpI1pbOI2q satisfying the following condition

2wP � 2wQ � kP � kQ � tF ¥ 0

and the denominator of LppF bG q is not contained in the kernel of P . Then for suffiently
large s, we have

pP bQqpLppF b G qq �
?
D
wQ�tF2
p

xFP , hP,Qyps
xFP ,FP yps ,

where hP,Q is defined in Theorem 4.5.2.

Proof. It follows immediately from Theorem 4.5.2. □
6.2.3. Ichino’s formula for GL2. We rewrite Ichino’s formula ([Ich08]) for GL2 by

means of Waldspurger’s formula [Wal85, Proposition 6] for our setting. For convenience,
we often denote Q and F by F1 and F2. For Pi P X arithpIq. We put

f1pxq :� FP1pxq| detpxq|�
r2wP1

�kP1
s

2
AQ

f2pxq :� GP2pxq| detpxq|�
r2wP2

�kP2
s

2
AF

which have unitary central characters ωP1 and ωP2 respectively. Let ψ1 :� e be an additive

character on AF {F and let ξ :� ?
D
�1

and define

ψ2pxq :� eF pξxq.
Let πi be an irreducible automorphic representation generated by fui . We fix an isomor-
phism

πi �â
v

1
πi,v,(6.2.1)

where for each place vi of Fi we fix an isomorphism between πi,vi and its Whittaker model
W pπi,vi , ψi,viq and for unramified non-archimedean place vi, the isomorphisms above are



6.2. CONSTRUCTIONS OF p-ADIC L-FUNCTIONS FOR UNBALANCED 91

determined by spherical vector W 0 P W pπi,vi , eFvi q such that W 0p1q � 1. In addition, we
assume that the isomorphism above satisfies for any ϕi P πi corresponding to bviϕi,vi PÂ1

vi
πi,v,

Wϕipgq �
¹
vi

ϕi,vpgvq,

where

Wϕipgq :�
»
AFi{Fi

ϕi

��
1 x
0 1



g



ψip�xqdx,

where dx is the self dual measure associated with ωi Here, we take dg as the Tamagawa
measure on PGL2pAFiq. For each non-archimedean (resp. archimedean) place v, we fix a
GL2pFi,vq (resp. pgl2pRq,Op2qq)-invariant pairing

iπi,vpW,W 1q :� ζFi,vp2q
ζFi,vp1qLp1,Adπi,vq

xW,W 1yv.

Here, we define

xW,W 1yv :�
»
F�
i,v

W p
�
a 0
0 1



qW 1p

� �a 0
0 1



qd�a,

where d�a is an invariant measure on F�
i such that volpO�

Fi
, da�q � 1. Suppose π_i holds

the same assumption as πi. By the formula proved in [Wal85, Proposition 6], we have

Bπi �
2|dFi |1{2AFi

Lp1,Adπiq
ζFip2q

¹
v

iπi,vi(6.2.2)

where dFi P AFi is an element such that dFiOFi is equal to the different ideal of Fi{Q. Note
that in [Wal85], they use the self dual measure to define the measure d�a for the paring
of the Whittaker model. Let E :� Q� F . and let

Π :� π1 ⊠ π2

We chose the paring B as follows:

BΠv1
:� iπ1,v1 b iπ2,v1 : Πv b Π_

v ÝÑ C
By Ichino’s formula, we have

Theorem 6.2.3. Let ϕ P Π and ϕ1 P Π_ be elements corresponding tob1
v1
ϕv1 P

Â1
v1
Πv1

and b1
v1
ϕ1v1 P

Â1
v1
Π_
v1
, respectively. Then we have

IΠpϕb ϕ1q � Lp1{2,Πq
D1{2ζF1p2q2

¹
v1

IΠv1
pϕv1 b ϕ1v1q.

We determine the local test vectors π1,v (resp. π2,w) corresponding to f1 (resp. f2). For
an archimedian place v (resp. w (w P IF )), Wv (resp. W 1

w) is an element of the discrete
series representations σkP1�1 (resp. σhP2,w�1 of the positive lowest weight k (resp. hP2,w)
and we take Wv P σkP1�1 (resp. W 1

w P σhP2,w�1) as a unique element satisfying

Wv

��
a 0
0 1


�
cos θ sin θ
� sin θ cos θ




� |a|k{2R e�2π|a|R e

?�1kθ,

(resp. W 1
w

��
a 0
0 1


�
cos θ sin θ
� sin θ cos θ




�
�
|a|R{

?
D
	hw{2

e�2π|a|R{
?
De

?�1hwθ ).
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For non-archimedean v (resp. w) being prime to p, let Wv (resp. W
1
w) be a spherical vector

of W pπ1,v, ψ1,vq (resp. W pπ2,w, ψ2,wq) such that

Wvp1q � 1 presp. W 1
wp1q � 1q

For v � p (resp. w � p), we define the ordinary vector ϕ1,p (resp. ϕ2,pq as follows: when
π1,p (resp. π2,p is principal series, we take a unique element

fp P Ind
GL2pQpq
BpQpq pµ1 ⊠ ν1q presp. gp P Ind

GL2pFpq
BpFpq pµ2 ⊠ ν2qq

characterized by

fppτ1q � 1,
nfp � fp for n P NpZpq,

fp

��
1 0
u 1




� 0 for u P pZp

���� resp.

gppτ1q � 1,
ngp � gp for n P NpOF q,

gp

��
1 0
u 1




� 0 for u P ϖFOF .

���
,
and define

Wp :� εp0, ν�1
1 , ψpqWfp presp. W 1

p :� εp0, ν�1
2 , ψF,pqWgpq.

When the local representation is special, we define the vectors by replacing µi by νi| � |�1.

Remark 6.2.4. Let apfi, pq be the p-th Fourier coefficient of fi, then we have

apf1, pq � ν1ppq ppk�1q{2,

apf2, pq � ν2pϖFpq |ϖFp |�phσ�hρ�2q{2
p .

and the ordinary condition for f (resp. g) is equivalent to |ν1ppq|p � ppk�1q{2 (resp. |ν2ppq|p �
pphσ�hρ�2q{2).

When π1,p is spherical, there exists a elliptic modular form rf of level 1 such that

f � rf � µ1ppq p�1{2 rf.
Thus we define in general

rf � #rf : defined as above if πf,p is spherical,

f otherwise.

For each place v of Q, we denote ϕ2,v :� ⊠w|vW 1
w. We assume that»

AQ{Q
f

��
1 t
0 1



x



dt �

¹
v

Wvpxvq,»
AF {F

g

��
1 x
0 1



y



dt �

¹
w

W 1
wpywq.
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6.2.4. Main results (interpolation formulas for unbalanced case).

Theorem 6.2.5. Let P b Q P X pIq be an element such that P |G � PkP ,wP ,ω1,1 and
Q|G � PkP�2rσ�tF ,wP�rσ,ω2,1 for some r ¥ 0, we have

pP bQqpLp

�
F b G q2�

� 2r�4
?
D

2wP |Q�2tF�rσ
p apFP , pq2cpω1qεRSp1{2,AsπGQ,p b µFP,p

, ψ,
?
D
�1q

�
�
Lp1, µFP

ν�1
FP
qLp0, µFP

ν�1
FP
q

Lp1{2,AsπGQ,p b µFP,p
q

�2

� Lp1{2, πFP
b πGQ b?

ωPωQ
�1q

D � ΩpP q2 ,

where cpω1q is the exponent of p of conductor of ω1 and πFP
and πGQ is a unitary cuspidal

automorphic representation associated with FP and GQ respectively. We suppose that

πFP ,p is the irreducible subquotient of Ind
GL2pQpq
BpQpq pµFP

, νFpq. ΩpP q P C� is a complex

number defined by

ΩpP q :� 2kP |Q pcpω1qppkP |Qq{2�1q εp1{2, πFP
q ��FP ,�FP

�
Γ0ppcpω1qq,

where we define

Γ0ppcpω1qq :�
"
x P SL2pZq

���� x � � � �
0 �



mod pcpω1q

*
,

��FP ,�FP

�
Γ0ppcpω1qq :�

»
Γ0ppcpω1qqzH

�����FP

��
y x
0 1



����2 dx dyy2
.

Proof. Put

ω :� pωPωQq1{2

Let

Π :� π1 ⊠ π2 b ω�1

and we apply Theorem 6.2.3 to the vector of Π⊠ Π_:�
f ⊠Rr

σθ
ppq
pωPω�1

Q q�1{2g b ω�1



⊠
�
f b ω�1

P ⊠Rr
σθ

ppq
pωPω�1

Q q�1{2g b ω�1ωP



and we have@

f, Rr
σθ

ppq
pωPω�1

Q q�1{2g|GL2pAQq b ω�1
D2
m

� Lp1{2, πf b πgq D
�1{2

ζF p2q2
� IΠp

�
τmp Wp ⊠ θ

ppq
pωPω�1

Q q�1{2W
1
p b ω�1

p , τmp Wp b ω�1
P,p ⊠ θ

ppq
pωPω�1

Q q�1{2W
1
p b ω�1

p ωP,p
�

� IΠ8

�
Wp ⊠Rr

σ1
W 1

8 b ω�1
8 , W8 b ωP,8 ⊠Rr

σ1
W 1

8 b ωP,8ω�1
8
�
.

Here we use [Ich08, Lemmga 2.2]. By [CC16, Proposition 3.11], we have

IΠ8

�
Wp ⊠Rr

σ1
W 1

8 b ω�1
8 , W8 b ωP,8 ⊠Rr

σ1
W 1

8 b ωP,8ω�1
8
� � 24�r�k�hσ�hτ .
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We note that the Whittaker functions we use at the archimedean places are slightly different
from those of [CC16, (3.3)]. On the other hand, by Theorem 5.4.1, we have

IΠp

�
τmp Wp ⊠ θ

ppq
pωPω�1

Q q�1{2W
1
p b ω�1

p , τmp Wp b ω�1
P,p ⊠ θ

ppq
pωPω�1

Q q�1{2W
1
p b ω�1

p ωP,p
�

� εRSp1{2,Asπ2 b µ1, ψξq
Lp1{2,Asπ2 b µ1q2 Ψ

�
θ
ppq
pωPω�1

Q q�1{2W
1
p b ω�1, τpmfp

�2
.

Let m be a sufficiently large m. Then we have

Ψ
�
θ
ppq
pωPω�1

Q q�1{2W
1
p b ω�1, τpmfp

�
� ζQpp2q
ζQpp1q

»
Qp

»
Q�
p

θ
ppq
pωPω�1

Q q�1{2W
1
p

��
y 0
x 1




ω�1pyq f

��
y 0
x 1



τpm



d�y
|y| dx

� ν1ppmq p�m
2
ζQpp2q
ζQpp1q

»
Q�
p

θ
ppq
pωPω�1

Q q�1{2W
1
p

��
y 0
0 1




ω�1pyqµ1pyq |y|�1{2 d�y.

� ν1ppmq p�m
2
ζQpp2q
ζQpp1q

»
Z�p
d�y

� ν1ppmq p�m
2
ζQpp2q
ζQpp1q

.

On the other hand, by means of [Wal85, Proposition 6], we have@
FP , FP

D
m
�2Lp1,AdπFP

q
ζQp2q ω1p�1q � ν1ppmq p�m

2

� εp1{2, πFP
q ppkP cpω1qq{2apFP , pq�cpω1q

Lp1, µFP
ν�1

FP
qLp0, µFP

ν�1
FP
q � ζQpp2q

ζQpp1q
� 2�kP ,

��FP , �FP

�
Γ0ppcpω1qq � C�1

GL2 {Q p
cpω1q � 2Lp1,AdπFP

q
ζQp2q � 2�kP .

By putting them together, we have the theorem. □

Remark 6.2.6. Let A be OrtapFP , nquns � Cp. There exists a number called congru-

ence number ηpP �λ1q P Q�
p and Hida’s canonical period Ωp�, P �λ1, AqΩp�, P �λ1, Aq P C�

such that Ω{Ωp�, P � λ1, AqΩp�, P � λ1, Aq P Q and we have (see [Hi16, Theorem 5.7]),

|ηpP � λ1q|p �
���� ΩpP q
Ωp�, P � λ1, AqΩp�, P � λ1, Aq

����
p

,

where λ1 P HomIphpp1q, Iq, Iq associated with F and note the formula deduced from
[Wal85, Proposition 6]:

Lp1,AdπFP
q � 2kP |Qp�spω1,1qp�FP 1,�FP 1qΓ0ppspω1,1qq.

6.3. Constructions of p-adic L-functions for balanced twisted triple products

6.3.1. Main results (interpolation formulas for the balanced case). For nota-
tions, see the beginning of Chapter 3, Theorem 3.3.5 and its corollary. Note that ,although
it’s abuse of ntation, we use F as a quadratic extension over Q here and let F2 � F and
F1 � Q. Let BF :� B bQ F . We denote by N� the discriminant of B. We assume χ1
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and χ2 are trivial and Φ1 and Φ2 be nonzero Hecke eigen forms of SpKB
0 p1q;DpI1qq and

SpKBF
0 p1q;DpI2qq respectively. We denote by ΠP the representation generated by

ϕ :� xSpP pΦqu b SpP pΨqu,∆ξ
kyk��2t� .

Then we have an isomorphism

ΠP �
â
v 8

1
ΠP,v b pLk1pCq⊠ Lk2pCqq ,

where
LkipCq :� Symki�2tFi

pCq b det1�ki{2 .

We fix additive characters

ψ :� ep

ψp2ξq�1pxq :� ψptrF {Qpx{
?
Dqq

and ΠP,p � π1,P ⊠π2,P , which πi,P is a irreducible subquotient of Ind
GLpFiq
BpFiq pµi,P ⊠νi,P q such

that.
|νi,P ppq|p ¡ |µi,P ppq|p.

The ϕ is corresponding to an element bvϕv as follows: At v � p,8, ϕv is a spherical
vector, at v � 8, ϕv � ∆ξ

k defined in Theorem 3.3.5 and at v � p, ϕv � Wp ⊠ W 1
p P

W pπ1,P , ψq ⊠ W pπ2,P , ψp2ξq�1q determined in the same manner in the preceding part of
Remark 6.2.4. We have the following theorem

Theorem 6.3.1. Let P P X pIq such that P |GE
� Pk1,w1,ω1�Pk2,w2,ω2 with ωi � pωi,1q

and ωi factoring through Cl�F ppsq and k1   k2,σ � k2,ρ, k2,σ   k1 � k2,ρ and k2,ρ   k1 � k2,σ
hold. We have

P pLppΦ1 b Φ2qq

�D�k�1�1
p �

¹
q|N�

eqpF {Qq �
�
KB

0 p1q : KB
1 pn1 X n2q

�2
rKB

0 p1q : KB
1 pn1qs

�
KBF

0 p1q : KBF
1 pn2q

�
� EppΠP q

Epπ1,P ,AdqEpπ2,P ,Adq �
�

Lp1{2, µ1,Pν2,P q
Lp1{2,Asπ2,P b µ1,P qLp1{2, µ�1

1,Pν
�1
2,P q

�2

� Lp1{2,ΠP q
Lp1,AdΠP q .

Here, n1 and n2 are defined in the beginning of Chapter 3, eqpF {Qq is the ramified index
of F {Q at q,

EppΠP q :�
εRSp1{2,Asπ2 b µ1,P , ψ?D�1qεp1{2, µ�1

1,Pν
�1
2,P , ψ

�1q
εp1{2, µ1,Pν2,P , ψq

and Epπi,P ,Adq is that defined in Proposition 5.3.1.

Proof. We denote by cpωiq the conductor of ωi. Put

us :�
�
πsFp

ξ
0 1



,

ω :� ω1ω2,

a1,P :� µ1,P ppqp1{2,
a2,P :� ν2,P pϖF qq1{2,
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where q is the order of residue field of Fp. By Proposition 4.4, Proposition 4.9 and Corollary
5.2 of [CC16], we have

P pLppΦ1 b Φ2qq

�p2ξq
1�k�1CB{Q
24π2

� ζEp2q
ζQp2q �

Lp1{2,ΠP q
Lp1,AdΠq

¹
q|N�

eqpF {Qq

�
�
KB

0 p1q : KB
1 pn1 X n2q

�2
rKB

0 p1q : KB
1 pn1qs

�
KBF

0 p1q : KBF
1 pn2q

�
� p�6sp1� p�2q2
C2
B{Qa

2s
1,Pa

2eppF {Qqs
2,P

a
cpω1q
1,P a

cpω2q
2,P CB{QCBF {F

pcpω1qp1� p�1qqcpω2qp1� q�1q

� IΠP,p

�
τ�psWp ⊠ usW

1
p b ω1{2, τ�psWp b ω�1

1 ⊠ usW
1
p b pω1ω2q�1{2ω1

�
iπ1,P pτ�pspω1qWp,Wp b ω�1

1 qiπ2,P pτ�ϖcpω2qFp

W 1
p,W

1
p b ω�1

2 q .

by Theorem 5.4.1, we have

IΠP,p

�
τ�psWp ⊠ usW

1
p b ω�1, τ�psWp b ω�1

1 ⊠ usW
1
p b ω�1ω1

�
� εRSp1{2,Asπ2 b µ1,P , ψ

�1
2ξ q

Lp1{2,Asπ2 b µ1,P q2 Ψ
�
usW

1
p b ω�1, τ�psfp

�2
.

We proceed the computation of Ψ:

Ψ
�
usW

1
p b ω�1, τ�psfp

�
� ζQpp2q
ζQpp1q

»
Qp

»
Q�
p

W 1
p

��
y 0
x 1


�
ps ξ
0 1




f

��
y 0
x 1


�
0 1
ps 0




|y|�1

Qp d
�ydx

� νp�psqp�s{2 ζQpp2q
ζQpp1q

»
Qp

»
Q�
p

W 1
p

��
y 0
psx 1


�
ps ξ
0 1




µpyq|y|�1{2

Qp 1Zppxq d�ydx.

Since �
y 0
psx 1


�
ps ξ
0 1



�
�
yps yξ
0 1


�
1� psxξ �xξ2
p2sx 1� psxξ



,

for sufficiently large s, we have

� νp�psqp�s{2 ζQpp2q
ζQpp1q

»
Q�
p

W 1
p

��
yps yξ � xypsξ2

0 1


�
ps ξ
0 1




µpyq|y|�1{2

Qp d�y.

Since ψp2ξq�1pQpq � t1u, we have

� µ1,P p�psqp�s{2
ζQpp2q
ζQpp1q

»
Q�
p

ν2,P pyq|y|1{2Fp
ψpp�syqµ1,P pp�syq|p�sy|�1{2

Qp 1Zppyq d�y.

� µ1,P p�psqµ1,P pp�sqp�s
ζQpp2q
ζQpp1q

»
Q�
p

ν2,Pµ1,P pyqψpp�syq1Zppyq|y|1{2Qp d
�y.
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By using the functional equation, we have

� µ1,P p�psqµ1,P pp�sqp�sγp1{2, ν�1
2,Pµ

�1
1,P , ψ

�1qζQpp2q
ζQpp1q

»
Q�
p

ν�1
2,Pµ

�1
1,P pyq1�p�s�Zppyq|y|1{2Qp d

�y

� µ1,P p�psqν2,P ppsqp�s{2γp1{2, ν�1
2,Pµ

�1
1,P , ψ

�1qζQpp2q
ζQpp1q

volp1� psZp, d�yq

� µ1,P p�1qζQpp2qpµ1,P ppqp1{2qspν2,P ppqpqsγp1{2, ν�1
2,Pµ

�1
1,P , ψ

�1qp�3s.

On the other hand, by direct computation, we have

iπ1,P pτ�pcpω1qWp,Wp b ω�1
1 q � a

cpω1q
1,P p�cpω1q ζQpp2q

ζQpp1q
Epπ1,P ,Adq

iπ2,P pτ�qcpω2qW 1
p,W

1
p b ω�1

2 q � a
cpω2q
2,P p�cpω2q ζFpp2q

ζFpp1q
Epπ2,P ,Adq,

where Ep�,Adq is defined in Proposition 5.3.1. □
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Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 471-542.
[GS15] Greenberg, M., Seveso, M. A., Triple product p-adic L-functions for balanced weights

arXiv:1506.05681v2
[Hen10] Henniart, G., Correspondance de Langlands et fonctions L des carrés extérieur et symétrique, Int.

Math. Res. Not. (2010), no. 4, 633-673.
[Hi86] Hida, H., On p-adic Hecke algebras for GL2 over totally real fields, Ann. of Math. (2) 128 (1988),

no. 2, 295-384.
[Hi89-1] Hida, H., On nearly ordinary Hecke algebras for GLp2q over totally real fields, Algebraic number

theory, 139-169, Adv. Stud. Pure Math., 17, Academic Press, Boston, MA, 1989.
[Hi89-2] Hida, H., Nearly ordinary Hecke algebras and Galois representations of several variables, Algebraic

analysis, geometry, and number theory (Baltimore, MD, 1988), 115-134, Johns Hopkins Univ. Press,
Baltimore, MD, 1989.

[Hi91] Hida, H., On p-adic L-functions of GLp2q�GLp2q over totally real fields, Ann. Inst. Fourier (Greno-
ble) 41 (1991), no. 2, 311-391.

[Hi93] Hida, H., Elementary theory of L-functions and Eisenstein series, London Mathematical Society
Student Texts, 26. Cambridge University Press, Cambridge, 1993.

[Hi16] Hida, H., Arithmetic of adjoint L-values, Chapter 6 of p-Adic Aspects of Modular Forms, World
Scientific, Beijing lecture series web page, Lecture notes (2016) No.2, 185-236

[Hsi] Hsieh, M.-L., Hida families and p-adic triple product L-function, in preparation
[Ich08] Ichino, A., Trilinear forms and the central values of triple product L-functions, Duke Math. J. 145

(2008), no. 2, 281-307.
[IP] Ichino, A., Prasanna, K. Period of quaternionic Simura varieties I, preprint.
[Jac72] Jacquet, H., Automorphic forms on GLp2q. Part II, Lecture Notes in Mathematics, Vol. 278.

Springer-Verlag, Berlin-New York, 1972.
[JPSS83] Jacquet, H., Piatetskii-Shapiro, I. I., Shalika, J. A., Rankin-Selberg convolutions, Amer. J. Math.

105 (1983), no. 2, 367-464.
[Kab04] Kable, A. C., Asai L-functions and Jacquet’s conjecture, Amer. J. Math. 126 (2004), no. 4,

789-820.

99



100 BIBLIOGRAPHY

[Kay16] Kaye, A. R., Arithmetic of the Asai L-function for Hilbert modular forms, Ph. D. Thesis, Univer-
sity of Michigan, 2016.

[KS02] Kim, H. H., Shahidi, F., Functorial products for GL2�GL3 and the symmetric cube for GL2, With
an appendix by Colin J. Bushnell and Guy Henniart, Ann. of Math. (2) 155 (2002), no. 3, 837-893.

[Lok01] Loke, H. Y., Trilinear forms of gl2, Pacific J. Math. 197 (2001), no. 1, 119144.
[Mat09] Matringe, M., Conjectures about distinction and local Asai L-functions, Int. Math. Res. Not.

(2009), no. 9, 1699-1741.
[MTT86] Mazur, B., Tate, J., Teitelbaum, J., On p-adic analogues of the conjectures of Birch and

Swinnerton-Dyer, Invent. Math. 84 (1986), no. 1, 1-48.
[MV10] Michel, P., Venkatesh, A., The subconvexity problem for GL2, Publ. Math, Inst. Hautes tudes Sci.

No. 111 (2010), 171―271.
[Mi06] Miyake, T., Modular forms, Translated from the 1976 Japanese original by Yoshitaka Maeda,

Reprint of the first 1989 English edition, Springer Monographs in Mathematics. Springer-Verlag,
Berlin, 2006.

[Mok11] Mok, C. P. Heegner points and p-adic L-functions for elliptic curves over certain totally real fields,
Comment. Math. Helv. 86 (2011), no. 4, 867945.

[Pra92] Prasad, D., Invariant forms for representations of GL2 over a local field, Amer. J. Math. 114
(1992), no. 6, 1317-1363.

[Sc02] Schmidt, R., Some remarks on local newforms for GLp2q, J. Ramanujan Math. Soc. 17 (2002),
no. 2, 115-147.

[Sha84] Shahidi, F., Fourier transforms of intertwining operators and Plancherel measures for GLpnq,
Amer. J. Math. 106 (1984), no. 1, 67-111.

[Sha90] Shahidi, F., A proof of Langlands’ conjecture on Plancherel measures; complementary series for
p-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273-330.

[Sh71] Shimura, G., Introduction to the arithmetic theory of automorphic functions, Reprint of the 1971
original. Publications of the Mathematical Society of Japan, 11. Kanô Memorial Lectures, 1. Princeton
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