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Abstract

In this thesis, we study the construction of twisted triple product p-adic L-functions for
automorphic forms on GLy /F x GLy /Q, where F'//Q is a real quadratic field. By means of a
special value formula proved by Ichino, we construct p-adic L-functions along Hida families
of modular forms on GLs /Q x GLy /F, or on the multiplicative group of the product of
definite quternion algebras B/Q x B ®q F/F, which interpolate the central values of the
twisted triple product L-functions.

Sometimes, the arithmetic of special values of L-functions can be studied via different
constructions of the associated p-adic L-functions. For example, the Kubota-Leopodlt p-
adic L-fucntion for a Dirichlet character can be constructed by using Stickelberger elements,
or the constant term of an Eisenstein series on GLy /Q, and different constructions lead
to different proofs of the Iwasawa main conjecture for the Dirichlet character. Mazur-
Tate-Teitelbaum p-adic L-function for an elliptic modular form can be constructed via the
Rankin-Selberg method, or the constant term of an Eisenstein series on U(2,2). In many
cases, the Iwasawa main conjecture for an elliptic modular form is eventually proved by
combining works of Kato, who uses the Rankin-Selberg method, and Skinner-Urban, who
use the Eisenstein series. An explicit interpolation formula is an essential ingredient in
the comparison of p-adic L-functions constructed via different methods. In this thesis, we
obtain interpolation formulas for the twisted triple product p-adic L-functions. We expect
the formula will have applications to the arithmetic of special values of such L-functions
and the Selmer groups of the tensor product of Galois representations associated with an
pair of an elliptic modular form and a Hilbert modular form.

The main innovation of this thesis is to prove explicit interpolation formulas for twisted
triple product p-adic L-functions by computing local period integrals which appear in
Ichino’s formula. In general, when the local representation at p of the specialization of a
Hida family is highly ramified, it is difficult to compute the local period integrals directly.
To overcome this difficulty, we prove a splitting formula which reduces the computation of
the local period integrals to that of Rankin-Selberg type integrals which are more easily
computed.
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CHAPTER 1

Introduction

The special value of an L-function is one of the main themes in number theory, and
the study of p-adic L-functions is an important branch. In this thesis, we construct p-adic
L-functions for twisted triple product automorphic forms, which is autmorphic forms on
GLs /F x GLy /Q where F/Q is a real quadratic extension. More precisely, we construct
p-adic L-functions along Hida families of modular forms on GL, /Q and GL, /F, or of
automorphic forms on the multiplicative groups of definite quternion algebras B/Q and
B®qg F'/F, which interpolate the central values of the L-functions of twisted triple product
automorphic forms along Hida families.

Our main innovation is to prove explicit interpolation formulas for p-adic L-functions
by computing Ichino’s formula (Section 1.1). Generally speaking, the local component at
p of an automorphic representation obtained as a specialization of a Hida family is highly
ramified, so that it is difficult to directly compute the local period integral which appears
in Ichino’s formula. To overcome the difficulty, we prove a splitting formula which reduce
the computation of the local period integral to that of Rankin-Selberg type integrals which
can be by far more easily computed (Section 1.1.1).

Recently, Darmon and Rogtger construct p-adic L-functions for split triple product
automorphic forms, namely p-adic L-functions interpolating L-functions of modular forms
on GL3 /Q in [DR14]. They prove a formula which said a special value of the p-adic L-
function at a point outside its interpolation range is described as the image of the p-adic
Abel-Jacobi map of a diagonal cycle on a product of Kuga-Sato varieties. It is an important
new aspect of p-adic L-functions, but they don’t give an explicit interpolation formula in
their paper. However, explicit interpolation formulas give us a lot of information. For
example, it enables us to identify p-adic L-functions obtained by different constructions,
to observe exceptional zero phenomenas, p-integrality of special values of L-functions, and
so on. The explicit interpolation formulas of p-adic L-functions for ordinary split triple
product automorphic forms are given by Hsieh [Hsi|, and our result is its twisted analogue.

In [GS15], they constructe split triple product p-adic L-functions along Coleman fam-
ilies.

1.1. Ichino’s formula

In order to construct p-adic L-functions, existence of a special value formula for a L-
function is essential. In our case, we use Ichino’s formula [Ich08]: Let £ := Q x F. Let D
be a quaternion algebra over QQ of discriminant N~ which is the product of prime numbers
at which B is ramified. We denote Dp := D ®q F. Let II = ®/II, be an irreducible
unitary cuspidal automorphic representation of GLy(Ag) with central character trivial on
Ag. Here, we diagonally embeds Ag into Ag. We assume that there exists an irreducible
unitary automorphic representation I12 of D*(Ag) associated with IT through the Jacquet-
Langlands correspondence. We define an element
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2 1. INTRODUCTION
by

[(6R &) = j 0(2) (y) dady,

Ag D (Q\D*(Ag) JA& D (Q\D*(Aqg)

for ¢ € II” and ¢' € (ITI”)¥, where () denotes the contragredient representation of (x),
and dz and dy are the Tamagawa measures on Ag\D*(Ag). We define an element

B e Hompx (s, (HD ® (HD)V,(C)
by
Bo.d) = | o) (),

ApD(E)\D(Agp)

for ¢ € TP and ¢ € (IT”)Y, where dz is the Tamawagawa measure. For each place v of Q,
we fix an element

B, € Homp- (s, y (I @ (II7) ¥, C),
where F, := F ®qg Q,, and assume that for almost all v,
Bv(¢v7 925;) =1
for any ®! ¢, € @ 112 and & ¢, € ®,(IIP)V. Then there exists C; € C* such that

B=C [ ]B.

For ® ¢, € ®. 1Y and ®/, ¢! € &, (I1P)V, we define

Co,(2) L(1, AdIL,)

7 ===
ne(9)= ) T/,
Here, L(s,AdIl,) and L(s,II,) are the L-functions defined by representations C®* and
Lie(G)/Lie(Z(G)) of LG = GLy(C)* x Gal(Q/Q), respectively, where G := Resp/r GLo,

G be the dual group of G, and Gal(Q/Q) acts on G as &3 through the permutation of
Spec(E ®qg Q). Ichino’s formula [Ich08] is stated as follows:

f B2 (9) v, 8) dug.
Qi\D*(Qy)

Theorem 1.1.1 ([Ich08]). For ¢ = ®/ ¢, € [T” and ¢’ = & ¢, € (IT”)" such that
B(¢,¢") # 0,

we have

16.¢) _C (2 L1210 1 Tup(609))

B(p,¢')  2¢ (p(2) L(1,AdII) L Bu(oy, ¢),)

where c is the number of the connected component of Spec(E) and C' € C* is a constant
depending on D and the choice of measures {d,x},.

Regarding the precise description for the constant C', see the proceeding paragraph
of Theorem 6.1.1. In our case, the quaternion algebra D is either a definite quaternion
algebra, namely, D(R) is a division algebra, or the matrix algebra. By the above theorem,
we find that we have to do two things: to compute the local period integral Zyp on the
right hand side, and to construct an element of an Iwasawa algebra interpolating the global
period integral I on the left hand side.
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1.1.1. Computations on local period integrals. In general situation, it is difficult
to compute the the local period integral Zyp directly. At the following places: archimedean
places, a places at which the exponent conductor of the local representation is at most one,
and places dividing N—, it is computed directly by Chen-Cheng [CC16], so we have to
compute it when the local representation at v is highly ramified at a non-archimedean
place. To compute the local period integral, we prove a splitting formula. Let us explain
it:

Let Fy/F; be a quadratic extension of fields which are finite extensions over Q, for
a prime number p. We fix an element ¢ € Fy* with trp,/p (§) = 0. We fix a non-trivial
additive character ¢ : F; — C*, and we define 9¢(x) := 9 (trp,/p (§2)) for x € Fy. For
each i = 1, 2, we denote by |- |r the non-archimedean absolute value on F; such that
Ip|r, = # (O, /pOr)~". Let ¢ be the order of the residue field of F}, and we define

1
1—¢q°

CFi(S) =

Let u, v : F* — C* be quasi-characters. We assume that y = X1||%\i and v = X2||j\p§ for
some unitary characters xi, x2 on £y, and for some complex numbers \;, Ay € C satisfying

1
[Re(A)], [Re(A2)] < 5.

Let Indg(L;(Fl)(u Xv) and Indg(L;(Fl)(u*1 X v ~1) be the induced representations normalized

by the modulus character of the group of upper triangular matrices B(F}) = 6 : ) },

which are models of the principal series representations 7(u,v) and w(u~!, v=!), respec-
tively. Namely, Ind$ B fl)(,u X v) and IndGI(J2 fl (p= ' R vt are C-vector spaces of locally
constant functions f on GLgy(F}) such that

(5 0) ) = mam@id i),
(G 5)9) =@ @)

for g € GLo(F), a,d € F{* and b € Fj, respectively. For f € IndG%Q(?)(M X v), 7e
TndS20 (=1 ® 1=1), and g € GLy(Fy), we define

(F1)
g) = ijwg)f(k) di

where K := PGL2(Op, ), and dk is the invariant measure on PGLy(F}) with vol(K, dk) = 1.
Let m9 be an irreducible tempered admissible representation of GLo(F3) with central
character wy : F3* — C*. We assume that (wz)|pxpw is trivial on Fy. We denote by

W (1, 10e) and # (my ,1)¢) the Whittaker models of 7, and 7y associated with )¢, respec-
tively, where 7wy denotes the contragredient representation of mo. For W e W/ (ma, 1),

We W (75, e), and g € GLy(F3), we define

Dy 57(9) ::f;w«g V)T 0))
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where d*a is the invariant measure on Fy* with vol(OF,,d*a) = 1. For W e #/(ma, 1),
W e W (my ,ve), e IndGLQ(Fl)(u Xv), and f e IndGLQ(Fl)(;f1 Xy, we define

B(Fy) B(Fy)
YW, f) = f W(9)f(g) do.
N(F1)\ PGLa(F1)
V(. ) = f W(ng)F(9) do.
N(Fl)\PGLg(Fl)
Wheren::(_o1 ?)andN(Fﬁ:{(é I)}

We put

I := W (7, 1)) X IndGI(“f, fl (uXv),

which is an irreducible admissible representation of GLy(F3) x GLg(F;). We define two
parings

IGP, IRsi IIxIIY —C
by

e = g 1 1
Iep(WR f,W R f) := |Dpym |1 ; 8 e O 5(9)®, #(9) dg,

Ins(W R f, WK f) := U(W, /)T, f),

where Dp,/, is a generator of the different ideal of F,/F;. Here,“GP” (resp. “RS”) stands
for “Gross-Prasad” (resp. “Rankin-Selberg”). The main result is the equality between
these parings:

Theorem 1.1.2 (see Theorem 5.1.1). We have
Igp = Igs.

We note that the Igp is the same up to scalar as Zy;p and the ¥ and U of the right hand
side is much easier to compute (see also Theorem 5.4.1). In the split case (i.e. Fp = Fy x F}),

an analogue of Theorem 1.1.2 was proved by Hsieh in [Hsi|, which generalizes the result
of Michel-Venkatesh [M'V10, Lemma 3.4.2].

2. Hida families and main results

For simplicity, we assume that the class number of F' is one, and the prime number p
is inert in F for ease of notations. We fix embeddings Q <> C and Q «— C,, where we fix
an algebraic closure Q of Q, and C, is the completion of an algebraic closure of Q,. Let £
be the upper half plane. Let f(z) be an elliptic cusp form of weight k; and let g(z1, z2) be
a Hilbert cusp form of weight (ks, k3) (for the precise definition, see Section 4.1.1). They
are analytic functions on z € § and (z1, 29) € $?, respectively. We assume that f and g
are normalized cuspidal Hecke eigenforms with trivial central characters, new outside p,
and ordinary at p, namely, their Fourier coefficients at p are p-adic units as elements of
C, via the above embedding. In this thesis, we construct a p-adic L-function interpolating
L(1/2, f x g) when one of the following two conditions holds:

(1) k1 = ko + k3 (called the unbalanced condition with respect to k)
(2) k1 < ko+ ks, ko < ki + ks, ks < ki + ko (called the balanced condition) and f has
a Jacquet Langlands lift of a definite quaternion algebra.
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We note that each case of (1) and (2) corresponds to the sign of the local root number at
the archimedean place of the twisted triple product L-function associated with f and g.
In the case (1), the sign is +1, and in the another case (2), it is —1. By Loke’s theorem
[Lok01], we see that the sign controls on which algebraic group the local period integral
is zero at the archimedean place. Thus to construct a nonzero p-adic L-function, we need
different Hida theories on a different algebraic groups for cases (1) and (2).

1.2.1. A Main result for the unbalanced case. In this case, we use the Hida
theory on GLy. We assume that f is spherical outside p. It is known that

(f, H(85 =] 0))

a (1, 1H (0 Fth)2g))) = 77 :

where a(1,-) denotes the first Fourier coeflicient of the modular form, ¢,, is the Maass-
Shimura operator along the variable z;, H is the holomorphic projection, 1 is the idem-
potent of the Hecke ring associated with f, and (-,-) is the Petersson inner product. By
definition, (f, H(0z, g haths)/ ?gl))? is just the global period integral which appear in Ichino’s
formula. Thus we develop the nearly ordinary Hida theory by means of Wiles’ formulation
[Wi88], which regards the Hida family as the p-adic deformation of Fourier coefficients.
For Hida families .# and ¢ run through f and g respectively, we define the (square root
of) p-adic L-function by

L(FRY) =a(l,1260(9)) € Frac(l; ® L),

where © is a deformation of the Maass-Shimura operators to adjust weights (Definition
4.5.1), and I and I, are coefficient rings of .# and ¥, respectively. For any arithmetic
point P (resp. @) (see Section 4.4.1) of I (resp. Iy) , we denote the specialization at
P (resp. Q) by Fp (resp. 9y). Let mz, and my, are unitary cuspidal representations
associated with .#p and ¥, respectively. We have the following result:

Theorem 1.2.1 (Theorem 6.2.5). Let P®Q € 2 (I; ® ) be an element such that
Pl = Pipwpuwia a0d Q|g = Prp—2ro—t,wp—rows,1 for some r = 0, we have
(PRQ)(ZL (7 ®@9))
r 2wp|g—2tp—Tr0o e(w —1
=2+ /D T (P, p)*“Mepg(1/2, Asy,  ® fuzp, 0,V D )

-1 —13\ 2
« L(17:LL=7PI/,? )L(Onuffpyyp) (1/2 T7p @ Ty, ®\/WPW )
L(1/2,As7y,  ® pz,,) D -Q(P)? ’

where D € Z- is the discriminant of F'/Q, and c(w;) is the exponent of p of conductor

of w;. We assume that 7z, , is the irreducible subquotient of Indg%;l(fl)(,up X vp). The

complex number 2(P) e C* is nonzero and defined by

Q(P) = 24l prle(CrlV2=0 c(1)2, 75} (Fp, ), ety
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where we define

Z+ the new form associated with the ordinary form #p,

T = (6 : ) modpc(wl)},

= o~ y x ? dx dy
ar a - aZ [,
G R (CR )

For the notations we don’t explain, see Section 6.2. We remark that we can see the
Euler factor which can cause the exceptional zero in the above theorem. We note that the
denominator of the p-adic L-function is controlled by the congruence number (see Remark
6.2.6).

To(pee) = { x € SLy(7Z)

1.2.2. A main result for the balanced case. In this case, we need Hida theory for
the multiplicative group on a definite quaternion algebra. Let fZ and ¢g” be the Jacquet-
Langlands lifts on the definite quaternion algebra B. Mainly, we follow the method of
[GS15]. In their article, they construct a triple product p-adic L-function for general
finite slope modular forms along a Coleman’s famiy, but they treat only the case that the
base field is Q, and we can’t consider the integrality of the special value of L-functions
in their frame work. Thus we develop a theory measure valued form theory for definite
quaternion algebra over any general totally real field. For Hida families ®; and ®5 running
through fZ, g? respectively, we construct an element %,(®; ® ®,) in the fractional field
of an Iwasawa algebra I. The interpolation formula is as follows:

Theorem 1.2.2 (Theorem 6.3.1). Let P € 2 (I) such that Plg, = Prwiw X
Pkg,w27w2 with w; = (wi, 1) and ]{?1 < ]{3275 + kQ’p, k’gp < k’l + k’27p, and k’27p < k’l + k?gp hold.
We have

P(Z, (01 ® ®2))
=D, T T ealF/Q)

q|N~
2
» gp(Hp) ) L(1/27H1,PV2,P) ) L(l/Q,Hp)
E(m p, Ad)E(m2.p, Ad) L(1/2,As7r27p®u1’p)L(1/2,ul_,},u2_},) L(1,AdIlp)

Here, C” is a nonzero rational number depending only on ®; and ®q, e,(F/Q) is the
ramified index of F'/Q at ¢,

£(IL) i ers(1/2, Asmo @ 1,0 i51)e(1/2, 1y v py )
ren £(1/2, puva,p, )
and &(m; p, Ad) is that defined in Proposition 5.3.1.

For the notations we don’t explain, see Section 6.3. We remark that we can see the
Euler factor which can cause the exceptional zero in the above theorem. We note that the
denominator of .Z), has an explicitly constructed and we can see its behavior.

1.3. Basic notations

Let F be a totally real field and p be a prime. Let Ag be the adele ring over Q. Let
Ag s the finite part of Ag. We fix an algebraic closure of F' denoted by Q@ and we denote
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by C the fields of complex numbers. We fix C, which is the completion of an algebraic
closure of QQ,. We define the additive valuation

ord,: C, — Q u {oo} such that ord,(p) = 1, ord,(0) = o
and define the multiplicative valuation
2]y = p~ o € Reo.
For a finite Q,-algebra L and for x € L, we define
|2]2 = | Nrsg, (%)l

We fix embeddings ¢,: Q— Cpy oo Q — C and an isomorphism ¢: C, = C such that the
diagram
oG
F—Q Uy
2N C
1s commutative.
We denote by Ip := {o: F — C,} (or I if there occurs no confusion) the set of the
embeddings from F' into C,. We identify the set I with the set of the embeddings from F
into C via the isomorphism C, = C. We denote by Z[Ir| the free abelian group generated

by Ig:
Z|Ip) :== P Zo.

O'EIF

We denote by k, € Z the o-component of k € Z[Ir], namely, k = Zkga. We define an

element t € Z[Ir] (we denote it by ¢ if there occurs no confusion) by

tp = Z .

O’EIF

Let Fy/F» be two totally real fields. For k € Z[Ig,]|, we denote by k|r, € Z[Ip,] the following
element

k|l = Z Z k. |o.

O'EIF1 TEIF2

T|p =0
For any z = (2, )ger € F' ®¢ C, = H C,, we define
O’EIF
2F = Hzﬁ” eC,

oel

We define several rings as follows

Fi=F@uQ=]]F

plp
OFp = OF Xz Zp = HOFP
plp
ka = OFp/J(OFp) = HOFp/wpon
plp

where J(Op,) is the Jacobson radical of OF, and @, € O, is a uniformizer.
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For any abelian profinte group H, we denote by H(p) a unique p-Sylow group. We
define the projection from H to H(p) by

(> H— H(p).

Let
e: Ag/Q — C
be a unique additive character such that for z, € R,
e(2y) = 2™ 17,
Let
Piceye: A@/QX — 7 T — x51|x|gé7f

T: A@/QX — 7 x = {€ye(T) >ecyc($)_l
be the cyclotomic character and Teichmiiller character, respectively.
For a Q (resp. Q,)-algebra L, we denote by Oy, the integral closure of Z (resp. Z,) in
L.
For any finite Q-algebra L, we define

Ap = Ag®q L,
Apsi=AgrQ®qL,

LY :={xe L* | o(x) € Ry for any Q-algebra homomorphism o: L — C},
Or,=0rnL%,

Trrsg

er: AL/L — AQ/Q AN C
X x N X x Cecyc X
€eyerr s AY /L =5 AR /Q* 25 7%,
N o
Tt AY /L =5 AL /QC T T
For any place v of Q, we define
e, == ¢€l|g,: Q, — C*.
For a finite Q,-algebra L, though it’s rather abuse of notation, we define
er: L % Q, - C*.

We define several algebraic groups over Z as follows: for any Z-algebra R,

ww-{(3 1)}
wn-{(3 )}
- {(4 1)}

For any algebraic group G over F', we use the following notation: let U < G(Af) be a
subgroup. For any nonzero ideal a € Op, we define subgroups of U by

Uy :={ueU|u =1 for any prime ideal [ | a},
U :={ueU|u =1 for any prime ideal [ f a}.
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b

When a = (a) for some a € Op, we usually omit to write “(” and ),
denote U™ and Uia) by U® and U, respectively.

Let R be a ring, G a group and let M be a R[G]-module. For a group homomorphism
€: G — Autgg (M), we denote by M[e] the space

{zeM|g-v=clg)}.

namely, we






CHAPTER 2

A review of [-adic forms on definite quaternion algebras over
totally real fields

2.1. Quaternioic automorphic forms

2.1.1. The generity of quaternionic automorphic forms. Let B be a definite
quaternion algebra over F' of discriminant 9, which is ramified at all of infinite places and
prime ideal of F' dividing n~. We assume that p is prime to 0. Suppose that n™ is prime to
p. We denote B®p Ar s by B , where A ¢ is the finite adele ring over F'. For any subgroup

S < (B*), we denote by X (S) the following quotient space:
X(S) := BX\B/S.
In the case S, = 1, we define a right action of GLy(F},) on X (S) by a natural way. For any
nonzero prime ideal q not dividing 0, we fix an isomorphism and embedding
(2.1.1) iq: B®p Fy = My(Fy) — My(C),

where My(-) means the matrix ring. We always identify B ®p Fy with My(F;) and occa-
sionally omit to write ¢,.
We define the most general form of quaternionic automorphic forms:

Definition 2.1.1. Let U = B* be an open compact subgroup and M an left U,-module.
The M -valued p-adic quaternionic modular form of level U is a map ¢ from X (UP) to M
satisfying

¢(bu) = u™'¢(b),
where b € X(U?), and v € U,. We denote by S(U, M) the space of M-valued p-adic
quaternionic modular forms of level U.

Definition 2.1.2. Let U, U’ c B* be open compact subgroups and g € B. Let M be
a Z[U,, U,, gp]-module. We define an homomorphism
[U'qU]: S(U M) — S(U', M)
by
([U'gU19) (b) := > (9:)p(b3s),

2

where b € éx, ¢ € S(U, M) and g, are defined by the following finite decomposition:
(2.1.2) U'gU = | |aU.

Let A be a commutative ring and Sym™(A) the space of two variable A-coefficient
homogeneous polynomials of degree m. This module has a left action of semigroup My(A)
define by

TFOLY) = F (LY )9) = FaX + Y, bX + dY),

11
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where v = ¢ Z € My(A) and f € Sym™(A). Suppose that A is a Z-algebra with
m < q. We define a perfect paring
(2.1.3) (o dm: Sym™(A) x Sym™(A) — A
by
(=1)4ly!
(xtymei xiymeiy, = L Gri=m)
0 (i+7j#0)

This pairing satisfies
Vg m = det(9)"( f, 9 m

for any v € My(A) and f,g € Sym™(A). Let M be an A-module, and we define
Sym™ (M) := Sym(A) ®4 M.

As above, Sym™ (M) has the action of Ma(A) and an M-valued pairing.
Let A be a ring and M be an A-module. For any n = ana € Z|I], we define

Sym™ (M) := (X) Sym" (M),

oel
where the tensor products are taken over A. We denote the indeterminates by X7, Y.
This module has a natural left action of semigroup n Mz (A). We also define the paring

oel

for A which is a Z,-algebra with m < ¢
Coom o= Qs pny - Sym™ (M) @4 Sym™ (M) — M.
Note that when A = C,,, the natural embedding F'®qQ, — F'®¢C, induces an embedding

[ [MaAF) = [ [Ma(C,).

plp oel

In particular, via this embedding and 4, above, Sym" (M) has an action of ég
We fix a non empty (not necessarily whole) set {pq,...,pn } of prime ideals above p,

and define -
p:= H Pi.
For n € Z|I], the perfect pairing (-, - ), for :é I, induce
(- dp: Sym™ x Sym" — Sym™”.
We fix a open compact subgroup ¥ < B* such that

Ep (@ ni;l(GLQ(OFp)),
plp

Sp =] [i, ' (GL2(OR,)).
plp
We always denote by s or s’ the elements of

PZp (= F;/O;p).

plp
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For s = Z spP, we define

plp

p =] [p”
pIp
and denote by s’ = s (resp. s > ¢) if

s'—sePZzop (resp. P Z-op).

plp plp
We define the following open compact subgroups for s as above

%o(p%) = K¢’ (p*) N %,
Zi(p°) == K7 (p") n T
Y(p*) = K2(p*) n %,

where
iq(uq) € MQ(OFq)
B S D : _ *oOE S lf q * 0
Ky (p®):=<ueB iq(ug) = 0 mod p Mg((’)pq)
uq € { maximal order of B ®p Fj } ifq|o

K@) = {ue K@

iq(ug) = ( 8 . ) mod p*M;(OF,) for q / 0}

KB(p®) := {u e KJ(a) | iq(uq) = ( (1) ; ) mod p*My(OF,) for q /0 }
Let
A(p)p = { ( “! ) e My(Op,) | ce pOr,, de O, ad—be # o}.
We define

Cla(3(p") = Afp/Fr(Afy 0 B(p*)RL,
G, 1= CIE(S(p")) * X(p")/S(p").

Definition 2.1.3. Let R < C, be a subring and let A be a R-module. Let k,w € Z[I]
such that £k — 2t > 0 and 2w — k € Zt. Let w = (w,w') : Gy — Autgr(A) be a pair
of group homomorphisms. For any s > 0, we define the spaces of A-coefficient p-adic
quaternionic automorphic forms of weight (k,w) by S(X(p®), Sym* " *(A) @ det! ™). We
denote it by Sk, (X(p®); A). We also define the space of A-coefficient p-adic quaternionic
forms of weight (k,w) and fo character w or w by.

Skw(E(P*),w; A)

= {f € Skuw(EP*); A) | f(b2) = €eye,p(2)F 2w (2) f(b)for z € A }
Skw(S(P%), w; A)

= Sk.w(2(p?),w,w'; A)

= {f € Stw(E(P"),w; A) | f(bu) = w'(det(u))u=" f(b) for ue I1(p°*) }

Remark 2.1.4 (The relation to usual automorphic forms). The relation between
p-adic automorphic forms and automorphic forms over B* is given as follows: let k,w €
Z|I] such that k—2t > 0 and 2w —k € Zt and let w = (w,w’) : Gy — C* be a pair of group
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homomorphims. For any commutative ring A, we denote by pﬁw the action of My(A) on
Sym* 2 (A) ® det . For an open compact subgroup U < Ex, we define
' (X(p°), w)

= (e mmrian — st o) [0 ZI0 ) B e )

AHE(PY)w) = {f e | fbu) =u/(det(w)f(b) forany ue Ty(p) }.

Using the identification ¢: C, = C, the following two morphism are inverses to each other:

Skw(X(p%), w; Cy) 2 (5(p°), w)

w w

[E—2w]

¢ "(0) 1= pE (b)) e (01 (0) D (b)) | det (D)7

A (), w) St (S(p%), 3 C,)
o F6) = o5, (5 (F (b)) [ det(b) 7,

where we use the same notation ¢ to describe the identifcation Sym* *(C,) = Sym* %(C)
induced from ¢: C, = C. We note that for ¢y, g2 € Si.(E(p®),w), we have

(2.1.4) (B4 (D), P3(0)k—2t = €l i) (Nrd gy (0)){91 (), D2 (D) Vi2z-

2.2. Hida theory for definite quaternion algebras for totally real fields I

We fix a finite flat Z,-algebra O < C,, containing o(Op) for all o € I and a uniformizer
w € O. We denote by K the fraction field. For a prime ideal p | p of F,

I, := {0 € I| o factor through F, }.

For n € Z[I] and for any ideal a | p, we denote

pla
nei= Y oo
oel,
n® = Z NgO
o¢l,

In particular, we have n = Z Ny .
plp

2.2.1. Normalized Hecke operators. We define the normalized Hecke operators:

Definition 2.2.1. Let A be am O-module. Let k,w € Z[I] satisfying k — 2t > 0,
s > 0 and z an element of O, such that zfr # 0. For ¢ € Sy, (2(p*); A), we define the
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normalized Hecke operator Ty(x) as follows:

(To()) (0) == > (det(3:)2™")" " o(b7:) (X, Y )),

)

where b e B* and v; is determined from the following decomposition:
S x O S S
w0 (5 ) ) £ = L)

t—w

Note that (det(y;)z')" " € O* is regarded as a scalar morphsim in Auto(A).

Lemma 2.2.2. Let 7 = 0,1 or J. The right coset decomposition of (2.1.2) for U’ =
Y2(p*), U = So(p*) N Xo(p*) with s’ > s > 0 and g = ( g (1) ) with z € p*~*Op, such
that zf # 0 is explicitly given as follows: ’

2 (5] ) 2007 020 = L] [T~ Slo),

(cp)pip PIP

where the index (¢y)p|p runs over

[ [ O5,/208, x || Or/208| || | Or/208, x | | POR,/20k,.

sp>0 sp=0 sp>0 sp=0

We define v, for p | p with s, > 0 by

Ve 1= ( 383 Clp ) for ¢, € Op, /20p,.
P

The ~, for p | p such that s, = 0 are defined by

T, ¢ .
Vep 1= ( OP 133 )p for ¢, € (left hand side of (’)Fp/x(’)pp)
1 0 ) .
Vep 1= ( - )p for ¢, € (right hand side of pOp,/zOp,).

The point is that =, are independet of s and 7 = 0, 1.(7.
PROOF. Put U’ = ¥(p*), U = So(p*)nE+(p*) and g = ( :8 (1) ) . We have bijections
| o

UU ngUgt =U'gU/U; U] — [Wg].
On the other hand, we have
U'U ~gUg™" = {7},
Combining these explicit bijections, we have the formula. O

Theorem 2.2.3. Let A be an O-module and k,w € Z[I] such that £ — 2t > 0 and
s 2 0. Let w = (w,w') : Gs — Autp(A) be a pair of group homomorphisms. Then the
space Sk (X(p®),w; A) is stable under the normalized Hecke operator Tj(x). Moreover,
For s’ > s, if x € pS'*‘S(’)Flo such that zt # 0, we have

To(2) (Skw(S(PY), w; A)) < Spw(E(p°), w; A)
Proor. It follows by direct computation and Lemma 2.2.2. ([l
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Let r be a positive integer such that s > Zplp rp > 0. Let
wi CIE((pY)) — (0/=0) = Auto (= 70/0)
w's O — (0O/="0)*.
For n € Z[I,], we define
Xn: O, — (O/@w"0)*;z— 2" mod @w"O.
Theorem 2.2.4. For k,w € Z[I] such that k — 2t and 2w — k = 2(av — 1)t for some

a € Z. Fix an element x( € ps(’);p. We define two homomorphisms between spaces of
automorphic forms of different weights

v Sk (E(Pp%),w,w';w "O/O) — St +kP,at,+wP (2(p*), w, W/prfagp; w "0/0)
T 52§p+kp,a§p+wp (2 (p8)7 W, wIprfoztp; w*?‘O/O) I Sk,w (E(ps)7 W, wl; wiTO/O)
as follows:

L) (b) = (B(b), X% )y,
o= % o(b( ] ) exeryn
€O, /p*OF, P
The homomorphisms ¢ and 7 are well-defined. Moreover they satisfy the following formula:
vom = Ty(zo),
7o = Ty(zo).

PROOF. Put
w// = WIpr—atp

For the first statement, note that since s > >, /rp > 0, consider two X;(p*)- homomor-
phisms

i: Sym" (w " 0/0) @ det!™ —— Sym*” " (w " O/0) ® dett ™"

w w
f fP

J: Sym™ =2 (@7 0/0) @ det! ™ —— Sym(~0/0) @ det! *;
L; ' nglu’tQﬁp

where fP is an element of Z[{X,,Y,}serr| given by substituting 0 for X, and 1 for Y,
0 1

To 0

induced by ¢. For 7, consider

W S, s, (2(D%), 0, 0" 7O/ O) — Sop e (B(P); w0, o (W) 70/0)

w w

o} [0 7oy @(b7a,)],

for o0 € I, and 7, = . It immediately follows that ¢ is well-defined since ¢ is

We claim that
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induces
St (B(0%); . wloy. ()75 @7 O/O) — Sy (S(p), 0,677 O/O)
In fact, since

2(p°) ((1) é)pE(ps)= L (i é)pE(ps)

CGOFp/pSOFp

for any u € ¥(p®), there exists ¢’ € Op,/p°Op, and u, € X;(p*) such that
c 1)y (1 0 1 01
“\1o0) 710 10)%\10)"
P P P P

[W)(? é)pzm] oftm) = Sotens ) aeeun (5 ) o((1 0 ) )

C

Since det(u.) = det(u), we have the claim. Clearly,

w = [z(pS) ( 1o )p%S)] °jeo W,

where 7, is a homomorphism between the space of automorphic forms induced by j. Thus
w is well-defined. Since s > er, the second assertion follows immediately from the

plp
definition of Ty(xo) (Definition 2.2.1)

0

Lemma 2.2.5. Let k,w € Z[I] such that k — 2t = 0. Suppose that 2w — k € Zt and s
is sufficiently large. Then the natural homomorphism

Skw(E(P);0) @0 w"O/O — Si.uw(X(p%);w"O/O)
is an isomorphism.

PROOF. Let A = O or w"O/O. Since we have a finite decomposition
B* = DBXtiZ(ps),
i=1
we have an injection of O-modules
S (S(p)i ) > DSV O 6= (Gt

The image of it is actually

where A; := t7'B*t; n $(p*). Put
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Since 2w — k € Zt, 3(p*) n Op . trivially acts on Sym* 2 ®@det!". The action of A; factors
through A,. By considering the group cohomology of A;, we have an exact sequence

0 — Skuw(XE(P*); 0) o @™ O/O — 5j,u(X(p%); w ™" O/O)
— é; H (A, Sym*2(0) ® det* ™).
i=1
For any s and ¢,
S(p*)AR /AL (V6 B AL /AL
is a finite subset of B* /A; ;- Thus for sufficiently large s, we have
A e S(p)AF/AL( V1 B tAT/AT = {1}

and we’ve proved the required result. ([l

2.2.2. Hida’s ordinary idempotents.

Proposition 2.2.6. Suppose that £ —2t > 0. Let A be a finite O-algebra and x € OF,
such that a%» # 0. We have the following assertions:

(1) the limit lim Ty(z)™ exists in Ende (Skaw(X(p*); A)). We denote the limit by e,
n—00

call it Hida’s ordinary idempotent associated with z,
(2) the endomorphism e, is an idempotent, and
(3) the endomorphism e, depend only on the class of x in a quotient set

kep/kp, = [ [{0,1}.

plp

PROOF. For the statement (1) and (2), let H be the O-algebra generated by Ty(z) in
Endo (Skw(E(p*); A)). Since H is a finite over O, we have a decomposition

H=>~H x--x Hp,
where H; is a finite local O-algebra. Let ¢; € H be am idempotent element corresponding

to H; and describe Ty(z) as Z hie;. Since

i=1
1 hje H*

lim A" = € i
n—ao 0 otherwise,

the limit of T (x)™ exists and is clearly idempotent. For the assertion (3), since if 2,y € Op,
such that zt, yt # 0, we have

To(zy) = To(x)To(y) = To(y)To(x).
Thus we have
Cay = €€y = €y€y.

For z € O , we have e, = 1. Thus we have the assertions. O
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Definition 2.2.7. Let w = (w,w’) : Gy — Autp(A) be pair of group homomorphisms.
Let A be a finite O-module, &k, w € Z[I] such that k¥ — 2t > 0 and s > 0. We define

1]
Sord( (ps),A) = epSkw(E(ps);A),
St (B07):wi A) = ep S (2(P7), wi ).
Spa(Z(P), w3 A) = epSyu(E(P*), w3 A),
where e, = 7}1_r>r010 To(x)™ is the Hida’s idempotent associated with x € pOp, such that
zt» # 0. Note that e, is independent of the choice of z by Proposition 2.2.6 (3).
In the ordinary part, we have the following important theorems:

Theorem 2.2.8. Let A be a finite O-module and s’ > s > 0. be group homomorphisms.
Then for k,w € Z[I] such that k —2¢{ > 0 and 2w — k € Z§ we have an isomorphism

Sord( ( )A) Sord( ( ),A)

Proor. It follows immediately from Thorem 2.2.3. O

/

Theorem 2.2.9. Let w = (w,w') : Gy — (O/w"O)* be pair of group homomorphisms.
Let s > er and let For k, w € Z[I] such that k —2t > 0 and 2w — k = 2(«a — 1)t for some

plp
a € Z, we have an isomorphism

Sord( ( )7 w; wfro/o) = S§£:+kp,agp+wp (2(1)8)7 W, w,prfazp; wirow/ow)
induced from ¢ defined in Theorem 2.2.4.

Proor. It follows immediately from Theorem 2.2.4 ([l

2.2.3. The control theorem.

Definition 2.2.10. We define
G = 1im G,.

s

We have a G-action on p-adic automorphic forms as follows:

Definition 2.2.11. Let k,w € Z[I] such that K — 2t > 0 and 2w — k € Zt. For s = 0
and an O-module A, we define a continuous action of (z,u) € G on ¢ € Sy (Zo(P*); A) by

(2, 0)p(b) = el (22 b (b2u)
Definition 2.2.12. For any ring R, we define the complete group ring Ag by
Ag := R[[G]] = lim R[G,].

Remark 2.2.13. Since G = Z7' x { torsion elements }, Ao is a finite flat extension of

a ring isomorphic to O[[ X1, ..., X,»]]. In particular, Ko is a finite product of complete
noetherian local rings with finite residue fields.

Definition 2.2.14. We define the weight space
Z 1= Homeoni (G, C)).
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For any subring R < Oc,, we have a natural bijection
2 ~ Homp conti (/NX 7 Cp).
For P e 2, we denote by Py the kernel of R-algebra homomorphism corresponding to P.

Let kP, wP € Z[IP] such that 2wP — kP € 2(aw — 1)tP. For kp, wp € Z[I,] with 2wy +
wP — kp — kP € Zt, the homomorphism

Pipwy : G2 (2,0) — e([f;‘;pr](zp)awp_ép e O
induces an element of 2" (in case I? = &, we set aw = 1). For any finite order character
w=(wuw): G—C),
We denote Py, w, (2, a)w(z,a) by Py, w,w(2,a). We define s(w) > 0 by

s(w) = min {s | w factors through G }.

Definition 2.2.15. We define
3{;,“3:, c
by

. kp, wyp € Z[I,] such that
%jfjfu}}, =3 Prywpw | K =2t =0 and 2w — k€ 2Zt (k := kp + kP, w 1= wp + wP)
w: G — (C; : finite order character

We call Py .., . an arithmetic point of weight (kp + kP, wp +wP) and character w = (w,w’).
Lemma 2.2.16. Let kP, wP € Z[IP] with 2wP — kP € 2Zt, and let
F o 5
be a subset defined by
F = {P2£P7([2wp,kp]/2+1)§p7w‘ w: G — C; : finite order character}

Then we have

ﬂPR:{O}

PeF
in Ap for any subring R < Oc,.
PROOF. Note that Ap is regarded as the space of R-valued measures on G. By the

(p-adic) Stone-Weierstrass theorem [?], the C,-algebra generated by F is dense in the space
of C,-valued functions on G. Thus we have the lemma. O

Definition 2.2.17. For kP, wP € Z[IP] with 2wP — kP € ZtP, we define
Tiwwr (B)o i= M lim Sy e s, 4ur (B(p%), @ " 0/0),

T s

Ve (D)o = Imim S5 0, o (B(P%), w7 0/0).

T £

If [P = &, we simply denote them by ¥ (3)o and ¥°'4(X), respectively.
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Theorem 2.2.18. Let kP, wP € Z[I?] such that 2uwP — kP = 2(a — 1)¢P for some a € Z
Let Prywpw € 253 op be an arithmetic point. Then we have
(%c%riup (X)o ®o Ow) [Pkp,wp,w] = ( l?iikp,prrwp (z(ps(w))§ Ow) ®o K/O) [w],
where O, < C,, is an O-algebra generated by the image of w.

PROOF. Put w = (w,w’). Fix r > 0 and put k := kp, + kP, w := wp + wP. Let
s = max{s(w), r} be sufficiently large. Note that

S5 40ty s (2(07). 0.6 Xty 7 0/ O,)
= S5 (B0 5 0/ O) [Py
By Theorem 2.2.9, we have
SS;SMP’O‘LPJFW (2(p*),w, W' Xwp—at,; w " 0,/0,) = ng;{ (2(p*), w; @ "04/O0).
For large s, by Lemma 2.2.5, we have
S,?fg (E(ps), w; w*row/ow) ~ (ngg (E(ps); Ow) Ro., w’r(’)w/Ow) [w].
On the other hand, by applying Theorem 2.2.8, we have
i (B(p%); Ou) = SP (S(p°)); Ou).
Thus by taking limit along s and r, we have the theorem. 0]
The space ¥ °'4(X)p has a continuous action of G and is regarded as a A-module.

Definition 2.2.19. For kP, wP € Z[IP| with 2wP — kP € 2ZtP, we define the following
Ao-module:

Vkp,wp (E)O = Homeons (%ﬂp,wp (2)(97 QP/ZP)
Skp7wp(2; K(’)) = HOmINXo (Vkpﬂup (2)07 ?\JO Ko D;(}Qp)

Vo (D)o = Homeon, (V5% (% Ro), Qy/2Z,)

Sun (%3 Ro) i= Homg, (Vi (% Ro), Ko @0 Dilg, )

If IP = ¥, we simply denote them by V(2; Ao), S(Z; Ao), Vord(3: Ap) and S4(S; Ap),
respectively.

Theorem 2.2.20. Let kP, wP € Z[IP] with kP — 2tP > 0 and 2wP — kP = 2(a — 1)tP.
Assume that for any finite order character w: G — CJ,

(2.2.1) Sat k2 ot +wr (S(P*), w; Oy) ®o K/O is divisivle.
Let N
Ao=]1]N
J

be the finite decomposition such that A; are local rings and put u; € Ao as the idempotent
corresponding to A;. Then the space u; S5 ,»(3; Ap) is free of finite rank over A;. For
any P = Pr,wyw € 3&”,;3};};,, we have an isomorphism

S (5 Mo) /PoSirtur (Z: Ao) = SP e g 1w ("), w; Ou),
where O, < C,, is the algebra generated by the image of w.
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PROOF. For the first assertion, it suffices to prove that u;V,3%,» () is free of finite rank
over A;. By Lemma 2.2.16, there exists an arithmetic point @ := Paat , on G such that

Qo € Spec(A;).
The dual of Theorem 2.2.18 is described as
Vizr (2)o/QoVirur (o = Vgt (D)o, /Qo, Vizuwr (2o,
N So1 ke (ot 1ty +ur (B(P77); Op) '
~1(9) = DS o a1y, 1 (B(PD); Oy)

means Homp (-, D[_(}O). Here, D q, is the different ideal of K over Q, and the
trace Trg g, induces a natural isomorphism

(2.2.2) D;(}Qp ~ Homeont (K/O, Q,/Zy).

Vv

where (+)V

Thus we conclude that, for any j, u; Vkoprﬂup (X)o is finite over A;. Let x; be the residue field
of A; and let

m = dimnijOJiUp(Z)@ @, Kj-
Then for any finite character p: G — C)', we put
Ro = (Pgtp,atwp)o € Spec(A;).
By the assumption (2.2.1), the module
Vit (X)o/RoViate (X)o
is torsion free and we have
m = rankoViaSe (X)o/RoVite (X)o.
Take a surjection
U AT — u VRt (D)o,
Since for any p, we have proved
Ker(V) ¢ RoAT,
by Lemma 2.2.16, we have
Ker(¥) = {0}.
It is the required result. For the second assertion, suppose P = Py ., o € Spec(A;), the
dual of Theorem 2.2.18 for P is described as follows:

u Vi (2)o/ Pot;Vigm (2)0 = Spiie wpror (Z(0°@), w; O)
Since uijopriUp (X))o is free of finite rank over A;, we have
Sirur (53 Ao) / PoSiihue (£ Ao)
= Homjy (wgiup(z)o /PoVisow(X)o, Ao/Po & DK}QP)
~ Homp ( S§£:+kpv(a+1)ip+wp () 0w)” Py >
" \w(g) - g>geGS§£S+kP,(a+1)§p+wp (E(pr@); 0,) "7/
= P ke wp e (B(P°), w1 O,)
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Remark 2.2.21. Let
B* =| |B*t:¥
i=1

be a decomposition. Then the assumption (2.2.1) satisfies if each
Ai = 2 M t;lBtl

is torsin free modulo center, namely A; = Op. and p is odd. In fact, for P ot 4 € ZE,
the module

Szgp+kp,a§p+wp (Z(pS(%D)); Ow) ®o K/O|w]
is isomorphic to

m

o
D (Sym”p““p’“p*‘”"(%)@o (K/O)®det<al>tp+t"w"’“pw> .

i=1

and is divisible since p is odd and ¥(Ox, N G) = 1. If we were to define the G as

G, = Clr(2(p°) x (Or,/P°OF,)",

G = lim Gy,
where Clp(3(p?)) = Ag;/F*Ap; n E(p*), we could prove a weaker version of Theo-
rem 2.2.20 in the same manner. (We have to modify the definition of arithmetic points
by changing the condition “k — 2w € Zt” to “k — 2w € 2Zt if I = ¢&.”) Under this
modification, we prove the control theorem even if p is even.

Definition 2.2.22. Let I be a /NX@-algebra. We define the space of [-adic forms by
Soitue (55 1) := Homg _ (Vig S (X)o, I).
Remark 2.2.23. Under the assumption of Theorem 2.2.20, we have
Spnle (3 1) = S9 o (55 Ao) @3, I

2.2.4. A reformulation of S(X;I). In this section, we assume that every prime above
p divides p. It means that all of the conditions of upper p (for example, 2wP — kP € 2ZtP)
are empty. We omit to write notations involved with upper p such a kP, wP, tP and we

simply write k,w,Z,... instead of ky,wp,t,,.... We fix a finite product of noetherian

complete local /N\@—algebras with finite residue fields and denote it by I. Let
P, := Ker (Ko . 0[[(;5]])

We define

Pico X(E(p*) = P Oz
zeX (%(p?))

be a free abelian group generated by elements of X (X(p®)). Since we have a natural perfect
pairing
Pico X(2(p%)) x Sat (B(p*); K/O) — K/O; (2, ¢) = ¢(x),
the following isomorphism holds:
V(¥)o = lim Pico X (3(p?)).

s
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Therefore, for a /NXO—algebra I, we have
S(3;1) = Homy | (lim Pico X (2(p?)), 1).

Theorem 2.2.24. We have isomorphisms
S(%,1) = lim Hompyg,) ( Pico X (E(p®)), I/P.I)

~ C'(X(ZPN(Op)); D)€
_ { f: X(XPN(Op,)) — 1 | t-f(zt) = f(z) }
" | continuous for v € X(¥?N(Op,)), te G
where the topology on I is defined by giving the discrete topology to each I/P;I.
PRrOOF. For the first isomorphism,
S(Z:1) = Homy,, (lim Pico X)), I)
~ Homy ({iLnPicOX(z(pS’)), lim1/P,T)

s/

= lim Homoyg,; (lim Pico X(Z(p*)), I/P.I)

—
s s/

=~ lim Homoja,] ( Pico X(3(p°)), I/P.I).

s

For the second isomorphism, since

Homopjg,] (Pico E(p®), I/PI)

~ {f: X(E(pS))%H/PsH‘ ?5?’2 ;’2}15553)), t e G, }

we prove that the canonical inclusion

lim { for X(2(p*)) — I/PI

s

fo(at) = t7 1 f(x) for z € X (5(p?)),t € G, }
f(xt) = t7'f(x) }
for v € X(¥?N(Op,)), te G |

is surjective. In fact, let f be an element of right hand side. Consider the right action of
G; on X (X(p®)) and describe the right coset decomposition as

X(XE(p?)) =u1Gsu---uz,Gs.
We choose a lift y; € X (XPN(Op,)) of x; and define for t € G,
fs: X(E(p®)) — O|Gs]; zit >t f(y;) mod P,.

Clearly, f; commutes with the action of Gg,. We claim that, for s’ > s, there exists a
G g-equivariant function fy: X (2(p*)) — I/P,I such that

continuous

i { f: X(SPN(Op,)) — 1

X(S(p*)) =1/

| |

X(2(p*)) Z—1/P.I
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is commutative. Let ; € X(X(p*)) be a lift of z;. We also have

/

X(E(ps )) = flGSI Llee-d fTGS/.
We define f! by
fo(@t') =t f(y,)
for ' € Gy. Thus we have a projective system (fs) of the left hand side. Since f is a
continuous function, we conclude that lim f; = f. U

Let © € Op, such that 2t # 0. For any function f € C*(X(3?N(Op,));1), we define

To(x)f by
L@ o) = 3 f(b(g f))

CEOFP /acOFp

If f e S(3;1), To(x) f is also in S(3;T). Moreover, Ty(x)™ f converges for any f and induces
an operator e, on S(3;I), which is in fact the limit of Hida’s idempotents e,. In particular,
f e 543 1) if and only if e, f = f, where e, := lim Ty(p)™.

Remark 2.2.25. Let P = Py, € 2™, The inverse of the isomorphism of Theorem
2.2.20
S(2; Ko, )/ Po. S (5 Ao, ) = 524 (S(p*™)), w; O,)

is described as follows: let ¢ € SP(5(p**)); Oy)[1h]. We define £, e S (X; Ao/Polo)
by

f¢(b> = <Xk_2§, (b(b) >k—2§ S O¢ = A@/P@AO
for be X(XPN,). As in Remark 2.2.23,

Sord (Z, Xo/PofN\@) = Sord (E, K@) ®/N\o Ko/P@.
Thus the required inverse is the following correspondence

qf)'—> f¢ mod P@wSOTd(E;/N\Ow).

2.3. Hida theory for definite quaternion algebras for totally real fields II

In this section, we treat general p. We fix a finite product of noetherian complete local
Z,||G]]-algebras with finite residue fields and denote it by I.

2.3.1. The generality of measure valued form. Let T(Op,) act I via the following
homomorphism:
T(Or,) 3 (t,ts) — (Bt ) € G,

where 5 is the image of ¢, in Cl;(3(p®)). We fix a uniformizer w, of Op, for each p | p
and denote (wy)y|p by wp. We define a subgroup

m:=] < WO? ? > < GLy(F,).

plp
Definition 2.3.1. We define
M = GLQ(OFP)/tN(OFp)
N
M = GLQ(Fp)/HtN(Fp)
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Then we have the following fibration
T(Or,) — M — P'(F).
We write p = p; - - - p,, and define

S={p1,...,pm}

As a set, we consider P*(F) as (Fp x Fp\{ (0,0) })/Fy and we take open coverings {Ua}acs
and {U5} acs of P*(F}) as follows: for any subset A = S, we define anate system of P!(F},)
by

PA Ua = HpeA OFp X HpeS\A OFp — HpeA [OFp x {1}] x HpeS\A [{1} x OFp] ’

Ui = Tlea O % [1es:4 PO, — [Toea [0, x {1}] [Tres\a [{1} x pOr,]

Let p: M — P'(F,) be the projection. Then M is a locally trivial T'(Og,)-bundle
described by

Ua x T(Op,) = p " (Ua)

(Za[tl’tﬂ)Hl((l) le )peA((l) le )peS\A(%l 1?2)]’

oa (0a(Ua) nop(Us)) x T(OF,) = ¢5' (pa(Ua) n ¢p(Us)) x T(OF,)
(2,1) = ((zp)pes\ann)(zp Dpeans, (=2, " Zp)peanst ),

where A, B < S and AA B := Au B\An B. From now on, we use these local coordinates
for local computations. We define an I-bundle & over P'(F},) by

& =M XT(OFP) I

(The topology on P'(F},) is the usual totally disconnected topology.) The I-bundle & is
also described as follows: let

v: & — PHE,)
be the structure morphism. Then & is also defined as
v 1 (Ua) :=Us x1
A v N U nUp) =2 v Y (Up nUy);

(z,\) — ((Zp)peS\(AAB)(Z,:l)peAABa (2{17 —Z,?)peAAB/\)-

?

Note that I'(P!(Fp), &) is described by the following exact sequence:

0 ——=T(P(Fp),6) — [[acs C2(Ua; 1) [TapesCUan U

w

(fa)acs —— (fA|UAmUB(Z) - (Zg)*fB|UAﬁUB )A,BCS‘

Let M xr(o,,)I be a T'(Fp) X7(0,,)I-bundle. Then GL(F}) acts on I(PY(Fp), M XT(on)H)

from the right naturally. Now I'(P'(Op,), &) has an action of My(Op,) n GLy(Fp) as in
Definition 2.3.2 below.
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Definition 2.3.2. We regard I'(P'(F},), &) as a subspace of I'(P'(Fp), M X7y, I).
For u € My(Op,) n GLy(Fp) and f € T'(PY(Fy), &), we define
(fu)(z) . (u_l x 1)f(uz)1f(uz)e(u><1)é”(z)
Since

My(OF,) N GLy(F}p) = {u e GLy(Fp) | (u™" x 1)(M\M) =€ M\M },

the associativity of the action of Definition 2.3.2 follows.

Proposition 2.3.3. Let f € ['(P'(F},),&). The action of u € My(Op,) N GLy(F}) is

a b

described as follows: for u = ( . d )€ Yo(p), we have

(fu)lug (2) = <(CZF' +d) %)p&‘((bzp to), %)}JGS\A
(|50 (o))

(f)lva(2) = flusa(2)-

x f
0 1
Foru:(1 O),wehave

(@ O
Foru—( 0 1),Wehave

(fu)lua(z) = {g v, ([ )peas (@ 20 )pesial) Lo (2) i z ; ﬁ

Let T'(Us; &) and I'(Ug; &) be the sets of sections of & — P* on Us and U, respectively.
We regard them as sub I-modules of I'(P!(F},), &) by zero-extension. Then both space are
stable under the action of A(p). Let J(I) be the Jacobson radical of I. For any open subset
U < PY(F},), we define a system of neighborhoods of 0 of I'(U, &) by { (U, &&; J(I)™) }n=0
and regard I'(U, &) as a continuous [-module.

Remark 2.3.4. We regard I'(P!, &) as a C°(P*; I)-module. Here C°(P*;I) has a natural
right action of GLy(F}) induced from the left action on P'. Let f € T'(P}, &) and & €
CO(P1;I). For u € My(OF,) n GLy(F}), we have

(€f)u = €u- fu.
Remark 2.3.5. For open subset U < P!(F},), we have
LU, ¢ e J()") = JO)"T(U,&).
In fact, since I is noetherian, J(I)" is finitely generated. Let J(I)* = (a4,...,an). Then
we have a surjection

m “ugm) s 0.
In general, for an I-module M, since £ ®; M is flasque, we have H'(U,€ @ M) = 0. Thus
we have an exact sequence
DU, &) S DU, 6 @ J(1)") — 0,
namely, we have I'(U, & @ J(I)*) = J(D)"I'(U, &).
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Definition 2.3.6. We define

P(T) := Hompcont <r (P'(Fp), &), ]1) ,

@((/)FP,H) = Homﬂ_cont <F(U$,£)), H)

The space Z(I) (resp. ®(Uy,I) has a natural left action of My(Op,) N GLy(F}) (resp.
A(p)). For pe 2(I), U =« P(F,) and f e I'(P', &) , we usually denote u(f1y) by

JU Iy

Thus we have the spaces for big quaternionic automorphic forms:
Definition 2.3.7. For kP, wP € Z[IP] with kP — 2tP > 0, we define
Do (L) := D(I) @z, Sym™ 2" (0) @ det ",
Do 0e(Op,, 1) := D(Ory; 1) @z, Sym™ 7 (0) @ det "

We consider Zgp e (vesp. Ziewe(OFr,, 1)) as a left GLo(Op,) (resp. Xo(p))-module by the
usual action.

We define the Hecke operators as follows:

Definition 2.3.8. Let ® € S(X, Zyp y»o (1)) (resp. ® € S(3, D ,uwe(OF,,1))). For g €
M2(Op,) N GLy(Fp) (resp. g € A(p)), we define

U(g)®(b) == g:®(bgs),
where ¢; are defined by the decomposition

265 = | fo0 (resp. So(p)g%0(p) = Ugizo<p>).

7.(.8

In particular, when g = ( Op (1) > for the 7, fixed in the beginning of the section, we

denote U(g) by Ty(7;) and call it the normalized Hecke operator.

For f e T(Us, &), we define f € T(PX(F,), &) by

Pl = fifA=8
a7 Y0 ifA£S,

The correspondence f — f is the section of the restriction I'(P!, &) —> T'(Us, &). 1t
induces a ¥ (p)-homomorphism

(231) @]@pr (H) I @kp’wp(Us,]I).
Theorem 2.3.9. The natural homomorphism induced from (2.3.1)
r: (2, Ziw e (1)) — S(Z0(P), Ziv e (Us, 1))

is an isormopshim and commutes with Ty(my,) for s > 0.
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PROOF. We construct the inverse of r. Let ® € S(3o(p), Zie,uwr(Us,I)). Let

Yp = |_|%'20(p)p
be a decomposition. For ¢ € T'(P'(Fy), &), we define d by

¢ dd(b) = Z . ol H(2) dP(by)(2).

]P)l

Then & € S (2, Zipwre (1)) and @ — d is the inverse to r. For the commutativity with
To(z), it follows from Lemma 2.2.2. O

We also define the ordinary part of S (E, 9 (]I)) by

Definition 2.3.10. Let kP, wP € Z[IP] with kP — 2t? > 0. Let € pOp, with at # 0.
We define the ordinary part of S (Z, Dyep e (]I)) by

S, Do e () = [ To(@p)"S (S, Zio e (1))

Note that the ordinary part is independent of the choice of x.
Theorem 2.3.11. Let kP, wP € Z[IP] with kP — 2P > 0. Let ® € S”(Z, Dy wre (I)).

If
f 1dd =0,
[Orp x{1}]
we have
d = 0.
PRroor. For s e @plp Z—qop, let
P, = Ker <KO — O[Gs]).

Since

S(2, D e (1)) = lim S(, i wre (I/ 1))

We can replace I with I/P,I. Thus we fix s and assume that
P, = 0.

In addition, by Theorem 2.3.9, it suffices to prove that r(®) = 0. For ¢ € @, , Z=op, we
put

Lt = Z ]Il[pf,oFx{l}](vz) c F(US, é())
VEA(P)
Since PI=0, L, is stable under the action of A(p®) (see 2.3.3), where

s\ . OFp OFp
200 (5, oF ) |

M, = S(EO(PS)a Homy(Ly,I)) ®z, Sym™ 2 (0) @ det tpwp)

We define
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and Tj(wp) on M, in the similar manner. By Lemma 2.2.2, the natural homomorphism
Cy: S(Zo(p), @kp;wp ((9Fp7 ]I)) E— Mt

satisfies
¢t o To(wp) = To(wp) © ¢t
Moreover, since | J, L; is dense in F(Ug, & ),

ﬂ Ker(c;) = 0.

The assumption for ® means ® € Ker(co). Let x € p*Op, with 2t # 0. For any o; of the
decomposition

we have
o; Ly c L.
Thus Ty(z)es(P) = 0. Since L, is free of finite rank over I, the limit
e, := lim To(wp)"!

exists at M, and Ty(x) acts on ¢, (S (%, Zkewe (1)) as an isomorphism. Thus we have
c(®) = 0 and conclude that ® € (), Ker(¢;) = {0}, namely, & = 0. O

Remark 2.3.12. By the proof above, Hida’s idempotent
€p . S(Z, @kp’wp (]I)) — Sord (Z, @kPﬂUP (]I))
exists as a limit of a normalized Hecke operator lim,, Ty(z)™.

Corollary 2.3.13. Let kP, wP € Z[IP] with kP — 2tP = 0. On S (3, Zip e (1)), for
any x € pOp, with ot # 0, Ty(z) acts as an isomorphism.
Proor. It suffice to prove Ty(x) acts as an injective homomorphism. Let
e Sord (E, .@kp’wp (I[))

and suppose
To(’ZDp)(I) = 0.
Let z € pOp, with 2* # 0. Since

ozf 1dT0(x)¢>(b)=f 1d®<b(g ?))
(PO, (1] [Orp {1}

we have & = 0 by Theorem 2.3.11. O
On the ordinary part, we have good expressions for integrations:

Theorem 2.3.14. Let kP, wP € Z[IP] with kP — 2¢P > 0. Let ® € S4(Z, Do o ().
For f e T(P'(F}p); &), we have

Ll} o ]f ([1; 2]) d®(b)(2) = <1>—1>f F(roms 23 1]) dTo(w5) T @ (b7_ ) (2),

[OFp x{1}]

FEdo®E) = [ e 1) (=) 20)(:)

J[Wf;,OFpX*{l}] [Orp x{1}]
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where 7_s = < OS 1 >
P wy 0

p

ProOOF. We only need to prove the first formula. It suffice to prove that
| AL AT@OOE) = (L1 | ol oyl 1) dB(br ).
[{1}x=30m, ] [Orp x{1}]

It follows from Lemma 2.2.2 and Proposition 2.3.3. 0

In the end of this section, we define the specialization map. For r > 0, we define

%(]I) := Homo_conti (I, Cp),

2 () :={Pe Z ()| Plg € %
ZEn (M) = {P e 2550 (1) | Plg = Prywpw With kp =1t}

where, we denote by P|g the composition G — I* B C*. We define
Definition 2.3.15. Let T be a topological ]N\@—algebra. Let ® € S(E; Do e (]I)) and
Pe %k%r‘g; (I) with Plg = Prywpw (W = (w,w’)). We define

Spp(®) := P( J (2X + V)ke 2 dcp) € Stw(ZP™),w,u;0,).
[Orp x{1}]

For s > s(w), we define

()

Y >=P( | (X + 2y )2 dcb) € Su(S(p%),w,we’ 10,).
[{1}xp* Oy ]

Proposition 2.3.16. For the specialization map , we have
SpP OT()(WS) To( ) OSpP
Proor. It follows by direct computations. ([l

Proposition 2.3.17. Let ® € S(3; Ziv wo (1)) and P e 2,355 (1) with Plg = Pry uwp -
For a polynomial h(T) € Cp[{T,}sez, | in (#Ip)-variables such that the degree of z, is
smaller than or equal to k., we have

P ( f[on . h((27)ver,) d@) = (W=Y /X)X e, Spp(®) ), ,, -

For s = s(¢), we have

P - XY Ykp 2t )
(J[{l}XPSOFp]h(( UEI ) <Sp ) /Y) >k—2t

In the ordinary part, we have the following propositions:

Proposition 2.3.18. Let ® € S"Y(%; Zkp wp(I)) and P € 2,350 (1) with Plg =
Py wp - We have

()

Shp (2)(6) = (5)" o7y Spp (To(5) " B(b7_sz),
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0

—Tw

1 i
where 7_g. 1= < s 0 > In particular, we have

P (J h(z) d@(b)) = (T-ws SpP(Tg(w;)_1<I>(bT_wg), h(=X/Y)Yk=2te, o).
[{1} xp*Ory ]

PrROOF. It follows immediately from Theorem 2.3.14 U

Proposition 2.3.19. We assume that there exists a subset % < 2,3} (I) satisfying

(2.3.2) (] Ker(P) =0,

Then for any z € Ar; and ® € S7YX; Dyo 0 (1)), we have
(2.3.3) O (bz) = (z,1)P(b).
Moreover, for any r > 0, if

(2.3.4) N Ker(P) = 0,

Pe@n%kagfglp (Mzr
The formula (2.3.3) holds for not necessarily ordinary ® € S(X; Zkp e (1)).

Proor. For any b e B, P e % we have

Spp(®)(bz) = Spp((2,1)®)(b) = 0.

Thus by Theorem 2.3.11, we have the first assertion. The second assertion follows from
the density of polynomials by p-adic Weirestrass theorem ([?]). O

2.4. [-adic Petersson inner product for measure valued forms

In this subsection, we fix kP, wP € Z[I,]| with kP — 2wP > 0, 2wP — kP € ZtP, and a
finite product of noetherian complete local Z,[[G]]-algebras with finite residue fields and
denote it by I. We define

G :=B*/Z(B"),
Goo = G(F@Q R),
I = b'G(F)bn HG,, (H < G(Apy) : open compact subgroup),

where Z(B*) is the center of B*. Throughout this section, we make the following assump-
tion:

Assumption 2.4.1. For any ® € S(3, Zp »(I)) and z € A%,
O(bz) = (2,1)P(b)

for all be B* (See Proposition 2.3.19).
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2.4.1. I-adic Petersson inner products.

Definition 2.4.2. We define a GLy(Op, )-invariant open compact subset of P!(Fy) x
P'(Fp) by

V- { (@), (z:0) € P (O, ?

Tw—yz € (’);p }

Let

j: Op, — G; x> (278 2?).
Definition 2.4.3. We define
DeT(PY(Fp)?, &1 &)
by the zero extension of an element of I'(V, & ®; &) defined by
D|VmUA><U5\A(Za w) = j((l — ZpWy )pea * (2pWy — 1)peS\A)7

where A = §. We note that {V n Uy x Us\a}acs is an open covering of V.

Proposition 2.4.4. Let GLy(Op,) act on T'(P'(F,)?% & @ &) diagonally. For any
u € GLy(Op,), we have

Dlu = (det(u)",1)D.

Remark 2.4.5. The section D satisfying the formula in Proposition 2.4.4 is determined
unique up to scalar. In fact, suppose D’ satisfies the same formula as D. Then we have

D'((1;0),(0;1)) D((as ), (b;d)) = (ad — be, 1) < j Z ) D'((1;0),(0;1))

= D'((a;¢), (b;d)).
Thus
D' = D'((1;0),(0;1)) - D.

Definition 2.4.6. Let ®, ¥ ¢ S(E, Dip e (]I)) For open compact subgroups Hy, Hy <
¥p and z € PY(F,) x PY(F,), we define

B, 11, (@, V) (D) 1= (-, ppp_gpw © <JH D(z,w)d®(b)(z) ®\Il(b)(w)) e L

1xHoz

Here, we denote by (-, Y o the homomorphism induced from the pairing
Sym*” (1) x Sym™ () — 1
of (2.1.3).
The function 8%, g,(®, ¥) satisfies the following formula.

Proposition 2.4.7. Let z € P!(F},) and Hy, H, < X, open compact subgroups. Let
O, Ve S(E, D ywe(l)). For any u e X, such that u(H; x Hyz) = Hy x Hyz, we have

B 11, (D, W) (bu) = (det(up), 1) det(uP) ™55, 4y, (D, W)(D).

Proor. We have the formula by simple computation using Proposition 2.3.3. ([l
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Definition 2.4.8 (I-adic Petersson inner product). For ®, ¥ e S(X, 1, Dke w» (1)),
we define

1
B]I(q), \If) = Z #F (NrdB/F( ) )/BZXZ(@ \D)(b)
beG(F)\G(Ap)/E

1
< )
#I5 )y
where z € P'(F,) x P'(F},) and By is independent of the choice of z.
We have the following key lemma:
Lemma 2.4.9. Let z = (21, 22) € P'(F,)? Then, for &,V € S(2, Zip e (I)), the sum
1
> TS (Nrdp/e(b™),1) B8, (ps).5, (@, ©)(D)
beB* AF\B/Zo(p*) Zo(p®)
is independent of s. Similarly, the sum
1
2 gy (Nedsye(7),1) B2, e, (8, 9)(0),
beB* AF\B/So(p®) So(p®)
is independent of s.

PROOF. Hy := ¥y(p®). We only prove the first formula. The second formula can be
proved in the same way. Denote the first sum by Iy,. We prove, for any s,

Iy, = 1Ip,.
Define a finite subset { g, } = X, by
Sp=| |o:H
i—1

By definition, we have

3 (Nedr(bi), 1) 55, 5, (@, W) (bg:) = (Nediyp(b), 1) 52, ., (@, ) (1)

Thus

-y 1 #I5 ngiH.g !

Hy = 7 7
ST HT”

= Iy.

(Nrdp/r(tig), 1) B, 5, (P, U)(tig:)

O

Corollary 2.4.10. Let the assumptions be as in Definition 2.4.8. Let ®, ¥ be elements
of (3, Dewe(I)). For any P e 2 (I) with Plg = P, wpw € Zisp and for any s = s(v),
we have

1 [2up— ~()
PB@Y) = Y w s Nedgye(8) (Spp(@)(0). Spp (W)B) )
beB* AF\B/Zo(p*) =
1 (S)
- 1(Ntd Spp(®)4(b), Spo (W)(B)  db,
vol(Xo(p*)) fBXA;\B(AF) sye(b < F P (1) )>k—2t

where the notation (-)" is as in Remark 2.1.4.
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Proor. It follows from the following elementary formula: for f, g € Sym"(Q) for some
integer r > 0, we have

<f(X17 }/i)g(X27 }/2)7 (X1}/2 - XZS/l)T>r77« = <f7 g>7‘7
which follows by the uniqueness of a invariant paring on Sym"(Q). O

Corollary 2.4.11. Let the assumptions be as in Definition 2.4.8. Let ® € S(3, Zgp w» (1))
and ¥ e S°rd (E, Do jp (]1)) For any P € X(I) such that Plg = Pi,wpww € %ﬁfff; and
for any s > s(w,w’), we have

P(Bi(®,V))

= > (@) w e (Ned g e (D))
beB* AX\B/Zo(p*®)
X (Spp(®)(D), T—wy SPp(To(w) ™ W (bT_my)) Dh—2t

W™ (Nedpy () Spp(®)"(8), Trl(p) ™ 'Spp (¥)" (b)) ) b,

JBXAX\B(AF) k—2t

where (-)* is as in Remark 2.1.4, Wthh is an element of /(X(p°),w) and for any ¢ €
' (X(p*),w) and z € Op, such that zte # 0, we define

Ti(2)$(9) = |plir ’“/QZWZ

where (o) ( :()): (1) ) S(p*) = |T|aiE(P )

2.4.2. The lifing to Hida families of quaternionic automorphic forms. We
discuss about the Hecke equivalence of the I-adic Petersson inner product. Let a € Op be
a nonzero ideal. We define an order R(a) called the FEichler order of level n by

50[2_1<{ <“ b ) e My(Op,) [e=0 mod aOp, })

X H {the maximal order of B ®@p Fy }

qld

We define open compact subgroups of B*. For any nonzero ideal a < Op prime to pn~,
we define

(24.1)  Kf(a):= R(a)*,

R
(2.42) KP(a {u e KP(a)

'ﬂmzz(g ;) (mod aMy(OF,)) ﬂnqxo},

(24.3)  KP(a):= {u e KZ(a)

iﬂwzz(é I) (mod aMy(Or,)) ﬁ)q*a}

We fix a nonzero ideal n € Op prime to pn~—, and assume that
Ki(n)? < ¥ c KP(n).
Let a © Op be a nonzero ideal. Let A(a) B be a semigroup defined by

Amy:{xeé

iq(z) = (ﬁ Z) such that ¢ € aOp,, d € Of, forall q | a}.
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We recall the definition of Hecke operators on the space S(X(p*), M) (Definition 2.1.1) for
s > 0 and a A(p°n)-module M.

Definition 2.4.12. Let M be a A(p®*n)-module. We define operators T'(a), U(b) and
U(z) acting on the space S(X(p®), M) for nonzero ideals satisfying (a,pn) = 1, bjn and
z € Op,, 2t # 0 as follows:

e (Definition of T(a)): Let (a,pn) = 1. Let a?® € (A’}?f)x and b, € B* such that
apDNTdBn(bn)OF = a.

r@ = | 500 () )t |
e (Definition of U(b)): Let bjn. Let a?™ € (A%’j;)x with

A" Op = b.

no
vy = |20 (Y )0 |
e (Definition of U(z)): Let x € Op, with z'» # 0. We define

S x 0 S
vz (5] )20 |
Proposition 2.4.13. Let M be a A(p°n)-module. The assocative algebra generated
by T'(a),T(a,a),U(b) and U(x) over Z in End(S(X(p*®), M) is commutative.

PROOF. See [Hi91, Proposition 1.1]. O

Definition 2.4.14. We define I-adic Hecke algebra hg(n;I) by the I-algebra generated
by T'(a),U(b) and U(z) in Endy(S(X(p*), Zie we (I)).

We also define the ordinary part of IT-adic Hecke algebra h%d(n;T) by the I-algebra
generated by T'(a),U(b) and U(z) in Endy(S(X(p®), Zke.we(1)). According to Remark
2.3.12, if we put e, = lim, Ty(x)™ € hp(n;1) is the ordinary idempotent (z € pOpr, with
ate #0),

We define

We define

ezh(n;T) = h*!(n;T)

Theorem 2.4.15. We assume there exists % < 23, with (2.3.2). For ®,¥ €

S, Die e (1)) and T € Wy (n; ), we have
Bi(T®,T) = By(®, TT),

If for any 7 > 0, (2.3.4) holds, we have the same formula for any ®, ¥ € S(X, Zgp v (1))
and T € hB(Il; ]I) b e S(E, .@kp,wp (H))

PrROOF. It follows from Corollary 2.4.10. OJ

Theorem 2.4.16. Let ¢ € S5 (X(p*), w; Op[w]) be a p-adic quaterninic automorphic

form which is new at each place dividing n. There exists finite /NXO—algebra I which is
integrally closed domain and ® € S(3(p®); Zi,w, (I)) such that there exists P € Zpp v (1)
with Plg = Py, wpw such that

Spp(®) = ¢.
PRrOOF. It follows from the same argument preceding [Wi88, Theorem 1.4.1]. O
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2.5. The relation between measure valued form and S(3;I) and the control
theorem

In this section we assume that every prime above p divides p. It means that all of
the conditions on upper p (for example, 2wP — kP € 27ZtP) are empty. We omit to write
notations involved with upper p such as kP, wP, P, and we simply write k, w, ¢, ... instead
of kp,wp,t,,.... We fix a finite product of noetherian complete local /N\@—algebras with
finite residue fields, and denote it by I.

Recall the identification
. D N
S(8:1) :{ f: X(SPN(Of,)) — 1

. = X (3P
continuous ‘t f(xt) = f(z) for z € X(XPN,), teG}
as in Theorem 2.2.24.

Definition 2.5.1. We define a [-module homomorphism
Sp: S (X, 2()) — S(3;1)

O [bHJ 1d¢)(b)].
[Or, x{1}]

Since Sp commutes with normalized Hecke operators, we also define
Sp”d: S (2, 2(I)) — S 1).
Proposition 2.5.2. Let P € 27 *™(I) such that P|g = Py The following diagram

S (S 2() i S(Z;1)

o] -

Sk,w (Eo(ps(“’)), Ow) [w] (Xk-2t .y S(E; ]I/P]I)

is commutative. Here, for f e Sym* 2(0,,), ( X*~% . means the value f(0,1) € O,,. (It
is actually abuse of notation. In fact, the pairing (-, - )x_o; of (2.1.3) is only defined over
O, under the assumption k < pt + 1.)

Proor. It follows immediately form the definitions. 0

We focus on the ordinary part. Then we have the following result:

ord

Theorem 2.5.3. The homomorphism Sp®* is an isomorphism.

PRrROOF. The injectivity follows by Theorem 2.3.11. We prove the surjectivity. Let
f € S'4(3;T). By Theorem 2.2.24, f is described as an element

(fs)seZ>o € l(ingOIIl@[GS] (ep Pico X(Z(ps)), I[/PS]I),

s

where e}, is Hida’s ordinary idempotent. For s’ e El—)p‘p Zi—op, let

Ly:= Y, T/PI1vo. (72 © T(Og,, & @ 1/P).

Y€A(p)
The space Ly is free of finite rank over I/PI, in fact
LSI = @ H/PS]I]'[].)SIOFX{].}](F}/Z)

v€%0(p)/Zo(P)" o (p*)
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Let 05 € Homy(Ly,1/Py) defined by
/ 1 if v € ¥o(p) n Bo(p*),
05 (Lo onwin1(V2)) = , /
§ (prorxin (1) {o it ¢ So(p) A Eo(p”).
For b e X (XP), we define
) o1 w, ¢ 1 ¢ s
o)=Y (To(=)'f) (b ( 7 ¢ ) ) . (( L ) 50) e Hoy (L, I/P.1),
CGOFP/])SOFP
where, we denote ("), € O, by @;. By Lemma 2.2.2, for any u € Yo(p), we have
D, (bu) = u ' D, (b).

We prove
(®(b)), € limHomy (Ls, I/PI) = 2(Op,; ).

S

Let s’ > s. By using Lemma 2.2.2, the image of &y in Homy(Lg, I/PI) is

> x w7 ) (%))

CeOFp /PSOFp dEOFp /pslfs(')pp

(G (o 7))

-3y @ n(T)(H )

CEOFp/pSOFp de(’)Fp/pS/*SOFp
1 ¢ o
(G5 1))
= d,.

Thus have
®:=lim®, € S(3o(p), Z2(OF,:1))

E]

satisfying Sp(®) = f. Let ®™ be a measure valued form obtained from the Ty(x)~"f by
using the same construction above. Clearly Tp(z)"®™ = ®, thus

® e S”(So(p), 2(0Or,.1)).
O
Corollary 2.5.4. Let P e 2 (I) with P|lg = Prww-. The ordinary specialization map

induces the following isomorphism:
Spp?: 5o (2, 2(1) @1 I/Ker(P) —= Spuwu(E(p™™)), w; P(I))
Proor. It follows from Proposition 2.5.2, Theorem 2.5.3 and Theorem 2.2.20. (See
Remark 2.2.25.) O

Remark 2.5.5. Corollary 2.5.4 is the control theorem for measure valued forms. The
following formula

Ker(Sp3?) = Ker(P)S (2, 2(D))
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can be proved for any I. However, for the surjectivity of Spp, it seems difficult to prove it
without Therem 2.5.3 and Theorem 2.2.20. In fact, since Z(W; Q) is generated by Dirac
measures, the image of

Phaww: 2W; 0) — Sym*2(0,,)
is the same as

Ou[Zo(P)]Y*# < Sym" *(0,).

In general, the left hand side is not equal to Sym* *(0,,).






CHAPTER 3

Construction of three-variable p-adic L-functions for balanced
triple product

In this chapter we assume that every prime above p divides p. It means that all of
the conditions on upper p (for example, 2wP — kP € 2ZtP) are empty. We omit to write
notations involved with upper p such as kP, wP, tP, and we simply write k, w,t, ... instead
of kp,wp, 1y, .... We fix a finite product of noetherian complete local Ko—algebras with
finite residue fields, and denote it by I.

Assume that p is odd. Let FE is a totally real cubic étale algebra over F', namely, F is

one of the following F-algebras:

F1><F1><F1 (Fle)7
E={ FixF (Fy = F and F5 is a totally real quadratic extension over F),
F3 (Fy = F and F3 is a totally real cubic extension over F).

We denote Bp, := B ®p F;. Let

Ip:=1={o: F — C, : field embedding}
Ip, :={0: F; — C, : field embedding}

k3

Z[Ig) = P Zo

oelr,
tp = Z o€ Z|lr)].
oelr,
Let
E, = E®r F,
E, =FE®qQ,

For each p | p, E, is isomorphic to Fp3 or [y, x K, or K, where K| (resp. K}/) is a quadratic
(resp. cubic) extension over F,. We fix an isomorphism between them (we fix them more
precisely in Section 3.3) We fix a finite flat Z,-algebra O < C, containing all conjugation
of Op. Fix nonzero ideals ny 1,012,013, 01 < Op,, ng € Op, and ng © Op,, which are prime
to p. We define an open compact subgroup of B*(Ap ®p E) by

B B B .
Kl 1 (nl,l) X Kl f (nl’g) X Kl 1 (11173) it £ = F1 X F1 X F17
Spi= 4 KU (ny) x K (1) if E=F x [,
K" (ng) if £ = Fj,
Y=Y~ B

We assume that (by taking sufficiently small ¥z) for any b € B ,
(3.0.1) re = (b'B*bAS, n XA /AL = {1},

gnBx T

41
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Put
Clg (3(p™)) := lim CIR, (X(p*))

s

Cl, (B(p®)) x Cli, (B(p®)) x Cli, (B(p®)) if E=F x Fy x Fy,

CIH(S(p™)) := { ClE (S(p™)) x CL;, (S(p%)) it E=Fyx F,
Clg, (2(p™)) if = F
We define

Gr, := Cl; (2(p™)) x OF,
GF1XGF1XGF1 ifE=F1><F1XF1,
GE = GF2 X GF1 if F= F2 X Fl,
Gp, if £ =F3,
We embed G into Gg diagonally. Let
Cl; (Z(p”)) = Cl, (2(p™) () @ Z;
be a decomposition where Z] < Cly (3(p®)) is a finite group of order prime to p. For
j=1,2,3and 7= 1,2, 3, we fix a character
X1+ Cl;l (E(poo)) —> Z{ —> (C;,
xi: Cli (B(p”)) — Z; — C},
x: Clp(2(p”)) — C;
(X1 x12:x13)  if BE=Fy x Fy x F,
(

X1; X2) if £ =F x I,
X3 if £ = Fl'

We make the following assumption on y:
X(Cla(2(p™))) =1,

in particular, for any z € CIL(32(p®)), the image of z € Cl5(X(p®)) is contained in the
p-sylow group C1L(X(p®))(p). Let

X O, — CLE(S(™))(p) = C;.

We fix a finite O[[Gp, |]-algebra I ; for j = 1,2, 3 such that on each algebra Z} acts as
X1,; and we also fix a finite O[|Gp,]]|-algebra I; for 7 = 1,2, 3 such that on each algebra Z;
acts through y;. We define

]11,1@0]11,1@0]11,1 it £ =Fy x Fy x F,
I:={ L&l if B =F x I,
I if £ = Fj3.

Let
é% = GLQ(OEP)/tN(OEP) XT(OEP) ]I

be the I-bundle defined as in the same manner in Section 2.3.
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3.1. The definition of the section §

At first, for each type of E, listed as below, we define d, € I'(P'(E,), &,) and then we
define a unique element (up to scalar)

5 =[]0 e TP (E,), &5)

plp
satisfying for u € GL2(OF,) < Xg,,

(3.1.1) Slu(z) = (det(u)~2,1)d(2).
3.1.1. E, = F, x I, x F, case. Let

V.E = {((xl;yl), (x2; 42), (x3;53)) € PH(OR,)?

Ty — nyJEO forzg—12327éj}

Vi =V A [{1} x Og] x [OF, x {1}] x [OF, x {1}]
Vo= K20 [0, x (1] x [{1} x Og,] x [Or, x {1}]
Vs i= V7 0[O < (1] x [Op, x {1}] x [{1} x O]

be an open covering. We define d, € I'(P'(E,), &) as the zero extension of a unique element
element of I'(V,F, &,) satisfying (3.1.1) and

-1
Z1 — %2 Z1 — %2
et = (S22 220

1-— 2923 1-— Z1%3

_1
(z1—22)(1—2z123) (21—22)(1—2223) (1—2223)(1—2123) 2
™ 1—2923 ’ 1—2z123 ’ 21—22 ’ = GE % OE‘
(z1—22)(1—2123) (21—22)(1—2223) (1—2223)(1—2123) P
1—2223 ) 1—2123 ’ 21—22

where 2 = (21,29, 23) € OF; .

3.1.2. E, = F, x K] case (K,/F, is a quadratic extension). We fix {, € K such
Ok = Or,[&] and triy/r, (&) = 0. We denote by ¢ € Gal(K}/F,) the generator. Let

V= {((fcl;yl), (22;52)) € P (OF,) x PY(Oky)

and let

(93<y2—y<w2) X
ToY1 — YaT1, g € OF,

V] = VE A [OFp X {1}] [{1} X OK{]]
V) = VE [{1} X (’)Fp] [(’)K/ X {1}]

be an open covering. We define 6, € I'(P*(E,), &,) as the zero extension of a unique element
element of I'(V,F, &,) satisfying (3 1.1) defined by

29 — 25 -
B ) _ T 2
Olvi(2) = Oy (2) =y (1’ 28(1 — 2521))

1

(2§p(17z§z1)(17z2z1) (22725)(1722,21))_5
(z2—25) 7 26p(1—2521) ) c GE x O
<2£p(1—z§zl)(1—zzz1) (zQ_z;)u_zQzl)) Fp
(22—23) 7 26p(1-z571)

where z = (z1,22) € Op, X OK;,-
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3.1.3. E, = K| case (K|/F, is a cubic extension). Let [?'g’ be a Galois closure of

K, over F},. Fix a generator p of unique normal subgroup of Gal(K" /Fy). Let 0, be a
element of Ogr such that Oy = O, [6,] Let

VP = {(Jf;y) e PY(Oky)

2 —1 2 x
05 e ) £ O |
Let

V"= V.F A [Oky x {1}]
V= VA [{1} x O]

be an open covering. We define 4, € I'(P*(E,), &,) as the zero extension of an element of
L(V;F, &) defined by

i zpz

- 1
< 05—08" ) (z—27)(z—2") > 2
o RO R D VAN ¥ e PANNG
(05—68" ) (2—2P)(2—2F") P
(05—60) (6,05 ) (20 —277)

2 —1
0r — °
plvr(2) = dplvyr(2) =xp u)

Note that d, is independent of the choice of the generator p.

3.2. The construction of Theta element
We give an important property of  again:
Proposition 3.2.1. Let § as above. For u € GLy2(OF,) < Xg,, we have
Slu(z) = (det(u)~2,1)5(z)

Remark 3.2.2. Any section defined by zero extension of I'(] [, VPE , EQRERE) satisfying
the property of this proposition is uniquely determined up to scalar.

Now we define the theta element.
Definition 3.2.3. Let
®y;€5 (KfFl (n); 9(]114))
for j =1,2,3 and let
@;e 5 (K" (n); 2(T))
for e =1,2,3. We put
1 @P1o@P13 if E=F x Fy x I,
b =< DR if = F| x Fy,
O if = F;.
We define the theta element ©4 € I by

0= Y (NrdB/F(b)5,1)1}}1(0)5(z)d(<1>(b))(z).

beAj (BX\B* /%
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We also define the square root of p-adic L-function

B 03
LP(P) i= ———
where
H?:l Bﬂl,j (@17]',@10') if B = Fl X Fl X Fl,
BH(@,@) = B]I1((I)1aq)1)8]lg(q)2aq)2) if £ = F1 X FQ,
By, (93, B3) if £ = Fj.

3.3. The interpolation of Theta elements

We fix a uniformizer @, of Op, for each p | p and denote (wy),|, € OF, by @,.

3.3.1. £ = F; x F} x Fy case. Let ¥;; B* be an open subgroup and ®,; €

S(Eld,ny), _@(]I)) as in Definition 3.2.3 (7 = 1,2,3). For each p, we choose a canonical
isomorphism

E,=F,.
For ny, ng,n3 € Z=o|Ir, |, we denote the indeterminate by
Sym™(C,) ®c, Sym™(C,) @c, Sym™ (C,)
= QCXT YT}, ®c, CLXZ, Y7 s, ®c, CLXT, Vi i,

oel

It has natural GLy(E ®F C,) = | [,.; GL2(C,)?-action.

Lemma 3.3.1. For any s > 0, we have

O = Y M) Ly | 5(2)d(@(0)(2),
beA;nyX\éx/Eo(pS) [OFp X{l}]X[OFp x{l}]x[{l}xpSOFp]
PRrROOF. It’s proved in the same way of the proof of Lemma 2.4.9 O

Theorem 3.3.2. Assume @gl), <I>§2) are ordinary and there exists a; € I* such that
To(wop) @15 = ajp®1;

for j = 1,2. For any P € 2 (I) such that P|g, = Proy wron6, X Proywswon ity X Prgws ws o
3

with 2w; — k; = a;t; and Zai € 2Z. For any s = s(wj,wj) (j = 1,2,3), we have
i—1

P(Os)
(wiwows) (@) # (OF,/P*OF,) " # (Op,/p*OF,) J
(—1)Fsvol(Xo(p*)) Hp|p aiﬁp(P)“a?p(P)“ AXBX\B*(Ar)
1 w *

<Ak,spp(<pl,1>u(x(0 , )>@Spp@l,z)“(x)®s?>§f)<<1>1,3>“<x( 2 (1))>>

% (wiwows) ™A (Nrdpp(x))dr
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where the symbol (-)* is that explained in Remark 2.1.4 and k. := ky + ko + ks, t* :=
ZUEH(C g.
Aj, = (XaY; — X3Vo)H H(X1Y; — XaV1)F H(X1 Yy — XoVp)Rs
= [JOEYy — X5y ED 1 (X7 Yy — X7y M0 X7y — XSy )¢t

oel
. ki + ko + k
with k] = % — ki
1/2
(w1w2w3)1/2 = <w1w2w3TF(al+O@+O{3)) T;1+a2+a3

u tp—w; [2w;—k;]/2
aip(P)" i= iy oy LV 20, (P)

PROOF. We denote by F(z,y, z) the function on B(Ag,)?
u m =~(s) ”
(A, Spp(@1)"(2) @ Spp(@)" (1) @ Spp (17)(2) ).

Since for (z1, 29, 23) € O%p x p°Op, such that 2; — 2, € O;p,

g << (1 = 20)(1 = 2120) (21— 2)(1 = 252) (1= 29%)(1 2123)>é ), 1>2

1-— 29%3 ’ 1-— 2123 ’ 21 — k2

= wiwaws (21 — 22)X (21 — 22, 21 — 29, 1)2

202w —kf] 2[2w¥ — 2[2wi — k] (

k,‘*
X €eye,F (1 - 2223)€cyc7F 2](1 - 2123)€cyc,F 21— Z2)7

where w} = #1E2E8 g, we have

( 21— 29)(1 — 2123) (21 — 22)(1 — 2923) (1 — 2923)(1 — 2123)>2 | 1)

1-— 2923 ’ 1-— 2123 ’ Z1 — 22

H—

(wiwawi ) Y2 (21 — 29)x (21 — 22, 21 — 22, 1)
(1—2) )’

Lt k] (208 5] (208 %]
Cyc F (1 - Z223)€Cyc,F (1 - 2123)€Cyc,F

where (wiwowy ') ™V? 1= (wjwewy trpt T2 2 ime2tas - By gubstituting (1,0,0) for
(z:)i, we found the sign is +.

1

P(4s) = o |
vol(Xo(p%)) [Ty, a1 (P) a5’ (P)* JaxB\Bx(ap)

c1,c2€0F, /P°OF,
c1—c2€(0OF, /P°OF, )~

x (=1 (wiwawy 1) wiwhws wy (er — e2)

« F(z < = ) " ( O > ) (wrwsws) V2 (Nrd(x))da
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By using the right invariance of the measure, we have

1
o I
( (D) VOl(Eo(ps)) Hp|pa1‘,’p(P)ua2}:p(P)u AL B*\B*(AF)

c1,c2€0F, /p°OF,
c1—c26(OF, /P*OF,)*

x (=) (wiwawy 1) wwhws wy(er — e2)

S

x F(x ( ZT(J)p “ I “ ) T ( %p (1] ) , ) (wywaws) "2 (Nrd(z) ) da

_ (=1)"# (Or,/p*OR,) " # (Or,/p*Or,)
vol(Xo(p*)) [Ty, at’s(P)ayy (P)

S

f F(x ( %p 1 ) T ( %” (1] ) , @) (wiwaws) YA (Nrd () da
ARBX\B*(Ar)

(—1)swiwows) V2 (m3)# (OF, /p*OF,) " # (Or,/p*OR,)
vol(Xo(p*)) [ [, a1p (P) a3’ (P)*

J F(x < (1] wf ) T, ( wg ? ))(wlwgwg)_l/Q(Nrd(QJ))dm
AXBX\B*(Ar)

Corollary 3.3.3. Assume (Pgl), (I>§2) and <I>§3) are ordinary and
To(wp)®rj = a1,pP1
for j =1,2,3 and p | p. For any P € 2*"(I) such that P|, = Py www) X Prowswsw) X
Pry s, w3 . Then we have

P(Os)

sk (=4 (0O # (OO |
(=1)ksvol(Zo(p*)) [, axlp (P asy (P) agly (P)* Jag s (ar)
1 —S
(ausop@e (5 T ) @sopt@iar@esm@ae( 2 )
ok 2t
X (wiwaws) ™2 (Nrd g p(z))dx
where the notations are as in Theorem 3.3.2.
3.3.2. £ = F; x I, case. Let ¥; be an open subgroup and ®; € S(3;; Z(I)) as in

Definition 3.2.3 (i = 1,2). Let ¢ be the generator of Gal(F»/F') and for o € I, fix & € I,
such that &|rp = 0. For n; € Z=o[Ig,], we define the indeterminate by

Sym™ (C,) Qc, Sym™(C,) = ® Col X7, YY |y, Qc, (CP[XQE7 Yf]nz; Qc, (CP[X2E<7 Yfg]ma

oel

It has natural GLy(E ®F C,) = [],.; GL2(C,)?-action.

Lemma 3.3.4. For any s > 0, we have

O = Z (bhﬂdB/F(b)i%7 1) JV[U}XpsOFﬂ [ x{1}] 6(x) d(q)(b))(x)’

beAf (BX\B* /S0 (p*)
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PROOF. It’s proved in the same way of the proof of Lemma 2.4.9 0

For each p | p splitting completely in F5, we define
&i=(2"1-2")e0p, =0%.

We note that we have the following description of the restriction of § on [{1} x p*OF,] x
05, * (] 0 Ty, 1

-1
B 29 — 2
e =x (1551 =5

< 26(1—252z1)(1—2221) (22—25)(1—2221) \
X

SIS

(z2—25) ’ o 26(1—2521) )
(25(172321)(17,2221) (zzfzg)(lfzgzl))
(z2—25) v 26(1—z521)

where

§:=(&)sip € Ok,

Theorem 3.3.5. Assume &, are ordinary and
(wp)CDg = CLQyp@Q

for some ayy, € I*. Let P € 2°(I) such that Pla, = Prywiwi o) X Prowswswr, With 2w; —k; =
a;t; for i = 1,2 and ay € 2Z. For any s > s(wl),Zep(Fg/F)_ls(wg)pp (ep(Fo/F) is the

plp
ramification index at p) , we have

P(Os)

_ #(Or/P*Or,)" # (Or,/P*Ok,)
(—1)Fvol(Zo(p)) ] Ly, a5 (P)"

[ (aisPer@esmee( T ) ) Ndyr)ds
AXBX\B~ E* 2t




3.3. THE INTERPOLATION OF THETA ELEMENTS 49

where the symbol (-)* is that explained in Remark 2.1.4 and

§ = (fp)nlp
with €, 1= the &, defined in 3.1.2  if p does not split in F
’ (271 —27h) if p splits completely in F,
Af = [ [ 26) ' e (X557 — XTovy)Ho
oel
% (ng}/la . XUyEg)k:;‘?—l(Xﬁya . Xif}/éﬁ)k;?g—l
{ k* ) klo’ + kj?o’ + k20‘§ ]{;
9 lo>
e k1o + Koz + kogc I
with { ™20 9 Mg,
k* L klo’ + ng + kjggg k
26¢ ° 9 - N25¢»
| (o) is a prime such that o factor through Fj(),

1/2 —(a1+2a2) 1/2 a1+2as
(Wrwe) 7 1= (wWwa TR T :

m t w; 2w; —k;|/2
i p(P)" i= w20 P, (P).

PROOF. Set elements of Z[I] as follows:

h2 = Z /{7250',

oel

Vg = ngga,
hg = Z k‘ggg(f.

oel

V3 = Z Wo5c0.

oel

We denote by F'(x,y) the function on B (AFQ) x B(Ap)
F(z,y) <A Spp 1)"(7) ® Spp(%)“(y)>'
Since for any (z1, 29) € Or,, x Op,, such that 2; € p°Op, , and 2z — 29
1 2
p <2§(1 — 2z521)(1 — 2221) (29 — 25)(1 — 2221)>_2 |
(22 — 23) T26(1 - z52) ’
=ww;(@®*@m—%»xmﬂ@o*@w—%»Q

2[2 2[2v¥ _p¥ _
x 2T (26) 71 (25 — 25)) €L (1 — 252 )20

we have

26(1 — 2521)(1 — 2921) (29 — 25)(1 — 2021) \
P<< e
(wlwz_l)l/Q ((20)7H(z2 — 25)) x (1, (26) 7 (22 — 25))

[2wi -k [2vF —h¥] [2v¥ —h¥]
X Ecyc,lFl ((25) (Z - 22)) 6cyc?Fg ’ (1 - Zgzl)ecyc?FQ ’ (]‘ - ZQZl)’

S
—_
\—/



50 3. CONSTRUCTION OF THREE-VARIABLE p-ADIC L-FUNCTIONS

where
—1N\1/2 —(a1—2a2) 1/2 a1 —2as
(Wiwy )77 1= (wiwe Tk Th

Thus we have

P(©y) = Cu

s Sp u J Z
vol(Xo(p*)) Hp\p %,p(P) AXBX\B*(Ar) €O, /p°Or;,
C—CCE(OFp/pSOFp)X

x (wiwy ) 2wy " ™1 ((26) 7 e = )

w? ¢

Pl (] D) N

_ (-1
Vol(So(p*)) [ I, 275 (P)" L;Bx\mm 2

c1,c2€0F, /p°OF,
CQGE(OFp/pSOFp) %

x (wiwy )Yt wh ((26) 7 (e2))
x F'(z,x ( %5 “ *;025 ))(wlwg)l/Q(NrdB/F(:p))d:p

By changing variable, we have U

_ (_1)k1# (OFp/psOFp)x (OFp/psOFp)
vol(Zo(p*)) I [, a2 (P)"
! @y § —1/2
g LXBX\BX(MF (x7x( 0 1 ))(wle) P(Nrdpr(x))dr.

Thus we have the formula.

Corollary 3.3.6. Assume @, ®, are ordinary and
To(wp)q)i = ai’pCI)i

for some a; € I*. For any P e 2°(I) such that Pla, = Prwiww, X Prowswrwy, With
2w; — k; = ayt; for i = 1,2. Then we have

P(©s)

_ # (OFp/pSOFp) # (OF,/p°OF,) J
(_1)k1V01(20(ps))Hp|pa‘l L (P)tay, (P)" AXB*\B*(Ap)

(8. 80p (81" a7 ) @Sy )> ) ()
3.5

where the notations are as in Theorem 3.



CHAPTER 4

A review of [-adic forms on GL; over totally real fields

4.1. Hilbert modular forms and g-expansions

4.1.1. Definitions of modular forms. We fix non zero ideals n,n’ € Op such that
n+n' =1 (we will assume that n is prime to p and n’ | p? for sufficiently large v from
Section 4.2 below). Recall I := {o: F' — C, = C : embeddings of fields}. Let

GL3 (R) := {g € GLy(R)| det(g) > 0}

and let
9 :={z € C[Im(z) > 0}
be the upper half plane and we identify $ with GL3 (R)/R*SO5(R) by

n a b l_)a\/—1+b
GLZ(R)a(C d) —C\/?lere.ﬁ.
For 6 = (( CCLU Za )) € GLy (R)! and 2 = (2,)oer € H’, we define
g i oel

J(0,2) = (¢o2o + dy)oer € Cl ~ F®qC.

For any fractional ideals a, b. we define subgroup I't(n,n’;a) € GLy(F'), which is discrete
in GL; (R)!, by

/ 0 b Op a ad —bce O,
Fi(n,n;a) = c d )€l awa O d=1 modn
r a=d=1 modn

Let k,w € Z|[I]. For each C-valued function f on $ and for v € GL] (R)?, we define

Flray(2) = 5(7, 2) " det()" f(+(2)).
Definition 4.1.1. Let k,w € Z[I] such that k > 0 and 2w —k € Zt. Let a be a nonzero

fraction ideal of Or. We define the space of classical Hilbert modular forms by

1) flowy = f for y € I'i(n,n";0) )
2) For any a € GLy(F) n GL3 (R)Y, f|rwe has
the following type of Fourier expansion:

IV 9 —C Fleawer = a(0, flewe) + . alé, flrwa)er(£2),

: holomorphic g
EeF]

where ep(£2) = exp <2ﬂ\/j12 §Uzg>

oel

g

We denote the space by ., (I'(n, a)).
51
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Remark 4.1.2. Let f € 4} ,,(T1(n,w';a)). For any o € GLy(F) n GLj (R)?, there
exists a nonzero ideal n’ and a fractional ideal o', f |1, € A w(I'1(n,w';a')). For e € Of,
such that e =1 mod ', we have

flewa(ez) = € flrwa(z).
In particular, unless w € Zt, we have
a(0, flewa) = 0.
For a nonzero ideal a < Op, let

N {the group of fractional ideals prime to a}
ze FX|lx —1|p, <1 for qla}

For k,w € Z[I], a complex valued function f on GLy(Ap) and g = (g, goo) € GL2(Ap ) X
GLj (R)!, we define

Flrawg(®) = 3 (g0, (V=1)5) ™" det(geo) " f(xg ).

For each nonzero ideal a < Op, we define several open compact subgroups of GLy(Af f) as
follows:

Ko(a) := {u € GLy(Op)|ug = ( o ) mod aMs(OF,) for q # 0},

Ki(a) := {u € Ko(a)

Uy = < 8 I ) mod aMy(Op,) for q # 0},

K(a) := {u € Ky(a)

Ug = < (1) I ) mod aM(Op,) for q # 0}.

For b © Op be a ideal prime such that a + b = (1), we define
Kl(a, b) = Kl(a) M K(b)

Definition 4.1.3. Let k,w € Z[I] such that k£ > 0 and 2w — k = at for some a € Z.
Let U < GLy(Ap ) be a nonempty open compact subgroup. We define the space of Hilbert
modular forms weight (k,w), level U denote by . ,,(U) as follows:

( 1) f(ag) = f(g) for a € GLyo(F)
Ap) 2) flowu = f for ue U x (R*SO,(R))’
f : GLy(Ap) — C Of.(2)
) : smooth 3) Tz = 0 for v € GLy(Apy) &
4) When F = Q, there exists C' > 0 such that
L |f2(2)] < C for all z € GLy(Ap ;) )

where f, is define as a well-defined function on $’

Fo((2oer) = 7 (9o0r (V=1)5)" det(gu) ™ f(2gs)

with g4 € GL3 (R) such that z = g (v/—1),. We also define the space of cusp forms of

weight (k,w) and level U by
1
Fw(U) 1= {f € Myw(U) f f (( 0 iL ) g) da =0 for g € GLQ(AF)} )
Ap/F




4.1. HILBERT MODULAR FORMS AND ¢-EXPANSIONS 53
Remark 4.1.4. Let n’ be a nonzero ideal such that n + n’ = (1). By strong approxi-
mation theorem, we have a decomposition

# CLL ()
GLy(Ap) = |_| GLy(F)t; K1 (n,n') GL3 (R),

-1

where t; = ( a6 (1) ) for an a;, € Apy. Then we have an isomorphism

# Clip(n')
Cli(n
(K1) = @ Mo (N0 50:08) 1] = (1)
Through the isomorphism, .%% ,, (K (n)) correspond to a space such that

Q(O,fti , ) = 0

for any i = 1,...,# Clh(n) and o € GLy(F) n GL3 (R)!. In particular, by Remark 4.1.2,
unless w € Zt. , we have

My (K1 (n,1")) = S0 (K1 (n, ).

We introduce the notion of nearly Hilbert holomorphic modular forms including the
usual Hilbert modular forms.

Definition 4.1.5. Let k,w,m € Z|I] such that k,m > 0 and 2w — k = ot for some
a € Z. Let U © GLy(Aps) a open compact subgroup. We define the space of nearly
holomorphic Hilbert modular forms” of weight (k,w), order < m, and level n denote by
Newm(U) as the space consisting of smooth function

f: GLy(Ap) —> C

satisfying

(1) f(ag) = f(g) for a € GLy(F)

(2) flewt = f for ue U x (R*SO5(R))"

(3) For x € GLy(AF ), a function f, on $ defined below has the following type of
Fourier expansion

fo(2) = a(0, f2) ((Amy) ™) + Y alé, fa) ((4my)™") er(é2),
§eL(x)

where z = z + yy/—1 (z € Ry € RL,), L(x) is a lattice of F' depending on z,
al&, f)(Y ) € C[{Y,},c/] is [F' : Q]-variable polynomial such that the degree in Y,
is less than m, and

er(&z) = exp <2W\/?125020> .

oel

The function f, is define as a well-defined function on $ by
. k w
fo((2)oer) = J (90, (V=1)5) " det(goo) ™ f (Ge0)
with g, € GL3 (R)” such that z = go(v/—1),.

We define an action of Clj(nn’) called the diamond.
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Definition 4.1.6. Let k,w, a, m be as in Definition 4.1.5. For a class [a] € Cl}(nn')
and for f € A m(K1(n,n')), we define

FKa g = |a_1|XF‘,ff|kawa_1 if a is prime to nn’
o 0 otherwise,

where a € Apy is an element such that a,w = 1 and
a= GOF.

Proposition 4.1.7. The both of the spaces of Hilbert modular forms and cusp forms
are invariant under the diamond operators: for a nonzero prime ideal q being prime to n,

Mo (K1 (0, 0) D © M (Er (0, 0)),
S (K1 (0, 0)) K@k & S (K (0, 1)),

Let C*(GLy(Ap)) be the space of smooth function on GLy(Ap). The Lie algebra
gl,(R)! @ C is acting on C°(GLy(AF)). For each o € I, we define R, € gly(R) ®r C by
po_ L 1 v
7 8\ v/-1 -1
For r € Z-o[I], we define
R™ = (R')ser € gly(R) @ C.

Regarding nearly holomorphic Hilbert modular forms, the following are well known:

Proposition 4.1.8. Let f € A% 4m(K71(n, 1)) be anearly holomorphic Hilbert modular
form. For r € Z>o|I], we have

er € J%c+2r,w+r,m+r(K1 (n7 n/))-
Moreover, if k£ 3+ 2m, we have
Nogwm (K1 (n, ') = {0}
and if £ > 2m, we have the following isomorphism

@ %If—Qr,w—r(Kl (Tl, n,)) = </%c,w,m(f(l (11, nl))
m=r=0
w w

(f?“)r = Z R f,.

mz=r=0

Remark 4.1.9. Let x € GLy(Ap ) and o € I, the differential operator R, is described
as

N (Z’“_“E . ai) £(2)

Definition 4.1.10. Let f € A} ym (K1 (n,n')) with & > 2m. By the second assertion
of Proposition 4.1.8, f can be described as

f= > Rf,

m=r=0

where f, € M 9r (K1(n,1')). We define the holomorphic projection of f by
H(f) := fo.
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We define the two type of operators T'(y) and T'(a,b) acting on A%y, m (K7 (n, 1)),

Definition 4.1.11. Let k, w, m and n be as in Definition 4.1.5. Let f € A%y m (K1 (0, ).
For a,b e Af,’f X Af,’f, we define

1

flT(a,b)(g ::—J flgz H1 a1 x)dx
| ( )( ) Vol(Kl (n’ n/)) GL2(AF7f) ( ) Kl(mn’)( 0 b91 )K1(n,n’)( )
1

= flgzr)1 u x)dzx.
VOl(Kl(n,nl)) JGIQ(AFJ) ( ) K1(n,n’)< 0 2>K1(n,n/)( )

For each element xq € Op, n F* for a nonzero prime ideal g, we define a well-defined
operator as follows:

T(zq,1) if g|nn’,
T(xq) := Z T(my,m). ifq/fnan',
i2j>0

i+j=ordq(x)
= T(wg, 1) + {DrwT (w47 ),

where 7, is a prime element of OF,. Moreover, for x € (’/)} N AL > we define
T(z) = [ [ T(z).
q

Note that for almost all q, T'(x,) = 1 and the operator T'(x) above is well-defined.

Proposition 4.1.12. Let k,w and n be as in Definition 4.1.5. Let 7, be a prime
element of Op,. For r > 1, we have

T(mq) = T(m)T(my ") = Iml i, w7y %)
PrROOF. When q|nn’, we can deduce the statement easily from the following explicit
decomposition:
mr 0 T U
Ki(n,n') < OCI . )Kl(n,n’) = |_| ( b )Kl(n,n’).
’LLEOFq/ﬂ'gOFq

Let g t nn’ and put K := K;(n,n'); = GLy(OF,). Let f be a modular form and put
¢1(g) == 1K( T 0 )K(g)

0 1

P2(g) = 1{|det<g>|=wq|r}(9)

9eM2(Or,)

By definition,

FIT ()T (w3 ) (g) =

nn

Ly Do () o (y Y dad
vol (K, /)q) JGM(FOJGM(FCI)JC(Q% Yy~ )pa(xT )1 (Y™ )dwdy

1
(
} Floy) f 62(2)br () drdy

GL2(Fq)

vol(K(n,n')y) JG-Lz(Fq)

Let
$3(9) = J ¢2(2)p1(x g)dx.
GLa(Fy)
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Since ¢3 is left and right invariant under the action of K, we can describe ¢3 as

¢ = Z a¢1K< gitr+l 0‘>K.

iz_r-gl 0 Tt
Since
: | outon (9)d
a; = 3(g il g g9)dg
vol (K( +0+ W(L )K) GL2(Fy) K( 0o a7t )K
and
| st e o 0ds = [ (el oy (edgds
GL2(Fy) K( 0 Tt K ( 0 T )
T T 0
—vol (K (5 V) K) ngl(g)l (<o, >K(( 0 )g)
—vol (K (5 V) K)
< (Ma0r) (0 V)R (T L) K)
(Jmalzt + )vol (K ( o ) K) if 0> > —rtl
(|7Tq|AF )|7"q|_mJrl if 1=
0 if i >0,
Thus
molar 1 0>i>—rH
0 if i >0,
we have the proposition. 0

4.1.2. Fourier expansions and the notion of coefficients of modular forms.
Let Dr/q be the different of F'/Q and we fix an element d € Af ; such that

dOp = Dy

We define
Kp(n') := Af n Ki(n, ).

Proposition 4.1.13. Let k, w, m and n are as in Definition 4.1.5. For f € A% 4 m (K71 (n,1')),
we have the following form of Fourier expansion:

(5 7)

( ao(yr, ) ((47ye) lyl2,
Wlae |+ D] alys, /(A7) ) (EYe)” ter(vV=18ym)ep(a) | ifw=pt
= EeFy
Wlar D) alyr £)((ATye) (EYe) " rer (V= 1Eyx Jer(Sx) if w ¢ Zt,
EeF
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where T € Ap,y € AX with y, € RL,, ep : Ap/F — C* is a unique continuous group
homomorphism such that
ep(z) _ H€2ﬂﬁzg

oel

for 2 = (25)per € F Qg R = R! < Ap and

(-, /)V): Apg/FEKrn) — C[{Yo},/]
a(s, [)(Y): Apy/Kr(n) — C[{Yo},e/]

are C [{Y,},,]-valued continuous functions whose supports are
{x € A% ||xgly < |d7, for all prime q}

and the degree for Y, is less than m,,.

Proor. It follows from Proposition 4.1.8 and [Hi86, Proposition 4.1]. O

We introduce the notion of normalized Hilbert modular forms as follows:

Definition 4.1.14. We call a Hilbert modular form f € .#} ,, (K:(n, p®)) is normalized
(at d=1) if

a(d™, f)=1.

We note that the notion of normalized is depend on the choice of d,,.
For each n € Z[I], we define a field by

F* = Q{2 4ep)-

We note that F™ is the same as a number field fixed by { ¢ € Gal(Q/Q)

Z’I’LU(O'OT) = n}

oel
For any fractional ideal a € Op, we define a fractional ideal of Opn by

a” = {a" }aea)-

Definition 4.1.15. Let k,w, m and n be as in Definition 4.1.5. For any subring R < C
containing Opw, we define nearly holomorphic modular forms of R-coefficient by

f/%e,w,m(Kl (na nl); R)

ao(z, f)(Y) € R[Y]

= {f € Npwm(Ki1(n,n')) a(z. )(Y) e (meF)t_w RV for x € Af,’f}.

We note that the notion of the coefficient for modular forms is compatible with the
abstract scaler extensions as follows:

Theorem 4.1.16. Let k,w,n be as in Definition 4.1.3. For any subring R < C con-
taining Opw, we have

M (K1 (0, 0); Opw) @0 R = My (Ki(n,0'); R)
PROOF. The theorem is deduced from the duality theorem ([Hi86, Theorem 5.1]). O

The actions of operators in Definition 4.1.11 are described as follows:
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Proposition 4.1.17. Let f € A} m(Ki(n,n')) with 2w — k = at. Let m, be a prime
element of Op,. Then we have
0(v 1T (mg)) = a0(may, )L Ly, ny ) + 20(rg v, PR lmalss? (w0 = ),
a(y, f|T(m,)) = a(mqy, f)l{\yd|AF<1}(y) + a(ﬂcfly: f|<q>k,w)|7rq|1a&;1-

For a,b e (6}):’,
ao(y, f|T(a,b)) = ag(yab™", flrwb™"),
a(y, f|T(a,b)) = a(yab™", flrwb™").

Theorem 4.1.18. Let k,w,n and n be as in Definition 4.1.3. For any nonzero prime
ideal q € Op, we have

%k,w(Kl (ﬂ7 nl); OFw) |<q>k,w c =///k,w (Kl (11, “’); OFw)
Moo (K1 (0, 1); Opu)|T(mq) < 0" s (K (0, 07); Opw),

where 7, is a prime element of OF, .

Proor. [Hi91, Theorem 2.2, (ii)]. O

4.2. The theory of p-adic modular forms

From now on, we assume that nonzero ideal n is prime to p. We fix a finite flat Z,-
algebra O < C, containing all the conjugation of O and fix a uniformizer m. We usually

use the symbol s = Zspp for the element of semigroup @Zzop and define the ideal
plp plp

p* =] [p.

plp

p’ < Op by

4.2.1. The universal Hecke rings. For any ring R < C, containing Opw (we will
mainly consider R as O), we define

///k,w(Kl (ﬂ, PS); R) = ///k,w(Kl (n, ps)§ OF) R0 pw R,
yk,w(Kl(n, PS); R) = yk,w(Kl(na PS); OFw) R0 R.

Definition 4.2.1. Let k,w as in Definition 4.1.3. For x € @: N Ag;, we define an
endomorphism of .}, ,,(Ki(n,n'),C,) by

To(z) := ) 'T().

We note that by Proposition 4.1.18, Tp(x) is also defined as an endomorphism of the space
of cusp forms.

The operator above determines the endomorphisms of .}, ,,(K;(n, p®), O[7!]), but by
Theorem 4.1.18, it’s actually endomorphisms of .} ., (K1 (n, p*), 0). For any ring R < C,
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containing all the conjugation of Op, we define rings called R-coefficient Hecke rings by
Hieo (K1 (0,0°); B) = B [{(To(0)} e, - (T(0 0} ey |
(@ EndR (%k:,w(Kl (I‘l, ps ; R))
b

hk,w(Kl (11, ps)§ R) =R [{TO(I)}xeAF,f ) {T(a= )}a,be(@):fp]
< Endg (Sw(Ki(n, p?); R))

Let
Cli(np®) := lim Clj(np®)
(4.2.1) = A/ FYKp(n)®),
where the isomorphism (4.2.1) is induced from
(4.2.2) Cli(np®) ———= AR/F*(Af; 0 Ki(n, p*))RL,
w w

a+————> [a™!] such that a,, = 1 and aOf = a,
We define
G := Clp(np™) x O,

By Proposition 4.1.12, for each nonzero prime ideal q being prime to pn, the operator
1 Ta| D = €Reye(Tq) “(Wkw (74 is a prime element of Op,) is an element of each Hecke
ring. For any fractional ideal a being prime to np, we define a element of a Hecke ring by

(@) 1= €eye,r (0) Dk,

where we regard €., r as a continuous character of Cl}(np®) via the isomorphism (4.2.1).
We also define the action of z € ng on each Hecke ring by T'(z,1). By the correspondence
G 3 (z,a) — T'(a,1){z), Hecke rings has a G-action and also .}, (K1(n,p®); O[w]) has a
G-action. We denote a quotient of G by

G, := Clf(np®) x (O, /P°OF,) " .
For any characters,
w: Cli(np®) — C*,
w's (O, /p*Or,)" — C*.

~ {f € Mpw(Ki(n,p*); Olw, w']) ‘ = w(3)w' (a)ecye,r(3)°f for (3,a) € G }’
(

L c n S\. w wl (57a)f
e smtiimnrobo | S0 e e |
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and also define
Hi,(Ky(n, p*), .05 RIW1) i= Rl o] | {To( hanr, T Dse@rrs |
& Bndg (M (K, ) 5 L),

i (a0, %), 0, Rlw, o']) 1= R, '] [(To0) ey, (rte B}asecors, |
< Endg (Sw(Ki(n, p?),w,w’; Rlw,w'])).

)
(n,

It is well known that the paring

(fih) = ay(d™, flh)

for f € S (K1(n,p°),w,w’; Rlw,w']) and h € hy,, (K;(n, p°),w,w’; Rlw,w']) is a perfect
pairing. Let

Mo (K (0, p” U///kw Ki(n,p*); 0),
Fhow(Ki(n,p™) Uy,m Ki(n,p*); 0).

We define rings acting on the each space above by

Hk,w(Kl (n, poo>; O) = 1}31 Hk,w (Kl (“, ps); O)a

S

hy (K1 (n, p*); O) = lim hy (K3 (n, p°); O).

s

Then both Hecke rings above has the continuous action of (z,a) € G via T'(a,1){z). For
the universal Hecke ring for cusp forms, we have the following theorem by Hida

Theorem 4.2.2 ([Hi89-1, Theorem 2.3]). For k,w € Z[I] satisfying the condition in
Definition 4.1.3, there exists a canonical isomorphism

hy, . (K1 (n, p™); O) = hy (Ki(n, p™); O)

such that To(y) and T'(a,b) of the left hand side correspond to Ty(y) and T'(a,b) of the
right hand side.

Definition 4.2.3. We define the universal Hecke ring for cusp forms by
h(n; O) := hy (K1 (n, p™); O).
4.2.2. The space of p-adic modular forms. Let
3= CILEW™) L AR /K ().
For any subring R < C,, we define C{(J, R) by

3. R) ::{ ¢ 3—C |60 }

: continuous | [P(y)|, is bounded for y

On C)(3,C,), we define the supremum norm || - ||,

1611, := sup {|6(w)lply € 3}
yeJ
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Definition 4.2.4. Let s = Z spp and k,w, m € Z[I] such that k > 2¢, 2w — k € Z and
plp

m = 0. Let f € Awm(Ki(n,p%); Q). We define a continuous function (depending on the
choice of d € Ap )
(-, f): T — Cp[{Yol e/
by
ao(y, f)efy_ch(dy) if yeCli(np®) and w = 5t
a,(y, f) =<0 it ye Cli(np®) and w ¢ Zt
a(y, f)(dy)y~ if yeAf /Ke(n)®.
By the correspondence, f — a,(-, f)(y;'), we can embed A m(K1(n, p*); Q) into
C)(3,C,) for any k, w, m and n of Definition 4.1.5. In particular, we can embed .#;, ,,(K1(n, p™))

into CJ(J; 0). Let S (K1(n,p*); Q) be the closure of .7, (K1(n,p®); Q) in C(T; C,).
Then we have the following remarkable theorem:

Theorem 4.2.5. The space .7 ., (K1 (n,poo);@) is independent of k, w if k > 2¢.
Definition 4.2.6. We define the space of p-adic modular forms by
M (n) := the closure of 2 Mg (K1(n,p*); Q) in C(T,C,),

k2w
k—2t=0
2w—keZt
and the space of p-adic cusp forms by
.7 (n) := the closure of Z e (K1(n,p*); Q) in CJ(T,C,)

kyaw
k—2t=0
2w—keZt

= S (np®; Q).

Theorem 4.2.5
For any subring R < C,, containing all the conjugation of Op, we define
M (0, R) := M (n) n CJ(T; R),
L R) := 7 (n) nC)T; R).
Between the universal Hecke ring and p-adic cusp forms, there exists the following
duality:
Theorem 4.2.7 ([Hi91, Theorem 3.1]). The pairing
h(n;0)® 7 (0,0) — O; T f — ay(d™, f|T)

is a perfect pairing, namely, we have the following isomorphisms:

Home(h(n; 0), 0) = .7 (n; 0),

Homo (7 (n; ), 0) = h(n; O).

Remark 4.2.8. There exists a duality theorem for p-adic modular forms (See [Hi91,
Theorem 3.1]).
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4.2.3. Several operations for p-adic modular forms. We fix a character
(w,w'): G — C;

of finite image. In this section, we summarize several continuous operation defined on
CY(3,C,), which fix spaces of modular forms of character (w,w’).
4.2.3.1. Hecke operators. Let a(y) € CP(3,C,). For q being prime to np, we define

a|To(me) (y) = a(ﬂqy)l{\yd|AF<1}(y) + Ecyc(q)ailw(q)a(ﬂ-qily)?
T(uq) =1,

where uq € O, mq is a prime element of Op, and (7, 1) is the element of G. We note that
To(mg) is independent of the choice of mg. For any r > 0, and u € Op, , we define To(mu)
inductively by

Tg(ﬂ'g) = TO(Wq)TO(nglu) — ecyc’p(q)aflw(q)TO(W;*QU).
For q | pn and 0 # z, € OF,, we define

alTo(zq)(y) = a(qu)l{\ydeg}(y)-

For z € Op N AF ;, we define

To(x) := n To(z)-

For a,b e (’/)}p, we define
a|T(a,b)(y) = «'(ab™")a(yab™).
Proposition 4.2.9. For f € 4., (Kl(n,ps),w,w’;@). We have

ap(y, f)|To(x) = ap(y, fTo(z))
ap(y> f)|T(a7 b) = ap(ya f|T(CL, b))

Proor. It follows from Proposition 4.1.17. O

4.2.3.2. Tuwisted p-depletions. Let n': O;}, —> € be a character of finite image and let
n =1 |(9Fp. We denote the conductor of 1, by p°") = 0. We define a twisted p-depression
associated with a(y) € CP(J,C,) denoted by 97(71,0)a by

e(lf)a(y) — n,(dyp)a(y) if |ypdp‘|AF =1,
i 0 otherwise.
Proposition 4.2.10. For f € ., (Kl(n,ps),w,w’;@), we have

00a(-, f) = a,(-, 0% f)
€ %Iﬁ,w (Kl (n7 pmax{s,c(n’)})7 w7 WI77I§ @)
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where c(1)) := >, c(n,)p. and 57(77,’) is defined as follows: Let

f—(ﬁf $>umww» i e(}) =0,

57(72) f=x (mp

1 - 1 e, o
a(7) Z My H(u) ( 0 uwPl ) foife(ny) >0,

where o
-1 —c(nh) ,—
g(1,) = > iy (wep(uw, "™ d;).
ue(Or, /p° O, ) *

a®) . TTg®
oy =116y

plp

Define

ProoF. By direct computation, we have

02, (-, f) = a,(-, 07 f).
]

4.2.3.3. Central twists. Let n: Cljp(np®) — CX be a continuous character of finite
image. For a(y) € C2(J,C,), we define a twist (a ®n) of a(y) by n by

(@@l 12,)(¥) == n(ysd)ecye.r (yd)Paly).

Here, we regard n as a continous group homomorphism on Ay/F* via (4.2.1).
Proposition 4.2.11. For f € 4}, (Kl(n,ps),w,w’;@), we have
a,(, ) @l - [, = n(ddlZ, 2 (. f©nl-1,)
€ Myuw+pt (Kl(‘% ps),an,w’nlogp;@) 7
where p°(n) < Op is the conductor of 7 at primes dividing p.
4.2.3.4. Differential operators. Let r € Zo[I] with r # 0. For a(y) € CP(3,1), we define
Dra(y) - {o it y € ClE(np™),
a(y)(dy), ifye Aﬁf/KF(n)(P).

The operator preserves the space of p-adic modular forms as explained below: let k,w, m
as in Definition 4.1.5. For f € A} m (K1 (n, p°); Q), we define an element of CP(J,C,) by

ap(y, c(f)) == a,(y, 1)(0).

Then we have

Theorem 4.2.12. For f € Ay, (Ki(n,p*); Q) with k > 2m, the function a,(-, ¢(f))
is an element of . (n). In particular, for any f € .., (Ki(n,p*); Q) and r € Z=o[I] with
r # 0, the function

ay( ¢(R"f)) = Da(., f)

is also a p-adic modular form.

PROOF. See [Hi91, p.369-370). O
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4.2.4. The restriction map. We introduce a notion of restriction between Hilbert
modular forms of different base field. The notion is important to construct p-adic L-
function. In this section, we need to distinguish the base field F' for each notion of Hilbert
modular forms for GLy /F, for example, the set of embeddings from F' into C,, the space
of modular forms and so on. Thus, for each symbol X relating to the field F', we denote
by Xp, for example,

Ip :={o: F— C,: field embedding},

M (U)p = the space of Hilbert modular forms associated with GLy /F
RwAPE 7\ of weight &, w € Z[Ip] and level U. ’

Jp = Cla(np™) U AL /K p(n)®),
dr : the element of A;ﬂ’f such that dprOr = Dr/g.

Let E//F be a extension of totally real fields. We assume that the fixed ring O is containing
all the conjugation of Og. Let N ¢ O and n < O be nonzero ideals such that n = Opn N
and both of them are prime to p.

Definition 4.2.13. Let a € C)(Jg, C,) such that there exists C' > 0 such that a(y) = 0
if y e Af ;/Kp(n)* and |yla,, > C. We define Resp/ra € C)(Ir,C,) by

et N (ydp)aly) if y € Cli(np™)
Resgrra(y) = 4 e W (ydp) Y alny)  ifye Af/Kp(n)®
nekEy
Trg/p(n)=1

Note that under the condition for support of the function a(y) in the definition above, the

sum Z a(ny) is finite sum.

neE,
Tre/p(n)=1

We have the following lemma:

Lemma 4.2.14. Let f € #},(K(N)g;C,)g be a Hilbert modular form of weight
k,w e Z[1z] and level N. We have

Resgyray (-, f) = [del ™ (dpe)y 22, (c floan),
where dg/p = dEdl;1
Proor. It follows by direct computations by definition. OJ
Corollary 4.2.15. For any f € .#(N), we have Respr f € A (n).

4.3. Hida’s ordinary idempotents and the control theorems
The notations are as in the previous subsection.

Definition 4.3.1. Let p | p be a prime ideal. We define the p-ordinary idempotent
ep € h(n; O) by

n—00

where w, is a prime element of Op,. We also define

€ = nep.
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It is well-known that e, exists and is independent of the choice of w, and satisfying

2 _
ep—ep.

Definition 4.3.2. For any complete ring R < C, containing O, We define the nearly
ordinary part of the universal Hecke ring and p-adic cusp forms by

h™"4(n; R) := e, h(n; R)

—n,ord —

S (n; R) = (n; R)le,
The ordinary part of universal Hecke ring is also a continuous O[[G]]-module. Let
2 := Homeon (G, CX)
~ Homop_cont (O[[G]], C,) .
For each point P € 2, we denote the kernel of the induced O-algebra homomorphism
P: O[[G]] — C by
Po := Ker(P) < O[[G]].

For k,w € Z[I] such that k — 2t > 0 and a finite order character w x &' : G — C,, we
define Py 00 € Z by

2w—k] jt—w

Prwwe (3, a) = w(ﬁ)wl(a)eF,cch)[ a
We define the set of arithmetic points of 2 by

k,w e Z[I] such that k —2t > 0, 2w —k = ot
wx w': G — C) : finite order image

arith ,__
Z = {Pk,w,w,w’

Theorem 4.3.3. The nearly ordinary part of h(n; O) is finite over O[[G]] and for any
P = Pyypww € 2 we have

b 7(n; ) @oygay #(Po) = ehe (Ki(n, p*)), w; Frac(O)w,«'])

—n,ord

7 0y Olw, D[ Poww] = Fru (K1 (n, p*“)Y, w, w'; Olw, w'])

€,

where r(Pp) is the residue field of the point P» and

s(w,w') :==1inf $ s € (PZz1p |w x W' factors through G, for s > 0
plp

4.4. The theory of [-adic forms
4.4.1. The definition of nearly ordinary I-adic forms. Recall

G, = Clji(np®) x (OF,/p*OF,) ",
G :=1lim G,

— ClE(np®) x OF.

We fix an I noetherian complete semi-local continuous O[[G]]-algebra. We remark that
I is not necessarily finite over O[[G]]. If I is domain, we denote by L the fraction field
of I. For any O-algebra homomorphism P: 1 — C,, we denote by P|g the composition
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G158 C,. When P|g = Prwww, We denote k, w,w and W' by kp,wp,wp, and wp,
respectively. We define

Z(I) :={P:1— C, : continuous O-algebra homomorphism}
We assume that there exists a countable subset 2 ™ (I) = 27(I) satisfying

(4.4.1) ﬂ Ker(P) =0,
PE%arith(H)
(4.4.2) Plg € 2™ for any P e 2 ™™(I),
(4.4.3) P(I) is finite over Z, for any P € (),

Note that by (4.4.3), for any maximal ideal m < I, I/m is a finite field and in particular, I
is a compact ring.

Remark 4.4.1. When I is finite over O[|G]], we can take 2 (I} as the set
(4.4.4) {Pe Z(1)|Plc e 2"}
by Lemma 2.2.16.

We define a topology on I” by the weak topology associated with maps
|Ps]lp: I’ — Cp F > || P o F|,
for P e 2#t(). Equivalently, the topology is same as that comes from the norm |- |,
defined by
[Flu =) 27 |1P o Fllp.

Here we give an order along positive integers on 2 (I)™*" and denote it by {P;}*,. It is
acutually a norm by the assumption above.

Proposition 4.4.2. The topology on I’ determined by the norm | - |, above is com-
polete.

PROOF. Denote 2 *""(T) by {P,;}i=o. Let {¢" = (¢7)ze3}2; < I’ be a Cauchy sequence
for the norm | - |,,. Since the natural morphism

I — liml/ ", P,

n

has a dense image and rings of both sides are compact, it is isomorphism. For each z € J
and i > 0, there exists ¢, € [ such that lim P;(¢), — ¢,) = 0. Thus [(¢])zes — () zes|w — 0
r—00

(r — o). O
Definition 4.4.3. We define the space of [-adic form by
M;]) :={F el’| PoF e #(n)for Pe ZNI) }.
We define the space of nearly-ordinary I-adic forms by
PoZ e Y,zf;d (np?,wp, wp; P(I))|e, }

P

n,ord J
’ D=L Fel :
T (ns ) {J © for some 7y > s(wp) for P e 2 ().

For ordinary I-adic modular form .# and P e 2®(I), we denote by §p the classical
modular form corresponding to P o .%:

a,(-, Fp) = Po 7.
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Remark 4.4.4. Since for each F' € /™" (n;1) and P € 2" *™(I), Po F is actually in
Frepwp(p*©P) wp: P(I)) (independent of v !) by Theorem 4.3.3. Thus we have .7™"¢(n; T)
is closed subspace.

Remark 4.4.5. Let F € ™°(n; ). If I is finite over O[[G]], for any P € 2(I), we
have P o F € . (n; P(I))

For I-adic form, we also define the notion of normalized:
Definition 4.4.6. Let % € .# (n;T). We call . is normalized (at d~ ') if
F(d) =1

Theorem 4.4.7. Assume that I is domain. The space .™°"(n;I) is torsion free finitely
generated [-module.

PROOF. We only prove that .#™"(n; 1) is finitely generated. Let m; be the maximal
ideal of I and let 7 := dimym h™"(n; O) Qoygpy I/mi. By the duality, for any P €
Z 2 (T)we have

rankp(ﬂ) (epykp,lUP (Kl (n, pS(wP,UJ;D))7 wp, Wle PGD) <.

Let fi,..., f; € ™ (n;1) be elements which are linearly independent over L. There
exists y1, ...,y € J such that A = det((fi(y;))i;) € L*. We write

A=a/b

for some a,b € 1. By (4.4.1), there exists P € 2 (1) not containing ab # 0. Thus
Pofi,...Po fi € %% w(Ki(n,p*(w)) ®o Frac(O) are linearly indepenedent. Thus we
have t < 7. We can take a finite basis fi, ..., f; of #"°(n;1) @ L with ¢ < r. We define
A as above. Since

Y”’Ord(n; I)c A Ify + -+ 1fy),
and I is noetherian, we have the theorem. ([l

Theorem 4.4.8. If I is sufficiently large integrally closed domain, for any P € 2 2" th(T),
we have

(445) yn,ord(n; ) _) epyn ,ord (np8(wp)’wp7w33; P(I[))

kp,wp

is surjective.

PROOF. Let f € epyk’;";i (np*@r) wp, wh; P(T)). By [?, Corollary 2.2], the local vector
at p of F' comes from the one dimentional eigen space of T'(w), thus it suffice to prove that
for any vector f € epyk’;?;i (np*@r) wp, wh; P(T)) which is new out side p, there exists an

element .Z € . (n; 1) such that
P(F)=f.

It follows from the same argument preceding [Wi88, Theorem 1.4.1]. O
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4.4.2. Hecke operators on I’. We define the following action on I’ as follows: let
F e I’. For q being prime to np, we define

F|To(mg)(y) = F(qu)l{‘ydegl}(y) + Ecyc(q)il([qL 1)F(7T;1?/)a
T(uq) =1,

where uq € O, , mq is a prime element of Op, and (7, 1) is the element of G. We note that

To(mg) is independent of the choice of mg. For any r > 0, and u € Of,, we define To(myu)
inductively by

To(g) = To(mq) To (g~ ) — ecye(a) ™ ([a], D To(mg " w).
For q | pn and 0 # x4 € OF,, we define
F|To(xq)(y) := F(qu)1{|yd|AF<1}(y)'

For z € Op N AJ ;, we define

To(x) = | [ To(ay).

For a,be @»;n, we define
FIT(a,8)(y) = (b 1)F(yab™).
Proposition 4.4.9. Let F' € .# (n;I). For any P € 2 (I), we have
Po (F|To(x)) = (P o F)|To(x),
Po(F|T(a,b)) = (PoF)|T(a,b).
Proor. It follows from Proposition 4.1.17. O
We give topologies defined by the operator norm to Endy (.2 (n;I)) and Endy (. (n; I)).
We define I-adic Hecke algebra by

H(n:I) =1 [{To(x)}xeA;’fm@-; AT(a, b))  —. ] < End; (4 (n; 1)),

a,bEOFp“

WD) = T (@) en v AT(0 D)}, e | < Bnds (777w 1))

Then we have the following corollary:

Corollary 4.4.10. The ordinary idempotent

ep 1= J%Tg(wp)”!
is exists for each p | p. Put e, :=[],, €, then we have
Poe,=e,0oP

for any P e 2 *(T)

The relation between the universal Hecke algebra and I-adic Hecke algebra is as follws:

Theorem 4.4.11. Let I be a sufficiently large integrally closed domain as in Theorem
4.4.8. There exists a canonical surjection

j: hn,ord (ﬂ, O) ®O[[G]] I—s hn,ord(n; ]I)
such that Ty(z) and T'(a,b) of each side correspond to each other.
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ProoOF. By Lemma 2.2.16, Theorem 4.4.8 and Proposition 4.4.9, there are a natural
injection
hn,ord(n; I[) - 1_[ ephkP:wP (Kl (n7 pS(wp))v wp; P(H)])7

Pe g arith (H)

and a natural homomorphism

hn,ord(n; O) ®O[[G]] I — H eph%,t(Kl (ﬂ, pS(w)), wp;, P(]I))
Pe%arith(ﬂ)

The images of the homomorphisms above are the same. Thus we have the Theorem. [J

By Theorem 4.4.11, we have a paring between nearly ordinary I[-adic cusp forms and
universal Hecke algebra as for F' e /™ (n;1) and T € h™°"(n; O),

(4.4.6) (F,Ty:=F|j(T)(d ") el
Clearly, for any 2 *(T), we have
P{F,T)) ={(PoF, T mod P)e P(I).
By duarlity for usual modular form, the paring induce the follwing isomorphism:

(4.4.7) ™ (n; 1) = Homy (W™ (n; O) Qe L) -

4.4.3. Trace operators. Let m be a divisor of n. For f € 4}, (K1(n,p®),w,w’), the
natural homomorphism

1
Tru i u).
/ f( ) [Kl(m P ) K1(‘I1, ps)] ueKl(m,pg)l/Kl(n,pS)f(g )

preserve the integrality, namely, let A := [K;(m,p®) : K1(n, p®)], we get the trace operator
Trn/m: 'ﬂk,w (Kl (n7 ps)a w, wl; O) - A_lﬂk,w (Kl (m7 ps)7 w, w/; O) .

Since the trace operator commutes with Ty(w,) for p | p and preserves the space of
cuspforms, we have

n,ord n,ord
( (m

Trom: Rz n,0) — AL ;O).

By Theorem 4.2.7, we have
Try A'h™" (m; ©O) — W™ (n; O).
By taking Homy((-) ®opey I, I) and (4.4.7), we finally obtain the I-adic trace operator:

(4.4.8) o (e Ty s AL gmord (. T

n/m

For any P e 27*™(T), we have

PoTram = Trymo P.
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4.4.4. The restriction maps for [-adic forms. We define the I-adic version of the
restriction map defined in Section 4.2.4. In this section, we need to distinguish the base field
F for each notion of Hilbert modular forms for GL, /F', for example, the set of embeddings
from F' into C,, the space of modular forms and so on. Thus, for each symbol X relating
to the field F', we denote by X, for example,

Ip:={o: F — C,: field embedding},

M) = the space of I-adic modular forms associated with
F 7\ Hilbert modular forms over GLy /F. ’

Jp = Clh(np™) L AL /Kp(n)®,
dr : the element of Aﬁf such that drOr = Dr/qg.

Let E//F be a extension of totally real fields. We assume that the fixed ring O is containing
all the conjugation of Og. Let N € O and n € Op be nonzero ideals such that n = NnOp
and both of them are prime to p.

Definition 4.4.12. Let ¢ € .# (N;1g)p. We define a element Resg/p ¥ € A (n;1g)r
by

Resp,r () == i (dp) Y. G(ny).

ne(F2)+
Trg/p(n)=1

Note that under the support of ¢4 is bounded , the sum Z ¢ (ny) is finite sum.

neE,
Trg/rp(n)=1

Then we have the following proposition:

Proposition 4.4.13. For & € .# (N;Ig)g and P € 2 *™(Ig), we have the following
formula:

PoResg/r(9) = Resgp(Po¥9)
€ %]fP|F7wP‘F (11, WP|A§/FXvw}’|O§p> :

Proor. It follows from direct computations. [l

4.5. Deformations of differential operators

In this section, we construct a homomorphism © which is important for constructing
p-adic L-functions.

Definition 4.5.1. Let & € .# (ny;1y)p,. We define O(9) € A (ny; 1, @ Iy)p, (O(9) is
actually the element by Theorem 4.2.12) by

<(<yy;1>%adpyp) : <<yy;1>’%7 (dpyp)_1)> G(y) i lypdpla, =1,

0 otherwise,

O()(y) == {

where (((yyglﬁ, dpyp> ) <<yy;1>*%, (dpyp)’1>> is an element of Gp, x Gp, < (I; ® I)*
and we regards Clf(np®) as a quotient of A} via (4.2.1)

Then we have the following interpolation formula for (Resp,/rm, ©(%))|e, as follows:
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Theorem 4.5.2. Let ¥ € .# (ny;15)p,, For any arithmetic P ® Q € %(L@@Hg) with
wp —wg = 0, we have

P o (Resp,/m ©(9))ley

1
—1 3 OéP—OéQ

e, ® (wpw ‘ .
(wpwél)_%wﬂawb_l P ( P¥Q ) A1”1/F1X | |AF1

= I%GSFZ/F1 (pr—wQe(p) (P 0] g))

Here, ap = [2wp — kp], ag = [2wg — kg| and we define

(w1w51)1/2 — (WIWQ—IT%Q—aP)l/zT;ZP—aQ_
For the notations, see Section 4.2.3. Since we assume p is odd now, (w;le)% is well-
defined. Moreover, let gg be a nearly ordinary cusp form obtained by specialization of ¢
at (). Then there exists a nearly ordinary cusp form

hpo :=H <<pr—wQ§(p) IR _19Q) ep> ® (CL)PWE)]-)% ) |.|XI;_O‘Q
(wpwg ) 2wpwg GLa(Ap,) Ary /By '
of
weight (kq|m + 2wp|r, — 2wg|r, wplr + (ap — aq)/2),
character (wp,whp),
such that

t

_1v 4 wQ—1
((Respyym O(9))ley) p = ldr |ap, (wpwg )2 (dp) (dpyr o - 2al hpg).
where dp,/p, = dFngll.

Proor. It follows by direct computation by using Lemma 4.2.14 and [Hi91, Proposi-
tion 7.3]. O

Corollary 4.5.3. For any ¢ € . (ny;I3)p,, The element (Resp,/m, ©(9))|e, is an ele-
ment of ™ (ny N Op,;15) .






CHAPTER 5

Integral formulas for computing local period integrals

5.1. An integral formula for triple local integrals and Rankin-Selberg local
integrals

In this section, F,/F; denotes a quadratic extension of finite extension fields over Q,
for a prime number p. We fix a generator wp, € Op, of the maximal ideal Op,. When £
is an unramified field extension over Fj, we take wp, = wp,. We put ¢; := #OF, /wr, OF..
For x € F,, we denote by T the image of x under the non-trivial automorphism of Fy over
Fi.

We fix a non-trivial additive character of Fj

’lb: F1 I (CX .
For € Fy* with trp, /p (§) = 0, we define an additive character of F,

77/15 : F2 —_— (CX; €T = 77Z}(trF2/F1 ({L‘f)),

which is trivial on F;. Note that the correspondence

g = [LL’ = w(trF2/F1 (Iﬁ))]

gives a bijection between the set of elements of Fy with trace-zero and that of additive
characters of F, which are trivial on Fj. A generator of the conductor of ¢ is given by
w¥)¢ *11);21/ ,» Where c(v) is the exponent of the conductor of ¥, and Dg,/p, is a generator
of the different ideal of F,/F}. Note that the conductor of v has a form of w}, Op, for
some integer r

Let m be an irreducible admissible representation of GLy(F3) with central character
wy. For & € Fy* with trp, /g (§) = 0, let #/ (w2, 1¢) be the Whittaker model of m, associated
with 1¢. For any non-archimedean local field L and irreducible admissible representation
7 of GLy(L), we define A(m) € R5( by

A7) 0 if 7 is temperd,
T =

max{ [Re(A\1)|, [Re(A2)|}  if 7 = m(xa| - [}, x2| - [}2) is a principal series,
where 1, x2 are unitary characters. For any quasi-character n: L* — C*, we define

) = 10g10|77(7TL)|L
g(qz)
where 7y, is a uniformizer of Oy, and ¢y, is the order of the residue field of L.
Fix { € Fy with trg, p (§) = 0. For Whittaker functions W € #/(m2,¢) and W e
W (1y ,1e), we define

~ O\ >~/ —-a 0
W,W::J W(“ )W( )an,
< ) - 0 1 0 1)
i (9) = (gW. W).

73
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Let G := PGLy(F1) and K := PGLy(Op ). Let pu,v : F* — C* be quasi-characters such
that (ws|px)pr is trivial on Fy*. For f e Indﬁ%;(ﬂ (R ) and fe IndGLZ(F1 (p ' X,
we define

. P = JK F)F (k) di

©, +g) =gt Fho.
GLQ(F]_)

Here, the dk is the invariant measure on G satisfying vol(K, dk) = 1, and Ind g 72" (X v)

is the induction normalized by the modulus character of B(F}) < GL;(F}), Wthh is the
subgroup of upper triangular matrices.
For W e W (w3, 1) and f € Indg(L;(Fl)(,u X v), we define

U (W, f) = W(g)f(9)dyg,

NG

U(W, f):=|  Wng)f(g)dg,

NG

where 7 := < _01 (1] ), and N := {( (1) ; )} is the subgroup composed of unipotent

upper triangular matrices.
For W e W (ma,v¢), W € W (ny,ve), f € Indg?;ffl)(u X ), and f ¢ Indg(L;(fl (p' X

v—1), we put
I(WRfWHKF) = L O, w(9)®; +(9) dg.

Theorem 5.1.1. Assume

A :=max{ A\(u), \(v) } + 2A\(m2) < %

Then the integrals I (W X f, WK f), \II(W, f), and \I/(W, f) converge absolutely, and we
have the following equality:

I(WRf,WR ) = 6Dy i | 1)

CFl(l)
ProoOF. The absolute convergence of the above integrals is a consequence of the as-
sumption A < 1/2 and [Bu97, Chapter 4, Proposition 4.7.2, Theorem 4.7.2 and Theorem
4.7.3].
We put ¢ := ¢;. We may assume ¢ has a conductor Op,. There exists £ € F; with

tng/Fl (5) = 0 and

v(W, f) ¥ (W, ).

() = the(a + 00)
for any a,b € Fy, where § € Op, is an element with Op, = Op[0]. We note that the
conductor of ¢ is Op, and [{Dp,/p, |r, = 1. We put

B " wh, 0
Kn_UOK( i 1)}(.
We note that

X —n n n
(,!(J) 1)6K"<:>q <|y|1'71<q and |IL‘|§:1<C]|?J|F1~
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Let ¢, := 1k, be the characteristic function of K, and let x,, := 1om Or, be the charac-
1
teristic function of @f OF,. We put

L= | o), j0)emlo) do

At first, we prove when Fy/F; is unramified. Formally, we have

L= | | 100 al) W T ) i dg
SNSRI IC
(o (3 1)) (1) it
:LLJWﬁwLmQMWn(WWﬂ
o D))

Ve(aT) X —nfordp, (w)/2)(T) dr v dpadgy dk' dk.
Fy

Here, [r] is the smallest integer with [r] > r. We put

w[ (5 9)9m((5 )9

a—a

Xn—[ordp, (y)/2] (9 — 9) dx ad; ydk’ dk.

I, _J f Flk k) di dk,

Ak k) = ZJ . e (@ y) oy Z/|F1/2
T Y|y g T

meZ

uy 0 N\ o —wpu 0
So (O D))
)
n—[ord oo u—u X X
X lordry (ywp, )/Q]Xn_m—[ordpl(ywp (9 9) dp,udpy.

Here ordp, is the additive valuation such that ordg (wg ) = 1. Now, we focus on the
integration

n uy 0 ~ —wpu 0
Jm ::f e )|ylpl/gj W(( v )k’)W(( o 1)k>
g=2n=m <yl <@ Op

uUu—u

Xn—m— [ordpy (yoo iy ™)/2] (0 0) d;'2Ud;'1

To confirm the commutation of the sum and integrations above, we prove the uniformly
convergence, namely, we claim that there exists a positive constant C' > 0 independent of

« g Lordr, ()2

Then we have

% qn— [ordF1 (yw}lm )/2]
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uy 0 N\ o —wpu 0
(5 )T 1))
u—u % %
anmf[ordpl(nglm)/Q (m) dFZU“dFl

m(2A\(m2) + (1) +6—1/2)

k, and k' such that

—m A(m1)—1/2

m 1

f |5 Yl
q72n7m<|y‘F1 <q2n7m E

n—[ordp, (yw;;" )/2]

X q
<Cmqg™

for any sufficiently small § > 0, where the constant C' depends on §.
Let us prove the claim. We take a sufficiently small open compact normal subgroup

H <1 GLy(Op,) such that
mo(R)W =W, m(h)W =W foranyheH.

Since

wi< > Im(@W],

0€GLy(Or,)/H

W< Ym0,

0€GLy(Or,)/H

we may assume that [W| and |W| are GLy(Op,)-invariant. Thus there exists N > 0 and
C1 > 0 independent of m,n such that, for any k € GLy(OF,) and z € E*, we have

(5.1.1) ‘W(( . [1) > k> W(( . (1) ) )‘ Oz 21 o

for any sufficiently small § > 0. Here we use the result written in [Bu97, Chapter 4,
Proposition 4.7.2, Theorem 4.7.2 and 4.7.3].
We divide the integration as

Y

L_2n_m<|yF <q2n_m - q—2n—'m<‘y‘F1 <q2n—m + q—2n—'m<‘y‘F1 <q2n—m
< 1< n—m<[ordp, (nglm)/Q] n—m>[ordp, (yw;f")/?]
_tmmn m,n

Here, we denote by I;"" the first integration and by I,"" the second integration. For I}"
by (5 1.1), there exists Cy > 0 which is independent of m,n such that

[171,11 < Cqu(Z)\(Trz)—i—)\(Tn)+5—3/2)m

—2)\ )\ 1/2 d —my /o
X 472”*m<|y\F1<qN | | (m2)+A(m1)+1/ |OI‘d ( )| n— [or: Fl(wa1 )/]d;;

<o, (7))
—2X(m2)+A(m1)+1/2 N . _ 7r )
< C'QJ Y|, (m2)+A(m1)+1/ lordg, (y)| df,y | mq (2A(r2) A (1) +5—1/2)
|y| p, <min{q!V,g—2n+m+1}

We note that by this formula, we have
(5.1.2) " —0 if n — 0.
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For I,”", we have

_ 1/2+)\ 71’1)
IQ - quQnm<|yF1<q2n m |w y|F %

y 0 ,’\-’ _w'an‘l O
(5 1)) ™5 1))
n—m>[ordp, (ywy")/2] S

uUu—1u

Xn—m—[ordp1 (yw;{n)/Q] (ﬁ) d;‘QU d;ly

« gl =)

1/2+)\ 71’1)
q—2n7m<|y‘F1<q2n m |’(D y|F

n—m>[ordp, (ywz")/2]

X —-m dF (751 dp U2
jo 'n,—'n’bf[olrdF1 (wal )/2]0F 1 1

X
FX%p

% q"—[OTdFl (y=p,)/2] d5y

1 m 1/24 (1)
- (1 5) ! L”" nelyle < |FR Yl 1

n— m>[ordF1(wa1 )/2]

(G (T 1))

By using (5.1.1), we have

m,n 1 - — g e X
[ < (1+-) clf ordg (y) |y|PXEI A2 |y g%
q Iyl <q

m(2A(m2)+A(71)+5—1/2)

d;ly.

X mgq

for any sufficiently small 6 > 0. We have proved the claim.
As above, we divide the integration J"" as

m7n p—
<] q—2n—m<‘y|F1 <q2n—m + q—2n—m<|y‘F1R<q2n—m
n—ms[ordp1 (nglm)/2] n—m>[01rdp1 (yw}lm)/Q]
m,n m,n
- Jl + J2 5

where we denote by J{™" the first integration and by J5"" the second integration.
To prove the formula of Theorem 5.1.1, it suffices to prove that
n—00

i S [ wew (40K di

Y
0
X f ||~ 2N (( Flu ) k’) dpu.
OF

J"— 0
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By (5.1.2) and |J;""| < I7"", we immediately have the first assertion. For the second
assertion, by the same calculation as I;"", we have

m,n
J

1/2
= (r(1) g 2Tyl py <@ = F, y|F/

n—m>[ordp, (y@p™)/2]

y(u1 + Uge) 0 1\ o7 —wml (Ul + U,QQ) 0
J x f n—m-— [OrdFl(wa )/2](9 W(( 0 1 KW F 0 1 k

n OrdFl (y@r,)/2] dpyuz dp uy dF1y

1+YD%0E 0
0 1)

Fix a sufficiently large M > 0 such that glWW = W and gW = W for any g € (
We divide J,"" as

m,n
J2 - q72n77n<‘y|F1 qunf'm + q72n7m<|y|F1 <q2n7m
n—m—[ordp, (yw}_wlm)/2]>M Mzn—m—[ordp, (yw;;")/2]>0

= () + (B

Here we denote by (J3")" (resp. (J5")") the first (resp. second) integration. For (J3""),
we have

(Y =G () | Bl

72n+m+2]¥1<‘y|F1 <q2n7'm

8 B (7 1
F
il ()9
— 272\ o g
CFl (1) q_2n+m+2M<|y\F1 <g2n—m ( )|y|F 01 Fly

X f [ ;{”/21’47( ( _wglul (1) ) k) . uy.
OX

F

On the other hand, (J3"")" is estimated as follows (in the same manner as I;"")

(13"

1\ !
) <(1 " _) ClJ ordp (y) ly| ATy dgy)
q q=2nm|y| gy <q2nHmA2M 1

X g AT AT +5-1/2)

Hence we have (J3"")" — 0 (n — o). Therefore, The proof of Theorem 5.1.1 is complete
when Fy/F; is unramified.
Finally, we shall prove Theorem 5.1.1 when Fy/F; is ramified. We take 0 as wp,. By
the similar calculation as above, we have
o0 o0
(5.1.3) AR Ry = Do gmm0p Y gmet,

m=0 m=0
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where for ¢ = 0, 1, we put

Jmune

_ U 0 ~ —whnwau 0
— N(y)|?/|pll/2 W Y )W FLYE L
—2n—m < 2n—m X 0 1 0 1
q <lylr <q O

€ 0 _ %
X sz'U/ wFZU d% ud y
n—m—J[ord g, (ywz")/2] I 1T
1 Fy Wk, — Wk

We can prove there exists C's > 0 which is independent of m,n such that

% qnf [ordF, (wa{”)/Q]

Jmne C3mq2)\(7r2)+)\(7r1)+571/2

for any sufficiently small § > 0 in the same manner as before. Hence, the equality (5.1.3)
makes sense. Since

WU — W, U
Wpy, — WE,
is a unit, by the similar calculation as J;"", we have
Jmml 0 (n — ).

For J™™9 we can also apply the same method for the estimation of J™" (actually, the
calculation is slightly simpler since a + bwp, € O, if and only if a € O, ), we have

1 _
yres — S it w((3))#) a

[ g w () k)

F

The proof of Theorem 5.1.1 is complete. 0

5.2. Asai L-functions and its functional equation.

5.2.1. Asai L-functions and Rankin-Selberg integrals. The notations are the
same as in the previous section. In this subsection, we define an Asai L-function using
Rankin-Selberg integrals. Let ms be an infinite dimensional irreducible admissible repre-
sentation of GLy(F3) with central character wo. As in previous section, we fix an element
§ € FQX with tI'FZ/Fl (f) = 0.

Let &(F?) be the space of Bruhat-Schwartz functions on F2. For any ® € S(F}) and
W e W (12, 1¢), we define a function on s € C by

Z(s.W.0) 5= | W () (0, 1)9) | det()15, dg
N(F1)\ GLa(Fy)
where we normalize the invariant measure so that vol(GL2(Op,),dg) = 1. We note that
Z(s, W, ®) converges absolutely for sufficiently large Re(s), and is analytically continued
to the whole complex plane as a meromorphic function. Moreover, it is an element of
Clqs, ¢, °]- The C-vector space generated by Z (s, W, ®)’s for W € # (12, 1¢) and ® € S(F})
is actually an ideal of C[gj, ¢;°]. There exists P(X) e C[X] with P(0) = 1 such that this
ideal is generated by P(q;°) ! (see [Kab04, p.801] or [F193, Appendix, Theorem)]).
We define the Asai L-function by

Lrs(s,Asmy) := Pl
1
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This function satisfies the following functional equation (see [Kab04, Theorem 3] or [F193,
Appendix, Theorem]):

Z(1—s,W @uw; ", ®) Z(s, W, ®)
LRs(l — S,AS7T2V) LRs(S AS?TQ)

where there exists ¢ € C* and m € Z depending only on w9, v, and £ such that

(5.2.1) = wy(—1)e(s, Asma, ¥, &)

ERS(S7 ASWQ? wa 5) = Cq;msv
and

D(z,y) = JF ; S (u, v)Y(uy — vx) du dv.

Here dudv is the self-dual measure associated with F; x F; — C; (x,y) — ¥(z +y). We
note that for any a € F|*, we have

é‘RS(S ASW271/} é) = CUQ(CL) |a|4s 2€RS(S7AS7T27'¢7£)7
61:{8(87 ASW?) ¢7 (lg) = wg((l) |a|28 ! 6RS(87 ASW?a 77Z)7 5)7

where *(z) := Y (az).

There are other definitions of the Asai L-function. By applying the Langlands-Shahidi
method ([Sha90]) to U(2,2), we have another L-function whose inverse is an element of
Clg;, g, °]- We denote it by

LLs(S, AS?TQ).
Moreover, let py be the representation of the Weil-Deligne group of Fy corresponding to mo
via the local Langlands correspondence . We define the L-function

LGal(Sy AS7T2)

as the L-function for the multiplicative induction of p, (see [Pra92, Section 7]).

It is known that Lrs, Lis, and Lga are the same by [Hen10, Section 1.5, Théorem],
[Mat09, Theorem 1.3], and [ARO05, Theorem 1.6] (see also [?, Theorem 4.2] and the
paragraph following it). Therefore, we denote

L(s,Asms) := Lgs(s, Asmy) = Lys(s, Asma) = Lga(s, Asma).

5.2.2. Intertwining operators and functional equations. We discuss the relation
between intertwining operators and functional equations. Put

15 Ao .6) = cus12, v .0 LGSR

For any quasi-character pg : F* —> C*, g € GLy(F}), and ® € S(F?), we define an
element of

GL2 Fl)(| |S 1/2 S+1/2)

tol |,
by

(s, o ®)(0) = | det(o)ls | (0B)(0.0)5" (1) iyt

1
By a direct computation, we have

Z(s, W, ®) =
(S ) JN(Fl)\PGLQ(Fl)

= \IJ(VV, z(s wy 't @))
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For quasi-characters p, v : Fy* — C* with p # v, and for any element

h e Indg(L;ffl)(,u X v),

we define

Mh e Indg%;ffl)(l/ X )

by the analytic continuation of the following integral

= [} 1)

where 71 := ( _01 (1) ); see [Bu97, Section 4.5]). Hence we have
GLQ F1 GL2 Fl
M : Indi 20 (R v) — Indg 20 (v 8 pr).
When uv~t # |- |*!, it becomes an isomorphism. When puv~! = |- |, it is a zero-
homomorphism. When prv—! = |- |7', it induces an isomorphism from the irreducible
quotient Indg(L}l(fl)(/L X v) to the irreducible subspace of Indgl(}il(fl)(u X ).

Lemma 5.2.1. Let p,v: FY* — C* be quasi-characters such that 1 # v and (ws| gy ) uv
is trivial on F}*. We assume that

A(m2) + max{A(p), A\(v)} < 1/2.
For W e W (ma, 1) and f € Indg(L;ffl)(u X v), we have
e(0,1,¢) v(1/2, Asmo ® 1, ¥, §)

T(W, Mf) = p(—1 (W, f),
( )= =) (0, p=1, 1)) (.9
where U and ¥ are as in Section 5.1 and T = < _01 (1) )

PROOF. Let
S(F2) = { e S(F) | 8(0,0) = 0},
For any ® € &(F})y, the function s — z(s,u,®) is an entire function. The GLo(F})-
invariant homomorphism

S(Fo3 @ 2(1/2, vu !, @) e Indg 2 (1 Ryt

is surjective since this map is non-zero and the right hand side Ind§l2)

By (LK vt is an
irreducible representation of GLy(F7). We take an element ® € S(F}), satisfying
2(1/2, vt P)=fu .
On the other hand, by [Jac72, the proof of Theorem 14.7], for ® € &(F?), we have
V(25 = 1, pv=",4)
£(0,1,)

(Note that the measure used to define the intertwining operator satisfies vol(Op, dx) = 1.
But in [Jac72], the self-dual measure associated with v is used for it. Thus there is a
difference between the above formula and that in [Jac72]). By the above formula, we have

£(0,1,9)
(0, p=1, 1))
By combining it with the functional equation (5.2.1), the assertion follows. O

z(l — 5, v, @) Quut =vu T (-1)

Mz(s, vt (I>).

(W, Mf) = Z(1/2, W ®v, ®).
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5.3. A relation between pairings on different models

The notations are the same as in the previous section. We denote F' = F}. We define

Wilg) i= 20,07 0) " tim [ f(ﬁ(é : )g)w—%x)dx
wp OF

N—>oo

for f e Indg%;,gp) (uXv) (for this integral, we do not need the condition p # v). The limit

exists and gives an element of the space of Whittaker functions # (m, 1), where 7 is the

unique irreducible infinite dimensional subquotient of Indg%;l()m)(u X v). For p # v, we

define a GLo(F')-invariant pairing
it Indi S (nBv) x ndG 27 Bt — C
by
ix(f,h) = f f(k)Mh(k) dk,
K
where K = PGLy(OF) and dk is normalized so that vol(K, dk) = 1. The pairing j, induces
an invariant pairing
jromxm’ —C

and we denote it by the same symbol j,. Therefore, there exists a constant C' € C such
that

C- jﬂ(fa h) = iﬂ'(Wf7 Wh)
The constant C' can be determined explicitly as follows:

Proposition 5.3.1. Assume p # v. Then the constant C' is described as
C = p(=1)&(m, Ad),

where
- 0.7@r " Y) Cr(t)
5(7-(_7 Ad) s 8(0, Iu7 w) 8(0, V_l, w) L(l, v ® V)L(la Adﬂ-) L(t’ p ® l/—l) » ,
£(0,1,4) (0, jr~, 1) |
7>~
8(07ILL7’[p) 8(071/7171#) L(l,luV*I) L(O’/,Lljfl) 17 W(M? I/)7
| c0ste] Y | .
- ifr=Stv| _
5(07V|'|F1a¢)5(0,1/_1,¢) [
PROOF. Let

]m = {[I) € GLQ(OF)

xz(s :) modw?(’)p}.

fe Indgﬁégp) (uXv)

We take a unique element

characterized by

f(Tl) =1,
nf =f forne N(Op),

f((i (1))) =0 for ue wpOp.
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The uniqueness follows from [Hi89-2, Corollary 2.2]. By the uniqueness, for sufficiently

b ) € I,,, we have

a
large m € Z-, and for u = < e d

uf = pl(d) v(a) .
Thus we have

VOl(ILy, dk) ™ jn (Tom f, Mf @ u~'v™")

=T = (e (1) Jrreu(n (7))
by wr((0))) e (4 0)).

uewFOF/w?OF

Here, 7om = Om L
F _wF O

well-known formula for matrices:

Cy)-C6 ) o))

all terms but 7= f(1) are zero. Since
F

) and we denote the image of I, in K by I,,. By using the

Mf® (uw)~'(1) =1,
i) = e @)
vol(I,,, dk) = |w}y| ()’
We have
Cr(2)
Cr(1)

in(Top f, Mf@u™'v™") = v|-|"2(@})

On the other hand, note that

Wf( ( 0 1 )) =(0,v7 )T (@) 1w, (a),

where ¢(¢)) is the exponent of the conductor of ¥. Thus for sufficiently large m € Z, we
have

Cr(1) L(1, Adm)
Cr(2)

= 8(0,/1_171/1)_1J ) T1Wf( ( 8 wo}? > > y|.|1/2(_a) 1w;(w)(9p(a) ,uy(—a)—l d*a
=0 oo @R [ aws((§)) ) aki@ e
X

iﬂ (Tw? Wf, Wf®u—1y—1)

01
sufficiently large. By the functional equation for an irreducible admissible representation

The last equality follows since the support of 7'1Wf( ( a0 )) is bounded and m is
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of GLy(F'), it is equal to
(0,171 9) 7 u(=1) vl [ (@)

X (7(1—t,7r®ul,¢)f wa(( 0 (1))) v t(a)dxa)

= u(=1) v | (@) L(1, Adr) E(r, Ad).

t=1

Thus we have the desired formula. O

5.4. Epsilon-factors of Asai L-functions
We rewrite Theorem 5.1.1:

Theorem 5.4.1. Let 7 be an irreducible admissible representation over GLy(F3) with
central character w, and fix { € Fy* with trp,/p(§) = 0. Let p,v : F* — C* be a
quasi-character such that (ws|px ) = 1. We assume that

max{A(u), A\(v)} + A(m2) < %

For any W e # (my, ), W € # (5, ), f € Indiy 2 (B v), and f e Indj 2 (v-!
ph), we have

GLQ(FI)(M&V) (W X Wf’ W X Wf)

T
Wg&lndB,(Fl)
[ [ g (1/2, Asmy @ p, 95, )
212,00 2(1/2,0 1, 6) L(1/2, Asm @ r)?
Proor. When u # v, it follows from the formal calculations by applying Proposition
5.3.1, Theorem 5.1.1, and Corollary 5.2.1. By analytic continuation, the formula holds
even when py = v. 0J

v(W. )W, ).

|£DF2/F1 o

Corollary 5.4.2. The notations are the same as in Theorem 5.4.1. If yu = v (hence
wa gy p? = 1), we have

ERS(l/Qa AS’]T2 ®:u7 @D»ﬁ) = 1.
Proor. We take a unique element

f e Ind a0 (& p)

characterized by

f(n) =1,
nf =f forneN(Op),

f((i (1)>> =0 foruewprOp.

By a direct computation, we have

. Cr(2)
i=(f, f) = )’
i (Wf, Wf) _ CFI(Z) )
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Thus for h, b€ Indp 2" (1 K1), we have

b (W W) = o)) | mB(R)
By applying Theorem 5.1.1 and Corollary 5.2.1, we have
Ty, (W R Wy, W R W3)
= |€Dpym [ 0] N2 [(1/2, Asmy @ )2 W(W, f) U (W, f).
Therefore by comparing this with the formula of the theorem above, we have the corollary.

O

Remark 5.4.3. Assume 75 is a distinguished discrete series representation. By com-
bining Corollary 5.4.2 with the result of Anandavardhanan [AnaO8, Theorem 1.1], we
have

( ) |£|FS+1/2 (1/27 XF2/F17¢) 5RS<S7 ASW?v ¢7 5) = 5(87 AST(?? TP)
where Xp,/p, is the quadratic character associated with the extension F,/F) and the e-
factor of the right hand side is defined from the Langlands-Shahidi method. We expect
that the above equality holds for any generic representation 7.






CHAPTER 6

Constructions of p-adic L-functions for twisted triple products

In this section, we assume that p is odd. Let F'/Q be a real quadratic extension with
the discriminant D € Z-y. Let Ip = {0, p} be the set of embeddings from F to C. We
assume that p is not split and denote by p the prime ideal of Or above p.

For convenience, we give a table of local L-functions for a irreducible admissible repre-
sentation m over GLo(F') for a local field F' below. Let ¢ be the order of residue field of F
for each non-archimedean place v.

| HEE L(s,m) \ L(s, Adr) |
w(p, v L(s, pu)L(s,v Cr(s)L(s, pv~ Y L(s,vp~?
ot [vo ] T G e T
U|OO Ok_1 F(c(S-i- (k‘— 1)/2) FR(S+ 1)Fc(8+kf— 1)

Here, let n: F* — C be a continuous group homomorphism if F' is non-archimedean , we

define

L(s,n) := (1— n(w)q_s)_l if 1 is unramified,
e 1 otherwise,

s (S
I'r(s) :=n 20 (5) :
Le(s) :=2(2m) °T'(s)
(1—-¢*)~' if F is non-archimedean,
(s) if I =R,
)

Cr(s):=<TIg
Fc(S if FF=C.

6.1. The review of Ichino’s formula

Let F' be a totally real fields and E a étale cubic algebra over F' such that the image
of any F-algebra homomorphism £ — C is contained in R. Let D be a (not necessarily
definite) quaternion algebra over F' of discriminant n~ and let Dg := D ®p E. Let II =~
®! I1, be an irreducible unitary cuspidal automorphic representation of GL(Ag) with central
character trivial on Aj. We suppose that there exists an irreducible unitary automorphic
representation I1P of D*(Ag) associated with I by the Jacquet-Langlands correspondence.
We define the element of

le HomDX(AF)XDX(AF) (HD X (HD)\/’C)
by

[(6R oY) f 6(2)¢ (y) ddy,

ApD*(F)\D*(Ar) JAEDX(F)\DX(AF)
87
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for ¢ € 1P and ¢' € (7”)¥, where dz and dy are the Tamagawa measure on AX\D(Ap).
We define
Be HOHIDX(AE)XDX(AE) (HD X (HD)V, C)
be an invariant pairing by
B(p, ') := J o(x)¢' (v)d,
ApD(E)\D(Ag)

for ¢ € 1P and ¢’ € (7P)", where the measure dx is the Tamawagawa measure. For each
place v of F', we fix an element

BU S HOmDX(AFU)XDX(AFU)(HUD X (HUD)V,C)
and assume for any ®, ¢, € @I and Q¢! € & (117)",
BU(QZSU,Q%)) = 1

for almost all v. Then there exists C'; € C* such that
B=C]]B.

For ®,¢, € @11, and &9/, € ®,(IL,’)",
(r,(2) L(1,AdIL,)
7 ==
T L@ a2
Here, let G' := Resg/r GLy and let G be the dual group. L(s,AdII,)’s and L(s,I1,)’s are
defined by representations C®* and Lie(G)/Lie(Z(G)) respectively of G = GL,(C)? x

Gal(F/F), where Gal(F/F) acts on it as .3 through the permutation of Spec(E x F).
The measures d,x are invariant measures defined as follows:

j B, (T (g)6v, &) dya.
F;\D*(Fy)

e In the case F), is nonarchimedean and D(F,) is a division algebra, let R, is the
max order of D(F,) and define d,z such that

vol(Op \R;,dyx) = 1.
e In the case F), is nonarchimedean and D(F,) is a matrix algebra, we define d,x
satisfying
vol(Ox \D(OF,),dyz) = 1.
e In the case F, = R and D(F),) is a division algebra, we define d,x such that
vol(R*\D(R), d,x/d*t) = 1,

where d*t is an invariant measure on R defined by d*t = dt/|t|g (Here, dt is a
invariant measure on R with vol([0, 1], dt) = 1).

e In the case F,, = R and D(F,) is a matrix algebra, we define

1 dxdy

21 |ylg

dyx = do

for the coordinate

_ (L a y 0 cosf  sind )
x_(O 1)(0 1)(—51119 COS@) (aeR,yeR*,0¢€]0,27)).

Here, dz and dy are a invariant measure on R such that the volume of [0, 1] is
one.
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We remark that by [IP, Lemma 6.1], we have
/
dr = Cpp| [ doa,
v

where
Cpip = (A" m)P Al 2@ ] (@-D7

V<00
D(Fy): division

where dp € Apy such that dpOp is equal to the absolute different ideal Dp/q, r is the
number of the infinite places v such that D(F),) are division algebras. Ichino’s formula
[Ich08] is as follows:

Theorem 6.1.1. For ¢ = ®,¢, € II” and ¢’ := &, ¢, € (IT”)" such that
B(¢,¢') # 0,

we have

16,¢)  Copp (2 L(/210) 11 Zap(dn )

B(o,¢') 20 (p(2) L(LAdIO) L1 B,(¢,,0,)"

where c is the number of connected components of Spec(E).

6.2. Constructions of p-adic L-functions for unbalanced twisted triple
products

6.2.1. Setting. Let fy € % (K1(p*“Y,w;))g be normalized Hilbert cuspidal eigen-

form over Q and let gy € .7, (K1 (p*“?)),ws)/F be normalized at VD™ Both of them are
ordinary at each place dividing p and new at each place dividing outside p. We assume
the following conditions:

k1= he + hy,
w1 = oJ2|c1;:1(nlpw)a
where H is the subgroup of Cl}(p®) c Gp such that
Cli(p™) = Cla(p™)(p) x H
is a decomposition into p-sylow group and the subgroup H composing of elements of order
being prime to p. Let I; and I, be a sufficiently large integrally closed domain. Suppose
that both of them are finite over a component of the normalizer of O[[GF]] and H acts on

both of I and I, via y. We denote by K; the fraction field of I;. We define 2™*"(I,) as
in (4.4.4).

6.2.2. The p-adic interpolation of Petersson inner products. Let
A ™ (1,0) — T4

be a Hida family on the f; and we denote by . € .#™°"4((1);1;) the lift of f, defined
by A\i. We note that for each P € 2*(I;), the weight of the specialization P o . %
is (kplo — 2tg,wplg — to) and its character is the restriction of (wp,wp) to Gg. Since
h™°rd((1); O) has no nilpotent element, we have a decomposition as a K;-algebra

hn,ord((l); O) ®]11 Kl = Kl X B,

where the projection h™°*4((1); O) — K is identical to A;. We denote by 1, € h™°*4((1); O)®,
K; the idempotent corresponding to (1,0) of the right hand side above. Let ¢ € .#™°((1); L)
be a lift of gy, namely, P(¥¢) = go.
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Definition 6.2.1. We define the square root of p-adic L-function in K;®ol, as
gp(y ®g) = <1)\1, ResF/Q (@(g))‘ €p>,
where the pairing is the one defined in (4.4.6).

For any nonzero ideal a € Z, let

0 1
Ta,q -= ( _qordq(a) 0 ) € GLQ(@Q)

Too 1= ( _01 (1) ) € GLy(R)

and define
Ta i= Too HTM € GL2(Ag).
q
For f,g € S w(K1(p®),wr), we define
Sevpi= [ 0 @) el (et (@) | det(w)] M,
PGL2(Ar,)
where dx is the Tamagawa measure. We have the following interpolation formula by

Theorem :

Theorem 6.2.2. For P® Q € 2™ (I[,®l,) satisfying the following condition
pr—z’wQka—kQ—tFZO
and the denominator of .Z,(.# ®%) is not contained in the kernel of P. Then for suffiently
large s, we have
wo—tp, (Fp, hpg)ps
P DT RG)) = D O (Fp,hpq)w
( ®Q)( P( ® )) \/713 <}~P’yp>ps ’
where hpg is defined in Theorem 4.5.2.
Proor. It follows immediately from Theorem 4.5.2. 0

6.2.3. Ichino’s formula for GL,. We rewrite Ichino’s formula ([Ich08]) for GLy by
means of Waldspurger’s formula [Wal85, Proposition 6] for our setting. For convenience,
we often denote Q and F by Fy and Fy. For P, € 2*™(I). We put

_ [Rwp —kp]
fi(x) = Fp(x)| det(z)[,,
_ [2wp,—kp,]
fa() = Gp,(x)| det ()], *
which have unitary central characters wp, and wp, respectively. Let 1), := e be an additive
character on Ap/F and let £ := \@71 and define

Pa(x) 1= ep(Ex).
Let m; be an irreducible automorphic representation generated by f;*. We fix an isomor-
phism

(6.2.1) 7 = &) T,

where for each place v; of F; we fix an isomorphism between 7, ,, and its Whittaker model
W (Tiv;, Viv,) and for unramified non-archimedean place v;, the isomorphisms above are
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determined by spherical vector W° e #/(m;,,, ep,, ) such that WO(1) = 1. In addition, we
assume that the isomorphism above satisfies for any ¢; € m; corresponding to ®,,¢;., €

®;l Wi,vu
W (9) = | [ 9i0(90);

Wo.(9) = fAFi/Fi ®i (( (1) f ) g) T

where dz is the self dual measure associated with w; Here, we take dg as the Tamagawa

measure on PGLy(Ap, ). For each non-archimedean (resp. archimedean) place v, we fix a
GLy(F;,) (resp. (gly(R), O(2)))-invariant pairing

CFi,v (2)
CFi,v (1)L(1a Ad’/ri,v)

<mwww=me(ﬁ () e

where d*a is an invariant measure on F;* such that vol(Op,,da*) = 1. Suppose 7" holds
the same assumption as ;. By the formula proved in [Wal85, Proposition 6], we have

2|sz XQ L(l, Adﬂ'z)
6.2.2 B, = n i
(6:2.2) G Ll

v

where

b, (W, W) = VW,

Here, we define

where dp, € A, is an element such that dg, Op, is equal to the different ideal of F;/Q. Note
that in [Wal85], they use the self dual measure to define the measure d*a for the paring
of the Whittaker model. Let F := Q x F. and let

Il := m X7y
We chose the paring B as follows:
lgl_lv1 = iT('Lvl <>§i7r2,v1 : HU ® Hl\,/ —_— (C
By Ichino’s formula, we have
Theorem 6.2.3. Let ¢ € [T and ¢’ € IIV be elements corresponding to @y, ¢., € ®;1 I,
and @), ¢, € ), 1Y, respectively. Then we have
L(1/2,1I)

In(p®¢') = D (2) [ [Zn., (¢, ®¢),).

We determine the local test vectors 7y, (resp. ma,,) corresponding to fi (resp. fa). For
an archimedian place v (resp. w (w € Ig)), W, (resp. W)) is an element of the discrete
series representations oy, _1 (resp. Ohp, .1 Of the positive lowest weight & (resp. hp, )
and we take W, € Okp, —1 (resp. W/ € oy, szurl) as a unique element satisfying

a 0 cosf sind _ k2 _2njalp /—TKO
WU((O 1)(—81119 cos@))_|a|R ¢ ce ’

i heo /2
(resp. Wé}( ( 8 (1) > < cosf sinf )) _ <|G|R/\/5) o—27lalw/V/D v/ =Thut ).

—sinf@ cosf
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For non-archimedean v (resp. w) being prime to p, let W, (resp. W/ ) be a spherical vector
of W (1,0, Y1) (resp. # (Mo, P2.)) such that

W,(1) =1 (resp. W! (1) =1)

For v = p (resp. w = p), we define the ordinary vector ¢, (resp. ¢2,) as follows: when
T (resp. mg, is principal series, we take a unique element

GL2(Qp
fp € Ind B(LQS? )(,ul X v1) (resp. gy € Indg%}isf")(ug X v5))

characterized by

fp(Tl) :L
nf, =/f, forneN(Z,),

fp((i (1))) =0 foruepZz,

gp(Tl) = 17
ng, =g, forne N(Op),

resp. )
gp((i (1)>> =0 foruewF(’)F.

Wy = (0,07, )Wy, (vesp. Wyi=e(0,05" dry)W,).

and define
When the local representation is special, we define the vectors by replacing p; by v - |71
Remark 6.2.4. Let a(f;,p) be the p-th Fourier coeflicient of f;, then we have

a(f1,p) = vi(p) p*—72,

a(f27]3) = VQ(wFp) |wFp|;(ha+hP72)/2‘

and the ordinary condition for f (resp. g) is equivalent to |y (p)|, = p*~Y/2 (resp. |v2(p)|, =
pliatho=2)/2)

When 7, is spherical, there exists a elliptic modular form f of level 1 such that

f=Ff—mp)p?f

Thus we define in general

7 - defined as above if 7s,p is spherical,
o f otherwise.

For each place v of Q, we denote ¢, := X, ,W;,. We assume that

Lx@/@f( ( 01 ) x) dt = HWU(%),

LF/F9< ( (1) T ) y> dt = EIWL(Z/w)-
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6.2.4. Main results (interpolation formulas for unbalanced case).

Theorem 6.2.5. Let P® Q € £ (I) be an element such that P|lg = Pipwpw1 and
Qle = Prp—2ro—tpwp—row,1 for some r = 0, we have

(PRQ)L (7 ®9))
_ 27‘—&-4\/5?)“’13‘@ 2bp—r0 o(Fp, )20(”1)€Rs(1/27AS7Ts¢Q,p ®/L‘Q]P’p’¢7\/ﬁfl)
2
y (L(l :ufPV”‘ )L(O :ufPV? )) ) L(1/277T37:P ®7TgQ ®\/WPWQ_1)

L(1/2, Asmy, & jzp,) D - Q(P)? ’

where ¢(w;) is the exponent of p of conductor of w; and 7, and Ty, 1s a unitary cuspidal

automorphic representation associated with .#p and ¥ respectively. We suppose that

Tzpp 1S the irreducible subquotient of IndGLQ(QP)(

number defined by

Wz Vz,). UP) e C* is a complex

—~

Q(P) .— 9kplo pC(w1)((k’P|@)/2*1) 6(1/2, Wyp) (ﬁp, yp)l“o(pc(wl))’

where we define

(‘@vap)ro(pcwl)) = L ( :
olp

PROOF. Put

Let
Di=m Xm®@w*
and we apply Theorem 6.2.3 to the vector of II X II:
< X Rgegil%l)_w 9® wl) ( FQuW'K R;@&wél)_m 9 wle)
and we have

<f7 RTe(p) 1/29|GL2 (Ag) Qw >

9" (wp wo
~1/2
=L(12,m ®7Ty) ———
X IHP (TIZan &QEZL‘UE;)?UQW,@W;% ;)nW ®W (9?3 _1) 1/2WI®UJ (,Upp)

x I, (W, ® R, W, @y, W @ wpe K R W;o QWpawy').
Here we use [Ich08, Lemmga 2.2]. By [CC16, Proposition 3.11], we have

I, (W, R R, W, @y, W @ wpeo B R, Wi @ wpgwy!) = 247 Fhe=hr,
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We note that the Whittaker functions we use at the archimedean places are slightly different
from those of [CC16, (3.3)]. On the other hand, by Theorem 5.4.1, we have

In, (TﬁWp X (98) W/ & w;l "W, Qwp egilwél)*w W]; ® Wp_lwp,p)

—1/2

_ ers(1/2, Asmy ®M17¢§) W ()
L(1/2, Asmo ® p11)? (wpwg')~

Let m be a sufficiently large m. Then we have

\I,(Q(P) 1/2WI ® wil, T fp)

(wp w_l)*

ST [ (( 1))

’ p

— 2
1/2W;®w 17 Tpmfp) :

E
/\\
S TN
SIS

=

= )
< ~_

\]
v
| &
< X
<
QL

8

— -z g@p (2) o 0 W 1/2 jx
=u(p™)p p(l)J (opgh) 12 (( 1)) (W) pa(y) [yl d
R G0, (2)

Co,(1) Jz
_, n (g, (2)
= 1(17 )P CQP()

On the other hand, by means of [Wal85, Proposition 6], we have
_2L(1,Adrz,)

Fp, Fp wi(—=1) - m(™)p =
Fr 200 =
e(1/2, mz,) prre@)2q(Fp, p)=n) C@ (2) o—kp
L(l /'LyPV,OZP)L(O :U“LQPV%IJ) CQp(l) 7
Fby F) oy = Cak o pe) 20 2Fe ) g-he
( P )po(p( ) = GL2/Q CQ(Q)
By putting them together, we have the theorem. 0

Remark 6.2.6. Let A be O[{a(.Zp,n)},] = C,. There exists a number called congru-
ence number 7(Po);) € @; and Hida’s canonical period Q(+, PoA;, A)Q(—, PoAy, A) € C*
such that Q/Q(+, P o A, A)Q(—, Po A, A) € Q and we have (see [Hil6, Theorem 5.7]),
Q(P)

P —
n(E oAb = o a A0 Pon. A) ,

where \; € Homy(h((1),I),I) associated with .# and note the formula deduced from
[Wal85, Proposition 6]:

L(]_,Ad'ﬂ-yp) - 2k‘p|(@p7$(w1,1) (ﬁpl, ypl)ro(ps(wl,l)).

6.3. Constructions of p-adic L-functions for balanced twisted triple products

6.3.1. Main results (interpolation formulas for the balanced case). For nota-
tions, see the beginning of Chapter 3, Theorem 3.3.5 and its corollary. Note that ,although
it’s abuse of ntation, we use F' as a quadratic extension over Q here and let F, = F' and
Fy = Q. Let Bp := BQ®g F. We denote by N~ the discriminant of B. We assume x;
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and X2 are trivial and ®; and @5 be nonzero Hecke eigen forms of S(KF(1); 2(I;)) and
S(KPr(1); 2(I,)) respectively. We denote by IIp the representation generated by

¢ 1= (Spp(®)" @ Spp(W)", Ak _ape.
Then we have an isomorphism

ITp = ® HPv Lkl C) X Lkz ((C)) )

V<00

where

Li(C) = Symy,_y, (€)@ det! 7.
We fix additive characters

V= e,
Yoy (x) = Y(tre(r/V D))

and I1p, = m; p X7y p, which 7; p is a irreducible subquotient of IndGI&SF))(ui7 pXuy; p) such
that.

vi.p (D)o > |1, p (D)p-
The ¢ is corresponding to an element ®,¢, as follows: At v # p,o0, ¢, is a spherical
vector, at v = o, ¢, = Ai defined in Theorem 3.3.5 and at v = p, ¢, = W, X Wp’ €
W (mip, ) MW (m2p,Y2e)-1) determined in the same manner in the preceding part of
Remark 6.2.4. We have the following theorem

Theorem 6.3.1. Let P € 2 (I) such that P|lg, = Pr w1 wi X Prowsws With w; = (w;, 1)
and w; factoring through Clf(p*) and k1 < ko, + ko p, koo < k1 + ka2, and ka, < k1 + koo
hold. We have

P(Z, (01 ® P3))
—kFo1 [KE(1) : KP(ni 112)]2
—D e (F .
};[ (Y [KF (1) : KP ()] [Kg" (1)« K7 (na)]

2
« E(1lp) _ L(1/2, p,pra,p) . L(1/2,11p)
E(m p, Ad)E(m2.p, Ad) L(1/2, Asmop ® p1.p)L(1/2, uy PI/2 P) L(1,AdIlp)

Here, n; and ny are defined in the beginning of Chapter 3, e,(F/Q) is the ramified index
of F//Q at g,
ers(1/2, Asma @ pup, ¥ /5-1)e(1/2, fy Vo ps )
e(1/2, p1,pva,p, )
and &(m; p, Ad) is that defined in Proposition 5.3.1.

5P(HP> =

PROOF. We denote by ¢(w;) the conductor of w;. Put

v (T 1),

W = Wiwa,

ayp ‘= Ml,P(p)Pl/Q,

Q2 p 1= V2,P(WF)(]1/2,



96 6. CONSTRUCTIONS OF p-ADIC L-FUNCTIONS FOR TWISTED TRIPLE PRODUCTS

where ¢ is the order of residue field of F},. By Proposition 4.4, Proposition 4.9 and Corollary
5.2 of [CC16], we have

P(Z,(?1 ® D))
_(29)MCp <E<2> (L(1/2,11p)
9172 = Co(2) L(1, AdII };[eq(F/ Q)

. [KF(1) : KE(ni n2)]2
[KF (1) : KEm)] [K7 (1) : K77 (ns)]

e s a7 a5 5 CryoCorryr
o2 2s er(F/Q)s c(wl)(l +p—1)qc( )(1+q—1)

B/Q%1,p% P
Ty, (Top Wy Ru Wy @ w2, 7 Wy @ wi ' Bu, Wy @ (wiws) ')
s(wl)Wpa Wp ® w;l)im’P (wa;ﬂ(MQ)W[;? WII) ® w;l) .

p

i7T1,P (Tfp

by Theorem 5.4.1, we have
In,, (Tp W, RuWV, @w 7 0 W, @' Ku,W, @ wi)

i 8RS(1/27 ASWQ ® Ml,P) ¢;§1)
L(1/2, AS7T2 X /Ll’p)Q

V(u Wi @w e f,)”.

We proceed the computation of W:

\IJ(uSW ®w ! T_p fp
- L) (6
(o, (1 d

s 75 C@p / 0 # 5 - X
B[ Ll(3 (4 6) e

Since
(y 0)(ps§):<yps yf)(l—psmf —z€’ )
p'r 1 0 1 0 1 p*r 14 p*aé )’

for sufficiently large s, we have

2 S _ S ¢2 s B
= V(—ps)psﬂ—gz”gl; JQX Wé(( " ” gfypg ) ( " § )) nW)lylg,” d*y.

Since Ye)-1(Qp) = {1}, we have

—
S~
N~~~

KH
VRS
h@/—\
SIS
)
N~
N
@mo
O =
N—
S~
5L
IsH

X

<
QL

8

2
= p,p(=p°)p~" 2%—8] Vo, p (W)Y O (0 y) . (0" [0 Ylg, *1z, () d*y.

s —5 7sC P 2 —s x
Jurp(p®)p cg,,gli J@; v i, p(y) Y (p y)lzp(y)lylégfd y.

P

= Ml,P(—p
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By using the functional equation, we have

2
= p1,p(=p") (0 )P *v(1/2,v5 pity p, )Z‘S:El” v i p (W)L sz, Wyl 4y

S S —S C P 2 S X
P 02 ) (1 4

= p1,p(=1)Co, (2)(11,p (D)D) (v2,p (P)P)° (1/2 Vo phyps 0 )P
On the other hand, by direct computation, we have

: — c(w1 —c w C P 2

171'1,P (T—pC<W1)WP> WP ® Wy 1) = al(P )p 1 CZ Elig(ﬂLP’ Ad)

. — clw: —c(w: 2

b (e W Wy @0") = a0 S8 A
P

where £(-, Ad) is defined in Proposition 5.3.1. O
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