Degeneration of Period Matrices of Stable Curves
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Abstract

In the present paper, we study the extent to which linear combinations of period
matrices arising from stable curves are degenerate (i.e., as bilinear forms). We give
a criterion to determine whether a stable curve admits such a degenerate linear
combination of period matrices. In particular, this criterion can be interpreted as a
certain analogue of the weight-monodromy conjecture for non-degenerate elements
of pro-¢ log étale fundamental groups of certain log points associated to the log
stack ﬂlg()g.
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Introduction

The anabelian geometry of hyperbolic curves concerns the problem of reconstructing hy-
perbolic curves from their fundamental groups. In order to understand these fundamental
groups, many techniques of algebraic geometry are applied. On the other hand, in the
case of stable curves over algebraically closed fields, an introduction of some ideas of a
combinatorial nature allows one to prove some results in much greater generality under
very weak hypotheses (cf. [6], [7], [15], [16]). By applying this point of view, we are able
to discuss not only phenomena that arise scheme-theoretically but also phenomena that
arise purely group-theoretically. Before we explain the main question that motivated the
theory developed in the present paper, let us recall some basic facts concerning period
matrices.



Let X be a stable curve of genus g over an algebraically closed field k, I'x the dual
graph of X, and ¢ # char(k) a prime number. Then one has a natural exact sequence of
free Zs-modules (cf. [15] Definition 1.1 (ii) and [15] Remark 1.1.3)

0— MY — My — MP — 0,

where My := w{2dm(X)2P MP = 7f(Tx )20, My = Im(B,c,ry) (X, \Node(X))2> —
Mx) (cf. Notations and the beginning of Section 2.1), where Node(X) denotes the set
of nodes of X. The stable curve X determines a morphism from s := Speck to the
moduli stack M,, and the pull-back log structure of the natural log structure on M,

determines a log structure on Spec k; denote the resulting log scheme by s'°% which admlts
a chart (Speck, @ N). The pro-f log étale fundamental group m{(s'°¢) is naturally

isomorphic to D, cee(ry) Le(1) on
the extension 0 — MY" — My — MP — 0. This extension determines an extension
class [Mx], which may be regarded as a homomorphism, which we refer to as the pro-¢
period matriz morphism of X (cf. Proposition 2.3, Definition 2.4, and the surrounding
discussion)

ece(l'x)
) Z¢(1). Therefore, we obtain a natural action of b

fx omi(s9%) = @D Ze(1) — Hom(MY” © My®, Z(1)).
eEe(FX)

For each element a € @@
ated to a.

If a = (ac)e € D.cery)Ze(1)e is a positive definite element (cf. Definition 2.5), then
the closed subgroup generated by a can be regard as the image of the the maximal pro-¢
quotient of the inertia group of a p-adic local field (cf. the discussion at the beginning of
Section 2.2). Thus, by applying Faltings-Chai’s theory (or the weight-monodromy con-
jecture for curves), we know that the pro-¢ period matrix fx(a) is positive definite, hence
also non-degenerate. This non-degeneracy property of pro-¢ period matrices is the most
non-trivial part in S. Mochizuki’s proof of the combinatorial version of the Grothendieck
conjecture (=ComGC) for semi-graphs of anabelioids in the case of outer representations
of IPSC-type (cf. [15] Corollary 2.8). More precisely, Mochizuki proved that the pro-¢
period matrix associated to a positive definite element of any finite admissible covering
X' — X of X is non-degenerate. Moreover, Mochizuki gave a criterion to determine
whether or not an isomorphism between fundamental groups of semi-graphs of anabe-
lioids that is compatible with the respective outer Galois actions by inertia groups is
graphic (i.e., the isomorphism preserves verticial subgroups and edge-like subgroups). By
considering the pro-¢ log étale fundamental groups which arise from cusps and applying
the ComGC in the IPSC-type case, Mochizuki gave an algebraic alternative proof of an
injectivity theorem in the affine case due to M. Matsumoto (cf. [16]). But if one wants
to extend Matsumoto’s theorem to the projective case, it is natural to attempt to prove
the ComGC in the case of outer representations of NN-type case (i.e., the outer Galois
action arising from a non-degenerate (= all the coordinates of the element are nonzero)
a = (ae)e € D cery)Ze(1) (cf. [6] Definition 2.4 (iii))). On the other hand, if one at-
tempts to imitate the proof of the ComGC in the IPSC-type case, one has to consider
whether or not the pro-¢ period matrix arising from a node is non-degenerate. Y. Hoshi
and S. Mochizuki proved a version of the ComGC in the NN-type case under certain

cee(ry) Le(1), we refer to fx(a) as the pro-¢ period matriz associ-
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assumptions. By applying this version of the ComGC, they successfully extended the
injectivity theorem to the projective case (cf. [6]).

More generally, in the theory of combinatorial anabelian geometry, in order to extend
results (e.g., the ComGC) in the IPSC-type case to the NN-type case, one has to consider
whether or not the pro-¢ period matrix arising from a non-degenerate element of 7! (s°8) =
Dece(ry) Ze(1) is degenerate. It is difficult to determine in general whether or not the
pro-¢ period matrix associated to a given non-degenerate element is degenerate. But at
least we can ask which stable curves admit a non-degenerate element that gives rise to a
degenerate pro-¢ period matrix. This question may be formulated as follows:

Question 0.1. Does there exist a criterion to determine whether or not the given stable
curve X admits an element a = (ac)e € Doy Ze(1) such that ac # 0 for each e and,
moreover, the pro-{ period matriz fx(a) is degenerate?

Our main theorem of the present paper is a criterion as follows (cf. Theorem 2.9):

Theorem 0.2. Let X be a stable curve over an algebraically closed field k and I'x the
dual graph of X. Then X is a pro-{ period matriz degenerate curve (cf. Definition 2.6)
if and only if the mazimal untangled subgraph T'% (cf. Definition 2.8) of I'x is not a tree
(i.e., 7(T'%) := rank(H (T'%, Z)) # 0).

The weight-monodromy conjecture for curves may be formulated as the assertion that
the pro-¢ period matrix associated to an element of the inertia group associated with
every stable curve is non-degenerate. Thus, our main theorem may also be interpreted
as a certain analogue of the weight-monodromy conjecture for non-degenerate elements
of w{(s'®) (cf. Corollary 2.11).

In Section 1, we recall some basic facts concerning log structures and log étale funda-
mental groups of stable curves.

In Section 2, we discuss the topic of degeneracy of pro-¢ period matrices of stable
curves and prove Theorem 0.2. Finally, we explain the relationship between Theorem 0.2
and the weight-monodromy conjecture.
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Notations

Numbers:

If k£ is a field, we shall write (char(k),n) = 1 if char(k) and n are relatively prime or
char(k) = 0. Write Z for the ring of rational integers, and Q for the rational field. We
always use the notation ¢ to denote a prime number such that ¢ # char(k). The notations
Zy and Q, denote the f-adic completions of Z and Q, respectively.

Curves and their moduli stacks:

Let r and g be non-negative integers such that 29 —2+41r > 0. An pointed stable curve
(X, Dx) of type (g,r) over a scheme S consists of a flat, proper morphism 7 : X — S,
together with a set of r distinct sections Dx := {s; : § — X}I_, such that for each
geometric point 5 of S:

(i) The geometric fiber X5 is a reduced and connected curve of genus g with at most
ordinary double points (i.e., nodes).

(ii) X5 is smooth at the points of s;(3) (1 < i <r).

(i) 5:(5) # 5;(5) for i # .

(iv) The number of points where a nonsingular rational component E of Xz meets the
rest of X plus the number of points {s;(5)}/_; on E is at least 3.

Let (X, Dx) be a pointed stable curve of type (g,r) over S. We shall say Dx the set
of marked points of (X, Dx) and X the underlying scheme of (X, Dx). We shall say that
(X, Dx) is smooth if the morphism of schemes 7 : X — S is smooth. We shall say that
(X, Dx) is a stable curve over S if Dx =) (i.e., r =0). If (X, Dx) is a stable curve over
S, for simplicity we also use the notation X to denote the pointed stable curve (X, Dx).

Let M,, be the moduli stack of pointed stable curves of type (g,r) over SpecZ (cf.
[10]) and M,, the open substack of Mg,r parametrizing pointed smooth curves with

the natural open immersion j : Mg, — ﬂgr Then Mk’g is the log stack obtained
by equipping M with the natural log structure assomated to the divisor with normal
crossings ./\/lg r\ Mg r C /\/lg » relative to Spec Z (1 e., the log structure determined by the
sheaf of monoids 7.0%, N Oxg, ). Let X,, — ./\/lg,,« be the universal stable curve over
M. It is shown in [10] that X', may be naturally identified with M, , 1. Let us denote
by ?lﬁ the log stack obtained by pulling back the log structure on M;OE 41 relative to this

identification. Thus, we obtain a morphism of log stacks ?l;f — Mgr In particular, if

: L ——log =5 —=lo
r =0 (i.e., stable curve), we use the notation M, (resp. Mgog, Xy, X, ) to denote M

(resp. ./\/lgo, Xgo, Xlog)
For more details on stable curves, pointed stable curves and their moduli stacks, see
[3], [10].

Galois categories and their fundamental groups:

We denote the Galois categories of finite étale, finite Kummer log étale, and finite
admissible coverings of “(—)” by Cov(—), Cov((—)8), and Covaqm(—), respectively. For
any Galois category (—), write (=) for the subcategory of (=) defined as follows: (i)
the objects of (—)¢ are either empty object or the objects of (—) such that the Galois
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groups of their Galois closure are (-groups; (ii) for any A4, B € (—)%, Hom(_y(A, B) :=
Hom(_)(A, B)

The notations 71 (—), 71 ((—)'°8), and 784™(—) will be used to denote the étale, log étale,
and admissible fundamental groups of “(—)”, respectively; the notations 7{(—), 7£((—)°®),
and 7424m(—) will be used to denote the pro-¢ étale, pro-£ log étale, and pro-¢ admissible
fundamental groups, respectively (i.e., the maximal pro-¢ quotient of m{(—), 7¢((—)"®),
and 7{24™m (=) respectively); the notation (—)*" denotes the abelianization of the profinite
group (—) (i.e., the quotient of (—) by the closure of the commutator subgroup of (—)).

For more details on Kummer log étale coverings, admissible coverings, log admissible
coverings, and their fundamental groups for pointed stable curves, see [8], [13], [18].

1 Review of log étale fundamental groups of stable
curves

In this section, we recall some basic facts concerning log structures and log étale funda-
mental groups of stable curves.

1.1 Log structures on stable curves

In this subsection, we will recall some basic facts concerning log structures of stable curves;
for generalities on log schemes, see [8], [9].

Let X be a generically smooth stable curve over a complete discrete valuation ring
(R, mp) with algebraically closed residue field & := R/mp and 7 a uniformizer of mg.
Write K for the quotient field of R and X, (resp. X)) for the special fiber (resp. generic
fiber) of X over R. Then the stable curve X — Sy := Spec R induces a morphism
Ox Sy — ﬂg Xz R. The completion of the local ring of Mg xz R at the point ¢x, :

s := Speck — M, xz R is isomorphic to R[ty,...,t3,_3], where the t,,... t3, 3 are
indeterminates (cf. [3]).
If we denote the number of nodes of X, by m and assign labels ¢ = 1,...,m to

each of the nodes, then the completion of the local ring of X at the node labeled 7 is
isomorphic to R[z;,v;]/(z;y; — ™), and the indeterminate ¢; may be chosen so as to
correspond to the deformations of the node of Xy labeled . Then the log structure on

Sy :=Spec R[t1, ..., tm, tmt1, .., tag—3] induced by the log structure of ﬂlgog Xz R may be
described as the log structure associated to the following chart:

N — R[[th sy tma tm-‘rl) sy t3g—3]]7

where (a;); — [[,<,, t%. We denote the resulting log scheme by S;%. Moreover, we also

obtain a log structure on the closed point of S; by restricting the log structure of Siog;
we denote the resulting log scheme by sllog. On the other hand, the closed point of Sy
determines a log structure on Sy, which admits a chart

N —- R
1 —» .



We denote the resulting log scheme by SyY%. Write s5® for the log scheme obtained by

restricting the log structure of S;Og to the closed point of S;. Thus, we obtain a cartesian
commutative diagram

—lo
Xlor Ly Xl L, Fs

| l l

S8 G ﬂlgog
— where X8 (resp. X5®) is defined so as to render the right-hand (resp. left-hand) square
in the diagram cartesian; the underlying scheme of X}Og (resp. X;Og) may be identified
with X, X34, Spec R[t1, ..., t34-3] (resp. X); for suitable choices of the indeterminates
t1,...,tm, the lower horizontal arrow in the left-hand square of the diagram may be
described as follows: the morphism of underlying schemes is

Sy =8Spec R — S; = Spec R[[t1, ..., t3g_3]
T t; (1 << m)
0 — t; (m+1<j<3¢g-3),

and the morphism of charts is

N +~ Nm™
doiaim o (a;).

Note that S°¢ and Sy® are log regular.

1.2 Log étale fundamental groups

For more details on the definition of the notion of a finite Kummer log étale covering,
see [8] Section 3. Let Y% be a connected fs log scheme. Choose a strict log geometric
point 7'°¢ — Y1°8 (i.e.; a log geometric point (cf. [8] 4.2) over a strict geometric point (cf.
[5] Section 2, Definition 1) 7% — Y'°8). Then this choice of a strict log geometric point
determines an associated log étale fundamental group m(Y'°8).

Let ¢ be a prime number that is # char(k). For a proof of the following specialization
theorem for log étale fundamental groups, see [18] Theorem 2.2.

Proposition 1.1. Suppose that X;Og is as above. Let i := Spec K — SpecK be a
geometric point of Spec K. Write K' for the maximal tamely ramified extension of K
in K, Ryt for the integral closure of R in K*, n' := Spec K*, (Spec Rk:)'°8 for the log
scheme obtained by equipping Spec Ryt with the log structure determined by the sheaf of
nonzero reqular functions, and %og for the log scheme

Speck Xspec v, (Spec Ryt)"8

— where we identify the residue field of R+ with k. Thus, we obtain a natural strict log
geometric point 3¢ — S8 induced by 7. Then there is a natural isomorphism between the
pro-C log étale fundamental groups at the respective fibers of X538 over 7 and 355, which
1s well-defined up to composition with an inner automorphism, as follows:



T ((X5)g) = m(X7%)ge) = T ((X5™)ges):= L?ﬁ( X gos (53°)2),

where the projective limit is over all reduced covering points (sy)y — s5® (cf. [5] Defini-
tion 1 (ii)).

Next, let U;, i = 1,2, be the interior (i.e., the largest open subset (possibly empty)
of the underlying scheme of a log scheme on which the log structure is trivial) of S;og.
Write X;, ¢ = 1,2, for the underlying scheme of Xilog. For any u; € U;, by the ¢-adic
stable reduction criterion, we obtain that the image of the natural morphism m(U;) —
Aut(H, (X; xg, U, Fy)) arising from X; xg, U; — U; is a f-group, where 7; is a geometric
point of w;. Thus, [17] Proposition 2.2 (iii) implies that

1— Wf((XI XS, ﬂi) — Wf(XZ X, Uz) — Wf(Ul) — 1.

Since, for 1 = 1,2, Siog is a log regular scheme, by applying the theorem of log purity
and the deformation theory of log schemes (cf. [5] Section 4, Corollary 1), we obtain a
homotopy exact sequence as follows:

Corollary 1.2. Suppose that X}Og — Siog, where i € {1,2}, is the morphism discussed
above. Let s; — S; be a geometric point of S; such that the image of s; — S; is the closed
point of S;. Write SiOg for the log scheme obtained by equippmg s; with the log structure
determined by restm'ctmg the log structure of S\ to s;. Let 3% — S\ be a strict log
geometric point of S\°® that factors through the natural morphzsm SI® s SI6 Then the
following sequence is exact:

L= () goe) = B (X, X gow (577%)3) = (G X gios 877%) = 71 (57°%) — 1,
k2 )\ 1

where the projective limit is over all reduced covering points (s\°8)y — s\°% (cf. [5] Defini-
tion 1 (i1)).

On the other hand, there is a classical scheme-theoretic description of the group
’/Tf((Xgog>§4_og) that does not require one to apply the theory of log schemes, namely, by

means of the pro-¢ admissible fundamental group. We use the notation {24 (X,) to de-
note the pro-¢ admissible fundamental group of the special fiber X,. We have a proposition
as follows.

Proposition 1.3. Let i € {1,2}. Suppose that X,, X\°, and 3% are as in Corollary

1
1.2. Fiz a strict geometric point T ¢ — (leog)s;og whose zmage is a smooth point of

the underlying scheme of ( ilog)si. Then there is a natural isomorphism of fundamental

groups, which is well-defined up to composition with an inner automorphism, as follows:

m(X) 22 (X)) o)

3 R
T

— where w¢(—) is taken with respect to the base point determined by the strict geometric

point T.F — (X;Og) tos wt-adm( ) 4s taken with respect to the base point determined by the

morphism of underlymg schemes of T8 — (X,°%),,.
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Proof. Write (s1)1°8 (resp. (s2)!®) for the log scheme determined by the morphism of
monoids

1
—N" = k
n
a — 0
0 — 1
(resp.
1
—N —= &k
n
a = 0
0 +— 1),

where n is a positive integer such that (char(k),n) = 1. If n’ and n” are positive integers
such that 7’ divides n”, then we consider the morphism of log schemes (s1)\% — (s1)\%

(resp. (52))% — (55)\%) determined by the morphism of monoids

n

1 1
n n
a —> a
(resp.
1

If we allow n’ and n” to vary, then these morphisms determine an inductive system, and
the reduced log scheme associated to the inductive limit is easily seen to be isomorphic
to 3% (resp. 35%). In the following, we shall fix one such isomorphism, which we shall
use to identify this inductive limit with 378 (resp. 55%).

To complete the proof of the proposition, it suffices to construct, in a natural way,
an equivalence between the Galois categories Covugm(X,)¢ and COV((XiOg)gilog)g (resp.
Cov((Xéog)ggog)z). Here, we note that COV((Xiog)gllog)g (resp. COV((Xé0g>§120g>£ ) may be
. . . . 1 . 1 . .
identified with lim COV((X10g>(Sl)17?g)E (resp. lim COV((X20g)(S2)IT?g)£). Since any finite
Kummer log étale covering of (X)'% . (resp. (X,)'% ., ) determines a multi-log ad-

(s1) (s2)
missible covering (i.e., a disjoint union of log admissible coverings) after base-change to

(51)18 (resp. (s2)98) for some sufficiently large positive integer m, the proposition follows

immediately from [12] Proposition 3.11. O

Remark 1.3.1. The isomorphism {24 ((X5),) = Wf((Xéog>~s~420g> can be also deduced by

applying the log purity theorem, the specialization theorem for log étale fundamental
groups, and the specialization theorem for admissible fundamental groups.

2 Degeneration of period matrices of stable curves

In this section, let k£ be an algebraically closed field.



2.1 Pro-/ period matrices of stable curves and their functorial
properties

In this subsection, we give the definition of the pro-f period matrix morphism associated
to a stable curve over k.

Let X be a stable curve of genus g over k. Write I'y for the dual graph of X, v(I'y)
for the set of vertices of 'y, e(I'y) for the set of edges of I'yx, and Ilx := 7t*™(X) for
the pro-¢ admissible fundamental group of X. We use the notation X, to denote the
irreducible component of X corresponding to v € v(I'y). Thus, for each v € v(I'y),
U, == X, \ Node(X) is an open subscheme of X,, where Node(X) denotes the set of
nodes of X; the pro-¢ étale fundamental group of U,, which we denote by II, := 7{(U,),
may be regarded as the decomposition group C Ilx (which is well-defined up to Ily-
conjugation) associated to X, (cf. [14] Proposition 2.5 and [14] Example 2.10). For
e € e(I'x), write II, (2 Z,(1)) for the decomposition group C IIx (which is well-defined
up to Ix-conjugation) associated to the node corresponding to e. Write m{(I'x) for the
pro-¢ completion of the topological fundamental group of the dual graph I'yx. Finally, we
use the notation My (resp. M, M3*, M) to denote the abelianization of IIx (resp.
the abelianization of 7{(I'x), Im (€D ,cyry) I15” = Mx), (Do) 12” — Mx)).

By the definitions given above, we obtain a filtration as follows:

0 C MY® C MY™ C My.

Moreover, there are two natural exact sequences:

0— MY" — My — My® — 0,

0 — MG — M — MY /M — 0.

For more details on the first exact sequence, see [15] Definition 1.1 and [15] Remark
1.1.4. Furthermore, we have the following proposition which can be proved by using the
structure of Picard schemes of stable curves (cf. [1] Section 9.2, Example 8) and the
theory of Raynaud extensions (cf. [4] Chapter II, Section 1). On the other hand, for a
purely group-theoretic proof, see [6] Lemma 1.4.

Proposition 2.1. For v € v(I'yx), write X! for the normalization of X, J(X]) for the
Jacobian of X!, and (APY)* for the pro-€ étale fundamental group of J(X!) (i.e., the
(-adic Tate module associated to J(X))). Then, we have

M;f(er/M;dge o~ @(Aipt)ab'

The stable curve X — Speck determines a classifying morphism Speck — M, to
the moduli stack M,. Thus, we obtain a log structure on Spec k, naturally associated
to the stable curve X, by restricting the log structure of M;Og; denote the resulting log
scheme by sl)‘gg. We also obtzlxin a stable log curve (for the definition of stable log curves,

—log

see [7] Section 0) X' 1= &' )" X o s over 58 whose underlying scheme is X. Thus,
g
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Y

we have an isomorphism [ s := 7{(s%%) = @D.cery) Ze(1)e. Furthermore, there are
X
natural actions of I on the exact sequences 0 — MY — My — My® — 0 and
X

0 — M — My — My /M — 0. Denote the extension class corresponding to My
by
[Mx] € Ext; (My®, MY™).
°X

By [11] Example 0.8, there is a spectral sequence converging to

ptq top ver
Ext}? (My®, MY")
S
X

whose Ey-term is given by HP(I o, Extd(MP, MYT)). In particular, we obtain a long
X
exact sequence as follows:

0 — H'(Zos, Homg (My®, M¥")) = Extr, (My®, MY")
X

— HO(1 s, Excth (MY, M),

Since My, M MY, M5 are free Zs-modules of finite rank, we thus conclude that the
morphism H' (I os, Homz (M®, MYT)) — Ext} g(M;?p, M) is an isomorphism. Thus,
X o

the extension class [Mx]| may be regarded as an element of Hl([sl)c()g, Homy (MP, M§)).

Here, we observe that, for any two finitely generated free Z,-modules M, N, we have
natural isomorphisms

Homg, (M, N) & lim Homg,pz(M/¢" M, N/{"N) = Homg, (M, N).

Thus, we shall use the notation Hom(—, —) to denote Homgy, (—, —).

Proposition 2.2. In the notation of the above discussion, the actions of Isl}(;g on M)t?p,

My, MY and My /M are trivial.
Proof. First, we have two exact sequences as follows:
0 — MY — My — My /M$E — 0

and
0 — MY — My — M® — 0.

By the Poincaré duality (cf. [15] Proposition 1.3), we have natural isomorphisms

M = Hom(MP, Z,(1))

and
M3 =2 Hom(My /M8 Z(1)).

Thus, to complete the proof of our proposition, it suffices to show (since M;dge C My,
and 1 jos acts trivially on Z,(1)) that the action of Los o0 MX™ (or My /MS) is trivial.
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Next, let us write X; — Sy for the restriction of the tautological curve Tg over the
moduli stack Mq to the spectrum of the completion of the local ring at the point of ﬂg
corresponding to X. For each vertex v of v(I'x), write U, := X, \ Node(X) and M, for the
image in My" of the decomposition group associated to X,. Since every open subgroup
of M, corresponds to an abelian étale covering of the curve U,, and every étale covering
of U, lifts uniquely (up to unique isomorphism), without base change, to an étale covering
of the formal neighborhood of U, in X, the action of Isl}?g on MY" is trivial. Then the
proposition follows.

Alternatively, the proposition may be verified by observing that every open subgroup
of Mx /M corresponds to an abelian étale covering of the stable curve X, and every
étale covering of X lifts uniquely (up to unique isomorphism) to an étale covering of X;
without base change.

This completes the proof of our proposition. n

By using Proposition 2.2, we can prove a proposition as follows:
Proposition 2.3. In the notation of the above discussion, the natural map

H (1 o, Hom(M P, M55)) — H (1 1og, Hom(M®, M)
X X

is injective, and (if, by abuse of notation, we identify the domain of this injection with its
image via the injection, then) the extension class [Mx] is contained in

H' (Ios, Hom(MP, M),

Proof. The short exact sequence 0 — M55 — My — M /M5 — 0 of I joe-modules
X
determines a long exact sequence

I lo. I lo,
0 — Hom(MP, M) *x* — Hom(MP, MYT) *x*

I o8 O edge
— Hom(MP, M /MEE) % — HY(1 e, Hom(MP, M)
X
— HY (I jox, Hom (MP, M) — HY (I jos, Hom(MP, M /M) — ...
X X

— where the superscript “Ij.:” denotes the submodule of Ijcs-invariants. Since the
X X

t . . t, d,
functor Hom(My?, —) is exact, and the actions of Ios on MPP, M, and My /M

are trivial (cf. Proposition 2.2), the morphism

I log

Hom (M1, M) 8 — Hom (MIEP, Mt /M) o5
is a surjection. Thus, the morphism
H' (L os, Hom (MY, M) — H* (L os, Hom(M", M)
is an injection.
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Since the action of [ on Mx /M5 is trivial (cf. Proposition 2.2), it follows formally
that the image of the extension class [My]| via the morphism Hl(]sl}(;g, Hom(MP, Myr))
— Hl([sl;g, Hom (M, My /M5)) is 0. This implies that

(M) € H'(Lge, Hom(M?, D))

This completes the proof of the proposition. Il

Remark 2.3.1. Let Y* := (Y, D) be a pointed stable curve over Spec k. Then just as in
the non-pointed case, we have a filtration as follows:

0 C MEP C M C MY C Mye — MY = My« /My,

where My« denotes the abelianization of 7&2d™(Y*): My (resp. M, MSSP) denotes
the closed subgroup of My. generated by the subgroups that arise from the irreducible
components (resp. nodes and cusps, cusps). Similar arguments to the arguments given
in the proofs of Proposition 2.2 and Proposition 2.3 imply that the actions of Islyog.; on

MEP M, MSEE My« /MEE are trivial, and, moreover, that we obtain a corresponding
extension class
1 ¢ d
[My.] € H (Isy%,Hom(MYO.p,M;}.ge)).

Since Hl([slog,HOnl(M;{OP,Mg(dge)) = Hom([slog,Hom(M;?p,Mf(dge)) (cf. Proposition
X X
2.2), by the Poincaré duality (cf. [15] Proposition 1.3), the extension class [Mx] corre-
sponds to a continuous group homomorphism

fx t Lyos — Hom(My” @ MP, Z,(1)).

Definition 2.4. We shall refer to the morphism fx discussed above as the pro-¢ period
matriz morphism associated to X. For an element a € I jos, we shall refer to the quadratic
X

form fx(a) on My as the pro-¢ period matriz associated to a. Note that fx(a) is a
symmetric quadratic form on M® for each a € Lo (cf. [4] Chapter III Section 8).

In the next two remarks, we will explain the functorial properties of period matrices.

Remark 2.4.1. We discuss a certain functorial property that relates the pro-¢ period
matrix morphism associated to a stable curve to the corresponding morphism associated
to a stable “sub-curve”.

Let X be a stable curve over s := Speck which is sturdy (i.e., the genus of the
normalization of each irreducible component of X is > 2), I'x the dual graph of X, and V
a subset of v(I'x) Je(I'x). Suppose that Uy := X\ ((U,ey Xo) U(U.cv €)) is a connected
curve. Write Xy for the compactification of Uy (i.e., the closure of Uy in the scheme
obtained by normalizing the closure of Uy in X at the nodes of X contained in X \ Uy).
Thus, the pair (Xy, Xy \Uy) determines a pointed stable curve X3, of type (gv, rv), which
may be regarded as associated to V. Thus, if we write s'2® (resp. s12%; (s¥)°8) for the log
scheme whose underlying scheme is s, and whose log structure is obtained by pulling back
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the log structure of the log stack M;O (resp. M;Of ; M2 o rv) via the classifying morphism
o (resp. oy; o)) associated to X — s (resp. Xy — s; Xy — s, i.e., for a suitable choice

of ordering of the cusps), then we obtain a stable log curve
Xls sl)?g (resp. X‘lfg — si‘}g; X;/log — (sg)log)

by pulling back the morphism of log stacks Tzog — ﬂ;og (resp. ?; S ME I

gv? gv,rv
Mlg"fw)‘ If S is a Deligne-Mumford stack over SpecZ, write S for the stack S Xgpecz s

over s. Then the geometry of the stable curve X, together with the original choice of a
subset V of v(I'x) Je(I'x), determine a clutching morphism of moduli stacks (i.e., for a
suitable choice of ordering of the cusps):

PN = QVﬂ”V s Xs H gv,rv s Mg)s-

veV

Let N8 be the log stack whose underlying stack is A/, and whose log structure is
the pull-back of the log structure of (M,)°¢ by 1. On the other hand, we also have
a log structure determined by the divisor given by the union of pull-backs to N of the
divisors at infinity of each of the factors (M, ., )s and (M,, ,.)s, for v € V; write N
for the resulting log stack, which, as is easily verified, is isomorphic to the log stack
(Mgy )28 X5 [T, e (Mg, )8 . We have a natural morphism between the two log stacks
N8 and (M,,, )¢ obtained by composing the following three morphisms:

N = N5 — (Mg )15 = (M )%

Here, the first morphism of log stacks is obtained by forgetting the portion of the log
structure of A''°8 that arises from the irreducible components of the divisor (M,),\ (M,)s
which contain the image of (Mg, )s Xs [Iyer(Mgy.rn)s- The second morphism of log
stacks is the natural projection. The third morphism of log stacks is obtained by forgetting
the marked points.

Next, let us describe the local structure of the morphisms N8 — (M, .. )8 —
(ﬂgv)log First, let us observe that the geometry of X determines a morphism 7 : s — N
such that o = ¢ o 7. Then for suitable charts defined over étale neighborhoods of 7, o¥/
and oy, the morphisms N9 — (M, ,..)1% — (M, ) may be described in terms of
morphisms of monoids as follows:

O 1o @ o @ N
e€Node(Xy) e€Node(Uy) e€Node(X

~

Here, the first arrow is induced by the natural bijection Node(UV) — Node(Xy); the
second arrow is the assignment (ac)eeNode(ty)) = ((@e)eeNode(ty)), 0, -+, 0) induced by the
natural inclusion Node(Uy) < Node(X). Thus, the associated morphisms of pro-¢ log
étale fundamental groups may be written as follows:
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m(sy) = P ZlD)e — W) = D ZO).

e€Node(X) e€Node(Uy)

Soer = @ .

e€Node(Xy)

where the morphisms are the natural projections.
Write (X%/?g)sl)c()g for the stable log curve X2 X glos s Write (Uy )8 for the log scheme

over sl)?g whose underlying scheme is Uy, and whose log structure is the pull-back of the
log structure of X'°8. Thus, we have a commutative diagram of log schemes as follows:

X b (X g e (U)o —— X8

| | | |

log log log log

Choose a strict log geometric point 598 (resp. 31%) over sv8 — ﬂ;og (resp. s %% — ﬂlg‘f
) (cf. Section 1.2). Thus, by a similar argument to the argument given in the proof of

Proposition 1.3, we have a natural (outer) isomorphism Wf(((X‘l?g)sl)?g)?;g) o wf((X%}’g)?‘?g)

induced by the morphism of log schemes (X‘l/(v)g)slog — X1, Moreover, the natural (outer)
X

log

homomorphism 7 ((Uy)'%8,) — 7{(((X12%) jes ) ez ) induced by the morphism of log schemes
X X

~log
Sx
(Uy)le — (X%?g)sl)o(g is a surjection. Note that since Wf((Uv>1§§g> x~ Wf((X‘;log)g;g), we use

the notation My, (vesp. M, Ml‘}(‘i/ge, M[tf;p, M;;™P) to denote the group My, (resp. My,
M;l‘./ge, M;?‘Ej : Mf(u‘.fp) defined in Remark 2.3.1.

By considering the right-hand square of the commutative diagram discussed above,
together with the natural projection MyE — Mff‘l/ge (cf. also Remark 2.3.1) and the

natural morphism M(t]ff’ — My”® induced by the natural open immersion Uy — X, we
obtain a commutative diagram:

W{(sl)?g) — Hom(M;?p,M;dge)

H |

ﬂf(sl)(;g) — Hom(M(t](‘)f’,MZc‘l/ge).

Note that the natural open immersion Uy — Xy induces natural isomorphisms Mg}oj’ =
M;?‘lf and Mle]?/ge = .M)e(dvge @ My’ Thus, by applying a similar argument to the argu-
ment applied to obtain the commutative diagram of the preceding display, we obtain a
commutative diagram

14



Tl (s'%8) —— Hom(MtU(’vp,M;ig‘*)

|

Ti(s¥) ——  Hom(MP, ME®)

l

T (sy") —— Hom(MY) @ MY, Z(1)),

where the lower vertical arrow on the right-hand side Hom(Mﬁ?‘lj, M;dfe) — Hom(M)t?‘I/’ ®
M;?‘lf, Z(1)) is the isomorphism induced by the Poincaré duality.

On the other hand, since the actions of 7¢(s%?) and 7¢(s%) on 0 — MY — My, —
M;f‘f’ — 0 are compatible, we thus obtain a commutative diagram

ml(s8) —— Hom(MP @ MP, Z(1))

l H

mf(sp%) —— Hom(My} @ MY, Zi(1)),
where the lower horizontal arrow is the pro-¢ period matrix morphism (cf. Definition 2.4)
associated to Xy. So we have a functorial property of pro-¢ period matrix morphism as
follows:

7 (s1%) L Hom(M®P @ M, Z,(1))

ol v
r¢(5%) 2 Hom(MEP © MIP, Z,(1)),

where the vertical morphism of the left-hand side is the natural projective, and the vertical
morphism of the right-hand side is the morphism determined by the pro-¢ completion of
the natural morphism of topological fundamental groups m(I'x,,) — m(I'x) which is
induced by the embedding I'x,, — I'x.

Remark 2.4.2. In this remark, we will explain a functorial property that relates the
various pro-f period matrix morphisms associated to deformations of a stable curve.

First, let us explain how to deform a stable curve along a set of nodes. Let R be a
complete discrete valuation ring with algebraically closed residue field k, K the quotient
field of R, and K an algebraic closure of K. Write S := Spec R for the spectrum of R and
n := Spec K < S (resp. s := Speck < S) for the subscheme determined by the generic
point (resp. closed point) of S. Let X be a stable curve over s of genus g, I'y the dual
graph of X, and m := fe(I'y).

Let L be a subset of e(I'x). We claim that we can deform the stable curve X along
L to obtain a new stable curve over 77 := Spec K such that the set of edges of the
dual graph of the new stable curve may be naturally identified with e(I'x) \ L. Write
Os S — Hg for the classifying morphism determined by X — s. Thus the completion
of the local ring of the moduli stack /Vg Xz R over R at s — Mg Xz R induced by
¢s is isomorphic to R[ty,...,t3,—3]. Furthermore, the indeterminates ti,...,¢,, may be
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chosen so as to correspond to the deformations of the nodes of X. Write {t¢4,...,¢4} for
the subset of {ti,...,t,} corresponding to the subset L C e(I'x). Now fix a morphism
S — Spec R[[ty, ..., tsg—3] such that t4i1,...,t, — 0 € R, but t1,...,t; map to nonzero
elements of R. Then the composite morphism \r¢ : S — Spec R[t, ..., t3,-3] — M,
determines a stable curve \; X over S. Moreover, the special fiber of \; & is naturally
isomorphic to X over s. Write ;X for the geometric generic fiber \, X X, 77 and I | x for
the dual graph of \; X. It follows from the construction of \; X that we have two natural
maps
U(FX) — U(F\LX)7 6(FX) \ L= e(F\LX)

(the latter of which is a bijection); we shall denote this pair of maps by the notation
FX — F\LX

which we shall refer to as the contracting morphism associated to the deformation. Simi-
larly, we can deform the stable curve X along e(I'x)\ L (i.e., by taking“L” to be e(I'x)\ L).
This yields a new stable curve, which we denote by X, over S such that the set of nodes
e(I', x) of the dual graph of the geometric generic fiber ;X of X may be naturally
identified with L, together with a natural contracting morphism

I's — FLx.

Furthermore, we have a classifying morphism ¢ : S — Mg determined by ;X — S.
On the other hand, we have a log scheme \ S8 (resp. ,S'°8) whose underlying scheme

is S, and whose log structure is the log structure obtained by pulling back the log structure
of M;Og via\z¢ (resp. ¢). Thus, we obtain a stable log curve |, X' := flgog X gtos \ S8
g

—5log . .
over \15"8 (resp. [ X8 := X = X0 1,58 over S'°8) whose underlying scheme is \ ;X
g

g M
(resp. pAX'). Write

—log . olog — log . olog
Mox = S\LX Xsn, Sx = S\LX Xs S
—log . (olog — log . @log
(resp. M,x =95, x XsT, Sy =5 Xs s),

where we observe that the log schemes Si(zgx X g s and Sio}g( X g s are naturally isomorphic.
Thus, we have a natural injection of log fundamental groups as follows:

—lo, ~ og\ ~v log\ ~v
Thes = Wf(ﬁ\Lgx) = EB Zo(1)e = m(\LS"%) = Los 1= i (sy") & @ Z(1)e,

\LX

EEE(F\LX) ece(l'yx)
(resp.
—lo, ~J o ~ lo, ~
Loy =0 @ T (8 2 L =602 ) Ze))),
eGe(FLX) ece(T'x)

where the @€EG(F\LX) Z(1), (resp. @eee(FLX) Z(1)e) maps to the portion of B¢ i) Ze(1)e
indexed by e(T', x) (resp. e(I',x)).
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Write M, x, M, x and My for the abelianizations of the pro-¢ admissible fundamental
groups of \, X, 1 X and X, respectively. By applying the specialization theorem (cf.
Proposition 1.1), we obtain a commutative diagram as follows:

top
0 — M$ — M,;x — ME — 0

T T |

0 — MY —— My —— MY —— 0

l l !

0 —— M7y — M,x — M\tzg( — 0,

where the vertical morphisms in the middle (resp. on the right-hand side; on the left-hand
side) are the isomorphisms induced by the inverses of the respective specialization iso-
morphisms (resp. surjective morphisms induced by the respective contracting morphisms;
injective). From the commutative diagram above, it follows immediately, by considering

the respective actions of Iﬁlog = Los [ﬁlog on the relevant modules in the above
X X \LX

commutative diagram, that we obtain the following commutative diagram of pro-¢ period
matrix morphisms:

frx

Lo —— Hom (M ¥ @ MY, Z(1))
LiJ/ le

Lis —2 Hom(M @ MY 7,(1))
X

\L'L'T \LJT

I N Hom(M™ & M 7,(1
_log — OIIl( \LX® e g( ))

n\LX

2.2 Degeneration of pro-/ period matrices

In this subsection, we study the degeneracy of pro-¢ period matrices of stable curves. We
continue to use the notation of Section 2.1.

Definition 2.5. An element a = (a.). € Lo =2 Dece(ry) Ze(1) is called non-degenerate if

ae. # 0 for each e € e(I'x). A non-degenerate element a = (ac)e € Ijos = P cory) Ze(1)
X

is called positive definite if, for any ey, es € e(I'x), it holds that a, /a., € Q=9 C Q;.

Remark 2.5.1. Let Sy® — S\ be a morphism of log schemes defined at the ending of
Section 1.1 and 7¢(Sy%) — wf(S°®) = 7{(s'%) the morphism of log étale fundamental
groups induced by the morphism Sy® — S}°%. Then the definition of Sy® — S° implies
that all the elements of the image of 7¢(S5%) — 7¢(S\¥) = 7! (s'%8) are positive definite.

Given a positive definite element a = (ac)e € Lyos = .oy Ze(1), observe that, for
X
a suitable choice of generator & € Zy(1), it holds that a. € N - £ for each e. In particular,
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one verifies immediately that, in the notation of Section 1.1, there exists a morphism
Si% — S°® such that a is contained in the image of 7{(Sy%) — wf(S\%%) = nl(s'%).
Thus, the pro-¢ period matrix fx(a) associated to a is a positive definite matrix (cf. [4]
Chapter IIT Corollary 7.3, or, alternatively, the explicit computations given in the proof
of [4] Chapter III Theorem 8.3), hence, in particular, non-degenerate. The fact that
fx(a) is non-degenerate may also be regarded as a special case of the weight-monodromy
conjecture for curves.

Ifae ]sl)gg is an arbitrary (i.e., not necessarily positive definite) non-degenerate ele-
ment, then fx(a) will not necessarily be a non-degenerate matrix. It is easy to construct
a counterexample (for instance, see [7] Remark 5.9.2).

Definition 2.6. The stable curve X over s := Spec k will be called a pro-£ period matrix
degenerate curve if the dual graph 'y is not a tree (i.e., r(I'x) := rank(H*(T'x, Z)) # 0),
and, moreover, there exists a non-degenerate element a € Isl}(;g such that the pro-¢ period

matrix fy(a) is degenerate.

Next, we prepare for the proof of our main theorem. We begin by observing that for
Question 0.1, we can assume without loss of generality that X is sturdy. More precisely,
we have the following lemma.

Lemma 2.7. Let X be a stable curve over k of type (gx,0) and I'x the dual graph of X .
Then there exist a sturdy stable curve Y over k and a finite morphism ¢ : Y — X owver
k such that the following two properties hold: (i) the morphism of dual graphs I'y — I'x
induced by 1 is an isomorphism; (ii) the pro-{ period matriz morphisms fy and fx fit
into the following commutative diagram:

Lios = @,coqry) Zo(De — Hom(My® @ My, Zy(1))

| |

Lios = @ eriry Ze(D)e —2 Hom(M» @ M, Z(1)),

where the vertical arrow on the right-hand side is the morphism induced by the morphism
Hom (M, M) — Hom(MP, M) determined by a multiplication £ : M —
M)efge induced by ¢ and the isomorphism M = M® induced by the isomorphism
Iy = Tx of (i), and the vertical arrow on the left-hand side is the morphism determined
by multiplying by £.

Proof. Let v € v(I'x). Then we shall write X, for the irreducible component of X
associated to v, n, : X! — X, for the normalization morphism associated to X,, and P,
for the set

ny (X, [ |Node(X))

which is a subset of the set of closed points of X. In the following, we shall use the
notation (—)< to denote the set of closed points of (—). Choose a finite nonempty set

Qv C X,:Cl
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such that Q, (P, = O, and, moreover, the cardinality of the set [v] := Q,|J P, is a
positive even number 2m,, such that m, >> ¢. Thus, we obtain a pointed smooth curve
(X}, [v]) of type (9x,,7x,), where gx, denotes the genus of X* and rx, = t[v] = 2m,,. For
simplicity, we use the notation X o to denote the resulting pointed smooth curve.

Recall that the pro-¢ admissible fundamental group of X ['v] admits a presentation as
follows:

Wf"adm(X[:,]) = ({as}s=1,..gx, 10t} i=1,..9x, 1Ci fi=1,...2m, | H[at, by] HCi = 1>E7
¢ i

where (—)¢ denotes the pro-¢ completion of the group (—). We construct a surjective
morphism h, : 77 (X)) — Z/{Z as follows: for s,t € {1,...,gx,}, hu(as) = hy(b;) = 0;
hv(Cl) = 1,hv(02) = —]_, ...,hU(CQi_l) = ]_,h/v(CQZ‘) = —1, ...,hv(Cva_l) = 1;hv(02mv) = —1.
Thus, we obtain a connected Z/¢Z-admissible covering 1, : Y,* — X[, that is totally
ramified over all the marked points in [v] and étale over X\ [v]. We denote the underlying
curve of Y? by Y.

Write QQx for the set UUEU(FX) .. Thus, we obtain a pointed stable curve X°® :=
(X, Qx) of type (gx,7x), where rx = #Qx. By gluing the {Y,}, along the set U, ) o ' (P0)
in a fashion that is compatible with the gluing of the { X, }, that gives rise to X, we obtain
a stable curve Y over s. Write )y for the set UUGU(FX) ;7 1(Q,). Thus, we obtain a new
pointed stable curve Y* := (Y,Qy) of type (gy,ry), where gy := dim,H'(Y,Oy) and
ry = #1Qy = tQx = ryx, together with an admissible covering ¢’ : Y* — X*. It follows
from the construction of Y and the Hurwitz formula that Y is sturdy, and, moreover, that
the morphism of dual graphs I'y — I'x induced by v’ is an isomorphism.

On the other hand, we have a morphism from s to the moduli stack M, ,, (resp.
My, ) determined by X — s (resp. Y — s). By pulling back the log structure of
TZE’TX and Mlg"jyrx (resp. ylg(;g’ry and M:fry) to X and s (resp. Y and s), respectively,
we obtain a stable log curve X*%8 — s'% (resp. Y*1°8 — 5\%). One verifies immediately
that the log scheme s'2¢ (resp. sy2) admits a chart (Speck, N") (resp. (Spec k,% -N")),

where 7 = te(I'y) (resp. r = fe(I'y)). Thus, it follows from [12] Section 3.9 that the
admissible covering 1/’ determines a commutative diagram as follows:

It It
Yolog s XZ. og = X.log Xslog 8}2% s Xolog
b'e

| | l

slﬁg S slﬁg — sl)?g,
where, for a suitable choice of charts for s'%® and s ¢, the morphism of log structures
induced by the morphism slﬁg — sl;g may be described as the morphism of log structures

1
induced by the morphism of charts determined by the morphism of monoids N" — 7 N"

such that (0, ...0, 1,0, ...,0) = (0, ...,0,1,0,...,0), and Y*'& — leog is the log admissible
covering determined by the admissible covering 1.

Next, write Mxe, My+, Mx, My for the abelianizations of the pro-¢ admissible funda-
mental groups of X*® Y* XY respectively. Then we obtain a commutative diagram as
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follows (cf. Remark 2.3.1):

top

0 — My —— Mys —— Mys, —— 0

Lol |

0 —— MY —— Myxe —— MY —— 0,

where ¢}, denotes the morphism induced by the admissible covering 1'. By forgetting
the marked points in Qy and @y, we conclude that 1’ determines a finite morphism
¥ 1Y — X. Moreover, there is a natural surjection Mys — My (resp. Mxe — Mx)
whose kernel is My." (resp. M) (cf. Remark 2.3.1). Note that the image ¢}, (Mye")
is contained in My.®, so we obtain a commutative diagram by passing to quotients as

follows:
0 — My —— My —— M{® —— 0

l | !

0 — M —— My — M —— 0.

Moreover, since v : Y — X is totally ramified over all the nodes of X, we obtain a
multiplication £ : M{™ — M. Since this commutative diagram is compatible with
the actions of Isl;f)g = W{(slﬁg) — Isl}?g = wl(s'%¥), the pro-¢ period matrix morphisms

associated to X and Y fit into a commutative diagram

[slygg = 69eEe(Fy) Zf(l)e L Hom(M)tfop ® M;c/op’ Zf(l))

| |
Lios = @y Ze(D)e —2 Hom(MPP @ MYP, Z4(1)),

where the vertical arrow on the right-hand side is the morphism induced by the morphism
Hom(M{™® @ M Z,(1)) = Hom(M >, M) — Hom(MEP, M) = Hom(MEP ®
MP Zg(l)) determined by the multiplication ¢ : M — M8 and the isomorphism
M, fop = M;?p induced by the isomorphism I'yy = I'x, and the vertical arrow on the left-
hand side is the morphism determined by multiplying by ¢. This completes the proof of
the lemma. O

Definition 2.8. Let X be a stable curve over k£ and I'x the dual graph of X. For any
edge e € e(I'y), write v(e) for the set of vertices which abut to e. Write

e’(Tx) == {e €e(l'x) | fv(e?) =1}

for the set of edges which form loops of I'x. Note that fv(e) = 2 for each e € e(I'x)\e*(I'x).
We shall refer to the subgraph T'%, := T'y \ €°(T'x) as the maximal untangled subgraph of
I'x.

Theorem 2.9. Let X be a stable curve over k and I'x the dual graph of X. Then X is
a pro-C period matriz degenerate curve if and only if the mazimal untangled subgraph T'%
of T'x is not a tree (i.e., r(I'%) := rank(H'(I'S, Z)) #0).
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Proof. By Lemma 2.7, we can assume that X is sturdy.

If 'y is a tree, then by definition, X is not a pro-¢ period matrix degenerate curve.
Hence, we can assume that [y is not a tree.

First, let us prove the “only if” portion of the theorem. Write L := e°(I'y). Let R
be a complete discrete valuation ring with residue field & and K an algebraic closure of
the quotient field K of R. By applying Remark 2.4.2, we can deform the stable curve
X along L (resp. e(I'x) \ L) so as to obtain a new stable curve \; X (resp. X) over K
such that the set of edges e(I'  x) (resp. e(I',x)) of the associated dual graph may be
identified with e(I'x) \ L (resp. L).

It is easy to see that the restriction of the contracting morphism I'y — I' | x to I'%
is an isomorphism. Suppose that I'S is a tree. Thus, the rank of L x (i.e., the rank of
Hl(I‘\ . x,Z) as afree Z-module) is 0. By applying Remark 2.4.2, we obtain a commutative
diagram of pro-¢ period matrix morphisms fx, f,, x, f, x as follows:

-~ fox
Lios = @eeryp Ze(Le - 0

\LX
\L’l \le
Lyox = (Decerynr Ze(1)e) D(Decr Ze(1)e) 5 Hom(MYP © MYP, Z,(1))
LZT L]T
~ frx o
Iﬁfi ~ D, Zi(1), —5 Hom(M'E @ M2, Z(1)),
where 17 is induced by the contracting morphism I'xy — I', x. Moreover, j is an isomor-
phism. Thus, it follows immediately from this commutative diagram that, by replacing
X by X, we may assume without loss of generality that X = ; X.
Let [ € e(I'x). Then we can also deform the stable curve X along e(I'x) \ {/}. This

yields a stable curve ;X whose set of nodes is {{}, together with a commutative diagram
of pro-¢ period matrix morphisms f,x, fx as follows:

~ f o (o) ~
Los = Zy(1),; —— Hom(M'F ® M, Zy(1)) = Zy(1)

Lgox = (Beceryn gy Ze(1)e) B Ze(1)1) e Hom(My” @ M", Zq(1)).

[a¥)

Furthermore, we have My® = @eEe(Fx) Mj;;p Then for any non-degenerate element
a = (ac)e € Deoceqry) Ze(1)e, We have a quadratic form

hx = fx(a) = Z h.x,

where we write h_x := .j(f.x(a.)). Since h_x restricts to a non-degenerate form on M:‘;(p
and to 0 on @e'ee(rx)\ (e} M tf)};, it follows that hx is a non-degenerate quadratic form.
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That is to say, X is not a pro-¢ period matrix degenerate curve. This completes the proof
of the “only if” part of the theorem.

Next, let us prove the “if” part of the theorem. Let R be a complete discrete valuation
ring with residue field k£ and K an algebraic closure of the quotient field K of R. Since 't
is not a tree, one verifies immediately there exists an element [ € e(I'%) such that [ is not
of separating type (cf. [7], Definition 2.5 (i)). By applying Remark 2.4.2, we can deform
the stable curve X along [ (resp. e(I'x) \ {/}) so as to obtain a stable curve \;X (resp.
1 X) over K such that the set of edges of the associated dual graph may be identified with
e(I'x) \ {{} (resp. ). One verifies immediately that since [ is not of separating type, it
follows that [, regarded as an element of e(I',x), is a loop, and hence that the rank of
Mlt)o(p is 1. Let us consider the pro-¢ period matrix morphisms of \;X and ;X with Q-
coefficients. By applying Remark 2.4.2, after tensoring with Q,, we obtain a commutative
diagram of pro-£ period matrix morphisms of X,; X and \;X over Q, as follows:

1%
Tee © Qu(1) = Qe(1), —— Hom(M @ M. Z(1)) €z, Q

liQ[J( lj@él

Qp

~J f O (o)
Lyos ® Qu(1) = Qu(1) B (B ee(ryypy Qull)e) —— Hom(My* @ My®, Z(1)) @z, Q
\liQET \leZT

]ﬁl\olgx ® Q1) = Beceryp iy QelL)e — Hom(MflO)‘; ® M\t;))?a Ze(1)) ®z, Qu,

where fgf (resp. 4% is an isomorphism (resp. the natural isomorphism induced by

the isomorphism MyP =5 M\tlo)’;) By applying the commutative diagram above, for any
element a = (ar, (ac)ez) € Qe(1) D(D.. Qe(1)e), We obtain a quadratic form hx =
Q‘(a) on Mtep.

X X

hx = h1X|M;§’P®M§§’P + h\1X7

where we write h,x (resp. h, x| MEPEAP h,,x) for the quadratic form fgf(al) (resp.

G (F3 (@), i (5 ((ae)eeer, ) on MRP (resp. MyP, M),

Write p; for the node of X corresponding to [, X; for the stable curve obtained from
the (sturdy) stable curve X by normalizing at p;, and I'x, for the dual graph of X;. Note
that since [ is not of separating type, I'x, may be regarded as a connected subgraph of
I'x whose rank (i.e., the rank of H'(I'y,, Z) as a free Z-module) is r(I'x) — 1. By applying
Remark 2.4.1, we have a commutative diagram of pro-¢ period matrix morphisms of X;
and X over Q, as follows:

Qy

Q) BBceron gy Q1)) 2= Hom(MP @ MY, Z,(1)) @z, Q

0
Ixt

Decer oy QeL)e —— Hom(My" @ Mx", Z(1)) @z, Q.
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On the other hand, it follows immediately from the structure of the graphs I'x, I', x, and
I'y, that we have a natural exact sequence as follows:

top top top
0= My" = My" = My —0.

Thus, we obtain a quadratic form hy, := f%((ae)e&(px)\{l}) on M)tflp which is equal to
the quadratic form given by the restricted forms hx]| MgPeMP = h,, x| MPMEP”

Here, we follow the notational conventions of the discussion preceding Lemma 2.10
below. Write § }
det(hy) € \ M @ N\ M®

(vesp. det(h, x) € /\ MY® @ /\ M”,
det(hx,) € \ M@ \ M,

det(h,x) € NMP & \MP),
for the determinants associated to the quadratic forms introduced above.

If L x and I'y, are not trees, then the rank of M;?p is > 2. Thus, by applying Lemma
2.10 to hx = h\lX + h/lX|Mtop®Mtop’ we obtain that
X X

det(hx) = det(h\lx) + det(th) A det(th).

Let us take (ac)es € EB#Z Q¢(1)e to be positive definite and a; € Q,(1); to be arbitrary.
This implies that the quadratic forms h, x and hy, are positive definite (cf. [4] Chapter
III Corollary 7.3). Hence, in particular, det(h,,x) and det(hy,) are # 0 and, moreover, (by
definition) independent of the choice of a;. Thus, since the pro-¢ period matrix morphism
fgf is an isomorphism, we may modify a; € Q,(1); (which determines det(h,x) = f !(ay))
so that

gf((al, (ae)#l)) = det(hx) == det(h\lX) + det(hxl) N det(hlx) =0.

Finally, by clearing denominators, we conclude that we may choose a non-degenerate

element
(al ) e;ﬁl @ Zl

ece(l'x)

such that the quadratic form fx((a;, (al)ex)) is degenerate. This completes the proof of
the theorem in the case under consideration.

If I'y, is a tree, then M;gp is 0, so MyP = Mltf(p = M\tlo)? is of rank 1. Then, by applying
Lemma 2.10 to hx = h,,x + th|M;?p®M;§p, we obtain that

det(hx) = det(h,,x) + det(h, x| ppiong ppion) € My” @ MYP.
Let us take (ae)es € @6# Qe(1). and a; € Qy(1); to be positive definite. This implies that

det(h,,x) and det(th’M;)p®M;)p) are non-zero (cf. [4] Chapter III Corollary 7.3). Since
det(h,,x) is (by definition) independent of the choice of a;, we can modify a; € Qu(1),
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(which determines det(h,x|ptorgppior) = lef(fl% (a;))) so that det(hyx) = 0. Finally, by
clearing denominators, we conclude that we may choose a non-degenerate element

(af, (@)er)) € €D Ze(1)

ece(l'x)

such that the quadratic form hx is degenerate.
If L' x is a tree, then I'y, hence also I'%, is a tree. This contradicts our assumption
that I'S is not a tree. This completes the proof of the theorem. Il

Let W be an n-dimensional vector space over a field ky and Q : W @ W — ky a
quadratic form on W. Then @ induces a morphism W — W from W to the dual space
W := Hom(W, ky/). Thus, by forming n-th exterior powers, we obtain a natural morphism

detg : kw — /\W@/\W
We use the notation . .
det(Q) € AW o AW
to denote detg(1). We have a lemma as follows.

Lemma 2.10. Let 0 — V; — Vi — Vo — 0 be an exact sequence of vector spaces of
finite dimension over a field ky . Suppose that dim(Vy) =:n > 1 (resp. dim(V}) =n — 1,
dim(Vy) = 1). Let A}, A2 € Hom(Vy @ Vi, ky) (resp. Ay € Hom(Vy @ Vi, ky), Ay €
Hom(Vo ® Vo, ky)) be two symmetric quadratic forms on Vy (resp. a quadratic form on
Vi, a quadratic form on Vy). Furthermore, we suppose that the following conditions are
satisﬁed: (Z) A6|V1®V1 = Al,' (ZZ) A(Q) = A2|VO®VO (80 A%|V1®V1 = 0) Let A() = A(l) + A(Z]
Then we have
det(Ag) = det(Af) + det (A7), if n=1;

det(Ag) = det(Ap) + det(A;) A det(Ay), if n > 2.

Proof. Choose a basis of Vj that extends a basis of ;. Then the lemma follows from an
elementary matrix computation. 0

2.3 Relationship with the weight-monodromy conjecture

In this subsection, we explain the relationship between Theorem 2.9 and the weight-
monodromy conjecture for curves.

Let K be a p-adic local field (i.e., a finite extension of Q,), K an algebraic closure
of K, R the ring of integers of K, k the residue field of R, R the integral closure of
R in the maximal unramified extension of K in K, and k the residue field of R . Let
X be a projective hyperbolic curve over K of genus g. Suppose that X admits a stable
model X over R. Write Xi (resp. X}, X3) for the geometric generic fiber (resp. special
fiber, geometric special fiber) of Xg. Then the reduction curve X3 — Spec k determines

a classifying morphism Speck — ﬂg. Write sl)?i for the log scheme whose underlying

scheme is Spec k and the log structure is the pull-back log structure of Mf;g.
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Write M X and M X; for the respective abelianizations of the pro-¢ admissible fun-
damental groups 7{2™(X%) and 7829 (X7) (cf. the discussion immediately preceding
Proposition 1.3). Note that there is a natural isomorphism Mz = My induced by
the specialization morphism of the pro-¢ admissible fundamental groups {24 (X%) and

miadm(X) (cf. Proposition 1.1). Recall the natural exact sequence

1—Ix =G — G, — 1,

where I, Gk, and G}, denote the inertia group of K determined by K, the absolute
Galois group of K determined by K, and the absolute Galois group of k determined by
k, respectively. By the f-adic cohomology criterion for stable reduction of curves (cf.
[3] Theorem 2.4 and [1] Theorem 7.4.6), the action of the inertia group Ix of Gx on
W = Mz ® Qg is unipotent. Thus, any lifting to G of the Frobenius element € Gy
determines a filtration on W (corresponding to weights > 2, > 1, > 0), which is called
the weight filtration, and which does not depend on the choice of the lifting, as follows:

0C W, CW, CW. (*)

Since the action of the inertia group Ix of G on W is unipotent, the action of I'x factors
through the maximal pro-¢ quotient of I, which we denote by I%. Write

pr, : Iie = GL(W)

for the resulting Galois representation. Since the action of I% on W is unipotent, for any
generator a of I%, there exists a uniquely determined monodromy operator N, : W — W
such that p} (a) = exp(N,). Note that Remark 2.5.1 implies that a induces a positive
definite element a € Wl(sl)‘}g)
For the geometric spe(nal fiber X, we have the following filtration defined in Section
2.1:
0C M ®@Q C My ®©Q C My, Q= (%)

Since M5 is isomorphic to a direct sum of copies of Z,(1), the weight of M edge
equal to 2 Furthermore, by applying Proposition 2.1 and the Weil conjecture for abehan
varieties, the weight of M"?/Meége is equal to 1. Since My /MY" = M“;p (cf. the
discussion at the beginning of Section 2.1), the weight of M XE/JW)V(%r is 0. Thus, the
filtration (%) coincides with the filtration (xx). Since any connected étale covering of the
geometric special fiber X7 lifts uniquely to an étale covering of Xr Xgpec r SPEC R™ whose
domain is a stable curve over Spec R, the action of It on W/W, = M XE/MS?;ge ®
Q¢ = Hom(Mx", Z(1)) ® Q, = Hom(W1,Qy(1)) (where the second isomorphism is the
isomorphism arising from the Poincaré duality discussed at the beginning of the proof of
Proposition 2.2) is trivial, so we have (pf_(a) —1)% = 0. Since p}_(a) — 1 may be written
as the product of N, with an invertible matrix that commutes with N,, this implies that
N2 = 0, Im(N,) € Wy C W; C Ker(N,). Thus, we obtain a monodromy filtration
associated to a as follows (cf. [2] Proposition 1.6.1):

0 C Im(N,) C Ker(N,) C W.
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Write N, for the isomorphism W/Ker(N,) = Im(N,) induced by N,. Thus, rank(N,) =
dimg, (W/Ker(N,)) = dimg,(Im(N,))) = rank(fx_(a)), where fx_(a) is the pro-¢ period

matrix associated to a, and
dimg, (My? ® Q) = dimg, (W/W1) = dimg, (W),

where the equalities follow from the discussion at the beginning of the proof of Propo-
sition 2.2. The weight-monodromy conjecture asserts that the weight filtration coin-
cides with the monodromy filtration associated to a. To prove this assertion, let us
first recall that by Faltings-Chai’s theory, fx_(a) is non-degenerate. Thus, we have
rank(N,) = rank(fx(a)) = disz(M;%p ® Q) = dimg,(W/W;) = dimg,(Ws). These
equalities, together with the inclusions Im(N,) € W, € W; C Ker(N,), imply that
Wy = Ker(N,) and Wy = Im(N,). Thus, the weight-monodromy conjecture for curves
holds.

On the other hand, let us consider the action of 7§ (sl)(é ) on W induced by the homotopy
exact sequence of pro-¢ log étale fundamental groups of stable log curves (cf. Corollary
1.2). Moreover, by the ¢-adic cohomology criterion for stable reduction, this action is
unipotent. For any non-degenerate element b in Wf(sl)cﬁ ), by applying similar arguments
to the arguments discussed above, we can define a monkodromy operator NN, associated to
b such that N? = 0, and b acts on W as exp(b) = 1 + Ny; moreover, N, determines a
monodromy filtration. On the other hand, the Frobenius element of G} determines, by
applying similar arguments to the arguments discussed above, a filtration on W, which
is called the weight filtration, and which, in fact, as can be easily verified, coincides with
the weight filtration (x) discussed at the beginning of the present subsection. On the
other hand, by Theorem 2.9, if the maximal untangled subgraph of the dual graph of Xz
is not a tree, then there exists a non-degenerate element b € Wf(sl)(é ) whose pro-¢ period
matrix is degenerate. Thus, we have dimg,(W/Ker(N;)) = rank(N,) = rank(fx, (b)) <
dimQ[(M;’Ep ® Qp) = dimg,(W/W7), which implies that Ker(N,) # W;. In particular,
the weight filtration does not coincide with the monodromy filtration defined by b. Put
another way, we have shown that Theorem 2.9 implies that if the maximal untangled
subgraph of the dual graph of X7 is not a tree, then there exist non-degenerate elements
of Wl(st) for which the weight- monodromy conjecture does not hold. Moreover, we obtain
an equivalent form of Theorem 2.9 as follows.

Corollary 2.11. Let X be a smooth projective hyperbolic curve over a p-adic local field
K, K an algebraic closure of K, R the ring of integers of K, k the residue field of R,
R™ the integral closure of R in the mazimal unramified extension of K in K, and k the
residue field of B . Suppose that X admits a stable model X over R. Write X for the
special fiber of Xr, X for the geometric special fiber of X, and U'x_ for the dual graph
of X3. The geometric special fiber X3 determines a classifying morphism Speck — ﬂg,
and we shall write s for the log scheme whose underlying scheme is Spec k, and whose

log structure is the pull—back of the log structure of /\/lg . Then the weight-monodromy

congecture for X holds for all the non-degenerate elements of W{(sl)(é) (i.e., the weight
filtration on W coincides with the monodromy filtration on W defined by an arbitrary
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non-degenerate element of W{(Sl)?i)) if and only if the mazimal untangled subgraph of I'x_

18 a tree.
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