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Abstract

The rapid development of laser-cooling technique in past a few decades has enabled us to cool the
atomic gases down to a nano-Kelvin scale and observe numerous intriguing quantum many-body
phenomena. The significant feature of this system is that the Hamiltonian of the atomic cloud is
described by simple models with high accuracy and the parameters of the system can be controlled
almost perfectly by using the laser or magnetic fields. By highlighting this feature, ultracold atoms
are often called “quantum simulators”, which reproduce the behavior of the prototypical models
of condensed matter physics using table-top experiments. In addition to these features, ultracold
atoms can also realize intriguing models which are hardly realized in solid-state systems. Thus one
of the fascinating aspects of cold atoms is to discover new quantum many-body phenomena which
are difficult to find in the ordinary models in solid state physics. Once the emergence of the new
phenomena is established, it certainly helps our understanding of the quantum many-body systems
and also provides a starting point to realize such new phenomena in solid-state setups.

In this thesis, we propose several setups to realize intriguing quantum many-body phenomena in
ultracold atoms, and thereby investigate their properties in details. Our setups utilize the peculiar
properties of cold atoms, but have a close connection with the phenomena in solid-state physics.
First, we propose that ultracold atoms offer a novel platform to study the Kondo effect, which is
a prototypical example of strong correlation effects in condensed matter physics. We demonstrate
that intense laser application to atoms can coherently induce a novel Kondo effect in ultracold
atomic gases. In this setup, a long-lived electronic excited state of alkaline-earth-like atoms play a
central role, and the Kondo effect is induced by optical transitions between the electronic ground
state and the excited state. One of the highlighted features here is that we can investigate the
Kondo effect in nonequilibrium situations under the laser irradiation. Thus we address whether the
Kondo effect survives or not in the nonequilibrium situations. We demonstrate that the optically
coupled two internal states are dynamically entangled to form the Kondo singlet state, and they
actually overcome the heating effect caused by the irradiation. Furthermore, it is shown that the
laser-induced Kondo effect has several peculiar properties which cannot be realized in ordinary
solid-state systems. For example, a lack of SU(N) symmetry in the optical coupling gives spin-
selective heavy fermion liquids in which higher spin components have larger effective masses in the
Kondo lattice system. We further found that the laser-induced Kondo effect has unusual spin states
different from the well-known Kondo singlet. This unusual Kondo state is certainly distinct from
the ordinary Kondo singlet state, if we assume the spin π-rotational symmetry around a particular
axis.

Next, we show that the cold-atom realization of the Kondo lattice can host a topological phase
protected by symmetries in one-dimensional optical lattice. This phase is reminiscent of the cel-
ebrated Haldane phase in spin chains, but here the charge degrees of freedom play a key role on
the fate of the topological phase. We uncover the role of various symmetries on the phase diagram
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of the one-dimensional Kondo lattice using bosonization methods and strong-coupling pictures of
the ground states. As a result, the one-dimensional Kondo lattice provides a typical example of a
crossover from a fermionic topological phase in weakly interacting regime to a bosonic topological
phase in the strong coupling limit. Ultracold alkaline-earth-like atoms are therefore a promising
candidate to realize the symmetry-protected topological phase with strong correlations.

Furthermore, we consider a phenomenon called topological pumping, which is a manifestation of
topological nature of quantum states in transport phenomena. Although the topological pumping
was theoretically predicted almost 30 years ago, it was realized only recently using the controllability
of cold atoms in optical lattices. Here we focus on the fact that the topological pumping is composed
of non-interacting particles and has a strong relationship with the integer quantum Hall effect. Since
the quantum Hall effect has more fascinating properties in interacting systems, such as the fractional
quantum Hall effect, it is natural to ask whether the connection between the topological pumping
and the quantum Hall effect also holds in interacting systems. In this thesis, based on a quasi-
one-dimensional limit of quantum Hall states on a thin torus, we propose a systematic scheme to
construct interaction-induced topological pumping which is possibly realized in cold-atom setups.
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Chapter 1

Introduction and Backgrounds

1 Overview of this thesis

First of all, we explain the organization of this thesis. This thesis consists of five chapters, and
Chaps. 2, 3, and 4 present our results. In this chapter, we describe the theoretical and experimental
backgrounds of the topics addressed in this thesis. We focus on two aspects of quantum many-
body systems: the Kondo effect and topological phases. In Sec. 2, we explain the basics of the
Kondo effect focusing on several methods used in this thesis. In Sec. 3, we review the concept
of topological phases and present several examples. Among them, the Haldane phase in Sec. 3.3
plays an important role in Chaps. 3 and 4. Also, the fractional quantum Hall effect in Sec. 3.2
and the bosonic integer quantum Hall effect in Sec. 3.4 are focused on in Chap. 4. Section 3.5 is
a description of fermionic topological phases related to Chap. 3. After reviewing these theoretical
backgrounds, Sec. 4 presents the basic properties of ultracold atoms as an experimental platform.
In Sec. 4.1, we briefly review the basics of cold atoms. Next, in Sec. 4.2, we describe a current
status of the realization of topological phases in cold atoms. Sec. 4.3 is devoted to explanation
of the specific properties of alkaline-earth-like atoms (AEA). We utilize the properties of AEA to
realize the Kondo effect in Chaps. 2 and 3.

In Chap. 2, we propose that optical transitions between internal states of AEA enable us to
realize the Kondo effect using laser irradiation. The analysis is performed using the slave boson
theory explained in Sec. 2.3 of this chapter. We show that the optical coupling dynamically entangles
localized spins with the atomic cloud due to the Kondo effect, and thereby realizes a heavy-fermion
liquid. A possible drawback in this scheme is the heating effect caused by the application of the
laser. Here we find that the dynamically induced heavy-fermion liquid indeed persists under the
irradiation, even if there is a substantial heating effect. Furthermore, we demonstrate that the
laser-induced Kondo has several peculiar properties which are different from the ordinary Kondo
effect, focusing on the laser-spin coupling and the spin state of the Kondo singlet.

In Chap. 3, we continue the analysis of the Kondo lattice in AEA, and then focus on its topolog-
ical properties when the system is confined in one dimension (1D). Based on a bosonization method
and renormalization group analysis, it is demonstrated that the cold-atom realization of the Kondo
lattice shows a topological phase and an associated quantum phase transition. Moreover, we show
that the laser-induced Kondo state is certainly distinct from the ordinary Kondo state if we assume
the spin π rotation symmetry around the x or y axis. Finally, we elucidate how the charge degrees
of freedom of the Kondo lattice change the nature of the topological phase from a weak coupling
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Figure 1.1: Typical temperature dependence of electrical resistivity ρ in the Kondo effect. The
resistivity has a minimum at a low temperature and is finally saturated to a finite value of residual
resistivity.

regime to a strong coupling limit. Since it approaches the Haldane phase explained in Sec, 3.3 of
this chapter at the strong coupling limit, the Kondo lattice clearly exemplifies a crossover from a
fermionic SPT phase to a bosonic SPT phase.

In Chap. 4, we move to a somewhat different phenomenon called topological pumping. After in-
troducing the concept of topological pumping, we explain that this phenomenon is tightly connected
to the integer quantum Hall effect. In this study, we propose a systematic scheme to construct the
topological pumping in interacting systems from two-dimensional quantum Hall states created by
strong interactions. A key idea here is a quasi-one-dimensional limit of quantum Hall states on a
thin torus. As a concrete example, we first consider the case of the fractional quantum Hall effect
and corresponding topological pumping. Next, we focus on an interaction-induced topological pump
which corresponds to the bosonic integer quantum Hall state.

Finally, we conclude this thesis in Chap. 5.

2 Kondo effect

2.1 Kondo effect

Electrical resistivity is a fundamental physical quantity in metals. There are several origins of the
electrical resistivity, such as impurities, electron-phonon interactions, and electron-electron interac-
tions. Since the scattering rates by various interactions are suppressed at low temperatures due to
the formation of Fermi surface, electrical resistivity usually decreases as the temperature is lowered.
However, in 1930s, it was experimentally discovered that some alloys containing magnetic elements
show increase of resistivity at low temperatures (Fig. 1.1). A breakthrough for understanding this
behavior was made by Jun Kondo [1] in 1964, and thus this phenomenon is called Kondo effect (for
reviews and textbooks, see [2, 3, 4]).

One of essential ingredients for the mechanism of the Kondo effect is magnetic impurities in met-
als. Kondo [1] showed that the scattering amplitude between conduction electrons and a magnetic
impurity is strongly enhanced at low temperatures, when the interaction between them is an anti-
ferromagnetic exchange interaction. This enhancement arises from the existence of Fermi surface of
the conduction electrons and a quantum nature of the impurity spin. However, the calculation by
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Kondo was based on perturbation theory in terms of the exchange coupling and included unphysi-
cal divergence of the resistivity. To overcome the difficulty, many studies had been performed and
the low-temperature properties of the Kondo effect had been gradually uncovered. Yosida [5] pro-
posed that the ground state of the Kondo effect is a many-body spin-singlet bound state between
the conduction electrons and the impurity. Anderson et al. [6, 7] performed a renormalization
group calculation for Kondo’s model and demonstrated that the antiferromagnetic interaction is
enhanced and finally diverges at low temperatures. Based on the Anderson’s result, Nozières [8]
constructed a phenomenological local Fermi-liquid theory for the Kondo effect, and this picture was
also supported by perturbative expansion in terms of Coulomb interactions at the impurity site
[9, 10, 11, 12]. Finally, the low-temperature behavior of the Kondo effect was solved by Wilson’s
numerical renormalization group [13] and exact solutions using Bethe ansatz [14, 15, 16, 17, 18, 19].
After some years, the Kondo effect and its multichannel generalizations were also solved by using
techniques of boundary conformal field theory [20, 21, 22, 23].

From these tremendous theoretical efforts and developments, the basic properties of the orig-
inal Kondo problem are now well understood. At high temperatures, the magnetic impurity is
disturbed by thermal fluctuations and is almost decoupled from the conduction electrons. In this
region, the resistivity decreases with lowering the temperature as ordinary metals. However, when
the temperature approaches a characteristic temperature scale, called the Kondo temperature, the
impurity gradually starts to interact with the conduction electrons, and the interaction is more
enhanced at lower temperatures. This leads to the increase of resistivity. Corresponding to the
enhancement of the antiferromagnetic interaction, the impurity spin is gradually screened by the
conduction electrons and the many-body spin-singlet bound state (Kondo-Yosida singlet) is formed.
The formation of the singlet bound state means that the spin of the magnetic impurity completely
disappears. As a result, when the temperature is sufficiently lower than the Kondo temperature,
the system is described by the local Fermi liquid, in which the conduction electrons interacting
with a nonmagnetic impurity only shows finite residual resistivity at zero temperature instead of
the divergence.

In the following subsections, we describe theoretical details of the Kondo effect, focusing on
several methods which will be used in later chapters.

2.2 Renormalization group approach

To capture the essence of the Kondo effect, let us consider a single magnetic impurity inserted in a
metal. This situation is described by the following model:

H =
∑
k,σ

ε(k)c†kσckσ +
∑
σ

εff
†
σfσ + Unf↑nf↓ +

∑
k,σ

(V f †σckσ + h.c.), (1.2.1)

which is called Anderson model [24]. ckσ and fσ denote the annihilation operators of conduction

electrons and electrons at the impurity site, respectively. nfσ = f †σfσ is the number of electrons
at the impurity site. ε(k) is the three-dimensional band structure of the conduction electrons. For
simplicity, the interactions between conduction electrons are neglected. The second term is the
energy level of the impurity. The third term is the most important term which means that the
electrons feel strong Coulomb interaction U > 0 at the impurity site. The last term expresses a
hybridization between the itinerant orbital and the localized f -orbital. The hybridization mixes the
conduction electrons with the impurity state, leading to a virtual bound state at the impurity site.
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Figure 1.2: Schematic picture of the Anderson’s poor-man’s scaling method. The shaded regions
mean the high-energy degrees of freedom (measured from the Fermi energy located at ε = 0) with
the energy window ∆D. Here 2D denotes the bandwidth of conduction electrons. By projecting
out the high-energy degrees of freedom, we can obtain a low-energy effective theory composed of
electrons at −D + ∆D ≤ ε ≤ D −∆D.

Due to the presence of the Coulomb interaction at the impurity, the Anderson model (1.2.1)
cannot be reduced to free electrons and therefore cannot be easily solved. At this stage, let us extract
essential ingredients of the model and derive a low-energy effective theory using the Schrieffer-Wolff
transformation [25]. We assume that a “Kondo limit” εf � µ � εf + U is achieved. In this
case, the occupation number of the impurity site is frozen to unity. Then the low-energy effective
Hamiltonian restricted in nf↑ + nf↓ = 1 is

H =
∑
k,σ

ε(k)c†kσckσ − JSc0 · Sf (1.2.2)

where Sc0 = 1
2Ns

∑
k,k′,σ,σ′ c

†
kσσσσ′ck′σ′ , Sf = 1

2

∑
σ,σ′ f

†
σσσσ′fσ′ and J = −2|V |2( 1

|εf−µ|+
1

εf+µ+U ) <

0. Here Ns is the number of sites of the system and σ is the three-component Pauli matrices. This
model is called the s-d model or Kondo model. In the Kondo limit, the charge degree of freedom at
the impurity site is completely frozen and the impurity behaves as a quantum spin. The second term
in Eq. (1.2.2) leads to an antiferromagnetic exchange interaction between the conduction electrons
and the impurity spin. The mechanism of the antiferromagnetic interaction is similar to that of the
Hubbard model. The strong Coulomb repulsion and the virtual hopping between itinerant orbitals
and the f -orbitals decrease the energies of antiferromagnetic configurations.

Let us extract the low-energy behavior of the model (1.2.2) employing Anderson’s poor-man’s
scaling method [7]. We consider the T-matrix at energy ω defined by

T (ω) = V + V
1

ω −H0
T (ω). (1.2.3)

Here we have divided the Kondo Hamiltonian (1.2.2) into H = H0 + V , where

H0 =
∑
k,σ

ε(k)c†kσckσ, (1.2.4)

V = − J⊥
2Ns

∑
k,k′

(c†k↑ck′↓S
−
f + c†k↓ck′↑S

+
f )− Jz

2Ns

∑
k,k′

(c†k↑ck′↑ − c
†
k↓ck′↓)S

z
f . (1.2.5)
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In the above expression, we generalize the Kondo exchange couping to the anisotropic case. Then,
we integrate out the high-energy degrees of freedom within −D ≤ ε(k) ≤ −D+∆D and D−∆D ≤
ε ≤ D, where ±D denotes the band edges of the conduction electrons (Fig. 1.2). The heart of
the Anderson’s poor-man’s scaling method is to examine the change of the T-matrix when we
project out the high-energy electrons and thereby construct an effective low-energy theory. When
we denote the projection onto the Hilbert space of the high-energy window with width ∆D as P∆D,
the T-matrix is written as

T (ω) =V + V P∆D
1

ω −H0
T (ω) + V (1− P∆D)

1

ω −H0
T (ω)

=V + P∆D
1

ω −H0
(V + V

1

ω −H0
T (ω)) + V (1− P∆D)

1

ω −H0
T (ω)

=V + P∆D
1

ω −H0
V + (V + V P∆D

1

ω −H0
V )(1− P∆D)

1

ω −H0
T (ω)

+ V P∆D
1

ω −H0
V P∆D

1

ω −H0
T (ω)

=V ′ + V ′(1− P∆D)
1

ω −H0
T (ω) +O((∆D)2) (1.2.6)

where we define

V ′ ≡ V + V P∆D
1

ω −H0
V

= V + ∆V. (1.2.7)

From these equations, we find that integrating out the high-energy degrees of freedom is equivalent
to changing the Kondo interaction from V to V + ∆V . The change of the interaction can be
calculated as

∆V = ∆V1 + ∆V2, (1.2.8)

∆V1 =
1

4Ns

′∑
k1,σ1

′∑
k2,σ2

ρ0∆D

ω −D

[
c†k1σ1

ck2σ2

{
δσ1σ2(

J2
z

4
+
J2
⊥
2

)

− J2
⊥σ

z
σ1σ2

Szf − J⊥Jz(σ−σ1σ2
S+
f + σ+

σ1σ2
S−f )

}]
, (1.2.9)

∆V2 =
1

4Ns

′∑
k1,σ1

′∑
k2,σ2

ρ0∆D

ω −D

[
c†k1σ1

ck2σ2

{
δσ1σ2(

J2
z

4
+
J2
⊥
2

)

+ J2
⊥σ

z
σ1σ2

Szf + J⊥Jz(σ
−
σ1σ2

S+
f + σ+

σ1σ2
S−f )

}]
. (1.2.10)

Each component ∆V1 and ∆V2 corresponds to the process (a) and (b) in Fig. 1.3, respectively. ρ0

denotes the density of states at Fermi energy. The summation
∑′ means a restriction to −D+∆D ≤

ε(k) ≤ D −∆D. Then, we obtain

∆V = ∆V0 +
ρ0∆D

ω −D
1

2Ns

∑
k,k′,σ,σ′

c†kσck′σ′
{
−J2
⊥σ

z
σσ′S

z
f − J⊥Jz(σ−σσ′S

+
f + σ+

σσ′S
−
f )
}
. (1.2.11)
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Figure 1.3: Feynman diagrams which correspond to the effective interactions ∆V1 (Eq. (1.2.9))
and ∆V2 (Eq. (1.2.10)). The solid lines mean the trajectories of the conduction electrons with the
momentum k and the spin σ, and the broken lines mean those of the impurity. The time flows
from the left to the right of the diagram. In the intermediate states, the electrons belong to the
high-energy Hilbert space. Each diagram (a) and (b) expresses the process corresponding ∆V1 and
∆V2, respectively.

In Eq. (1.2.11), the second, third, and forth terms have the same form of the original interac-
tion (1.2.5), while ∆V0 denotes a spin-independent potential scattering. Hence, the change of the
exchange interaction is summarized into the following differential equations by taking ∆D → 0:

dJ⊥
dD

=− ρ0

ω −D
J⊥Jz, (1.2.12)

dJz
dD

=− ρ0

ω −D
J2
⊥, (1.2.13)

which is the renormalization group equations for the Kondo model. Particularly, when we set ω = 0
and J⊥ = Jz = J , the above equations are reduced to

dJ

dD
=
ρ0

D
J2, (1.2.14)

and the solution is
1

J
=

1

J0
− ρ0 log

D

D0
(1.2.15)

where we set the initial value J(D0) = J0. Thus, if the interaction is antiferromagnetic J0 < 0, the
effective interaction J grows as lowering the energy scale D, and finally diverges at D = TK with

TK = D0 exp
[ 1

ρ0J0

]
. (1.2.16)

The energy scale (1.2.16) is called the Kondo temperature. As inferred from the expression of TK ,
the Kondo effect is a nonperturbative effect in terms of the exchange coupling J0. This situation
is similar to that of the BCS theory of superconductivity. Although this perturbative calculation
cannot be applicable at D . TK , we can expect that the low-energy fixed point of the Kondo effect
is located at J = −∞ when the bare exchange coupling is antiferromagnetic J0 < 0.

2.3 Slave boson theory

The Kondo effect is essentially a many-body phenomenon. Thus the standard mean-field theory by
Hartree-Fock approximation cannot describe the Kondo effect and only gives rise to a shift of the
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impurity level. However, a useful viewpoint is obtained from a kind of mean field theory by focusing
on a more subtle saddle point. The mean-field description of the Kondo effect was developed by
Read, Newns [26], and Coleman [27, 28]. Let us consider a generalized version of the Anderson
model (SU(N) Anderson model):

H =
∑
k

N∑
σ=1

ε(k)c†kσckσ +
N∑
σ=1

εff
†
σfσ + U

∑
σ<σ′

nfσnfσ′ +
∑
k

N∑
σ=1

(V f †σckσ + h.c.). (1.2.17)

In the above model, we have generalized the number of spin components to N . The mean-field
theory starts from taking a strong correlation limit U →∞. In this case, the occupation number at
the impurity site is less than one, since the double occupancy is forbidden. Based on this property,
we can split the f -fermion operator by introducing a “slave boson” b, as

f †σ = f̃ †σb. (1.2.18)

The new fermion operator f̃σ satisfies the standard anticommuation relation. Furthermore, for the
slave boson and the new fermion, a constraint

b†b+
N∑
σ=1

f̃ †σf̃σ = 1. (1.2.19)

is imposed. One can check the left-hand side and the right-hand side of Eq. (1.2.18) give the same
matrix elements under the constraint. Intuitively, the slave-boson operator b† creates a “hole” at
the impurity site. By replacing the f -fermion with the composite object (1.2.18), we obtain

H =
∑
k

N∑
σ=1

ε(k)c†kσckσ +
N∑
σ=1

εf f̃
†
σf̃σ +

∑
k

N∑
σ=1

(V bf̃ †σckσ + h.c.). (1.2.20)

To proceed, let us express the partition function of the system using a path-integral formalism. The
partition function is

Z =

∫
DcDf̃DbDλe−S , (1.2.21)

where

S =

∫ β

0
dτ
∑
k

N∑
σ=1

c†kσ(∂τ − ε(k))ckσ +

N∑
σ=1

f̃ †σ(∂τ − εf )f̃σ + b†∂τ b

−
∑
k

N∑
σ=1

(V bf̃ †σckσ + h.c.)− λ(b†b+

N∑
σ=1

f̃ †σf̃σ − 1). (1.2.22)

τ is the imaginary time and β is the inverse temperature. In the path-integral representation, we
have introduced a bosonic field λ which stands for a Langrange multiplier of the constraint (1.2.19)
by using an identity

δ
(
b†b+

N∑
σ=1

f̃ †σf̃σ − 1
)

=

∫ ∞
−∞

dλ exp
[
−iλ(b†b+

N∑
σ=1

f̃ †σf̃σ − 1)
]

(1.2.23)
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with redefinition of λ by iλ. Next, we formally integrate out fermions and define an effective action
containing only bosons b, λ:

Z ≡
∫
DbDλe−Seff

=

∫
DbDλe−NS̃eff (1.2.24)

In the second line, we have extracted an overall factor N , since the action (1.2.22) is proportional to
N . Then, the partition function is evaluated by a saddle point of the effective action in the N →∞
limit. The saddle point is obtained by a condition

δSeff

δb(τ)
=

δSeff

δλ(τ)
= 0. (1.2.25)

Since Seff = − ln

∫
DcDf̃ e−S , the saddle-point condition can be rewritten as

δSeff

δb(τ)
=
〈 δS

δb(τ)

〉
= 0, (1.2.26)

δSeff

δλ(τ)
=
〈 δS

δλ(τ)

〉
= 0, (1.2.27)

where 〈· · · 〉 ≡
(∫
DcDf̃ [· · · ]e−S

)
/
(∫
DcDf̃ e−S

)
denotes an expectation value with fixed b and λ.

Hence, we obtain

−λb− V ∗
∑
k,σ

〈c†kσ(τ)f̃σ(τ)〉 = 0, (1.2.28)

b†b+
∑
σ

〈f̃ †σ(τ)f̃σ(τ)〉 − 1 = 0. (1.2.29)

We note that the expectation values are evaluated by a Hamiltonian

HMF =
∑
k

N∑
σ=1

ε(k)c†kσckσ +

N∑
σ=1

ε̃f f̃
†
σf̃σ +

∑
k

N∑
σ=1

(Ṽ f̃ †σckσ + h.c.), (1.2.30)

where Ṽ ≡ bV, ε̃f ≡ εf + λ are c-numbers, not operators. Notably, Eq. (1.2.30) is equivalent to the
Anderson model (1.2.17) with U = 0. Thus the saddle-point condition is nothing but a mean field
theory by replacing the slave boson and the Lagrange multiplier with their expectation values. The
mean values of b, λ effectively renormalize the hybridization strength and the f -level energy. Thus,
the slave boson theory describes the local Fermi liquid, which is the low-temperature state of the
Kondo effect.

2.4 Kondo lattice

In the Kondo effect discussed so far, the f -electron is assumed to be a single impurity. In materials
composed of rare-earth elements, or rare-earth alloys, the f -orbitals are periodically aligned. In this
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case the f -electrons are no longer impurities but participate in the band structure of the system.
This situation is described by a model

H =
∑
k,σ

ε(k)c†kσckσ +
∑
j,σ

εff
†
jσfjσ + U

∑
j

nfj↑nfj↓ +
∑
j,σ

(V f †jσcjσ + h.c.), (1.2.31)

which is a gereralization of the impurity model (1.2.1) and called periodic Anderson (or Anderson
lattice) model. At low energies, the model (1.2.31) is reduced to Kondo lattice model

H =
∑
k,σ

ε(k)c†kσckσ − J
∑
j

Scj · Sfj (1.2.32)

using the Schrieffer-Wolff transformation. In the Anderson (or Kondo) lattice systems, the Kondo
effect takes place at every lattice site (Fig. 1.4). The periodically aligned Kondo singlets form
a coherent band structure, and the effective mass of electrons is highly renormalized due to the
strong correlation. The enhancement factor of the effective mass m∗/m0 is typically from 100 to
1000. Thus these systems are often called “heavy fermion” systems.

Let us illustrate the physics of the Kondo lattice using the slave boson theory. By taking U →∞
limit in Eq. (1.2.31), we can introduce the slave boson in a similar way of the impurity case, as

f †jσ = f̃ †jσbj (1.2.33)

with a constraint b†jbj +
∑

σ f
†
jσfjσ = 1 at every lattice site. The mean-field Hamiltonian is

H =
∑
k,σ

ε(k)c†kσckσ +
∑
j,σ

ε̃f f̃
†
jσf̃jσ +

∑
j,σ

(Ṽ f̃ †jσcjσ + h.c.), (1.2.34)

with Ṽ ≡ bV and ε̃f ≡ εf +λ where spatially uniform expectation values of b and λ are assumed. By
diagonalizing the mean-field Hamiltonian (1.2.34), we obtain quasi-particle band structures under
the Kondo effect as

ε±(k) =
ε(k)− ε̃f ±

√
(ε(k)− ε̃f )2 + 4|Ṽ |2

2
. (1.2.35)

Each quasi-particle band is doubly degenerate due to the spin degrees of freedom. The band
structure is illustrated in Fig. 1.5. The broad conduction-electron band admixes with the flat f -
electron band and thereby realizes a hybridized band with nearly-flat dispersion near the Fermi
energy. The band dispersion is strongly renormalized from the U = 0 model due to the expectation
value of the slave boson, and thus the effective mass near the Fermi energy is largely enhanced
realizing the heavy fermion state. Reflecting the emergence of Kondo effect with b 6= 0, there is a
Kondo gap between the upper and lower bands. The value of the Kondo gap is mostly determined
by the renormalized hybridization Ṽ , whose strength signifies the Kondo temperature.

An important difference between the impurity Kondo effect and the Kondo lattice is that there
is an effective magnetic interaction between the f -electrons mediated by the conduction electrons,
known as Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [29, 30, 31]. This interaction tends
to cause magnetic order of localized spins. Since the RKKY interaction scales as J2 while the Kondo
temperature scales as exp[1/ρ0J ], in the small J region the RKKY interaction dominates leading
to magnetic order, and in the large J region the Kondo effect manifests itself with a nonmagnetic
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Figure 1.4: Schematic picture of the Kondo lattice model. The conduction electrons (red balls in
the figure) interact with the periodically aligned localized spins of f -electrons (blue balls in the
figure) with an antiferromagnetic coupling J . In this case, the Kondo singlet is formed at every
lattice site, and thereby the heavy-fermion state is formed.

Figure 1.5: Typical band structure of the Anderson (Kondo) lattice model at low temperatures.
The solid lines illustrate the hybridized band structures expressed by Eq. (1.2.35). For comparison,
we also illustrate the energy band of the conduction electrons ε(k) and the energy level (or the flat
band) of the f -electrons εf using the broken lines.
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Figure 1.6: Doniach phase diagram of the Kondo lattice systems. the horizontal axis is the an-
tiferromagnetic Kondo coupling J < 0 and the vertical axis is the temperature T . The shaded
region indicates the appearance of magnetic order due to the RKKY interaction. When the Kondo
temperature (the broken line) becomes comparable to the transition temperature of the magnetic
order with increasing −J , the Kondo effect starts to manifest itself, and the magnetic order vanishes
at some critical J .

Fermi-liquid state. Thus, in the phase diagram of the Kondo lattice system, the magnetic order and
the Fermi liquid phase are separated by a quantum critical point as illustrated in Fig. 1.6, which is
referred to as the Doniach phase diagram [32]. Near the quantum critical point, non-Fermi liquid
behavior is often observed and various superconducting states appear. The competition between
the RKKY magnetism and the Kondo effect in the Kondo lattice thus provides one of paradigmatic
examples of strongly correlated electrons.

3 Topological phase

3.1 Concept of topological phases: classification of gapped ground states

The concept of topological phases arises from a classification of ground states of quantum many-
body systems with finite energy gaps in a thermodynamic limit. The concepts of “phase” and
“phase transition” are usually understood using the notion of spontaneous symmetry breaking [33].
However, quantum many-body systems can realize numerous distinct phases if the ground states
share the same symmetries. Topological phases are such an example.

Let us consider a quantum many-body system described by a Hamiltonian composed of local
interactions. We assume that the ground state of the Hamiltonian has a finite excitation gap in
the thermodynamic limit. First, we do not assume any symmetry of the Hamiltonian. Then, the
ground states are divided into two distinct classes:

(1a) Those which can be adiabatically deformed into a site-product state with a continuous
path of Hamiltonian

(1b) Those which cannot be connected to site-product states using any continuous path of
Hamiltonian without closing the excitation gap
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The latter is called to have a topological order (or called a long-range entangled phase) [34].
Examples of topologically ordered phases are fractional quantum Hall (FQH) states [35, 36], chiral
spin liquid [37], Z2 quantum spin liquid [38], and Kitaev’s toric code [39], etc. Topologically ordered
phases have some exotic properties. For example, although gapped ground states are generically
insensitive to local perturbations, the ground states of topologically ordered phases can capture
a global structure of the space where it resides, and has nontrivial degeneracy depending on the
topological structure (such as genus) of the space [34, 40]. This degeneracy is called as topological
ground-state degeneracy. Topological ground-state degeneracy is reflected in nontrivial contribution
to entanglement entropy which is known as topological entanglement entropy [41, 42]. Moreover,
topologically ordered phases possess excitations with fractionalized quantum numbers [43, 36]. The
fractionalized excitations often have exotic quantum statistics which are different from ordinary
bosons and fermions, referred to as (Abelian, or non-Abelian) anyons [43, 44]. The non-Abelian
anyons can be used to universal quantum computation robust against local perturabations and
decoherence [45, 46]. It is also known that the topological ground-state degeneracy is a necessary
condition of the existence of fractionalized excitations [47]. Other than the bulk fractionalized ex-
citations, topologically ordered phases often have gapless excitations if the system has edges with
open boundaries [48]. These gapless edge excitations are protected by the bulk topological order,
and hence are stable against small perturbations such as impurity.

In the above definition of topologically ordered phases, we have not assumed any symmetry of
the system and have not imposed any condition for the deformation path of Hamiltonian. However,
when we consider symmetries in the system, the concept of topological phases is much enriched. If
the system has some symmetries, the ground states have two possibilities:

(2a) The ground state breaks the symmetries of the Hamiltonian
(2b) The ground state preserves the symmetries.

The case (2a) is a standard ordered phase characterized by local order parameters. In the case
(2b), the ground state may or may not have topological order. However, if the system has symme-
tries, we must restrict the deformation paths of Hamiltonian to those which respect the symmetries.
Hence, in this case, even if the ground states do not have topological order, the class of ground
states is divided into finer subclasses which cannot be connected with each other. The ground
states of this kind are called symmetry-protected topological (SPT) phases [49, 50]. Namely,
SPT phases are characterized by gapped ground states which do not have topological order but
cannot be connected to site-product states without breaking the symmetry or closing the energy
gap. Although SPT phases possess neither topological ground-state degeneracy nor fractionalized
excitations, they have gapless edge excitations unless the edge breaks the symmetries. Examples of
SPT phases include topological insulators [51, 52, 53, 54], Haldane phase in spin-1 chains [55, 56],
and so on. We note that under the symmetries, the trivial product states are not necessarily the
same phase. Such distinct product states are, for example, distinguished by their symmetry eigen-
values. We consider such a case in Chap. 3. More nontrivial examples are discussed in literature
[57].

Topologically ordered phases are also divided into finer subclasses when we impose symmetries.
Such distinct classes are called symmetry-enriched topological (SET) phases [49, 58, 59]. We
summarize the above classification in Fig. 1.7.
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Figure 1.7: Classification of ground states with an energy gap. (a) The case where we do not
assume any symmetry of the Hamiltonian and its deformation path. (b) The case where we assume
some symmetry of the Hamiltonian and its deformation path. If the ground state breaks the
symmetry of the Hamiltonian (which corresponds to the conventional Landau-Ginzburg-type order),
the symmetry considered in the right panel is the unbroken symmetry which is retained by the
ground state.

3.2 Topological order and fractional quantum Hall effect

In the rest of this section, we explain some examples of topological phases which will be discussed
in the later chapters of this thesis. The first example, which is the first topological phase of
matter discovered by experiments, is the quantum Hall effect [60, 35]. Electrons can be confined
in two-dimensional space at interfaces of semiconductors. The two-dimensional electrons show
some plateaus in the Hall conductivity as a function of a magnetic field perpendicular to the two-
dimensional plane. At the plateaus, the Hall conductivity is quantized at ν e

2

h , where ν is some
rational values. When ν is integer (fractional), this phenomenon is called the integer (fractional)
quantum Hall effect. In the quantum Hall states, the longitudinal conductivity vanishes, implying
that gapped ground states are realized at the plateaus.

Let us explain the topological order behind the FQH states using a composite-particle picture
[61, 62, 63, 64]. We consider interacting electrons in two dimensions under a uniform magnetic field:

H =

∫
d2rψ†(r)

[p− eA(r)]2

2M
ψ(r) +

1

2

∫
d2rd2r′ψ†(r)ψ†(r′)V (r − r′)ψ(r′)ψ(r). (1.3.1)

Here ψ(r) is the fermion field operator, A = (Bx, 0) is the gauge field, and V (r−r′) is the Coulomb
interaction. We have neglected the spin degrees of freedom. Under the magnetic field, the electrons
form Landau levels. We consider the case of ν = 1/q filling of the lowest Landau level, where q is
an odd integer. Next, we introduce a composite boson operator

φ(r) ≡ e−iq
∫
d2r′Θ(r−r′)ρ(r)ψ(r). (1.3.2)

Here Θ(r − r′) = tan−1 y′−y
x′−x is an angle between the two coordinates, and ρ(r) = ψ†(r)ψ(r) is

the electron density. The composite operator satisfies the commutation relations [φ(r), φ†(r′)] =
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δ(r − r′), [φ(r), φ(r′)] = 0, and thus can be regarded as a bosonic field. Physically, the operator
(1.3.2) describes a composite object of the electron and q flux quanta. Since a flux quantum leads to
π Aharonov-Bohm phase, attaching q flux quanta to the electrons changes their quantum statistics
from fermions to bosons. Inserting Eq. (1.3.2) into the Hamiltonian (1.3.1), we obtain

H =

∫
d2rφ†(r)

[p− eA(r)− ea(r)]2

2M
φ(r) +

1

2

∫
d2rd2r′φ†(r)φ†(r′)V (r − r′)φ(r′)φ(r). (1.3.3)

Here we have defined the Chern-Simons gauge field

a(r) ≡ q

e

∫
d2r′∇Θ(r − r′)ρ(r′), (1.3.4)

which satisfies

(∇× a)z =
2πq

e
ρ(r). (1.3.5)

Eq. (1.3.5) means that the Chern-Simons gauge field is accompanied by the electron density, cor-
responding to the flux attachment. At this stage, let us move to the path-integral representation.
The constraint (1.3.5) can be imposed using∏

r,t

δ(εij∂iaj −
2πq

e
ρ) =

∫
Da0 exp

[
i

∫
d2rdta0(

νe2

2π
εij∂iaj − eρ)

]
. (1.3.6)

Then, the Lagrangian density is written in a gauge-invariant form as

L =L0 + LCS, (1.3.7)

L0 =φ∗(i∂t − eA0 − ea0)φ− φ∗(p− eA− ea)2φ

−
∫
d2r′V (r − r′)|φ(r)|2|φ(r′)|2, (1.3.8)

LCS =
νe2

4π
εµνλaµ∂νaλ. (1.3.9)

Let us evaluate the partition function

Z =

∫
DφDaei

∫
d2rdtL (1.3.10)

by its saddle point value. The saddle-point condition for the Chern-Simons gauge field is reduced to
Eq. (1.3.5). Thus, this saddle-point solution cancels with the magnetic field from A. Then, in the
Lagrangian (1.3.8), the boson field φ does not feel any magnetic field in average. Thus, the saddle
point condition for the boson field φ is expected to be the Bose condensation of the bosons. In fact,
this saddle point solution describes the FQH effect. To see the electromagnetic response for the
above mean-field solution, let us couple the system to a probe gauge field Aµ. The electromagnetic
response is deduced from an effective action for Aµ derived by integrating out the matter field φ and
the Chern-Simons field aµ. After some calculations, the effective action leads to the Chern-Simons
theory described by the Lagrangian

Leff =
νe2

4π
εµνλAµ∂νAλ (1.3.11)
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at long wavelength. Since the electric current density is written as jµ = δSeff
δAµ

, the Chern-Simons

theory (1.3.11) leads to the fractionally quantized Hall conductivity

σxy = ν
e2

h
. (1.3.12)

Thus, we find that the Chern-Simons theory (1.3.11) describes the FQH effect. The Chern-Simons
theory is known as a celebrated example of topological field theory [65]. In general, the low-energy
effective theory of topological phases are believed to be described by some topological field theory.
In fact, the basic properties of topological order in the FQH states can be extracted from the
effective Chern-Simons theory. For example, the topological ground-state degeneracy is derived by
considering the Chern-Simons theory on a torus [40]. The fractionalized excitation corresponds
to a vortex in the composite-boson condensate, since one flux quantum is accompanied by e/q
charge due to the constraint (1.3.5) [64]. The gapless edge excitation can be also derived from the
Chern-Simons theory [66].

3.3 One-dimensional SPT phase and Haldane phase

Next, we explain several examples of SPT phases. Let us consider the antiferromagnetic Heisenberg
model in one dimension:

H = J
∑
j

Sj · Sj+1, (1.3.13)

(Sj)
2 = S(S + 1), S =

1

2
, 1,

3

2
, 2, · · · , (1.3.14)

where J > 0. In 1983, Haldane [55, 56] proposed a surprising “conjecture” about the ground-state
properties of the model, based on argument of a topological term in effective nonlinear sigma model
description. For half-odd-integer S = 1/2, 3/2, · · · , the ground state of the model (1.3.13) is a
gapless state without long-range magnetic order. However, for integer S = 1, 2, · · · , the ground
state of the model has an energy gap, in sharp contrast with the half-odd-integer case. Also, the
ground state is non-degenerate. That is, there is neither magnetic order nor symmetry breaking.
The gapped ground state is now called the Haldane phase. Naively, a non-degenerate ground state
may be a “boring” trivial state composed of site-product states like |GS〉 = |Sz = 0〉⊗|Sz = 0〉⊗· · · .
To check the non-triviality of the Haldane phase, let us add a single-ion anisotropy to the S = 1
Heisenberg model:

H = J
∑
j

Sj · Sj+1 +D
∑
j

(Szj )2, (1.3.15)

whose ground state at D → ∞ is a trivial gapped state |Sz = 0〉 ⊗ |Sz = 0〉 ⊗ · · · . By examining
the evolution of ground states for the change of D/J , one can find that there is a quantum phase
transition between the Haldane phase and the large-D phase despite of absence of symmetry breaking
[67] (Fig. 1.8). Thus, it is implied that the S = 1 Haldane phase is a nontrivial gapped ground
state which is essentially different from the site-product state. A physical picture of the Haldane
phase was provided by Affleck, Kennedy, Lieb, and Tasaki (AKLT) [68, 69]. They considered a
Hamiltonian modified from the S = 1 Heisenberg model by adding a biquadratic term with a
specific coefficient:

HAKLT = J
∑
j

[
Sj · Sj+1 +

1

3
(Sj · Sj+1)2

]
. (1.3.16)
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Figure 1.8: Evolution of energy gaps of the model (1.3.15) as a function of the single-ion anisotropy
D/J in the unit of the Heisenberg interaction. The energy gap of the Haldane phase gradually
shrinks as we increase D/J , and finally the system exhibits a quantum phase transition into a
large-D phase.

Figure 1.9: Illustration of the AKLT state for spin-1 chains. Each red ball expresses a spin-1/2
degrees of freedom. The solid line indicates a singlet state between neighboring spins. The solid
circle denotes a symmetrization operation of the wavefunction for recovering the state expressed in
terms of the original spin-1 degrees of freedom.

The ground state of Eq. (1.3.16) is exactly obtained and is called AKLT state. The AKLT state
is illustrated in Fig. 1.9. The spin-1 degree of freedom is first decomposed into two spin 1/2.
Then, each spin-1/2 degree of freedom is entangled into a spin-singlet state with a partner at the
neighboring site. Finally, by symmetrizing the wavefunction in terms of the two spin-1/2 at the
same site, we obtain a ground state expressed in the original spin-1 degrees of freedom. This state
is the AKLT state, which is also called a valence-bond-solid state. The AKLT state does not break
any symmetry of the system. One can readily see that the AKLT state has a spin-1/2 degrees of
freedom at the edge of the system. As mentioned in Sec. 3.1, these edge states are the hallmark of
the SPT phase.

If the S = 1 Haldane phase is a nontrivial SPT phase, what are the relevant symmetries which
protect it from trivial product states? The mechanism of symmetry protection of bosonic SPT
phases in one dimension can be universally described using matrix product states (MPS) [70, 71,
72, 73]. A generic 1D ground state can be described by MPS in a canonical form as

|ψ〉 =
∑
{in}

Tr[Γi1ΛΓi2Λ · · ·ΓiL ] |i1, i2, · · · , iL〉 (1.3.17)

where we denote the number of sites as L. For simplicity, here we assume the periodic boundary
condition and translational invariance. {|i1, i2, · · · , iL〉 = |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iL〉}i1,i2,··· ,iL are the
basis of the Hilbert space of the system. Γi and Λ are χ× χ matrices satisfying

∑
i(Γi)

†Λ2Γi = 1.
The elements of the diagonal matrix (Λ)αβ = λαδαβ give entanglement spectra εα = −2 lnλα for a
cut of the infinite chain into two pieces. A gapped ground state can be represented by MPS (1.3.17)
with finite χ = O(1) which does not diverge as increasing the system size L.

21



If two MPS data (Γi,Λ) and (Γ′i,Λ
′) give the same gapped ground state (up to the U(1) phase

ambiguity), they satisfy

Γ′i =eiϑU †ΓiU, (1.3.18)

Λ′ =U †ΛU (1.3.19)

for a unitary matrix U and a phase factor θ ∈ R [71, 74, 75]. The unitary matrix U is unique up
to its U(1) phase. One can easily check that the right hand sides of Eqs. (1.3.18) and (1.3.19) give
the original state up to a U(1) phase eiLϑ. Let us consider a symmetry operation denoted by g and
assume that the on-site basis transforms as |i〉 →

∑
j(τg)ji |j〉. Since∑

{in},{jn}

Tr[Γi1Λ · · ·ΓiL ](τg)j1i1 · · · (τg)jLiL |j1, · · · , jL〉

=
∑
{jn}

Tr[(
∑
i1

(τg)j1i1Γi1)Λ · · · (
∑
iL

(τg)jLiLΓiL)] |j1, · · · .jL〉 , (1.3.20)

the MPS data transform as Γi →
∑

j(τg)ijΓj and Λ→ Λ. Thus, if the state is invariant under the
symmetry operation, we find ∑

j

(τg)ijΓj = eiϑgU †gΓiUg, (1.3.21)

Λ = U †gΛUg, (1.3.22)

from Eqs. (1.3.18) and (1.3.19).
The symmetry protection of the Haldane phase can be proven by using the above properties

of MPS [76, 77]. Let us consider the following three symmetry operations: the time-reversal (T ),
bond-centered inversion (I), and the spin dihedral symmetry composed of spin π rotation around
each axis (Rx, Ry, Rz). Under those symmetries, the MPS data satisfy the following properties. For
time reversal, ∑

j

(τT )ij(Γj)
∗ = eiϑTU †TΓiUT , (1.3.23)

Λ = U †TΛUT . (1.3.24)

For spatial inversion,

(Γi)
T = eiϑIU †IΓiUI , (1.3.25)

Λ = U †IΛUI . (1.3.26)

For the spin π rotation around the α = x, y, z axis,∑
j

(τα)ijΓj = eiϑαU †αΓiUα, (1.3.27)

Λ = U †αΛUα. (1.3.28)
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UT , UI , Uα are unitary matrices, and ϑT , ϑI , ϑα are phase factors. Furthermore, the unitary matrices
satisfy

t(UT ) = e−iϕTUT , (1.3.29)
t(UI) = e−iϕIUI , (1.3.30)

UxUz = eiϕxzUzUx, (1.3.31)

where ϕT , ϕI , ϕxz ∈ R and tA means the transpose of the matrix. The above equations readily
lead to quantization of ϕT , ϕI , ϕxz to 0 or π. Since the discrete phase factors cannot be changed
unless the symmetries are broken or the energy gap collapses, ground states which have different
phase factors are necessarily separated by quantum phase transitions. The quantized values of
ϕT , ϕI , ϕxz thus provide the characterization of the SPT phase. For the Haldane phase, we can
calculate the phase factors using the AKLT state. The MPS representation of the AKLT state
is given by Γi = σi (i = x, y, z) when we choose the on-site basis as |x〉 = 1√

2
(|1〉 − |−1〉), |y〉 =

i√
2
(|1〉 + |−1〉), |z〉 = |0〉 (|−1〉 , |0〉 , |1〉 are the original spin-1 basis). A direct calculation leads to

ϕT = ϕI = ϕxz = π, while the trivial large-D state gives ϕT = ϕI = ϕxz = 0 [76, 77]. Hence, the
S = 1 Haldane phase is indeed a nontrivial SPT phase and is stable if either of the time-reversal,
bond-centered inversion, or spin dihedral symmetries is present.

In contrast, the phase factors1 ϑI , ϑα mean the eigenvalues of the ground state under symmetry
operations, since the symmetry operation maps the ground state |ψ〉 into eiLϑα |ψ〉 (α = I, x, y, z).
These phase factors are also quantized to 0 or π due to the property I2 = R2

x = R2
y = R2

z = 1.
Although the quantization can distinguish quantum phases which have different symmetry eigenval-
ues, this property does not lead to SPT phases. In this case, the quantization of ϑI , ϑx,y,z diagnoses
the distinction between trivial phases. Under certain point-group symmetry, quantization of a
combination of ϑα and ϕα can also lead to distinct trivial phases [57].

In general, if the system possesses an on-site symmetry of a group G, the MPS data satisfy
Eqs. (1.3.21) and (1.3.22). By performing successive symmetry operations associated with group
elements g1, g2 ∈ G, we obtain

Ug1Ug2 = eiϕ(g1,g2)Ug1g2 , (1.3.32)

since the matrix Ug is defined up to a U(1) phase. This fact means that the unitary matrix Ug obeys
a projective representation of the group G. If Ug obeys a nontrivial projective representation, the
ground state belongs to a SPT phase [72, 73]. We note that one-dimensional representations of Ug
always give a trivial projective representation. Thus, it is necessary that the dimension of matrix
Ug, or that of Γ and Λ, is larger than one, indicating that there is entanglement between neighboring
sites. The off-site entanglement cannot be removed if the ground state belongs to a nontrivial SPT
phase. Finally, we note that the phase factor ϕ(g1, g2) satisfies the following properties (see also
[78]). Since

Ug1Ug2Ug3 = eiϕ(g2,g3)Ug1Ug2g3

= eiϕ(g2,g3)+iϕ(g1,g2g3)Ug1Ug2Ug3 (1.3.33)

and

Ug1Ug2Ug3 = eiϕ(g1,g2)Ug1g2Ug3

= eiϕ(g1,g2)+iϕ(g1g2,g3)Ug1Ug2Ug3 , (1.3.34)

1ϑT is actually not well-defined since it depends on the choice of the U(1) phase of the ground state.
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we obtain
ϕ(g2, g3)− ϕ(g1g2, g3) + ϕ(g1, g2g3)− ϕ(g1, g2) = 0. (1.3.35)

Eq. (1.3.35) is called the cocycle condition. On the other hand, since the unitary matrix Ug has the
U(1) phase ambiguity in its definition, we can use

Ũg = eiβ(g)Ug (1.3.36)

instead of Ug. Then, the phase factor ϕ(g1, g2) is changed into

ϕ̃(g1, g2) = ϕ(g1, g2) + [β(g2)− β(g1g2) + β(g1)]. (1.3.37)

Thus, two phase functions ϕ and ϕ̃ defined on G×G describe the same projective representation.
The three terms in the bracket [· · · ] in Eq. (1.3.37) is called 2-coboundary. Thus, a set of differ-
ent projective representations is equivalent to the equivalent class of the phase functions ϕ(g1, g2)
satisfying the cocycle condition (1.3.35), which is quotiented with the equivalence relation (1.3.37).
This equivalent class is denoted by H2(G,U(1)), which is called the second group cohomology of
G over U(1). Thus, 1D bosonic SPT phases protected by the on-site symmetry G are classified by
the cohomology group H2(G,U(1)) [72, 73]. In general, it was proposed that bosonic SPT phases
protected by an on-site symmetry G in spatial dimension d are classified by the (d+ 1)-th group co-
homology class Hd+1(G,U(1)) [49, 79]. However, it was later found that there are some exceptional
SPT phases which do not fit into the group cohomology classification [80, 81]. It has been proposed
that more accurate classification is given by cobordism theory [82, 83] based on low-energy effective
description of SPT phases using topological field theory. We note that in dimensions one or two,
which we will consider in the later chapters of this thesis, there is no difference between the group
cohomology classification and the cobordism classification.

To be precise, this description using MPS is applicable to bosonic (spin) systems. A fermionic
version of MPS was also recently developed [84, 85].

3.4 Two-dimensional SPT phase and bosonic integer quantum Hall effect

As an example of bosonic SPT phases in two dimensions, we explain the bosonic integer quantum
Hall (BIQH) effect, which was proposed by Senthil and Levin [86]. We consider two-component
bosons with charge Q = 1 in a uniform magnetic field (Fig. 1.10) described by a Hamiltonian

H =
∑
α=1,2

∫
d2rΨ(α)†(r)

[p−A(r)]2

2M
Ψ(α)(r)

+
∑
α,β

1

2

∫
d2rd2r′Ψ(α)†(r)Ψ(β)†(r′)V (αβ)(r − r′)Ψ(β)(r′)Ψ(α)(r). (1.3.38)

Here Ψ(α)(r) (α = 1, 2) denotes the bosonic field operator for the α-th component. The filling factor
for each component is set to unity so that the total filling factor is given by ν = 1 + 1.

In the same spirit as Sec. 3.2, we consider composite bosons attached with the magnetic flux
piercing the system. Here, the flux coupled to the first component is attached to the second
component, and vice versa. Thus the composite operators due to the “mutual flux attachment” are
defined by

Ψ̃(1)(r) ≡e−i
∫
d2r′Θ(r−r′)ρ(2)(r′)Ψ(1)(r), (1.3.39)

Ψ̃(2)(r) ≡e−i
∫
d2r′Θ(r−r′)ρ(1)(r′)Ψ(2)(r). (1.3.40)
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Figure 1.10: Two-component bosons under a uniform magnetic field with the Hamiltonian (1.3.38).
Each sheet expresses the bosons in two-dimensional space.

The composite bosons satisfy ordinary commutation relations [Ψ̃(1)(r), Ψ̃(1)†(r′)] = [Ψ̃(2)(r), Ψ̃(2)†(r′)] =
δ(r−r′) within each component, but anticommute with the other component {Ψ̃(1)(r), Ψ̃(2)(r′)} = 0.
We also define the Chern-Simons gauge fields aα(r) (α = 1, 2) by

a1(r) ≡
∫
d2r′∇Θ(r − r′)ρ(2)(r′), (1.3.41)

a2(r) ≡
∫
d2r′∇Θ(r − r′)ρ(1)(r′), (1.3.42)

which satisfy

(∇× a1)z =2πρ(2)(r), (1.3.43)

(∇× a2)z =2πρ(1)(r). (1.3.44)

By imposing the constraint (1.3.41) and (1.3.42) on the path integral using∫
Da1Da2

∏
r,t

δ(εij∂ia1j − 2πρ(2))δ(εij∂ia2j − 2πρ(1))

=

∫
Da1Da2 exp

[
i

∫
d2rdt

{
a20(

1

2π
εij∂ia1j − ρ(2)) + a10(

1

2π
εij∂ia2j − ρ(1))

}]
, (1.3.45)

the Lagrangian density is written in a gauge-invariant form

L =
∑
α=1,2

Lα + Lint + LCS, (1.3.46)

Lα = Ψ̃(α)∗(i∂t −A0 − aα0)Ψ̃(α) − Ψ̃(α)∗(p−A− aα)2Ψ̃(α), (1.3.47)

Lint = −
∑
α,β

∫
d2r′V (αβ)(r − r′)|Ψ̃(α)(r)|2|Ψ̃(β)(r′)|2, (1.3.48)

LCS =
1

4π
εµνλ(a1µ∂νa2λ + a2µ∂νa1λ). (1.3.49)

At the mean-field level, the flux of Chern-Simons gauge fields effectively cancels the magnetic field
due to A. Thus, the mean-field solution is a Bose-Einstein condensate of the two-component bosons
Ψ̃(1) and Ψ̃(2). Let us examine the long-wavelength response to probe gauge fields A1µ (A2µ), which
couples to bosons in the first (second) component, respectively. The effective theory leads to the
Chern-Simons theory

Leff =
1

4π
εµνλ(A1µ∂νA2λ +A2µ∂νA1λ). (1.3.50)
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To gain some insights to the response described by Eq. (1.3.50), let us introduce linear combinations
of the gauge fields as Acµ = (A1µ+A2µ)/2 and Asµ = (A1µ−A2µ)/2. Then, Eq. (1.3.50) is rewritten
as

Leff =
1

2π
εµνλ(Acµ∂νAcλ −Asµ∂νAsλ). (1.3.51)

The above theory describes quantized Hall conductivity σcxy = +2Q
2

h2 and quantized spin Hall

conductivity σsxy = −2Q
2

h .
We can also derive an effective edge theory from the bulk Chern-Simons theory (1.3.50) [66].

The edge theory is

Ledge =
1

4π
(∂xφ1∂tφ2 + ∂xφ2∂tφ1 −

∑
I,J=1,2

vIJ∂xφI∂xφJ) (1.3.52)

where the Tomonaga-Luttinger bosons φ1, φ2 satisfy the Kac-Moody algebra

[∂xφ1(x), ∂x′φ1(x′)] = [∂xφ2(x), ∂x′φ2(x′)] = 0, (1.3.53)

[∂xφ1(x), ∂x′φ2(x′)] = 2πi∂xδ(x− x′), (1.3.54)

and v = {vIJ}I,J is a non-universal velocity matrix. The edge theory (1.3.52) describes counter-
propagating chiral modes (Fig. 1.11). One of the two chiral modes corresponds to a charge mode
which carries the charge +2. On the other hand, the other chiral mode is a charge-neutral mode
which carries a pseudospin quantum number if we regard the two components as the pseudospin.
By checking the stability of the edge modes, we can see the symmetry protection of the BIQH state
as a SPT phase [87]. Although the original system (1.3.38) possesses the U(1) × U(1) symmetry
associated with the charge conservation in each component, here we only assume the U(1) symmetry
for the total charge conservation. This symmetry is expressed in terms of the boson fields as

φ1 → φ1 + ϕ,

φ2 → φ2 + ϕ, ,

since the original bosons are expressed by bα ∝ eiφα . Thus, the only possible perturbation consistent
with the symmetry is

g cos[n(φ1 − φ2)] (1.3.55)

with n ∈ Z. However, the perturbation (1.3.55) cannot lock the boson fields at their potential
minimum, since

[∂x(φ1(x)− φ2(x)), ∂x′(φ1(x′)− φ2(x′)] = −4πi∂xδ(x− x′) 6= 0

and thus the field φ1 − φ2 cannot have a definite value over the entire space due to the uncertainty
principle. We therefore conclude that the edge theory (1.3.52) remains gapless unless we break
the charge U(1) symmetry. The stability of the gapless edge modes means that the BIQH state is
a SPT phase protected by the charge U(1) symmetry. Intuitively, the above stability of the edge
modes can be understood by the following picture; since one chiral mode carries the charge quantum
number Q = +2 while the other carries Q = 0, the backscattering between the two chiral modes
is forbidden by the charge conservation (Fig. 1.11). The absence of the backscattering implies that
the counterpropagating chiral modes are stable under the symmetry.
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Figure 1.11: Schematic picture of the edge of the BIQH state. The two-dimensional sample is sepa-
rated from the vacuum by a sharp boundary. At the boundary, two chiral modes counterpropagate
along the edge. In the figure, the chiral mode with charge Q = 2 propagates to left, and the other
chiral mode with Q = 0 propagates to right.

After the original proposal by Senthil and Levin [86] using the composite-boson mean field theory,
numerical exact diagonalization studies found that the BIQH state is indeed the ground state of
the Hamiltonian (1.3.38) with contact interactions V (αβ)(r − r′) = g(αβ)δ(r − r′) (g(αβ) > 0) when
the ratio g(12)/g(11) = g(12)/g(22) is close to unity [88, 89, 90]. Several lattice models to realize the
BIQH state have been also proposed [91, 92, 93, 94].

3.5 Fermionic SPT phase

So far, we have discussed the SPT phases mainly focusing on bosonic (or spin) systems. Since
free bosons condense into the one-particle ground state at zero temperature, SPT phases of bosons
naturally require interactions. However, the role of interaction on SPT phases is somewhat differ-
ent when we consider fermions. Thanks to Pauli’s exclusion principle, fermions can realize gapped
ground state even if they are non-interacting. Typical examples of such gapped ground states are
band insulators. By constraining the systems with symmetries, band insulators are classified into
different SPT phases, and the nontrivial ones are known as topological insulators [51, 52, 53, 54]. In
the same spirit, gapped ground states with conventional Landau-Ginzburg-type order can be classi-
fied by their unbroken symmetries using mean-field Hamiltonians. In the case of superconductivity,
nontrivial SPT phases are called topological superconductors [95, 96]. The topological insulators
and topological superconductors are classified under time-reversal, particle-hole, and chiral sym-
metries [97, 98, 99], and the classification was later extended to the case of crystalline symmetries
[100, 101, 102, 103, 104].

Naturally expected, interactions have dramatic effects on the fate of the free-fermion SPT phases.
When we allow interactions, a subset of nontrivial free-fermion SPT phases can be adiabatically
deformed into a trivial phase. In other words, classifications of free-fermion SPT phases, which are
given by Abelian groups such as Z and Z2, are reduced to their subgroup. Particularly, reductions
from Z to ZN have been found in various symmetry classes [105, 75, 106, 107, 108, 109, 110, 111, 112].

Let us illustrate the reduction of free-fermion classification of SPT phases by interactions, using
the first example of such reduction discovered by Fidkowski and Kitaev [105, 75]. We consider a
mean-field model of 1D topological superconductors with time-reversal symmetry (class BDI in the
classification table in Ref. [97, 99]). The quadratic Hamiltonian is

H0 = − t
2

N∑
j=1

(c†jcj+1 + c†jc
†
j+1 + h.c.) + u

N∑
j=1

c†jcj , (1.3.56)
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Figure 1.12: Schematic picture of the ground state of the Kitaev chain (1.3.56) with specific values
of parameters t, u. The fermion cj at each site is decomposed into two Majorana fermions aj and
bj . The Hamiltonian can be written by the bonding of two Majorana fermions as Eq. (1.3.61). The
bonding is expressed by the solid lines in the figure.

which was originally proposed by Kitaev [95]. Here t, u ≥ 0. The Hamiltonian is symmetric for
time reversal

T cjT −1 = cj , T c†jT
−1 = c†j , (with complex conjugation) (1.3.57)

and also has a fermion-parity symmetry

QH0Q
† = H0, Q = exp

[
iπ

N∑
j=1

c†jcj

]
. (1.3.58)

The latter symmetry means that the Hamiltonian preserves the parity of particle number. We
rewrite the Hamiltonian (1.3.56) by Majorana fermions

aj ≡ cj + c†j , (1.3.59)

bj ≡ −i(cj − c†j), (1.3.60)

as

H0 =
i

2

(
t

N∑
j=1

bj−1aj + u

N∑
j=1

ajbj

)
(1.3.61)

where we define b0 = 0. A schematic picture is illustrated in Fig. 1.12. The fermion cj at each
site j is divided into two Majorana fermions aj and bj . At t = 0, u = 1, the system is completely
site-decoupled and the ground state is the vacuum |vac〉 of fermions which satisfies cj |vac〉 = 0. On
the other hand, at t = 1, u = 0, the Hamiltonian can be written by new complex fermions

c̃j ≡
aj+1 + ibj

2
(j = 1, · · · , N − 1) (1.3.62)

as

H0(t = 1, u = 0) = −
N∑
j=1

c̃†j c̃j . (1.3.63)

Thus the ground state is |ψ〉 =
∏
j c̃
†
j |vac〉. In this case, two Majorana fermions a1, bN do not

appear in H0 and hence these modes give zero-energy states. In fact, the ground state of Eq.
(1.3.56) belongs to a topological phase in u < t and a trivial phase in u > t. At the critical point
u = t, the ground state is gapless.

Other topological phases in this class can be obtained by preparing some multiple copies of the
topological phase of the single chain. To check the stability of the Majorana zero modes of the
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multiple chains, let us restrict ourselves to the low-energy Hilbert space which is spanned by the
edge Majorana fermions [113]. We denote the edge Majorana fermion at the left edge of the n-th
wire as a(n). Then, the only possible quadratic Hamiltonian composed of a(n) and a(m) (n 6= m) is

Hedge = ia(n)a(m)

= 2(f †f − 1

2
). (1.3.64)

In the second line, we have introduced a complex fermion f ≡ (a(n) + ia(m))/2. The Hamiltonian
(1.3.64) has a non-degenerate ground state with no occupancy of the f -fermion. However, the
Hamiltonian (1.3.64) breaks the time-reversal symmetry (1.3.57). Thus, if the system has the
time-reversal symmetry, we cannot open an energy gap for the Majorana edge mode. As a result,
arbitrary n copies of Kitaev chains provides different topological phases with n Majorana modes at
one edge. The time-reversal invariant topological superconductors are therefore classified by integer
Z when we do not consider interactions.

However, if we allow interactions, the classification is reduced to its subgroup. To see this, let
us consider n copies of the Kitaev chains and examine the stability of the Majorana edge modes
against interactions. The case of n = 1 is trivial, since there only exists an isolated Majorana edge
mode at low energies. Similarly, we can easily see that the Majorana modes are stable when n is
odd, since not all Majorana modes can be paired. For n = 2, the only possible edge Hamiltonian is
(1.3.64) since Majorana fermions satisfy (a(n))2 = 1. Since (1.3.64) is forbidden by the time-reversal
symmetry, the Majorana edge modes are stable in this case. For n = 4, we can consider only one
nontrivial interaction

Hedge = a(1)a(2)a(3)a(4)

= 4(f †1f1 −
1

2
)(f †2f2 −

1

2
). (1.3.65)

In the second line, the complex fermions are defined by f1 ≡ (a(1)+ia(2))/2 and f2 ≡ (a(3)+ia(4))/2.

Since the ground state of the edge Hamiltonian is doubly degenerate, f †1 |vac〉 and f †2 |vac〉, we
conclude that the n = 4 system is still a nontrivial topological phase. The breakdown of topological
phases happens for n = 8. In this case, we can consider an edge Hamiltonian

Hedge = S1 · S2 (1.3.66)

where the spin operator

S1 ≡ (f †1 , f
†
2)σ

(
f1

f2

)
, S2 ≡ (f †3 , f

†
4)σ

(
f3

f4

)
(1.3.67)

is defined by four complex fermions f1, · · · , f4 composed of the eight Majorana edge modes. The
Hamiltonian (1.3.66) preserves the time-reversal symmetry. The ground state of Eq. (1.3.66) is a
singlet state, and hence non-degenerate. Thus we conclude that the eight copies of Kitaev chains
can be adiabatically connected to the trivial phase without edge Majorana zero modes. As a result,
the classification is reduced from Z to Z8.

We have shown an example of reduction of classification of non-interacting topological phases.
A natural question is whether there exists a SPT phase of fermions which cannot be deformed into
non-interacting cases. Several examples are discussed in literatures [114, 115, 116].
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4 Ultracold Atoms

4.1 Basics of ultracold atoms

Since the successful generation of Bose-Einstein condensates [117, 118, 119], ultracold atomic gases
have offered a versatile platform to study quantum many-body physics. The atoms are trapped in
vacuum using a magnetic or optical field and can be cooled down to ultralow temperatures using
laser-cooling techniques. Typically the number of particles is from 104 to 107 and the energy scales
are from an order of 100 nK to 10 µK. Although the interactions between atoms are originally a van
der Waals type and depend on atomic structures in a complicated manner, the low-energy scattering
properties are governed by only s-wave scattering. Thus the interactions can be effectively reduced
to a short-range contact interaction and described by one parameter, namely, the s-wave scattering
length as, regardless of the details of atomic structures.

One of the most important techniques in cold-atom experiments is optical lattice [120]. When
the atoms are irradiated by an off-resonant optical field, the atomic levels are effectively shifted due
to virtual absorption and emission of photons (AC Stark effect). The level shift can be regarded as
a potential for the atoms, written as

V (r) = −1

2
α(ω)|E(r)|2 (1.4.1)

where α(ω) is the AC polarizability and |E(r)|2 is the time-averaged value of the AC electric field
with frequency ω. When the optical field forms a standing wave |E(r)|2 = E2 cos2(k · r), the
potential (1.4.1) plays a role of periodic lattice. If the lattice potential is sufficiently deep, it is
appropriate to expand the Hamiltonian using the Wannier basis. Thus the atoms in optical lattice
are well described by the Hubbard model [121], which reads

HBH = −t
∑
〈i,j〉

(b†ibj + h.c.) +
U

2

∑
j

(nj − 1)2 (1.4.2)

for bosonic atoms and

HFH = −t
∑
〈i,j〉,σ

(c†iσcjσ + h.c.) + U
∑
j

nj↑nj↓ (1.4.3)

for fermionic atoms. The above models (1.4.2) and (1.4.3) are the most simplest setup for atoms in
optical lattice. By utilizing various atomic properties and atom-light coupling, we can realize more
complicated models which show intriguing physics. We will see several examples in the following
subsections.

4.2 Realization of topological phases in ultracold atoms

Thanks to the high controllability, ultracold atoms offer a versatile platform to investigate topolog-
ical phases. One of promising routes to realize topological phases is to couple the particles to some
gauge fields as in the case of the quantum Hall effect. However, since the atoms are electrically
neutral, applying magnetic fields only gives rise to the Zeeman shift of the atomic levels and there is
no contribution of the vector potential. An important technique to overcome the difficulty is called
synthetic gauge fields [122]. The particles under the gauge fields acquire the Aharonov-Bohm phase
along their motion. Thus, if some phases can be imprinted to the motion of atoms, the system
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effectively mimics the effect of gauge fields. Such synthesis of the gauge fields can be realized using
various methods. The first experiment which was reported by Lin et al. [123] utilized a spatially
varying Raman beam, by which the induced Berry phase was equivalent to the vector potential of
a uniform magnetic field. Consequently they observed vortex lattice formations in Bose-Einstein
condensates which were not subjected to optical lattice potentials. Using the same idea, synthetic
gauge fields corresponding to an electric field [124] and spin-orbit coupling [125] were realized. Af-
ter the above implementations for bosonic atoms, synthetic magnetic fields or spin-orbit couplings
for fermionic atoms have been also realized [126, 127]. However, there has been so far no report
of realization of the integer or fractional quantum Hall effect using ultracold atoms in continuum
space (i.e. without lattice potentials).

The synthetic gauge fields can be also implemented in optical lattice systems. Using Raman-
assisted hopping which imprints a U(1) phase, a lattice model with a uniform magnetic flux, called
the Harper-Hofstadter model, were realized [128, 129, 130]. The Harper-Hofstadter model hosts
topologically nontrivial band structures accompanied by nonvanishing Chern numbers, depending
on the magnitude of flux. If the Chen number is nonzero, the atoms loaded in the optical lattice
show a drift motion perpendicular to an applied gravitational potential, which corresponds to the
Hall effect in electron systems. By observing the drift motion of atomic clouds, the Chern number
of the topological band structure was measured in the Hofstadter model [131]. Another important
technique to simulate the effect of the gauge fields is lattice shaking. When the optical lattice is
modulated periodically in time and the modulation frequency is sufficiently high compared to the
bandwidth, the transfer integral is effectively modified by time averaging the modulation. Using
carefully tailor-made protocols for the lattice modulation, the transfer integral acquires a phase
factor and thus mimics the Peierls phase due to gauge fields [132, 133]. With a similar idea,
the Haldane model [51] accompanied by Chern insulating phases was realized in honeycomb optical
lattice and associated drift motions corresponding the nontrivial Chern number were observed [134].

Although the ultracold atoms are useful to realize various models with topological phases, ob-
servation of associated edge states involves some difficulties. Since the atoms are usually trapped by
harmonic confinement, the “edge” of the atomic cloud is not sharp and correspondingly a metallic
region is formed near the edge. Thus the edge states are admixed with the metallic region and
there is in general no clear signature of the edge states. There have been some proposals to avoid
the difficulty of the smooth edge. One idea is so-called “synthetic dimension” technique [135]. In
this technique, we regard the internal states of atoms as another “dimension” of the system. Since
there is no potential difference among the internal states, a sharp edge is realized for the synthetic
dimension. Furthermore, Raman transitions between the internal states are shown to be equiv-
alent to the flux piercing a plane spanned by the real axis and the synthetic dimension. Using
this technique, the edge states of the integer quantum Hall state have been observed [136, 137].
Another idea is to create interface between the topological phase and the trivial phase. Using an
amplitude-chirped optical lattice, an edge state associated with the Su-Schriffer-Heeger model have
been observed [138].

In addition to the realization of topological phases in equilibrium states, real-time manipulation
of optical lattice enables the realization of dynamical topological phenomena. By superimposing
two optical lattice with different wavelengths, the Rice-Mele model for topological pumping have
been realized [139, 140, 141]. We focus on this phenomenon in Chap. 4.

Finally, we remark that the aforementioned experiments mostly focused on topological phases
of non-interacting systems (i.e. topologically nontrivial band structures). Since interactions can
be easily introduced to atoms, it is expected that ultracold atoms also offer a platform to realize
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Figure 1.13: Typical energy diagram of AEA. The 1S0 is the electronic ground state. The 3P0 state
and the 3P2 state form metastable excited states with long lifetimes in a 10 second order. On the
other hand, the 3P1 state and the 1P1 state have short lifetimes.

interacting topological phases. In Chap. 3, we address this problem using the realization of Kondo
lattice systems in ultracold atoms.

4.3 Ultracold alkaline-earth atoms

Basic properties

The atomic species which is often used for cold-atom experiments is alkali metals, such as Rb, Li, and
K. However, the laser-cooling of alkaline-earth atoms, such as Ca and Sr, and rare-earth Yb atoms,
have also succeeded [142, 143, 144, 145, 146] (for reviews, see [147, 148]). These atoms have two
electrons in the most outer shell. Thus the electronic ground state is a spin-singlet state denoted
by 1S0. Here we have written the electronic state as SLJ using the orbital angular momentum
L = 0(S), 1(P ), 2(D), · · · , the spin quantum number S, and the total angular momentum J . The
low-lying excited states have L = 1, and the 3P0 state has the lowest energy (Fig. 1.13). Since the
1S0 and 3P0 states have the same total angular momentum J = 0, the optical dipole transition
between them is forbidden. When the hyperfine interaction with nuclear spins are taken into
account for fermionic isotopes, the optical transition is possible since the 3P0 state and the 1P1

state are hybridized. However, since the mixing of two states due to the hyperfine interaction are
quite small, the 3P0 state is long-lived and the lifetime reaches about 10 seconds. The long-lived
excited state and the optical transition with ultranarrow linewidth has versatile applications, such
as optical lattice clocks with the highest precision in the world [149]. In Chaps. 2 and 3, we utilize
the long-lived excited state for realizing the Kondo effect in ultracold atoms.

The alkaline-earth-like atoms (AEA) have yet another interesting property. The spin degrees of
freedom of AEA come from the nuclear spin I because the electrons form the J = 0 state. Since
the interactions between atoms are determined by the electronic states, the interactions and the
corresponding s-wave scattering lengths are independent of the spin degrees of freedom. Thus the
atom-atom interactions possess the SU(2I+1) symmetry which is enlarged from the ordinary SU(2)
symmetry [150, 151]. Thus ultracold AEA in optical lattice are a rare example of realization of the
SU(N) Hubbard model in nature.
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Experimental progress

Here we briefly review the experimental progress on ultracold AEA. The first achievement of laser
cooling of AEA down to quantum degeneracy was a generation of Bose-Einstein condensate using
Yb atoms [142]. For Yb atoms in optical lattice, a superfluid-Mott-insulator transition has been
demonstrated [152]. Also, using fermionic isotopes of Yb atoms, Fermi degeneracy [143, 153] and
a Mott insulating state [154] have been realized. As explained above, the fermionic isotopes of
AEA have the SU(N) symmetry in the interactions. The properties of SU(N) systems have been
investigated for the Mott insulators [154, 155] and one-dimensional Tomonaga-Luttigner liquid
states [156]. Since the 3P0 state has the total angular momentum J = 0, interactions between the
1S0 state and the 3P0 state are also SU(N) symmetric. This feature has been indeed confirmed
by experiments [157, 158]. Recently, a spin-orbit coupling using the two orbital degrees of freedom
have been realized [159].

Similar experiments for Sr atoms have been also performed. Bose-Einstein condensation for
bosonic isotopes [144, 145, 160, 161] and Fermi degeneracy for fermionic isotopes [162] have been
realized. Also, the SU(N) exchange interaction between the 1S0 state and the 3P0 state have been
measured [163].

For Ca atoms, a generation of Bose-Einstein condensate has succeeded [146]. However, there
has been no report on Fermi degeneracy using fermionic isotopes.

Finally we remark the Feshbach resonance for AEA. In cold-atom experiments, a technique
called Feshbach resonance [164] is often used to control the interactions (or the scattering lengths)
of atoms. However, since the AEA have the J = 0 ground state, one cannot use the ordinary
magnetic Feshbach resonance between the 1S0 state. However, optical Feshbach resonance [165] is
available and magnetic Feshbach resonance between the ground state and the 3P2 state [166, 167]
have been observed. Furthermore, based on a new mechanism called orbital Feshbach resonance
[168], resonance between the 1S0 state and the 3P0 state has been observed [169, 170].
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Chapter 2

Laser-Induced Kondo Effect in
Ultracold Alkaline-Earth Atoms

In this chapter, we demonstrate that laser irradiation to AEA in optical lattice can coherently induce
a novel Kondo effect. By utilizing the 1S0 and the 3P0 states explained in Sec. 4.3 in the previous
chapter, it is shown that the optically coupled two internal states are dynamically entangled to form
the Kondo-singlet state, overcoming the heating effect due to the irradiation. Furthermore, a lack
of SU(N) symmetry in the optical coupling provides a peculiar feature in the Kondo effect, which
results in spin-selective renormalization of effective masses. We also discuss effects of interorbital
exchange interactions, and show that they induce novel crossover or reentrant behavior of the Kondo
effect owing to control of the coupling anisotropy. This property is examined more deeply in the
next chapter.

1 Setup

We consider ultracold fermionic AEA in a three-dimensional optical lattice which consist of the 1S0

state and the 3P0 state. The fermionic annihilation operators of the 1S0 and 3P0 states at site i
are denoted as ciσ and fiσ respectively, and also as ckσ and fkσ for their Fourier transform. Here
σ = −I, · · · , I labels the z component of the nuclear spin. As we have explained in Sec. 4.1 in the
previous chapter, the atoms in each state in optical lattice can be described by the Hubbard model
(1.4.3). Thus the system is initially prepared with the Hamiltonian

H0 =
∑
k,σ

(εc(k)c†kσckσ + ε
(0)
f f †kσfkσ) + U

∑
i,σ<σ′

nfiσnfiσ′ (2.1.1)

with nfiσ = f †iσfiσ, where we denote the band dispersion of each orbital as εc(k) and ε
(0)
f . The

setup is illustrated in Fig. 2.1 (a). An important point is that the two internal states have different
polarizability to the light. Thus, the depths of the optical lattice potentials (1.4.1) can be changed
between the 1S0 state and the 3P0 state by choosing an appropriate wavelength of the laser. Here,
we implement an optical lattice in which the 3P0 state feels a deep potential while the 1S0 state
is confined weakly [150]. We assume that the 3P0 state is completely localized due to the strong
confinement and thus is dispersionless, experiencing strong on-site repulsion U > 0. For the moment,
we neglect other interatomic interactions. In the initial setup, we assume that the system is in

34



thermal equilibrium with temperature T0. The chemical potential for the 1S0 orbital is µ0, and the
immobile 3P0 state is assumed to be singly occupied at each site.

At this stage, let us apply a monochromatic laser at time t = 0 which induces the 1S0-3P0

transition allowed by the electric dipole coupling with the help of hyperfine interaction (see Sec. 4.3
in the previous chapter):

Hmix = θ(t)
∑
i,σ,σ′

(V · σσσ′eiK·Ri−iωtf †iσciσ′ + h.c.). (2.1.2)

Here we consider the simplest setup for the application of the laser, and θ(t) is the Heaviside step
function. After t = 0, the system evolves in time under the Hamiltonian H0 +Hmix. The coupling
coefficient in Hmix is calculated from matrix elements of −d · E, where d is the electric dipole
moment and E is the electric field of light. Using the Wigner-Eckart theorem [171], the matrix
elements of d are proportional to those of the nuclear spin operator σσσ′ , since there is no electronic
angular momentum.

Our central idea is that the Hamiltonian H = H0 +Hmix mimics the Anderson lattice model,
which has been introduced by Eq. (1.2.31). Here the hybridization term Hmix induces an effective
antiferromagnetic interaction between the orbitals. The space-time oscillation of the optical field
in Eq. (2.1.2) can be eliminated easily. After a gauge transformation fiσ(t) = eiK·Ri−iωtf ′iσ(t),
the optical coupling takes a stepwise form in time. Hence, in this setup the hybridization term is
suddenly turned on, and this corresponds to a “hybridization quench” problem of the Anderson

lattice model. The transformation involves the energy level shift in the 3P0-orbital: εf ≡ ε
(0)
f − ω

as depicted in Fig. 2.1 (b), which comes from the time-derivative term in the Lagrangian.

2 Slave boson theory

To analyze the Kondo effect arising from the Hamiltonian H, we employ the slave-boson mean-
field theory (Sec. 2.3 in the previous chapter) which becomes exact in N → ∞ limit (N = 2I + 1
is the number of spin components). As the first approximation, we take the strong-correlation
limit U → ∞ and neglect double occupancy of the 3P0 state. Next, we split the f operators into
f ′iσ = b†i f̃iσ by introducing a slave-boson operator bi, with a constraint

∑
σ f̃
†
iσf̃iσ + b†ibi = 1 at

each site. To impose the constraint, the Lagrange multiplier field λi is added to the Hamiltonian.
Although the slave boson theory is explained using the Matsubara formalism in the previous chapter,
here we use the real-time field theory referred to as Keldysh formalism [172], keeping the time-
dependence of the system explicitly. Our action in the slave-boson representation is

S =

∫
C

dt(L0 + Lmix),

L0 =
∑
k,σ

c†kσ(i∂t − εc(k))ckσ +
∑
i,σ

f̃ †iσ(i∂t − εf )f̃iσ +
∑
i

b†i i∂tbi −
∑
i

λi

(∑
σ

f̃ †iσf̃iσ + b†ibi − 1
)
,

Lmix = −
∑
i,σ,σ′

(V · σσσ′ f̃ †iσbiciσ′ + h.c.).

C = C+ ∪ C− denotes the Keldysh contour [172], which is the sum of two contours from t = 0
to t = ∞ and from t = ∞ to t = 0. We denote a field on the contour C+ and C− as ϕ+(t) and
ϕ−(t), respectively (ϕ = c, f̃ , b, λ). Thanks to the doubling of the fields, this field theory contains full
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information of real-time correlators of the system, especially the Green’s functions. For convenience,
we introduce the Keldysh rotation of each field: for bosons,(

χ1(t)
χ2(t)

)
≡ 1√

2

(
1 1
1 −1

)(
χ+(t)
χ−(t)

)
,

(
χ†1(t)

χ†2(t)

)
≡ 1√

2

(
1 1
1 −1

)(
χ†+(t)

χ†−(t)

)
and for fermions,(

ψ1(t)
ψ2(t)

)
≡ 1√

2

(
1 1
1 −1

)(
ψ+(t)
ψ−(t)

)
,

(
ψ†1(t)

ψ†2(t)

)
≡ 1√

2

(
1 −1
1 1

)(
ψ†+(t)

ψ†−(t)

)
,

where the convention of Ref. [172] is used. After the Keldysh rotation, the action turns into

S = Sc + Sf + Sb + Smix +
√

2
∑
i

λ2i,

Sc =

∫ ∞
0

dt
∑
k,σ

(c†1kσ, c
†
2kσ)

(
i∂t − εc(k) 0

0 i∂t − εc(k)

)(
c1kσ

c2kσ

)
,

Sf =

∫ ∞
0

dt
∑
i,σ

(f̃ †1iσ, f̃
†
2iσ)

(
i∂t − εf − λ1i/

√
2 −λ2i/

√
2

−λ2i/
√

2 i∂t − εf − λ1i/
√

2

)(
f̃1iσ

f̃2iσ

)
,

Sb =

∫ ∞
0

dt
∑
i

(b†1i, b
†
2i)

(
−λ2i/

√
2 i∂t − λ1i/

√
2

i∂t − λ1i/
√

2 −λ2i/
√

2

)(
b1i
b2i

)
,

Smix =

∫ ∞
0

dt
−1√

2

∑
i,σ,σ′

{
V · σσσ′ f̃ †1iσ(b1ic1iσ′ + b2ic2iσ′) + V · σσσ′ f̃ †2iσ(b2ic1iσ′ + b1ic2iσ′) + h.c.

}
.

The partition function is

Z =

∫
D[c, f̃ , b, λ]eiS

≡
∫
D[b, λ]eiSeff .

In the second line, we integrate out the fermions and define the effective bosonic action Seff . The
saddle-point condition of the path integral is obtained by

δSeff

δbαi(t)
=
〈 δS

δbαi(t)

〉
= 0,

δSeff

δλαi(t)
=
〈 δS

δλαi(t)

〉
= 0

with α = 1, 2, where 〈· · · 〉 is the expectation value with fixed bαi and λαi. These lead to

(i∂t −
λ1i√

2
)b2i(t)−

λ2i√
2
b1i(t)−

1√
2

∑
i,σ,σ′

(V · σσσ′)∗(〈c†1iσ′(t)f̃1iσ(t)〉+ 〈c†2iσ′(t)f̃2iσ(t)〉) = 0,

(i∂t −
λ1i√

2
)b1i(t)−

λ2i√
2
b2i(t)−

1√
2

∑
i,σ,σ′

(V · σσσ′)∗(〈c†2iσ′(t)f̃1iσ(t)〉+ 〈c†1iσ′(t)f̃2iσ(t)〉) = 0,

∑
σ

(〈f̃ †1iσ(t)f̃1iσ(t)〉+ 〈f̃ †2iσ(t)f̃2iσ(t)〉) + b†1i(t)b2i(t) + b†2i(t)b1i(t) = 0,∑
σ

(〈f̃ †1iσ(t)f̃2iσ(t)〉+ 〈f̃ †2iσ(t)f̃1iσ(t)〉) + b†1i(t)b1i(t) + b†2i(t)b2i(t)− 2 = 0.
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After the gauge transformation, the Hamiltonian at t > 0 is time-independent. Thus, instead of
solving the full time-dependent mean-field theory, we here focus on the steady state after a long time
and simply assume that the steady state is a thermal equilibrium state described by an effective
temperature T and a chemical potential µ. Since the external driving leads to heating of the system,
the temperature T and the chemical potential µ after the application of the laser are different from
T0 and µ0. The Kondo effect occurs below the Kondo temperature TK . If the effective temperature
T exceeds the Kondo temperature, the Kondo effect is washed out by the heating. To address the
effect of heating by the application of the laser, we evaluate T and µ using the energy conservation
law and the particle number conservation law, since the atoms are trapped in vacuum and well
isolated from the environment.

For simplicity, we set a homogeneous ansatz for the mean-field solution, neglecting the effect of
the trap potential to atoms. Then, the set of saddle-point conditions in the steady state can be
simplified as

λ1b2 + λ2b1 +
1

Ns

∑
k,σ,σ′

(V · σσσ′)∗(〈c†1kσ′(t)f̃1kσ(t)〉+ 〈c†2kσ′(t)f̃2kσ(t)〉) = 0, (2.2.1)

λ1b1 + λ2b2 +
1

Ns

∑
k,σ,σ′

(V · σσσ′)∗(〈c†2kσ′(t)f̃1kσ(t)〉+ 〈c†1kσ′(t)f̃2qσ(t)〉) = 0, (2.2.2)

1

Ns

∑
k,σ

(〈f̃ †1kσ(t)f̃1kσ(t)〉+ 〈f̃ †2kσ(t)f̃2kσ(t)〉) + b†1b2 + b†2b1 = 0, (2.2.3)

1

Ns

∑
k,σ

(〈f̃ †1kσ(t)f̃2kσ(t)〉+ 〈f̃ †2kσ(t)f̃1kσ(t)〉) + b†1b1 + b†2b2 − 2 = 0. (2.2.4)

We note that Eqs. (2.2.1) and (2.2.3) are identically satisfied when we set b2 = λ2 = 0 because of
the relation between the retarded and advanced Green’s function: GR(t, t) +GA(t, t) = 0 (See also
Ref. [173]). Hence, we arrive at the saddle-point conditions:

−λ1b1 −
∑
k,σ,σ′

(V · σσσ′)∗〈c†2kσ′(t)f̃1kσ(t)〉 = 0, (2.2.5)

∑
k,σ

〈f̃ †2kσ(t)f̃1kσ(t)〉+ b†1b1 − 2Ns = 0. (2.2.6)

Using the relation 〈c†2kσ′(t)f̃1kσ(t)〉 = iGKfc,kσσ′(t, t) and 〈f̃ †2kσ(t)f̃1kσ(t)〉 = 1 − iGKff,kσσ(t, t) =

2iG<ff,kσσ(t, t), the saddle-point conditions can be rewritten as

Ṽ (ε̃f − εf ) +
V 2

2Ns

∑
k,σ,σ′

(V̂ · σσσ′)∗iGKfc,kσσ′(t, t) = 0, (2.2.7)

1

Ns

∑
k,σ

iG<ff,kσσ(t, t)+
( Ṽ
V

)2
−1 = 0, (2.2.8)

where G<ff,kσσ(t, t′) = i〈f̃ †kσ(t)f̃kσ(t′)〉 and GKfc,kσσ′(t, t
′) = −i〈[f̃kσ(t), c†kσ′(t

′)]〉 are the lesser and
Keldysh components of Green’s function, respectively [172]. Ns denotes the number of sites. The
mean fields b and λ (here we have dropped the site indices) are incorporated in the renormalized
hybridization Ṽ ≡ V b1/

√
2Ns and the renormalized energy level ε̃f ≡ εf + λ1/

√
2Ns. These
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renormalization effects are the manifestation of the strong correlation arising from the Kondo effect.
We set V = |V |, Ṽ = |Ṽ | and V̂ = V /|V |.

We must determine the temperature T and the chemical potential µ at the steady state. Thus
the rest of self-consistent equations consists of the energy conservation and the particle number
conservation. These read∑

k,σ

(εc(k)〈c†kσckσ〉ini + εf 〈f †kσfkσ〉ini)

=
∑
k,σ

(εc(k)〈c†kσ(t)ckσ(t)〉+ ε̃f 〈f̃ †kσ(t)f̃kσ(t)〉) +
∑
k,σ,σ

(Ṽ · σσσ′〈f̃ †kσ(t)ckσ′(t)〉+ h.c.) +
∑
i

λi(|bi|2 − 1),

(2.2.9)

∑
k,σ

(〈c†kσckσ〉ini + 〈f †kσfkσ〉ini) =
∑
k,σ

(〈c†kσ(t)ckσ(t)〉+ 〈f †kσ(t)fkσ(t)〉), (2.2.10)

where 〈· · · 〉ini is the expectation value for the initial state, namely 〈c†kσckσ〉ini = f(εc(k)) and∑
k,σ〈f

†
kσfkσ〉ini = 1 (f(ε) is the Fermi distribution function).

To calculate the mean-field equations, we use the Green’s functions of the mean-field Hamilto-
nian. Here we assume that the laser has π-polarization V = (0, 0, V ). For the π-polarized laser, the
Green’s functions can be easily calculated. These reads

G<cc,kσσ(t, t′) = i〈c†kσ(t′)ckσ(t)〉

= i|ukσ|2f(εσ+(k))e−iεσ+(k)(t−t′) + i|vkσ|2f(εσ−(k))e−iεσ−(k)(t−t′)

G<ff,kσσ(t, t′) = i〈f̃ †kσ(t′)f̃kσ(t)〉

= i|vkσ|2f(εσ+(k))e−iεσ+(k)(t−t′) + i|ukσ|2f(εσ−(k))e−iεσ−(k)(t−t′),

G<fc,kσσ(t, t′) = i〈c†kσ(t′)f̃kσ(t)〉

= iukσv
∗
kσf(εσ+(k))e−iεσ+(k)(t−t′) − iukσv∗kσf(εσ−(k))e−iεσ−(k)(t−t′),

and

GKfc,kσσ(t, t′) = −iukσv∗kσ(1− 2f(εσ+(k)))e−iεσ+(k)(t−t′)

+ iukσv
∗
kσ(1− 2f(εσ−(k)))e−iεσ−(k)(t−t′),

where

ukσ =

√
1

2

(
1 +

εc(k)− ε̃f
Eσ(k)

)
, vkσ =

√
1

2

(
1−

εc(k)− ε̃f
Eσ(k)

)
,

εσ±(k) =
εc(k)− ε̃f ± Eσ(k)

2
,

Eσ(k) =

√
(εc(k)− ε̃f )2 + 4|σṼ |2.

In the equilibrium state, the saddle point conditions (2.2.7) and (2.2.8) have the same form as
that derived using standard Matsubara formalism [28, 174]. In the slave boson theory, the Kondo
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temperature TK is defined by the temperature where the slave boson starts to have a non-zero
expectation value in thermal equilibrium [175]. Thus the Kondo temperature is obtained by setting
b1 = 0 and T = TK in Eqs. (2.2.7) and (2.2.8). First, using Eq. (2.2.8), we obtain

ε̃f |T=TK = µ+ TK log(N − 1)

because of the condition Nf(ε̃f ) = 1. Substituting this into Eq. (2.2.5), and using the constant
density of states ρ(ε) = ρ0 = 1/(2D),−D ≤ ε ≤ D, we arrive at

TK = cN (D − µ)1/N (D + µ)1−1/N exp
[ εf − µ
ANρ0V 2

]
,

where

AN ≡
N(N2 − 1)

12
,

log cN ≡ −(N − 1)

∫ ∞
0

dx log x ·
{ ex

((N − 1)ex + 1)2
+

e−x

((N − 1)e−x + 1)2

}
.

3 Laser-induced Kondo effect

The self-consistent equations are solved numerically. In the numerical calculation, we assume that
the laser has π-polarization V = (0, 0, V ), and that the density of states of the 1S0-orbital is
constant with finite bandwidth: ρ(ε) = ρ0 = 1/(2D),−D ≤ ε ≤ D. Figures 2.1 (c) and (d) show
the numerical solutions of the self-consistent equations starting from the zero-temperature initial
state. The non-zero value of the renormalized hybridization, which entangles the localized 3P0

atoms with the 1S0 cloud, signals the emergence of the Kondo effect under the photo-irradiation.
The strongly renormalized value of Ṽ leads to a hybridized band with a narrow Kondo gap and
thus realizes a heavy-fermion liquid. The effective temperature (Fig. 2.1 (d)) is increased due to
the heating effect caused by the irradiation. An important point is that the effective temperature
is always lower than the Kondo temperature TK , and thus the Kondo effect can be realized. If the
Fermi temperature is of the order of 100 nK, the necessary laser strength (or Rabi frequency) is
estimated to be a few kHz, which is an achievable value in experiments.

We note that AEA can offer a system with large-N spin components, where N = 6 (i.e. I = 5/2)
for 173Yb and N = 10 (I = 9/2) for 87Sr. The Kondo temperature, which is the underlying energy
scale of the Kondo physics, rapidly increases with the number of components N . This means that
the Kondo state is more stable in large-N systems, and makes the observation of the Kondo effect
more feasible in the large spin state with AEA.

We also comment on a role of the trap potential. Since the trap potential reduces εf − µ, TK is
lowest at the trap center, and there should appear a “mixed valence” region where εf . µ and the
Kondo temperature is quite high. The existence of that region supports the feasibility to realize the
Kondo liquid. However, we note that since the renormalization effect is weak in the mixed valence
regime, a sharp Kondo effect may appear near the trap center.

Next, we show numerical results for the case where the initial states are at finite temperatures.
Figure 2.2 shows the numerical solutions of the mean-field equations at finite initial temperatures.
In this case, the laser-induced Kondo effect emerges above some threshold value of laser strength,
since the Kondo effect cannot appear in the region where TK < T0. When the optical coupling
is weak, the photo-induced hybridization between the orbitals is washed out due to the thermal
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Figure 2.1: (a) Schematic picture of the setup. Fermionic atoms in the 1S0 state can move between
sites of the optical lattice, while those in the 3P0 state cannot. (b) The energy level shift after
the gauge transformation. (c) Renormalized hybridization calculated with parameters D = 1, εf =
−0.5, T0 = 0, µ0 = −0.1 and N = 2, 6, 10. (d) Effective temperatures calculated with the same
parameters. The broken lines show the Kondo temperature TK .
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fluctuations. With sufficiently strong laser fields, the two orbitals start to entangle and show the
Kondo effect. As we increase the laser strength, the thermal fluctuations become less important,
and the solutions approach the case of zero initial temperatures.

(a) (b)
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Figure 2.2: Solutions of the mean-field equations starting from finite initial temperatures, with
parameters D = 1, εf = −0.5, T0 = 0.1, µ0 = −0.1 and N = 6. The solutions at zero initial temper-
ature is also shown for comparison. (a) Renormalized hybridization. (b) Effective temperature. The
broken line shows the Kondo temperature, and the horizontal dotted line is the initial temperature.

4 Spin-selective renormalization

The laser-induced Kondo state shows peculiar features owing to interplay between the optical cou-
pling and the multicomponent spin structure of AEA. In particular, the spin-dependent optical
coupling leads to intriguing consequences with the Kondo state. The optical coupling for the π-
polarized light becomes V ·σσσ′ = σV δσσ′ and explicitly breaks the spin SU(N)-invariance. There-
fore, the laser-driven Kondo gaps are spin-dependent, as seen in the quasiparticle band structure

εσ±(k) = 1
2(εc(k) + ε̃f ±

√
(εc(k)− ε̃f )2 + 4|σṼ |2) (illustrated in Fig. 2.3 (a)) which is obtained

by diagonalizing the mean-field Hamiltonian. This gives rise to spin-dependent effective masses
of quasiparticles, since the quasiparticle band is more flattened in the higher spin components at
the Fermi energy. As a result, the laser-induced Kondo effect selectively renormalizes the effective
masses of higher spin components, beside light quasiparticles of lower spin components. These
consequences are in marked contrast to the SU(N)-symmetric Kondo effect proposed for ultra-
cold atoms previously [150, 176, 177, 178, 179, 180], where the all spin components are completely
degenerate.

These characteristic spin-dependent structures are reflected in physical observables. The spin-
dependent quasiparticle band yields population imbalance between the spin components. In Fig. 2.3
(b), we have plotted the population imbalance. The population imbalance, which can be directly
measured by cold-atom experiments, inherits both the spin-dependent nature and nonperturbative
V -dependence in the laser-induced Kondo effect. The Kondo states can also be measured by density
profiles of the atomic cloud. For N = 2, and when the 1S0-orbital is half-filled in the lattice, the
lower hybridized band formed by the Kondo effect is completely filled: this phase is called the Kondo
insulator. Reflecting the formation of the Kondo insulator, a density plateau of the atomic cloud
appears in some region of the atomic cloud [177, 178]. Similarly, in the case of N > 2, reflecting the
spin-dependent Kondo gaps, a half-metallic phase composed of a completely filled band (the Kondo
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Figure 2.3: (a) The renormalized quasiparticle band induced by the laser-induced Kondo effect
for N = 6. (b) Population imbalance induced by the Kondo effect. N = 10 case is shown, with
parameters D = 1, εf = −0.8, T0 = 0, µ0 = −0.5. Nσ = nσ + n−σ is the particle number of each
spin component.

insulator) and partially filled Kondo metals can be formed. Correspondingly the density plateau
may also be spin-dependent for N > 2.

5 Effect of spin-exchange interactions

So far we have described the laser-induced Kondo effect using the minimal Hamiltonian H0 +
Hmix, which includes only interactions between the 3P0 states. In reality, other interactions also
exist [150]. Among them, strong interorbital SU(N) exchange interactions observed in experiments
[157, 158, 163] play the most crucial role for the Kondo physics. Here we consider how these
interactions affect the laser-induced Kondo effect. The model Hamiltonian can be written in the
most general form as [150, 181]

H =
∑
〈i,j〉,σ

(−tcc†iσcj,σ − tff
†
iσfj,σ + h.c.) +

∑
j,σ

ε
(0)
f nfjσ

+ U
∑
j,σ<σ′

ncjσncjσ′ + Uff
∑
j,σ<σ′

nfjσnfjσ′

+ Ucf
∑
j,σ,σ′

ncjσnfjσ′ + Vex

∑
j,σ,σ′

c†jσf
†
jσ′cjσ′fjσ

+
∑
j,σ,σ′

(V · σσσ′eiK·Rj−iωtf †jσcjσ′ + h.c.), (2.5.1)

where ncjσ = c†jσcjσ and nfjσ = f †jσfjσ count the number of particles at site j. ε
(0)
f denotes the

excitation energy of the 3P0 state from the 1S0 state. The specific values of interaction parameters
U,Uff , Ucf , Vex depend on s-wave scattering lengths in corresponding collision channels and the
Wannier-function overlaps. Since the s-wave scattering lengths are independent of the nuclear spin
states, the interactions possess SU(N = 2I + 1) symmetry [150, 151]. Here Vex denotes the SU(N)
exchange interaction. We assume that U > 0, Uff > 0. In principle, there exist additional terms
originating from a magnetic field [182], but for simplicity we take the zero-field limit and avoid the
complication. As shown in Sec. 1, the explicit time dependence in the hybridization term of Eq.
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(4.4.1) is eliminated by the gauge transformation fjσ → e−iωtfjσ. After this transformation, the

energy level of the 3P0 state is effectively shifted, and we replace ε
(0)
f with εf ≡ ε

(0)
f − ω. Also, we

assume that the lattice potential is sufficiently deep for the 3P0 state to suppress inelastic collisions
which cause loss of atoms, and thus tf � Uff . On the other hand, the lattice potential for the 1S0

state is shallow to allow the hopping between sites.
To simplify the original model (4.4.1), we consider a limiting case in which the Kondo limit is

achieved: εf � µ� εf +Uff and |V | is sufficiently small. In this case, since the occupation number
of the 3P0 state in low-energy states is one at each site, we can restrict ourselves to the Hilbert
subspace with

∑
σ nfjσ = 1 and derive an effective low-energy Hamiltonian using the Schrieffer-

Wolff transformation in a similar way as Sec. 2.2 in Chap. 1. The resulting low-energy theory leads
to

Heff =− tc
∑
〈i,j〉,σ

(c†iσcj,σ + h.c.) + U
∑
j,σ<σ′

ncjσncjσ′

+
∑
j,σ,σ′

(Vex − σσ′J)c†jσf
†
jσ′cjσ′fjσ

+ JH
∑

〈i,j〉,σ,σ′
f †iσfiσ′f

†
j,σ′fj,σ (2.5.2)

where J = 2V 2( 1
|εf−µ| + 1

εf−µ+Uff
) > 0 and JH = 4t2f/Uff > 0. We note that when

∑
σ nfjσ = 1,

the interaction Ucf can be incorporated into the chemical potential and therefore we omit this term
from Heff .

The effective Hamiltonian (2.5.2) contains an effective Kondo interaction Vex, J between the two
orbitals and the Heisenberg interaction JH between 3P0 states. While the spin-exchanging collision
Vex is fully symmetric, the optically induced Kondo coupling J breaks the spin SU(N) symmetry
due to the polarization-spin coupling in the last term in Eq. (2.5.1). For general N , this Kondo
coupling is somewhat complicated, but the case of N = 2 is simple. For N = 2, we can rewrite the
Kondo coupling as ∑

j,σ,σ′

(Vex − σσ′J)c†jσf
†
jσ′cjσ′fjσ

=− J⊥
∑
j

(SxcjS
x
fj + SycjS

y
fj)− Jz

∑
j

SzcjS
z
fj

+ potential term, (2.5.3)

where

J⊥ ≡ Vex + J/4, (2.5.4a)

Jz ≡ Vex − J/4. (2.5.4b)

The “potential term” can be absorbed into the chemical potential. The spin operators are defined
by Scj = 1

2

∑
σ,σ′ c

†
jσσσσ′cjσ′ and Sfj = 1

2

∑
σ,σ′ f

†
jσσσσ′fjσ′ , where σ is the three-component Pauli

matrices. This interaction is just an anisotropic XXZ-type exchange coupling between the 1S0 and
the 3P0 states.

Since the full analysis of the model (2.5.2) is difficult, we here consider the simplest case, where
the 3P0 state forms a single Kondo impurity. For the Kondo impurity, the effect of the anisotropic
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Ising

Figure 2.4: The renormalization group flow for the case of the Kondo impurity for N = 2. The blue
(red) line shows a trajectory of the coupling constants when we apply the external laser in the case
of Vex > 0 (Vex < 0).

exchange coupling can be deduced from the renormalization group (RG) flow using Anderson’s
poor-man’s scaling for the case of Kondo impurity, particularly in the case of N = 2. The RG
equations are Eqs. (1.2.12) and (1.2.13) as derived in Sec. 2.2 in the previous chapter. The RG flow
diagram is depicted in Fig. 2.4.

When we turn on the laser in the case of Vex > 0, the coupling constants immediately change
from an irrelevant coupling into a relevant one; namely, the laser-induced Kondo effect occurs,
despite the bare ferromagnetic exchange coupling. This fact is in sharp contrast to the proposals in
Ref. [150, 177, 178]. The behavior of the RG flow from the weak-coupling fixed point to the strong-
coupling one may be observed as a crossover in the temperature dependence of the laser-induced
Kondo effect.

In the case of Vex < 0, where the bare exchange coupling is relevant, the Kondo effect owing
to Vex (as described in Ref. [177, 178]) takes place. This Kondo effect is suppressed by the laser
application. At J = 4|Vex|, the Kondo effect vanishes since the interaction is purely Ising-type:
J⊥ = 0. After that, as seen in the flow diagram, the Kondo effect revives and the system is
governed by another strong-coupling fixed point which is described in this chapter. In other words,
the laser gives a novel method to induce a reenatrant Kondo effect across the Ising point.

Finally, we note that the laser-induced Kondo effect is described by a fixed point with J⊥ →
∞, Jz → −∞, which has the opposite sign of J⊥ compared to the ordinary Kondo effect. The nature
of this fixed point can be extracted from a transformation

(Sximp, S
y
imp, S

z
imp)→ (−Sximp,−S

y
imp, S

z
imp), (2.5.5)

which is equivalent to flipping the sign of J⊥. Note that this transformation keeps the commutation
relation intact. Since the singlet state |↓〉c |↑〉f − |↑〉c |↓〉f is transformed into |↓〉c |↑〉f + |↑〉c |↓〉f
by this procedure, we find that the fixed point describes the Kondo effect with Kondo “singlet”
|↓〉c |↑〉f + |↑〉c |↓〉f . In this sense, the realization of the Kondo effect in AEA provides a rare example
of the “unusual” Kondo effect.
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6 Summary of this chapter

In this chapter, we have proposed a possible realization of the laser-induced Kondo state using
ultracold AEA in an optical lattice. It has been shown that the emergent Kondo effect under
the application of the laser field overwhelms the heating effect, thereby realizing the orbital-spin
entangled singlets and the heavy-fermion liquid. Furthermore, we have elucidated peculiar Kondo
physics arising from the specific form of optical coupling, such as the spin-selective renormalization
of effective masses and the nontrivial competition between the bare exchange coupling and the laser-
induced hybridization which leads to novel crossover or reentrant behavior of the Kondo effect.
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Chapter 3

Topological Phase Transition in
One-Dimensional Kondo Lattice

In this chapter, by extending the setup in the previous chapter, we propose that ultracold AEA
confined in one-dimensional optical lattice can realize a Kondo lattice model which hosts a fermionic
SPT phase and an associated quantum phase transition in a controllable manner. The symmetry
protection of the phase transition is discussed from two different viewpoints: topological proper-
ties related to spatial patterns of Kondo singlets, and symmetry eigenvalues of the spin states.
We uncover the role of various symmetries in the phase diagram of this system by combining a
weak-coupling approach by Abelian bosonization and strong-coupling pictures of ground states.
Furthermore, in the bosonization language, we elucidate how the charge degrees of freedom of the
Kondo lattice change the nature of the SPT phase from bosonic spin systems to interacting fermions.

1 1D Kondo impurity

In the cold-atom setups, the dimensionality of systems can be easily changed by tuning the hopping
amplitude in the optical lattice. What happens when we consider the Kondo effect in ultracold
atoms in low-dimensional systems? Hereafter, we analyze the low-energy effective model (2.5.2)
for N = 2 in one dimension (1D). Before studying the full Kondo lattice Hamiltonian (2.5.2), it is
helpful to gain some insights from what happens when a single atom in the 3P0 state is immersed
into the Fermi sea of 1S0 atoms as an impurity. Let us consider the following Kondo impurity
problems:

H1D = −tc
∑
j,σ

(c†j,σcj+1,σ + h.c.) + U
∑
j

ncj↑ncj↓

− J⊥(Sxc0S
x
imp + Syc0S

y
imp)− JzSzc0Szimp. (3.1.1)

The single impurity spin is located at j = 0. The impurity interacts with itinerant fermions living
in 1D lattice via anisotropic Kondo couplings. Here we have introduced the interaction between
itinerant fermions (the reason is described later) and consider a metallic Tomonaga-Luttinger-liquid
region away from half filling.

The 1D Kondo problem was studied by Refs. [183, 184], and the situation is somewhat different
from 3D. In 1D, the forward scattering off the impurity and the backward one are distinguished.
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Figure 3.1: Phase diagram of the Kondo impurity in 1D. We set J⊥F = J⊥B = J⊥, JzF = JzB = Jz,
vF = 1 and g2 = 0.5. The broken line indicates the isotropic line on which J⊥ = Jz is satisfied.

Hence we must double the coupling constants for the Kondo coupling: J⊥F , J⊥B, JzF , JzB where
the subscript F (B) denotes the forward (backward) process. Then the RG equations are given by

dJ⊥F
d`

= − 1

2πvF
(J⊥FJzF + J⊥BJzB), (3.1.2a)

dJ⊥B
d`

= − 1

2πvF
(J2
⊥F + J2

⊥B), (3.1.2b)

dJzF
d`

=
1

2πvF
(g2J⊥B − J⊥FJzB − J⊥BJzF ), (3.1.2c)

dJzB
d`

=
1

2πvF
(g2JzB − 2J⊥FJ⊥B), (3.1.2d)

where d` = −d lnD and g2 denotes the matrix element of the forward scattering process between
itinerant fermions due to the Hubbard repulsion in Eq. (3.1.1). vF is the Fermi velocity. By
integrating Eqs. (3.1.2a) - (3.1.2d) numerically, we obtain a phase diagram in Fig. 3.1, although the
flow diagram was shown only for the isotropic (J⊥ = Jz) case in Ref. [184]. The phase (K) shows
the ordinary Kondo effect and the phase (K’) shows the “unusual” Kondo effect as in the 3D case.
A peculiar point in 1D is the existence of a new phase (F) where the exchange coupling grows to
strong coupling starting from bare ferromagnetic interactions. This fixed point appears only when
g2 > 0 is included [184], and therefore we need to consider the Hubbard repulsion in Eq. (3.1.1). At
the fixed point, the coupling constants grow as J⊥F → −∞, J⊥B →∞, JzF → −∞, JzB →∞. Note
that the signs are negative for the forward processes and positive for the backward ones. From this
observation, it turns out that the fixed point describes growth of nearest-neighbor antiferromagnetic
Kondo coupling which leads to a Kondo singlet state with the adjacent sites of the impurity, while the
onsite Kondo coupling is kept finite [184]. The phase (F’) is not important for the later discussions,
but the nature of this phase is also understood by the transformation (2.5.5).
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2 Bosonization of 1D Kondo lattice

2.1 Bosonization identities

Let us now proceed to the analysis of the 1D Kondo lattice model. The properties of the 1D
Kondo lattice model have been intensively studied using various analytical and numerical approaches
[185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202]. Here we
adopt an analytic and a weak-coupling approach using bosonization [203]. Hereafter we consider
the Hamiltonian (2.5.2) with the half-filling condition for 1S0 states. We divide the Hamiltonian
into three parts:

Heff = Hc +Hf +HK , (3.2.1)

Hc = −tc
∑
j,σ

(c†jσcj+1σ + h.c.) + U
∑
j

ncj↑ncj↓, (3.2.2)

Hf = JH
∑
j

Sfj · Sfj+1, (3.2.3)

HK = −J⊥
∑
j

(SxcjS
x
fj + SycjS

y
fj)− Jz

∑
j

SzcjS
z
fj . (3.2.4)

To apply the bosonization recipe, we focus on the low-energy behavior of the system and linearize
the dispersion relation of the Hubbard part (3.2.2). Then Eq. (3.2.2) is bosonized using the following
identity:

cjσ =
1√
2π

(ηRσe
ikF xei(θ1σ(x)−φ1σ(x)) + ηLσe

−ikF xei(θ1σ(x)+φ1σ(x))) (3.2.5)

where x = ja is the continuum space variable and the boson fields φ, θ satisfy a commutation relation
[φ1σ(x),∇θ1σ′(y)] = iπδσσ′δ(x− y). In the above expression, the boson field φ are compactified as
φ ∼ φ+ 2π. The Fermi momentum kF is fixed at kF = π/2a due to the half-filling condition. ηR/Lσ
is a Klein factor expressed in terms of Majorana fermions satisfying {ηα, ηβ} = 2δαβ, which ensures
the anticommutation relation between the right mover and the left mover. Following standard
calculations, we obtain

Hc =
∑
ν=c,s

1

2π

∫
dx(u1νK1ν(∇θ1ν)2 +

u1ν

K1ν
(∇φ1ν)2) +

U

2π2α

∫
dx cos(2

√
2φ1c), (3.2.6)

where a marginally irrelevant term in the spin part is neglected. α denotes a short-range cutoff.
Here the charge mode and the spin mode are defined as φc,s = 1√

2
(φ1↑ ± φ1↓), θc,s = 1√

2
(θ1↑ ±

θ1↓), respectively (the minus sign stands for the spin part). The cosine term comes from the

Umklapp scattering due to the Hubbard interaction. The velocities are u1c = 2tca
√

1 + U
2πtc

, u1s =

2tca
√

1− U
2πtc

and the Luttinger paremeters are K1c = 1/
√

1 + U
2πtc

,K1s = 1. The Luttinger

parameter for the spin part has been set unity because of the spin SU(2) symmetry of the Hubbard
part.

The Heisenberg part (3.2.3) is also bosonized. While one can use the standard Jordan-Wigner
transformation to convert the spin chain into fermions, we here adopt an expression of the Heisenberg
chain as the Mott insulating phase of the Hubbard model, where the charge mode is gapped out
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by the cosine term in Eq. (3.2.6), since a parallel description is available between the 1S0 and the
3P0 states. Then the Heisenberg chain is described by the spin part of the bosonized Hubbard
Hamiltonian as

Hf =
1

2π

∫
dx(u2(∇θ2s)

2 + u2(∇φ2s)
2) (3.2.7)

where we again set the Luttinger parameter as unity due to the SU(2) symmetry.
Finally, we bosonize the Kondo coupling (3.2.4). The spin operators of the 1S0 state are ex-

pressed as

Sc(x) ≡ Scj/α = Mc(x) + (−1)x/aNc(x). (3.2.8)

The uniform component Mc(x) reads

Mx
c (x) =

1

πα
sin
√

2θ1s cos
√

2φ1s, (3.2.9a)

My
c (x) =

1

πα
cos
√

2θ1s cos
√

2φ1s, (3.2.9b)

M z
c (x) =− 1√

2π
∇φ1s (3.2.9c)

and the staggered component Nc(x) is

Nx
c (x) =

1

πα
cos
√

2θ1s sin
√

2φ1c, (3.2.10a)

Ny
c (x) =− 1

πα
sin
√

2θ1s sin
√

2φ1c, (3.2.10b)

N z
c (x) =

1

πα
cos
√

2φ1s sin
√

2φ1c. (3.2.10c)

Those of the 3P0 state, Mf (x) and Nf (x), are of the same form as Eqs. (3.2.9a) - (3.2.9c) and
(3.2.10a) - (3.2.10c) with the charge mode replaced by its expectation value m = 〈sin

√
2φ2c〉. The

Kondo coupling HK is thereby divided into the following parts:

HK⊥F =− J⊥
∫
dx(Mx

c (x)Mx
f (x) +My

c (x)My
f (x))

=HK⊥F+ +HK⊥F−, (3.2.11)

HK⊥B =− J⊥
∫
dx(Nx

c (x)Nx
f (x) +Ny

c (x)Ny
f (x))

=− gK⊥B
∫
dx sin

√
2φ1c cos 2θ−, (3.2.12)

HKzF =− Jz
∫
dxM z

c (x)M z
f (x)

=− αJz
2π2

∫
dx∇φ1s∇φ2, (3.2.13)

HKzB =− Jz
∫
dxN z

c (x)N z
f (x)

=HKzB+ +HKzB− (3.2.14)
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with

HK⊥F+ =− gK⊥F+

∫
dx cos 2φ+ cos 2θ−, (3.2.15)

HK⊥F− =− gK⊥F−
∫
dx cos 2φ− cos 2θ−, (3.2.16)

HKzB+ =− gKzB+

∫
dx sin

√
2φ1c cos 2φ+, (3.2.17)

HKzB− =− gKzB−
∫
dx sin

√
2φ1c cos 2φ−, (3.2.18)

where the coupling constants are

gK⊥F+ = gK⊥F− =
1

2m
gK⊥B =

J⊥
2π2α

, (3.2.19)

gKzB+ = gKzB− =
mJz
2π2α

. (3.2.20)

Here we have named each perturbation with subscript F and B in terms of momentum transfers of
itinerant fermions in analogy with the impurity problem. In the calculation, we have dropped the
oscillation terms which vanish after the integration. Also we have defined new boson fields φ±, θ±
as

φ± ≡
1√
2

(φ1s ± φ2s), (3.2.21)

θ± ≡
1√
2

(θ1s ± θ2s), (3.2.22)

which describe the total (+) and relative (−) spin modes, respectively.

2.2 RG equations

The low-energy behavior of the model (3.2.1) is deduced from RG equations. Here we treat the free
boson part in Eqs. (3.2.6) and (3.2.7) as unperturbed theory. The Umklapp part in Eq. (3.2.6) and
the Kondo coupling are added as perturbation. However, since HKzF can be incorporated into the
free-boson parts, we include HKzF into the unperturbed theory. The resulting unperturbed theory
is

H0 =
1

2π

∫
dx(u1cK1c(∇θ1c)

2 +
u1c

K1c
(∇φ1c)

2)

+
∑
ν=±

1

2π

∫
dx(uνKν(∇θν)2 +

uν
Kν

(∇φν)2). (3.2.23)

Here u± = u
√

1∓ αJz
2πu and the naive estimation of the Luttinger parameters leads to

K± =
1√

1∓ αJz
2πu

, (3.2.24)
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where u1s = u2 = u is assumed, for simplicity. The perturbation terms are HK⊥F±, HK⊥B, HKzB±,
and

HU =gU

∫
dx cos(2

√
2φ1c) (3.2.25)

with gU = U
2π2α

. Since the unperturbed theory is free bosons and thus is a conformal field theory
(CFT), the RG equations can be derived from the CFT data of the free boson theory, i.e. scaling
dimensions and operator-product-expansion coefficients [204]. After some calculations, we arrive at
a set of RG equations when the cutoff is changed from α to ed`α, as

dK1c

d`
=−K2

1c(2g̃U + 2g̃2
K⊥B + g̃2

KzB+ + g̃2
KzB−), (3.2.26a)

dK+

d`
=−K2

+(2g̃2
K⊥F+ + 2g̃2

KzB+), (3.2.26b)

dK−
d`

=−K2
−(2g̃2

K⊥F− + 2g̃2
KzB−) + 2g̃2

K⊥F+ + 2g̃2
K⊥F− + 4g̃2

K⊥B, (3.2.26c)

and

dg̃U
d`

=(2− 2K1c)g̃U + g̃2
K⊥B + g̃2

KzB+ + g̃2
KzB−, (3.2.26d)

dg̃K⊥1+

d`
=(2−K+ −

1

K−
)g̃K⊥F+ − g̃K⊥B g̃KzB+, (3.2.26e)

dg̃K⊥1−
d`

=(2−K− −
1

K−
)g̃K⊥F− − g̃K⊥B g̃KzB−, (3.2.26f)

dg̃K⊥2

d`
=(2− 1

2
K1c −

1

K−
)g̃K⊥B − g̃K⊥F+g̃KzB+ − g̃K⊥F−g̃KzB− +

1

2
g̃U g̃K⊥B, (3.2.26g)

dg̃KzB+

d`
=(2− 1

2
K1c −K+)g̃KzB+ − g̃K⊥F+g̃K⊥B +

1

2
g̃U g̃KzB+, (3.2.26h)

dg̃KzB−
d`

=(2− 1

2
K1c −K−)g̃KzB− − g̃K⊥F−g̃K⊥B +

1

2
g̃U g̃KzB−, (3.2.26i)

up to the second order perturbation theory. Here the dimensionless coupling constants are defined
by g̃α ≡ 1

πgαa
2−∆α , where ∆α is the scaling dimension of the perturbation.

3 Phase diagram

The zero-temperature phase diagram of the system is determined by fixed points derived from the
RG equations (3.2.26a) - (3.2.26i). Numerical solutions of the RG equations indicate the phase
diagram summarized in Fig. 4.2. In calculating Fig. 4.2, we have set g̃U = 0.1 and the initial values
of the coupling constants as g̃K⊥F± = 1

2 g̃K⊥B = g̃K⊥ and g̃KzB± = g̃Kz. The phase diagram is fully
symmetric with respect to the sign of g̃K⊥. As seen from scaling dimensions, the low-energy behavior
is mainly governed by relevant terms HK⊥B, HKzB+, and HKzB−. Each phase is characterized by
the most divergent interactions as follows:
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(K) g̃K⊥B → −∞, g̃KzB+ → −∞
(K’) g̃K⊥B → +∞, g̃KzB+ → −∞
(Top) g̃K⊥B → +∞, g̃KzB+ → +∞
(Top’) g̃K⊥B → −∞, g̃KzB+ → +∞
(N1) g̃KzB+ → −∞, g̃KzB− → −∞
(N2) g̃KzB+ → +∞, g̃KzB− → +∞

The phase boundary between (K’) and (Top) (or (K) and (Top’)) is signaled by the change of the
sign of g̃KzB+. On the other hand, the transitions to the phase (N1) or (N2) are determined by
competition between HK⊥B and HKzB−, which cannot be minimized simultaneously. Since the
renormalization is stopped around g̃(`) ∼ 1, we determine those phase boundaries by examining
which of g̃K⊥B and g̃KzB− first grows to unity. We note that the role of less relevant HU , HK⊥F±
terms is the shift of phase boundaries. If we truncate the RG equations up to the tree level, the phase
boundary between the phase (K’) and the phase (Top) is located at g̃Kz = 0. Thus the generation
of effective couplings due to less relevant interactions significantly shifts the phase boundaries.

Qualitatively, our weak-coupling calculation by the perturbative RG approach reproduces the
phase diagram of 1D anisotropic Kondo lattice obtained by strong coupling expansion and exact
diagonalization of a small cluster [197]. We note that the precise positions of phase boundaries
depend on the Luttinger parameter. As clearly seen, the phase diagram has some resemblance with
the impurity phase diagram in Fig. 3.1 except for the appearance of the phases (N1) and (N2),
which denote Néel orders absent in the impurity problem. In the following subsections, we explain
the details of each phase.

Figure 3.2: Phase diagram of the 1D anisotropic Kondo lattice model. The broken line indicates
the isotropic line on which J⊥ = Jz is satisfied.

3.1 Kondo insulator

The phases (K), (K’), (Top), and (Top’) are described by pinning of φ1c, φ+ and θ− to their potential
minimum, leading to disordered ground states with an energy gap. The phase (K) corresponds to
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Figure 3.3: Schematic pictures of the phases of the 1D Kondo lattice. The red (blue) balls illustrate
atoms in the 1S0 (3P0) state loaded in a shallow (deep) optical lattice potential. In the figure of the
phase (Top), the singlet formation is represented by the central site for clarity of illustration.
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the growth of on-site antiferrromagnetic Kondo coupling, which means the formation of the Kondo
insulator [185]. The strong coupling picture of this phase is illustrated in Fig. 3.3, where the
Kondo singlet at each site opens the energy gaps in charge and spin sectors. We note that the
Kondo coupling effectively generates the Hubbard repulsion between conductive fermions due to
Eq. (3.2.26d). Hence, even if the bare Hubbard interaction is switched off, the Kondo insulator
cannot be distinguished from the Mott insulating state at least in the low-energy region. At the
strong coupling limit, the Kondo insulating state approaches to the rung-singlet state if we regard
the system as a spin-1/2 ladder.

3.2 Laser-induced Kondo insulator

With sufficiently strong laser coupling, the phase (K’) is realized owing to Eqs. (2.5.4a) and (2.5.4b).
This phase is also a Kondo insulator, but is composed of the “unusual” Kondo effect described in
Sec. 1 by a strong coupling fixed point with anisotropic Kondo coupling. The physical picture of
this Kondo insulator is obtained by a unitary transformation

fjσ → sgn(σ)fjσ, (3.3.1)

which flips the sign of Sxfj , S
y
fj and maps the Kondo singlet |↓〉c |↑〉f −|↑〉c |↓〉f to |↓〉c |↑〉f + |↑〉c |↓〉f .

Thus, in the strong coupling limit, the phase (K’) is described by an insulating state where the 1S0

state and the 3P0 state form the ”Kondo singlet” |↓〉c |↑〉f + |↑〉c |↓〉f at each site (Fig. 3.3). The
unusual Kondo singlet has total spin 1 with Szc + Szf = 0, and therefore the expectation value of

total spin is nonzero in the x, y plane: 〈(Sxcj + Sxfj)
2 + (Sycj + Syfj)

2〉 6= 0. In the language of spin
systems, this phase is very similar to the so-called large-D phase [197] where a strong single-ion
anisotropy favors the Sz = 0 state in spin-1 systems [67].

3.3 Topological phase

The phase (Top) in Fig. 4.2 is a nontrivial topological phase protected by the spatial inversion
symmetry, whose topological aspects are described in the next section. This phase includes the case
of isotropic ferromagnetic Kondo coupling indicated by the broken line in Fig. 4.2. This phase is
smoothly connected to the Haldane phase in spin ladders [205, 206, 207, 208] in the strong coupling
limit U → ∞ (or J⊥, Jz → ∞) [195]. An intuitive picture of this fixed point can be obtained by
considering a nearest-neighbor Kondo coupling

H̃K ≡ −J̃
∑
j

(Sc,j−1 + Sc,j+1) · Sf,j (3.3.2)

in addition to the original on-site Kondo coupling. The bosonized Hamiltonian is changed as

HK⊥F →
J⊥ + J̃

J⊥
HK⊥F , (3.3.3a)

HK⊥B →
J⊥ − J̃
J⊥

HK⊥B, (3.3.3b)

HKzF →
Jz + J̃

Jz
HKzF , (3.3.3c)

HKzB →
Jz − J̃
Jz

HKzB. (3.3.3d)
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Thus, the fixed point is equivalent to growth of the nearest-neighbor antiferromagnetic Kondo
coupling, similarly to the phase (F) appearing in the 1D Kondo impurity problem in Sec. 1, while
the on-site Kondo coupling is ferromagnetic and kept finite. An intuitive picture is illustrated in
Fig. 3.3. The formation of the non-local Kondo singlets is reminiscent of 1D topological Kondo
insulators [209, 210, 211, 212] realized by a p-wave Kondo coupling. In fact, the low-energy effective
theory is the same as that of the 1D topological Kondo insulators [210].

We note that the nature of the phase (Top’) is related to the topological phase (Top) via the
transformation (3.3.1), although this phase cannot be realized because the coupling constants cannot
be manipulated into the corresponding parameter region, since J is always positive in Eqs. (2.5.4a)
and (2.5.4b).

3.4 Néel order

The phases (N1) and (N2) which appear near the “Ising line” J⊥ = 0 have an antiferromagnetic
Néel order with spontaneously broken spin flip symmetry. The ordered spin patterns are illustrated
in Fig. 3.3. To understand the appearance of the Néel order, it is useful to consider the case of
J⊥ = 0. In this case, the remaining perturbation terms are HU , HKzB+, and HKzB−, which are all
relevant for U > 0 and thus lock the fields φ1c, φ+, φ− at their potential minimum. The locking
of φ± leads to the nonzero expectation value of N z

c,f (x) (Eq. (3.2.10c)), implying the emergence of
the Néel ordering. Since the pinning of φ1c, φ+, φ− opens the energy gap and the gap cannot be
collapsed by infinitesimal perturbation, the Néel order should persist to some threshold value of J⊥.
However, the threshold value should not exceed |Jz|, since at the isotropic line |J⊥| = |Jz| we obtain
the Kondo insulating phases or the topological phases by non-Abelian bosonization [187, 188].

The existence of the Néel order can also be naturally understood from the corresponding impurity
problem described in Sec. 1. When the Kondo coupling is completely Ising-like with vanishing J⊥,
we do not have the Kondo effect and the impurity ground state is doubly degenerate where the spins
of conduction electrons and the impurity align ferromagnetically in Jz > 0 and antiferromagnetically
in Jz < 0. Thus the residual impurity entropy ln 2 should be washed out by spin ordering in the
case of Kondo lattice systems.

4 Symmetry protection

All the quantum phases of the 1D anisotropic Kondo lattice described in Sec. 3 have energy gaps
both in charge and spin excitations. While the Néel orders can be characterized by spontaneous
breaking of the spin flip symmetry, rest four phases have the same symmetries and cannot be
characterized by spontaneous symmetry breaking. Then, what characterizes these phases? Is there
any order parameter or topological property to distinguish these phases? In this section, we describe
the roles of various symmetries in the system and provide conditions to distinguish these four phases
as different quantum phases.

4.1 SPT phase in one dimension: a bosonization viewpoint

The structure of symmetry protection of SPT phases should be encoded in their low-energy effective
theory. Description of symmetry protection in bosonization language was discussed in Refs. [213,
214]. To analyze the topological properties in the present system, we here adopt this approach
combining the MPS description in Sec. 3.3 of Chap. 1. Since the bosonization description with

55



perturbative RG is only applicable to low-energy states of the unperturbed theory, the description
of symmetry protection using bosonization is not exact in contrast to the MPS approach. However,
the advantage here is that we can discuss the symmetry protection at a Hamiltonian level, not
using explicit expression of ground states. To exemplify the symmetry protection using bosonization
approach, let us consider the following sine-Gordon theory:

H =
1

2π

∫
dx(uK(∇θ)2 +

u

K
(∇φ)2 + g cos

φ

R
). (3.4.1)

We here assume that the boson field φ is compactified with radius R (namely φ ∼ φ + 2πR), and
hence the cosine term appearing in the Hamiltonian is the most relevant perturbation allowed in
the system. For simplicity, we do not consider a vertex operator which contains the dual field θ,
or simply assume that such term is forbidden by a symmetry. The ground state of this theory is
gapped if K < 8R2, and the boson field φ is pinned at φ = 0 for g < 0 and φ = πR for g > 0.
The two phases are separated by a critical point at g = 0. If the sine term sin φ

R is forbidden by a
symmetry constraint, we can say that the two phases cannot be adiabatically connected, since the
cosine term is the most relevant perturbation in the system. Conversely, we can connect the two
phases if the sine term is allowed, since g cos φ

R + g′ sin φ
R = G cos( φR + γ) and the parameter γ can

be changed from 0 to π by tuning the ratio between g and g′.

4.2 Protection by spin π rotation symmetries around the x or y axis

Let us analyze the symmetry protection of quantum phases of the 1D Kondo lattice. First we
calculate the phase factors in Sec. 3.3 of Chap. 1 for each symmetry of the system. Among them,
we focus on the spin π rotation symmetry around x or y axis. To calculate the phase factors, we
use a strong coupling limit |J⊥|, |Jz| → ∞, since the phase factors cannot change unless the energy
gap collapses. The strong coupling limit of the topological phase is continuously connected to the
Haldane phase of the spin-1 Heisenberg model, and therefore we obtain ϑx = ϑy = 0. In the strong
coupling limit of the (ordinary) Kondo insulator and the laser-induced Kondo insulator, the ground
states are site-product states of on-site Kondo singlets. The Kondo singlet is |↓〉c |↑〉f − |↑〉c |↓〉f for
the former phase, and |↓〉c |↑〉f + |↑〉c |↓〉f for the latter phase, respectively. Since

Rx(|↓〉c |↑〉f − |↑〉c |↓〉f ) = +(|↓〉c |↑〉f − |↑〉c |↓〉f ), (3.4.2)

Rx(|↓〉c |↑〉f + |↑〉c |↓〉f ) = −(|↓〉c |↑〉f + |↑〉c |↓〉f ), (3.4.3)

and the same holds for Ry, we obtain ϑx = ϑy = 0 for the ordinary Kondo insulator and ϑx =
ϑy = π for the laser-induced Kondo insulator. By comparing ϑx, ϑy of each phase, we conclude
that the laser-induced Kondo insulating phase is distinct from the ordinary Kondo insulator and
the topological phase, protected by the spin π rotation symmetry around x or y axis. To connect
the distinct phases, we must close the energy gap or break the symmetry. In fact, at the phase
boundary between the topological phase and the laser-induced Kondo insulator, the spin gap of φ+

is collapsed. At the boundary between the ordinary and the anomalous Kondo insulators, the Néel
order intervenes, signaling the symmetry breaking. Thus, the phase diagram obtained in Sec. 3 is
consistent with the symmetry protection. As noted in Sec. 3.3 of Chap. 1, this symmetry protection
is not related to the topological property of the SPT phases.

If the spin π rotation symmetries are broken, we can adiabatically connect the laser-induced
Kondo insulator and the ordinary Kondo insulator. To check this, let us consider a unitary trans-
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formation [215] U(γ)†HU(γ) with

U(γ) = exp
[
iγ
∑
j

Szfj

]
, (3.4.4)

which changes the Kondo coupling into

U(γ)†HKU(γ)

=− J⊥ cos γ
∑
j

(SxcjS
x
fj + SycjS

y
fj)− Jz

∑
j

SzcjS
z
fj

− J⊥ sin γ
∑
j

(SxcjS
y
fj − S

y
cjS

x
fj). (3.4.5)

The rest Hc and Hf are unchanged. As seen easily, the spin π rotation symmetry around x or y
axis is broken in the transformed Hamiltonian except for γ = 0, π. Since U(γ) is unitary, the energy
spectra of H and U(γ)†HU(γ) are identical. Thus we can connect the ordinary Kondo insulator at
γ = 0 and the laser-induced Kondo insulator at γ = π without closing the energy gap by changing
γ continuously.

We can also show the symmetry protection using the bosonization language. To apply the sym-
metry protection argument to the present Kondo lattice system, we fisrt summarize the symmetry
transformation of bosonized fields for each symmetry of the system. The translational operation
cσ(x)→ cσ(x+ a), Sf (x)→ Sf (x+ a) can be expressed in terms of the boson fields as

φ1c(x)→ φ1c(x+ a)−
√

2kFa, (3.4.6a)

θ1c(x)→ θ1c(x+ a), (3.4.6b)

φ1s(x)→ φ1s(x+ a), (3.4.6c)

θ1s(x)→ θ1s(x+ a). (3.4.6d)

The transformation on φ2s and θ2s is same as that on φ1s and θ1s. Similarly, we obtain the following
results. For the charge U(1) symmetry cσ → eiϕcσ,

φ1c → φ1c, (3.4.7a)

θ1c → θ1c + ϕ, (3.4.7b)

φ1s → φ1s, (3.4.7c)

θ1s → θ1s. (3.4.7d)

For the spatial inversion operation cσ(x)→ cσ(a− x), Sf (x)→ Sf (a− x),

φ1c(x)→ −φ1c(a− x) +
√

2kFa, (3.4.8a)

θ1c(x)→ θ1c(a− x), (3.4.8b)

φ1s(x)→ −φ1s(a− x), (3.4.8c)

θ1s(x)→ θ1s(a− x). (3.4.8d)

For the spin π rotation around x axis Sxc,f → Sxc,f , S
y,z
c,f → −S

y,z
c,f ,

φ1c → φ1c, (3.4.9a)

θ1c → θ1c, (3.4.9b)

φ1s → −φ1s, (3.4.9c)

θ1s → −θ1s, (3.4.9d)
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and for that around y axis Syc,f → Syc,f , S
x,z
c,f → −S

x,z
c,f ,

φ1c → φ1c, (3.4.10a)

θ1c → θ1c, (3.4.10b)

φ1s → −φ1s, (3.4.10c)

θ1s → −θ1s +
π√
2
. (3.4.10d)

Finally, for the spin U(1) symmetry Sxc,f → Sxc,f cosϕ+Syc,f sinϕ and Syc,f → −S
x
c,f sinϕ+Syc,f cosϕ,

we obtain

φ1s → φ1s, (3.4.11a)

θ1s → θ1s + ϕ, (3.4.11b)

φ1c → φ1c, (3.4.11c)

θ1c → θ1c. (3.4.11d)

Let us focus on a parameter region near the phase boundary between the topological phase and
the laser-induced Kondo insulator. In that region, the relevant perturbation for the gap generation
in terms of the scaling dimensions is HK⊥B and HKzB+, and the low-energy behavior is governed
by these terms, making the fields φ1c, φ+, and θ− locked at their potential minimum. Here we note
that the HK⊥B term does not change its sign between the two phases, but the HKzB+ term does.
Hence the difference between the two phases is the pinning position of the total spin mode φ+. To
adiabatically connect the two phases preserving the energy gap, we must shift the expectation value
of φ+ by allowing a perturbation term like

g′KzB+

∫
dx sin

√
2φ1c sin 2φ+. (3.4.12)

We note that in the present system an additional spin U(1) symmetry forbids perturbations con-
taining the dual field θ+. However, the shift of the expectation value of φ+ necessarily breaks the
spin π rotation symmetry. Hence the quantum phase transition between the topological phase and
the laser-induced Kondo insulator is protected by the spin π rotation symmetry, being consistent
with the analysis of symmetry eigenvalues. We note that the perturbation (3.4.12) also breaks the
inversion symmetry. This fact is important for the topological properties discussed in the next
subsection.

To connect the ordinary Kondo insulator and the laser-induced Kondo insulator, we must shift
the expectation value of θ−. This procedure also breaks the spin π rotation symmetries. The
required perturbation can be obtained by bosonization of the last term in Eq. (3.4.5).

4.3 Protection by spatial inversion symmetry: role of the charge degrees of
freedom

Now we describe the symmetry protection of the topological phase. The topological phase ap-
proaches the Haldane phase in spin chains in the strong coupling limit U → ∞. Hence the topo-
logical phase of the 1D Kondo lattice is expected to be stable under either time-reversal, spatial
inversion, or spin dihedral symmetry, if U is sufficiently large and the charge degrees of freedom are
frozen in the low-energy part of the Hilbert space. However, if J⊥, Jz and U are small compared to
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the kinetic energy tc, we can no more regard the system as bosonic (spin) systems and must treat
it as interacting fermions. It was previously shown [216, 217] that the Haldane phase with mobile
charge degrees freedom is unstable and can be adiabatically connected to a trivial band insulator by
only breaking inversion symmetry, even if the time-reversal and spin rotation symmetries are pre-
served. This fact stems from that the charge fluctuations in the low-energy Hilbert space mixes the
integer-spin representation of the original spin chain and that of half-odd-integer spin, invalidating
the proof of the symmetry protection in Sec. 3.3 in Chap. 1. Hence the only protecting symmetry
of the topological phase is the inversion symmetry. Under the inversion symmetry, the degeneracy
of the entanglement spectrum, which is a fingerprint of the SPT phase, still persists [217]. A sim-
ilar degenerate structure of the entanglement spectrum is also observed in 1D topological Kondo
insulator [212] and 1D periodic Anderson model with Hund coupling [218], indicating the existence
of the SPT phase. A related study on a three-leg Hubbard ladder has been also performed [219].

We can check the above properties for the present Kondo lattice system by the bosonization
method. Let us first consider the strong coupling limit U →∞. In this case, the charge mode φ1c is
completely frozen to the potential minimum of the Umklapp term (3.2.25). The remaining degrees
of freedom are the total and relative spin modes φ±, θ±, and they are equivalent to the effective
theory of the corresponding spin ladder system [207, 208]. Hence the proof of symmetry protection
can be performed in parallel with the case of the spin ladder [214]. To connect the topological
phase with the trivial phases, a shift of the expectation value of φ+ must take place, which breaks
the time-reversal, spatial inversion, and spin dihedral symmetries. Hence the topological phase is
protected by those three symmetries. However, the situation is changed if we consider a weakly
interacting regime. If the Hubbard interaction U is sufficiently small, the Umklapp term is less
relevant than the Kondo couplings HK⊥B, HKzB+, and HKzB−. Thus the low-energy behavior is
mainly governed by the Kondo couplings. In this case, we can adiabatically connect the topological
phase and the ordinary Kondo insulator without closing the energy gap, by shifting the expectation
value of the charge mode. This is done by adding the following perturbation:

g′K⊥B

∫
dx cos

√
2φ1c cos 2θ− + g′KzB+

∫
dx cos

√
2φ1c cos 2φ+ (3.4.13)

which is generated by an artificial Kondo coupling

H ′K = J ′
∑
j,σ,σ′

c†jσσσσ′cj+1σ′ · Sfj + h.c.. (3.4.14)

This perturbation only breaks the inversion symmetry, and preserves the other symmetries. In
the present system, the charge U(1) symmetry prohibits vertex operators which involve the field
θ1c. Thus, the only possible way to connect the topological phase and the trivial phase using the
charge degrees of freedom is the shift of the expectation value of φ1c accompanied by the breaking of
inversion symmetry. From these observations, we conclude that the topological phase is protected
only by the inversion symmetry.

From the above argument, we can interpret the crossover from the fermionic SPT phase (pro-
tected by the inversion symmetry only) to the bosonic SPT phase (protected by the time-reversal,
inversion, and spin dihedral symmetries) via the bosonization language. In the weakly interacting
regime, the low-energy behavior of the charge mode is mainly determined by the Kondo coupling
rather than the Umklapp scattering due to the Hubbard repulsion. In this case, we can connect
the topological phase and the trivial phase by shifting the pinning position of the charge mode with
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breaking the inversion symmetry, while the time-reversal and the spin rotation symmetries are kept
intact. However, this shift cannot be reconciled with minimization of the Umklapp term HU . Hence
if we gradually increase the Hubbard repulsion U , the above procedure fails to work at some point.
After that, the topological phase and the trivial phase are separated by a quantum phase transition
if the time-reversal or the spin dihedral symmetry is present. We note that the perturbation (3.4.13)
vanishes if the charge mode is frozen at the potential minimum of the Umklapp term, 2

√
2φ1c = π.

Before closing this section, we clarify where the topological phase of the Kondo lattice stands
in the classification of SPT phases of interacting fermions. In non-interacting systems, topological
insulators protected by the inversion symmetry in 1D are classified [102, 103, 220] by integer Z,
which means that there are infinitely many different topological phases. However, when we allow
interactions as perturbation to systems, a part of nontrivial topological phases can be connected
to the trivial phase and free-fermion classification of topological phases is reduced to its subgroup
[105, 75, 221, 111, 112], as we have discussed in Sec. 3.5 of Chap. 1. In the case of inversion-
symmetric topological insulators, the classification is performed by several methods [222, 223, 224]
and is argued to reduce from Z to Z4 in the interacting case. Since the Haldane phase is classified
by Z2, two copies of them can be deformed into the trivial phase. Using the fact that the topological
phase of the 1D Kondo lattice approaches the Haldane phase in the strong coupling limit, we can
also deform the two copies of the model (3.2.1) into a trivial phase. Thus we conclude that the
topological phase in 1D Kondo lattice is specified by an integer 2 ∈ Z4 = {0, 1, 2, 3}.

5 Fate of edge states and experimental detection

We have demonstrated the topological phase of the 1D Kondo lattice is protected only by the
inversion symmetry when the charge fluctuations cannot be ignored, while the Haldane phase in
the strong coupling limit is also protected by the time-reversal and spin dihedral symmetries. The
change of the nature of the topological phase from fermionic to bosonic SPT phases leads to an
intriguing consequence in the fate of edge states of the topological phase. In the strong coupling
regime, the Haldane phase has spin-1/2 zero-energy states at the edge of the system. The edge states
are magnetically active, and have been detected by applying magnetic fields [225, 226]. On the other
hand, in the weak-coupling regime, the SPT phase is protected only by the inversion symmetry.
This means that the zero-energy edge state is absent in general, since the edges generically break
the inversion symmetry. Thus it is implied that the edge states gradually decrease their excitation
energies with increasing the Hubbard interaction U , and finally they turn into the zero-energy state
at some threshold value of U . Such “interaction-induced” edge states are one possible hallmark of
the crossover from fermionic SPT phases to bosonic ones.

Observation of such a crossover using the present cold-atom setup is intriguing but may be a
challenging issue. To detect a clear signature of the edge states, it is appropriate to create an
interface between the topologically nontrivial phase and the trivial phase [138, 227], since the true
edge of the atomic cloud is usually a metallic state due to a harmonic confinement potential. In
our setup, the interface can be easily created, since the topological-trivial phase transition is caused
by the laser irradiation, which can be performed in a spatially varying manner. The interface-
localized edge modes are, in principle, detected by combining a magnetic field and spin-resolved
quantum gas microscopy, by which antiferromagnetic correlations have been recently observed in
the Fermi-Hubbard model [228, 229, 230].
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6 Summary of this chapter

In this chapter, we have shown that cold-atom realization of the Kondo lattice model offers a
platform to investigate a 1D SPT phase and an associated quantum phase transition with high
contrabillity. By utilizing the spin-exchanging collisions with the help of the laser-induced mix-
ing of internal states, ultracold AEA in optical lattice can realize the Kondo lattice with tunable
anisotropic Kondo couplings, which is hard to be realized in solid state experiments. Since the
sign of the bare exchange coupling Vex can be controlled using the confinement-induced resonance
specific to 1D optical lattices [182], a large portion of the phase diagram in Fig. 4.2 can be ac-
cessed in this system. If we start from ferromagnetic Vex > 0, the SPT phase transition from the
topological phase to the laser-induced Kondo insulating state is possible. This phase transition is
protected by the inversion symmetry and the spin π rotation symmetries around the x or y axis,
and the only former symmetry stands for the topological properties. On the other hand, if we
switch on the laser coupling starting from antiferromagnetic Vex < 0, the ordinary Kondo insulator
is first changed into the Néel order, and finally turns into the laser-induced Kondo insulator. This
reentrant Kondo transitions associated with the Néel order are stable (at least T = 0) if the spin π
rotation symmetries are preserved.
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Chapter 4

Topological Pumping in Interacting
Systems

1 Introduction

In this chapter, we focus on a somewhat different topological phenomenon which is called topological
pumping. Adiabatic change of parameters of a Hamiltonian sometimes causes nontrivial effects
which cannot be found in its instantaneous ground state. Topological pumping, originally proposed
by Thouless [231], provides a prototypical example of such phenomena. Thouless considered a 1D
band insulator in a periodic lattice potential V (x) = V (x + a). Let us consider an adiabatic shift
of the lattice potential V (x − at/T ) parametrized by t. Since the lattice potential is periodic, so
is the Hamiltonian with respect to its parameter: H(t + T ) = H(t). The one-particle quantum
states in an energy band are then specified by the wave number kx and the parameter t. When
the lattice potential is adiabatically shifted by varying t, the particles move with the lattice, and
the Hamiltonian returns to its original form after a shift by one lattice spacing. The ground state
also returns to the initial one as long as the particles stay in the same band. However, the change
in the ground state during the cycle can cause a nonvanishing particle current. The total current
over one cycle is given by the Chern number, which takes an integer and characterizes topologically
distinct classes of the set of one-particle states defined in the (kx, t) plane. Hence the total current
is quantized, and this phenomenon is called the topological Thouless pumping. If we identify the
(kx, t) plane with the 2D reciprocal space, we find that the Thouless pumping shares the same
origin as the integer quantum Hall effect [232, 233] in which the quantized pumping corresponds
to the quantized Hall conductivity. Owing to its topological nature, the topological pumping is
robust against small deformation of the pumping protocol, and can be realized by various types of
cycles using lattice models [234, 235, 236, 237]. After almost 30 years since Thouless’s prediction,
the topological pumping was finally realized experimentally by using ultracold atoms in optical
superlattices [139, 140, 141] in which the periodic change of the lattice potential was created by
the change of the phase of the standing wave potential. Other schemes of manipulating an optical
superlattice for realizing the topological pumping have also been discussed [238, 239, 240, 241].

Since the Thouless pumping corresponds to the integer quantum Hall effect, it is natural to
ask whether we can obtain topological pumping which is a counterpart of quantum Hall states in
interacting systems, such as fractional quantum Hall (FQH) states (see Sec. 3.2 in Chap. 1). In
this chapter, we aim to construct nontrivial classes of topological pumping which correspond to

62



quantum Hall states created by strong interactions. We first consider topological pumping which
mimics the Hall response of the FQH states, and then focus on the case of the bosonic integer
quantum Hall (BIQH) state (see Sec. 3.4 in Chap. 1). Based on a quasi-1D limit of quantum
Hall states [242, 243, 244, 245], we can systematically construct strongly interacting models of
topological pumping and thus naturally extend the connection between the topological pumping
and the quantum Hall effect to interacting systems. Interestingly, it is shown that the quasi-1D
limit of the BIQH state is given by the Haldane phase [55, 56, 68, 69], which is a celebrated example of
a SPT phase in one dimension [246, 76, 77] as we have seen in Sec. 3.3 of Chap. 1. The mechanism
of the resulting topological pumping is interpreted in terms of changes in polarizations between
quantized values that correspond to two distinct gapped phases in the presence of the inversion
symmetry. The obtained topological pumping intertwining two-component bosons provides novel
interaction-induced topological pumping, and suggests an intriguing connection between the 2D
topological phases and 1D gapped phases.

2 Topological pumping as flux insertion through a thin torus

In this section, we explain our idea for obtaining models of 1D topological pumping systematically
from a so-called thin-torus limit of 2D quantum Hall states [242, 243, 244, 245] Let us consider a
bosonic or fermionic system composed of N particles of charge Q and mass M in a uniform magnetic
field B on a 2D torus of size Lx×Ly. We take the Landau gauge A = (0, Bx) and assume QB > 0.

The total number of flux quanta piercing the system is Nφ =
LxLy
2π`2

, where ` =
√

~
QB is the magnetic

length. The filling factor is defined as ν = N/Nφ. The single-particle spectrum is given by the

Landau levels En = ~Ω(n + 1
2) (n = 0, 1, . . . ), where ~Ω = ~2

2M`2
is the cyclotron energy. The

states in each level are Nφ-fold degenerate, and labeled in the present gauge by the wave number
km = 2πm

Ly
(m = 0, 1, · · · , Nφ − 1) in the y direction. In particular, the lowest-Landau-level (LLL)

wavefunctions are given by [247, 248]

ψm(r) =
1√

π1/2`Ly

∑
n∈Z

exp
[
− 1

2`2
(x− km`2 − nLx)2 + i

(
km +

nLx
`2

)
y
]
. (4.2.1)

This wavefunction is localized around x = km`
2 = ma with a width ` in the x direction, and

delocalized in the y direction; see the left panel of Fig. 4.1. Here, a = 2π`2/Ly = Lx/Nφ is the
spacing between neighboring wavefunctions, and used as an effective “lattice constant” later.

In Laughlin’s flux insertion argument [249], the quantized Hall conductivity can be derived as a
response to an adiabatic insertion of a flux quantum through the torus. The effect of flux insertion
is expressed by a twisted boundary condition, which results in the replacement km → km + φ

Ly
with

0 ≤ φ ≤ 2π. After inserting one flux quantum (φ = 2π), the Hamiltonian of the system goes back to
its original form. However, each Landau-level orbital shifts its position during this process. Hence,
if some of the Landau levels are completely occupied and others are empty, the system exhibits
the integer quantum Hall effect. The FQH effect is also understood in a similar manner by taking
into account the topological ground-state degeneracy on the torus [248, 250, 40]. In this case, the
insertion of one flux quantum transfers the initial ground state to another degenerate ground state,
and some integer multiple of flux quanta are required to go back to the initial ground state.

Keeping this picture in mind, let us gradually decrease the length Ly in the y direction while
keeping the total area LxLy fixed. By identifying the locations x = ma of the LLL orbitals (4.2.1)
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Figure 4.1: Quantum Hall system on a thin torus (left) and topological pumping (right). A flux φ
(in units of ~/Q) is inserted through a thin torus on which the LLL orbitals (4.2.1) are formed with
a constant spacing a. In a thin-torus limit Ly/`� 1, the flux insertion argument for the Laughlin
FQH states can be restated as the change between degenerate CDW ground states by a translation,
which results in fractional Thouless pumping. The figure is the case of ν = 1/3.

as a lattice coordinate, the original 2D system can be viewed as an effective 1D lattice model
[242, 243, 244, 245]. The effective model contains some long-range interactions, whose coefficients are
given by interaction matrix elements with respect to the LLL orbitals on concerned sites. However,
as we decrease Ly, the lattice constant a increases, and the LLL orbitals are mutually separated
further. Interactions for longer distances are thus suppressed more rapidly in this process, and the
physics for Ly/`� 1 is expected to be dominated by a few interaction terms at short distances.

If the ground state of a given quantum Hall state is smoothly changed without closing an
excitation gap with decreasing Ly, the ground state is expected to gradually acquires a 1D character
owing to the suppression of interactions for long distances. We can then view the ground state on
a thin torus as the 1D lattice counterpart of the quantum Hall state. It is then expected that the
insertion of a flux quantum through the thin torus induces quantized current in the x direction.
This phenomenon can be viewed as the topological pumping in the 1D model [251, 252].

3 Fractional charge pumping in the thin-torus limit of FQH states

Let us illustrate the above idea using the simplest FQH state, the Laughlin state of fermions at
ν = 1/3. It was shown that with decreasing Ly, the ν = 1/3 Laughlin state is smoothly deformed
into a charge-density-wave (CDW) state in which every third site is occupied by a particle [243].
Here, density-density interactions for nearest-neighbor and next-nearest-neighbor pairs of sites play
a dominant role and stabilize the CDW state. If a flux quantum is adiabatically inserted through a
thin torus, the LLL orbitals shift their positions by one lattice spacing a, and the CDW ground state
changes into another degenerate ground state [252] as shown in Fig. 4.1. The total current during
this shift of the ground state is equal to 1/3 if averaged in space; this corresponds to the fractional

Hall conductivity σxy = 1
3
Q2

h of the Laughlin state. Hence, as expected, the flux insertion for the
1D counterpart of the FQH state results in fractional Thouless pumping. Similarly to Laughlin’s
argument for the FQH effect [250], here the degeneracy of the ground states is essential in obtaining
the fractional pumping.

For a filling fraction with a denominator larger than 3, it is not clear whether the FQH state is
adiabatically connected to a CDW state with decreasing Ly. This is because in a thin torus, the
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density-density interactions that stabilize a CDW state can severely compete with other interaction
terms in which two particles hop in a center-of-mass-conserving manner [243, 244, 245, 253, 254].
However, if we keep only the density-density interactions and neglect other interaction terms, the
system exhibits a CDW ground state with q-fold degeneracy at every rational filing fraction ν = p/q
(with p and q being coprime) [244, 245, 243, 255]. The adiabatic shift of such a CDW state by one
lattice spacing clearly results in fractional Thouless pumping. Similar schemes for realizing fractional
pumping by CDW states have been discussed in literature [256, 257, 258, 259, 260], especially in
connection with the synthetic dimension technique [135] in cold atoms (see also Sec. 4.2 of Chap. 1).
In this technique, infinite-range interactions in the synthetic dimension stabilize CDW ground states
[257, 258, 260, 261, 262]. Although the topological pumping constructed here is just a translational
operation of the entire system and seems to be somewhat trivial, we will see that the case of the
BIQH state provides more nontrivial topological pumping.

4 Thin-torus limit of the bosonic integer quantum Hall state

Based on the correspondence between the quantum Hall states on the thin torus and the topological
pumping, we here construct the thin-torus counterpart of the BIQH state. Let us start with two-
component bosons in a uniform magnetic field on a torus described by the Hamiltonian

H =
∑
α=1,2

∫
d2rΨ(α)†(r)

[p−QA(r)]2

2M
Ψ(α)(r)

+
∑
α,β

g(αβ)

2

∫
d2rΨ(α)†(r)Ψ(β)†(r)Ψ(β)(r)Ψ(α)(r),

(4.4.1)

where Ψ(α)(r) (α = 1, 2) denotes the bosonic field operator for the α-th component. We assume
repulsive contact interactions g(αβ) > 0 between particles, and set g(11) = g(22) ≡ g for simplicity.
The filling factor for each component is set to unity so that the total filling factor is given by
ν = 1 + 1. The system possesses the U(1)×U(1) symmetry associated with the particle number
conservation in each component. Through exact diagonalization analyses [88, 89, 90], it was shown
that the BIQH state described by the effective Chern-Simons theory (1.3.50) appears when the ratio
of the intercomponent to intracomponent interactions, δ ≡ g(12)/g, is close to unity.

Within the LLL approximation, the field operators are expanded as

Ψ(α)(r) =

Nφ−1∑
m=0

b(α)
m ψm(r, φα), (4.4.2)

where b
(α)
m annihilates a particle in the m-th LLL orbital and satisfies the commutation relations

[b
(α)
m , b

(β)†
n ] = δαβδmn and [b

(α)
m , b

(β)
n ] = 0. To facilitate later discussions on topological pumping,

we have introduced a magnetic flux φα which couples to the α-th component so that the LLL
wave function ψm(r, φα) is given by the right-hand side of Eq. (4.2.1) with km replaced by km +
φα
Ly . Correspondingly, the positions of the LLL orbitals are shifted to x = (m + φα

2π )a in the α-th
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component. Substituting the expansion (4.4.2) into the Hamiltonian (4.4.1), we obtain

H =
1

2
~Ω
∑
α

N (α) +
∑
α

∑
j

∑
|n|≤m≤

Nφ
2

Vmnb
(α)†
j+nb

(α)†
j+mb

(α)
j+m+nb

(α)
j

+
∑
j

∑
−
Nφ
2
<m,n≤

Nφ
2

V (12)
mn (φ1 − φ2)b

(1)†
j+nb

(2)†
j+mb

(2)
j+m+nb

(1)
j . (4.4.3)

We note that the interactions in this Hamiltonian preserves the center-of-mass position in the
x direction. The interaction matrix elements are calculated by using the LLL wavefunctions as
[247, 245]

Vmn =
zmng

LxLy

∑
q

[
δ′n,nye

− 1
2
q2`2 cos(qxkm`

2) + (m↔ n)
]
, (4.4.4a)

V (12)
mn (φ) =

g(12)

LxLy

∑
q

δ′n,nye
− 1

2
q2`2 cos

[
qx

(
km −

φ

Ly

)
`2
]
, (4.4.4b)

where the sum is over the wave vector q = (2πnx
Lx

,
2πny
Ly

) (nx, ny ∈ Z), δ′n,ny is the modulo-Nφ

Kronecker delta, and zmn = 2−δm,|n|(1+δm,0)2
−δm,Nφ/2(1+δ|n|,Nφ/2)

is a factor for fixing the double
counting of some terms. If we take the limit Lx/` → ∞ (and thus Nφ → ∞) while keeping Ly/`
fixed, these elements are given more simply by

Vmn =
2zmng√
2πLy`

e−
1
2

(k2
m+k2

n)`2 , (4.4.5a)

V (12)
mn (φ) =

g(12)

√
2πLy`

e−
1
2

[(km−φ/Ly)2+k2
n]`2 . (4.4.5b)

Let us first consider the case when no flux is inserted through the torus: φ1 = φ2 = 0. When
we take the thin-torus limit Ly → 0, the only remaining interactions are on-site ones, which are the
m = n = 0 components of Eq. (4.4.3). We thus obtain

H =
∑
α=1,2

∑
j

V00n
(α)
j (n

(α)
j − 1) +

∑
j

V
(12)

00 n
(1)
j n

(2)
j , (4.4.6)

where we ignore the constant kinetic energy of the LLL. The ground state of the thin-torus Hamil-
tonian (4.4.6) is easily obtained. For δ < 1, where the intracomponent interaction is dominant

(2V00 > V
(12)

00 ), the ground state is the product state of Bose Mott insulators

∣∣∣· · · n(1)
j · · ·

· · · n(2)
j · · ·

〉
=
∣∣∣· · · 1 1 1 1 · · ·
· · · 1 1 1 1 · · ·

〉
. (4.4.7)

For δ > 1, where the intercomponent interaction is dominant (2V00 < V
(12)

00 ), the ground states are
ferromagnetic states ∣∣∣· · · n(1)

j · · ·
· · · n(2)

j · · ·

〉
=
∣∣∣· · · 2 2 2 2 · · ·
· · · 0 0 0 0 · · ·

〉
,
∣∣∣· · · 0 0 0 0 · · ·
· · · 2 2 2 2 · · ·

〉
, (4.4.8)
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if we fix only the total number of particles. If we fix the number of particles in each component,

a phase separation occurs. The point δ = 1, at which 2V00 = V
(12)

00 , is special—the on-site energy

is the same for |n(1)
j , n

(2)
j 〉 = |2, 0〉 , |1, 1〉 , |0, 2〉, leading to 3Nφ-fold degeneracy of the ground state.

This macroscopic degeneracy in the thin-torus limit is lifted by fluctuations as we increase Ly.
To obtain a unique ground state at δ = 1, we proceed away from the thin-torus limit by increasing

Ly and consider leading fluctuations. The next-leading interactions are the nearest-neighbor ones,

which are V10, V
(12)

10 (= V
(12)
−1,0), and V

(12)
01 terms. The V

(12)
01 term involves hopping of particles while

the other ones are of an electrostatic type. To discuss the competition of these terms, we restrict
ourselves to the low-energy manifold of the Hilbert space spanned by the 3Nφ-fold degenerate ground
states of Eq. (4.4.6) at δ = 1. The thin-torus ground states (4.4.7) and (4.4.8) for δ 6= 1 also reside

in this manifold. In this restricted subspace, in which the constraint
∑

α n
(α)
j = 2 is satisfied at

every site, the operators

Sj =
1

2

∑
α,β

b
(α)†
j σαβb

(β)
j (4.4.9)

satisfy the commutation relations of the SU(2) generators and have the fixed magnitude S2
j = 1(1+1)

as is known in the Schwinger boson formalism [263]. Here, σ = (σx, σy, σz) is a set of Pauli matrices.
The Hamiltonian can thus be written in terms of the spin-1 operators as

H =
∑
j

[
Jxy(S

x
j S

x
j+1 + Syj S

y
j+1) + JzS

z
jS

z
j+1 +D(Szj )2

]
, (4.4.10)

where Jxy = 2V
(12)

01 , Jz = 2(V10−V (12)
10 ), and D = 2V00−V (12)

00 . This has the form of the XXZ chain

with a single-ion anisotropy [264, 265, 67]. At δ = 1, in particular, since V10 = 2V
(12)

10 = 2V
(12)

01 , the
effective Hamiltonian is given by the spin-1 antiferromagnetic Heisenberg chain

H = J
∑
j

Sj · Sj+1, (4.4.11)

where we set V10 ≡ J > 0. This Hamiltonian has a non-degenerate ground state, that is, the
Haldane state. The macroscopic degeneracy of the ground state of Eq. (4.4.6) is thus lifted by the
leading fluctuations.

At this stage, it is interesting to compare the phases of the spin-1 chain (4.4.10) [264, 265, 67]
with the phase diagram of the original 2D system. The two-component bosons (4.4.1) in two
dimensions show a couple of phases when varying the interaction ratio δ (Fig. 4.2) [90]. When δ is
small (numerically δ . 0.2), the two components are nearly decoupled and form the Moore-Read
states [266] independently. In the opposite limit, when δ is large (numerically δ & 2.5), the 2D
ground state exhibits a phase separation. The BIQH state appears around δ = 1 intervening the
two limiting cases [88, 89, 90]. Our mapping to a spin chain (4.4.10) qualitatively reproduces these
phases as summarized in Fig. 4.2. When Ly/` is sufficiently small, the single-ion anisotropy D
is the most dominant term in Eq. (4.4.10). For δ < 1, we have D > 0, and the ground state is
a large-D state, which is equivalent to the doubled Mott insulators in Eq. (4.4.7). For a single-
component Bose gas at the filling factor ν = 1, it was shown that the ground state in the thin-torus

limit is given by a Bose Mott insulator |· · · n(α)
j · · ·〉 = |· · · 1 1 1 1 · · ·〉, and then two CDW states

|· · · n(α)
j · · ·〉 = |· · · 2 0 2 0 · · ·〉 and |· · · 0 2 0 2 · · ·〉 become nearly degenerate with the ground

state as we increase Ly/`; these three states naturally evolve into the three-fold degenerate ground
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Figure 4.2: Schematic phase diagram of two-component bosons (4.4.1) at ν = 1 + 1 in the space of
the ratio of the intercomponent to intracomponent interactions, δ = g(12)/g, and the length Ly in
the y direction. A quasi-1D limit Ly/` � 1 is described by the spin-1 chain (4.4.10) while the 2D
phase diagram has been studied in Ref. [90]. The product of Bose Mott insulators [(Mott)2] in the
quasi-1D limit is expected to evolve into the the product of Moore-Read states [(MR)2] for δ . 0.2
in the 2D case. A phase separation (PS) occurs for δ > 1 in the quasi-1D limit and for δ & 2.5
in the 2D case. A Haldane phase that intervenes between the regions of (Mott)2 and PS in the
quasi-1D limit is expected to evolve into the BIQH phase in the 2D system.

states of the bosonic Moore-Read state on a 2D torus [267]. Similarly, the doubled Mott insulators
in Eq. (4.4.7) is expected to evolve into the doubled Moore-Read states found in the 2D system.
For δ > 1, we have D < 0 and Jz < 0, and the spin chain (4.4.10) exhibits ferromagnetic ground
states as in Eq. (4.4.8); if the total magnetization of the system is fixed at zero, a phase separation
occurs as found in the 2D system. As we increase Ly/`, the Haldane phase appears between the
large-D and ferromagnetic phases in the spin-chain model, and its range along the δ axis gradually
increases. Owing to the uniqueness of the ground state and high entanglement between the two
components, it is natural to speculate that this phase evolves into the BIQH phase in the 2D case.

Next, let us consider the thin-torus limit in the case when some fluxes φα are inserted through
the torus. Since the Hamiltonian (4.4.3) depends on the fluxes only through φ1−φ2, we set φ1 6= 2πn
(n ∈ Z) and φ2 = 0 without loss of generality. In this case, since the flux causes lattice mismatch
between the two components, the only remaining interaction in the limit Ly/` → 0 is the on-site
intracomponent one V00, and the intercomponent interactions completely disappear. The ground
state is thus the doubled Mott insulators (4.4.7) at any δ. We note that this fact does not contradict
the above identification of the BIQH state with the Haldane phase, since the flux insertion breaks
the inversion symmetry of the system (except at φ1 = π) and thus there is no clear distinction
between the Haldane phase and the Bose Mott insulator [268, 213, 237]. In the next section, we
show that the change in the ground state during the adiabatic flux insertion is related to the Hall
response of the BIQH state, leading to topological pumping in the quasi-1D system.
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5 Off-diagonal topological pumping in the thin-torus limit

In this section, we describe the 1D topological pumping which mimics the BIQH effect, and thereby
reinterpret the fact that the thin-torus counterpart of the BIQH state is the Haldane phase. We
start from the two-component Bose system (4.4.1) on a 2D torus, and consider its Hall response.
As discussed in Sec. 4, we introduce a magnetic flux φα (α = 1, 2) through the torus, which results
in the twisted boundary condition for the α-th component in the y direction. We also introduce a
magnetic flux θα (α = 1, 2) through the other direction of the torus, which results in the analogous
twisted boundary condition in the x direction. Then the Hall response of the α-th component to
the flux insertion for the β-th component (α, β = 1, 2) can be expressed by the many-body Chern
number [252]

Cαβ =
1

2πi

∫ 2π

0
dθα

∫ 2π

0
dφβ(〈∂θαψ|∂φβψ〉 − 〈∂φβψ|∂θαψ〉), (4.5.1)

where |ψ(θα, φβ)〉 is the many-body ground state for the twists θα and φβ for the α- and β-th
components in the x and y directions, respectively, while the other twisting angles are set to zero.
The Chern-Simons theory (1.3.50) of the BIQH effect corresponds to C11 = C22 = 0 and C12 =
C21 = 1. From this effective theory, we can read off that a probe electric field for one component
induces the quantized Hall response in the other. These responses result in “off-diagonal” topological
pumping in the thin-torus limit as we see below.

Hereafter we focus on the responses corresponding to C11 and C21. These can be analyzed by
setting φ2 = 0 and adiabatically changing the pumping parameter t ≡ φ1

2πT from 0 to T . The Hall
current in the x direction is identified as the pumped charge. For fixed t, it is useful to introduce
the Berry phase

γα(t) = −
∫ 2π

0
dθα 〈ψ(θα, t)| ∂θα |ψ(θα, t)〉 (mod 2π), (4.5.2)

which is associated with the change in the ground state |ψ(θα, t)〉 when θα is adiabatically changed
from 0 to 2π. The Chern number (4.5.1) can then be rewritten as

Cα,β=1 = − 1

2π

∫ T

0
dt ∂tγα(t). (4.5.3)

In this expression, the quantized Hall response or equivalently the quantized charge pumping can
be understood as 2πn (n ∈ Z) change in the Berry phase γα(t) over the pumping process [269].

A more intuitive understanding of the quantized pumping can be gained by introducing the
polarization. To introduce it, we define

zα(t) = 〈ψ(t)| exp

[
2πi

Lx

∫
dr xΨ(α)†(r)Ψ(α)(r)

]
|ψ(t)〉 , (4.5.4)

where |ψ(t)〉 = |ψ(θα = 0, t)〉. This is convenient in describing the center-of-mass position of the
particles in the α-th component in the x direction since the position x is defined modulo Lx under
the periodic boundary condition. Within the LLL approximation, we can exploit the fact that j-th
LLL orbital for the α-th component is localized around xα(j) = (j + t

T δα,1)a in the x direction
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(with larger spacing a for smaller Ly/`), and approximate zα(t) as

zα(t) ≈〈ψ(t)| exp
[ 2πi

Nφa

∑
j

xα(j)n
(α)
j

]
|ψ(t)〉

= 〈ψ(t)| exp
[2πi

Nφ

∑
j

jn
(α)
j +

2πit

T
δα,1

]
|ψ(t)〉 . (4.5.5)

This resembles the expectation value of the Lieb-Schultz-Mattis twist operator [270, 271, 272, 273,
274, 275]. The phase of zα(t) gives the polarization [276, 277]

Pα(t) =
1

2π
Im ln zα(t) (mod 1). (4.5.6)

Importantly, the polarization is directly related to the Berry phase as [278, 279, 280, 276]

Pα(t) = − 1

2π
γα(t). (4.5.7)

The Chern number can therefore be rewritten as the change in the polarization over the pumping
cycle:

Cα,β=1 = ∆Pα =

∫ T

0
dt ∂tPα(t). (4.5.8)

The BIQH effect should thus correspond to the topological pumping with ∆P1 = 0 and ∆P2 = 1.
Let us now discuss in detail the topological pumping in the thin-torus limit of the BIQH state.

The pumping protocol in the present case is not just the translation but involves the change of
intercomponent interactions, in sharp contrast with the FQH cases discussed in Sec. 3. Since the
Hamiltonian (4.4.3) in the LLL basis is invariant under the combined operations of the spatial
inversion j → Nφ − j and the interchange of two components 1↔ 2, zα(t) in Eq. (4.5.5) satisfies

z1(t) = e2πit/T z∗2(t), (4.5.9)

which indicates P1(t) +P2(t) = t/T . Thus, ∆P1 = 0 implies ∆P2 = 1 and vice versa. Furthermore,
by exploiting the invariance of the pumping protocol under the combined operations of the spatial
inversion and time reversal t → −t. we find Pα(−t) = −Pα(t), from which we obtain ∆Pα =

2
∫ T/2

0 dt ∂tPα(t). Thus, half of the expected changes ∆Pα = δα,2 in the polarizations over one cycle
must occur during t ∈ [0, T/2]:

Pα(T/2)− Pα(0) =
1

2
δα,2. (4.5.10)

To discuss the variation of the polarizations Pα(t) as functions of t, it is important to notice
that the system possesses the spatial inversion symmetry at t = 0 and t = T/2. Therefore, the
polarization Pα must be quantized to 0 or 1/2 at these values of t. It is known that in the presence
of the inversion symmetry, a change in the polarization between these quantized values in general
signals a phase transition [273, 274]. The polarization can therefore be used as an order parameter
for detecting 1D topological phases protected by the inversion symmetry [273, 274, 281, 220]. Similar
results can also be obtained through the quantization of the Berry phase [282, 283, 284, 285, 286].
At t = 0, the thin-torus limit of the BIQH state is given by the Haldane state as discussed in
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Figure 4.3: Schematic picture of of the off-diagonal topological pumping in the thin-torus limit of
the BIQH state. The upper and lower chains describe the first and second components, respectively.

Sec. 4; the Haldane phase is known to be a topological phase protected by the inversion symmetry
[246, 76, 77], and has the polarizations [273, 274]

P1(0) = P2(0) = Nφ/2. (4.5.11)

At t = T/2, the ground state in the thin-torus limit is given by the doubled Mott insulators; a
direct calculation using Eq. (4.4.7) yields

P1(T/2) = Nφ/2, P2(T/2) = (Nφ + 1)/2. (4.5.12)

The Haldane phase and the doubled Mott insulators have the different polarizations (4.5.11) and
(4.5.12), and thus are distinct phases as long as the system possesses the inversion symmetry.
The topological pumping can be interpreted as a process of connecting between the two phases
smoothly by breaking the inversion symmetry. The idea of utilizing symmetry-breaking perturba-
tions to connect between otherwise distinct gapped phases has also been used in other examples
of topological pumping such as those based on the Su-Schrieffer-Heeger model [234, 235, 287], the
spin-Peierls phases [236] (equivalent to an interacting Su-Schrieffer-Heeger model via the Jordan-
Wigner transformation), and the Haldane insulator phase of an extended Bose-Hubbard model
[237]. We note that the polarizations in Eqs. (4.5.11) and (4.5.12) are consistent with the relations
(4.5.10); conversely, the relations (4.5.10) require the appearance of topologically distinct phases
(in an inversion-symmetry-protected sense) at t = 0 and T/2. This gives an explanation on why
the Haldane phase, a typical example of a 1D SPT phase, should emerge in the thin-torus limit of
the BIQH state.

Figure 4.3 summarizes the process of the off-diagonal topological pumping in the thin-torus
limit. The Haldane phase at t = 0 can intuitively be described as localization of bosons at bonds of
the lattice in a way similar to that of one-component bosons [213]. By shifting the lattice for the
first component, the inversion symmetry is broken and the ground state is smoothly deformed into
the doubled Mott insulators at t = T/2, and finally returns to the original ground state at t = T .
During this process, the bosons in the second component are pumped by one lattice spacing while
the bosons in the first component stay around the same positions.

Two remarks are in order. First, although the Haldane phase in the spin-1 chain can be protected
not only by the inversion symmetry but also by the time-reversal or the spin rotation symmetry
[246, 76, 77], the latter two symmetries do not protect the Haldane phase in the case of soft-core
bosons as in the present case [268, 213, 237]. This is because the spin-1 degrees of freedom required
for the symmetry protection argument are not perfectly formed in the presence of fluctuations in
on-site particle numbers. The inversion symmetry is thus the only symmetry that protects the
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Figure 4.4: Energy spectrum of the Hamiltonian (4.4.3) as a function of Ly/` for (a) Nφ = 6 and (b)
Nφ = 7. The ground-state energy is subtracted from the spectrum. Circles indicate eigenenergies
in the equal-population case N1 = N2 = Nφ. Crosses indicates eigenenergies in the minimally
imbalanced case (N1, N2) = (Nφ + 1, Nφ − 1). The two lowest energies for each pseudomomentum
are shown. The data for the largest Ly/` correspond to the case of Lx = Ly. Dashed lines indicate
the energy gaps 0.721J and 0.857J of the spin-1 Heisenberg chain (4.4.11) with Nφ = 6 and 7

spins, respectively, where J is given by V10 = 2V
(12)

10 in Eq. (4.4.5) (we note that the gap in the
thermodynamic limit [288, 289] is given by 0.410J).

Haldane phase at t = 0 in the present case. The second remark is on the mapping to a spin-1 chain
done in Sec. 4. In the mapping from the thin-torus Hamiltonian to a spin chain in the FQH cases,
the inversion symmetry is sometimes broken since the mapping process involves grouping of several
neighboring sites starting from CDW ground states [253, 254]. In the case of the BIQH state, in
contrast, the mapping to a spin chain retains the inversion symmetry of the original system, since
each spin-1 degree of freedom is composed of bosons at the same site.

To support the above picture of topological pumping, we have performed exact diagonalization
calculations for the Hamiltonian (4.4.3) with the number of flux quanta up to Nφ = 7. We consider
contact interactions with g(12) = g. Figure 4.4 presents the energy spectrum as a function of Ly/`.
The ground state is found to remain in the sector with zero pseudomomentum, indicating that the
BIQH state in two dimension is smoothly deformed into the Haldane state in the thin-torus limit.
For Ly/` . 5, the energy gap above the ground state agrees well with the finite-size energy gap
of the spin-1 Heisenberg chain (4.4.11) (dashed lines) calculated by KOBEPACK [290]. Reflecting
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Figure 4.5: The polarizations Pα (left top), the amplitudes |z1| = |z2| of the twist operators (left
bottom), and the energy spectrum (right) as functions of the pumping parameter t ∈ [−T/2, T/2),
for Nφ = 6 and (a) Ly/` = 2.5, (b) 3.5, and (c) 5.0. Circles and crosses indicates eigenenergies in
the equal-population and minimally imbalanced cases, respectively, as in Fig. 4.4. Since the energy
spectrum is symmetric around t = 0, it is shown only for t ∈ [0, T/2].
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the large ground-state degeneracy in the thin-torus limit, a large number of eigenenergies collapse
onto the ground-state energy with decreasing Ly/`. For Ly/` & 5, the energy gap stay around a
constant value, indicating the convergence to a 2D system. Figure 4.5 presents the polarizations
Pα, the amplitudes |z1| = |z2| of the twist operators, and the energy spectrum as functions of the
pumping parameter t. The ground state is found to remain in the zero-pseudomomentum sector in
this process also. The calculated polarizations smoothly connect between Eqs. (4.5.11) and (4.5.12)
for the Haldane state (t = 0) and the doubled Mott insulators (t = ±T/2). While the polarization
of the first component stays around P1 = 0, the second component shows ∆P2 = 1 over the cycle,
clearly signaling the off-diagonal topological pumping. As we decrease Ly/`, long-range interactions
are suppressed and the system gradually acquires a 1D character. Correspondingly, the change in
the polarization becomes shaper in the quasi-1D limit. A rapid change in the center-of-mass position
(and thus the polarization) has also been observed in 1D topological pumping [139, 140, 239, 241].
When the rapid crossover from the Haldane state to the doubled Mott insulators occurs, the energy
gap becomes small and the amplitudes |z1| = |z2| of the twist operators decrease. This indicates
the increase in the localization length of the many-body wavefunction in this regime—while |zα|
converges to unity in the thermodynamic limit in 1D gapped systems, its value can be suppressed
when the system size is smaller than or comparable to the localization length [277, 274, 273]. This
behavior can be explained by the suppression of on-site particle number fluctuations when decreasing
Ly/`: If such fluctuations are completely absent, the pumping cycle is described by the spin-1 chain
model (4.4.10), in which the Haldane phase and the doubled Mott insulators cannot be connected
without closing a gap.

6 Summary of this chapter

In summary, we have constructed strongly interacting models of topological pumping by using the
thin-torus limit of 2D quantum Hall states. The thin-torus limit of the FQH states is given by CDW
ground states; adiabatically connecting between degenerate CDW ground states gives the fractional
Thouless pumping. As a more nontrivial example, we have constructed topological pumping which
corresponds to the BIQH effect of two-component bosons. The quasi-1D counterpart of the BIQH
state is identified as the Haldane phase, and adiabatically connecting between the topological Hal-
dane phase and the trivial doubled Mott insulators constitute the off-diagonal topological pumping
in which the translation of the lattice potential for one component induces a current in the other.
We have elucidated the nature of the topological pumping via the change in the polarizations be-
tween inversion-symmetry-protected quantized values. Since the idea of connecting between the
Haldane and trivial phases by inversion-symmetry-breaking perturbations does not depend on the
details of the system, the obtained off-diagonal topological pumping should not be limited to the
thin-torus model considered in this paper. While the time-reversal symmetry is broken in quantum
Hall states and related topological pumping, it is an intriguing direction to construct a bosonic ver-
sion of time-reversal-symmetric Z2 pumping [291] which may correspond to 2D bosonic topological
insulators [292, 293].
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Chapter 5

Conclusion

In this thesis, we have concentrated on two aspects of quantum many-body systems: the Kondo
effect and topological phenomena. Motivated by recent development of experimental technique in
ultracold atoms, we have proposed possible realizations of such phenomena and have investigated
their properties.

In Chap. 2, we have proposed that intense laser application to alkaline-earth(-like) atoms induces
a novel Kondo effect. The peculiar properties of this laser-induced Kondo effect consist of two
kinds. The first point is that we can manipulate the Kondo effect with high controllability. While
the Kondo interactions in ordinary solid state systems are intrinsic to materials and are difficult to
control, here the Kondo coupling in this setup can be controlled by varying the laser strength and
frequency. Also, since the laser can be manipulated in real time, the laser-induced Kondo effect
provides a versatile platform to investigate the Kondo effect in nonequilibrium situations. In fact, we
have demonstrated that the laser-induced Kondo effect indeed persists under the strong irradiation,
overcoming the heating effect. The other peculiar feature of the laser-induced Kondo effect is the
laser-spin coupling. Since the polarization of the laser field couples with the spin degrees of freedom
of atoms, the laser-induced Kondo effect realizes an unusual fixed point where the Kondo “singlet”
is different from the ordinary one. We have shown in Chap. 3 that this laser-induced Kondo effect
is certainly distinguished from the ordinary Kondo state by comparing their symmetry eigenvalues
in terms of the spin π rotation. Thus the ultracold alkaline-earth atoms offer a rare example of
realization of the both types of the Kondo effect.

In Chap. 3, we have further extended the analysis of the Kondo lattice in ultracold atoms to 1D
systems, and have shown that the 1D Kondo lattice hosts a SPT phase. Although the 1D Kondo
lattice is rarely realized in solid state systems, ultracold atoms can realize the SPT phase and the
associate topological phase transition in a controllable manner. We have demonstrated that the
SPT phase of the 1D Kondo lattice is only protected by the inversion symmetry, in sharp contrast
with its strong-coupling counterpart, the Haldane phase. This feature is due to the existence of the
charge degrees of freedom to the Kondo lattice. We have elucidated that the charge mode plays a
key role to understand the difference between the fermionic SPT phase and the bosonic SPT phase
realized in the strong coupling limit.

In Chap. 4, we have focused on topological pumping, which was recently realized in cold-atom
experiments. Here we have presented a systematic construction of topological pumping which
corresponds to quantum Hall states created by strong interactions. By utilizing the thin-torus
limit of fractional quantum Hall states, we have shown that the fractional charge pumping emerges
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from the sliding of CDW states. Furthermore, we have constructed interaction-induced topological
pumping which is obtained from the thin-torus limit of the bosonic integer quantum Hall state. This
topological pumping is given by the Haldane phase, and conversely the condition of the off-diagonal
topological pumping naturally explains why the Haldane phase appears in the thin-torus counterpart
of the bosonic integer quantum Hall state. Since the mechanism of the topological pumping does not
depend on details of the system and only relies on the picture of connecting between two topological
distinct phases, our finding offers a systematic understanding of topological pumping in interacting
systems.
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