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Abstract

Since the discovery of high-Tc cuprates, the unconventional superconductivity has been at-
tracted much attention for its novel property, pairing mechanism and potential applicability
to the engineering. In particular, the class of heavy fermion superconductors often exhibits
various interesting phenomena such as spin-triplet pairing and coexistence with a magnetic
order. However, the presence of strong electronic correlations and complicated multi-degrees
of freedom has prevented us from fully understanding such novel properties. In this situation,
group theoretical classification of gap functions, which provides definite statements indepen-
dent of the details of materials, has played an essential role for an analysis. Early works,
however, were devoted to the gap classification for single orbital systems, as is summarized
in the review by Sigrist and Ueda [1], and thus, the attention should be paid in its use since
the actual gap structure does not exactly have such simple momentum dependence or nodal
structure.

In this thesis, we first propose an exotic multi-gap structure in the heavy fermion super-
conductor UPt3 as a remarkable example, from a gap analysis based on the first-principles
calculations [2]. The obtained E2u state has in-plane twofold vertical line nodes, axial point
and horizontal line nodes on each Fermi surface, which is completely different from the pre-
vious phenomenological models. Such a nodal structure can be hardly understood based on
the results in Ref. [1] and requires careful consideration on the gap functions in the basis
of j = 5/2 space. In addition, Micklitz and Norman demonstrated in their pioneering work
that new types of symmetry protected nodes can appear at the Brillouin zone boundary in
UPt3 [3], which is also observed in the microscopic calculations [2]. These facts imply that it
is necessary to revisit the gap classification in symmorphic/non-symmorphic superconductors
by explicitly considering the multi-degrees of freedom including the spin, orbital, and sub-
lattice degrees of freedom. Motivated by such observations, we then provide general group
theoretical classification of the gap functions in multiorbital superconductors [4] and in non-
symmorphic superconductors [5]. In the former study [4], we perform the gap classification
by introducing generalized Cooper pairs, which possess spin-orbital coupled (multipole) de-
grees of freedom, instead of the conventional spin-singlet/triplet in the single orbital systems.
From the classification, we realize that a gap function with Γ9 ⊗Γ9 in D6 possesses nontrivial
momentum dependence that is different from the usual spin 1/2 classification. Indeed, the
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present classification can describe the emergent twofold vertical line nodes in E2u pairing
states of UPt3. Furthermore, we show that unconventional gap structure can be realized in
the BCS approximation for a purely local interaction, which implies the emergence of the
electron-phonon mediated unconventional superconductivity. In the latter study [5], we ex-
tend the gap classification to the non-symmorphic magnetic space groups, which have been
less understood in spite of the growing interest in the superconductors coexisting with a mag-
netic order. The obtained results are applied to the analysis of superconductivity in UCoGe
and UPd2Al3. Based on the weak coupling BCS theory, we show that the UCoGe-type ferro-
magnetic superconductors must have horizontal line nodes on either the kz = 0 or kz = ±π/c
plane. On the other hand, in UPd2Al3-type antiferromagnetic superconductors, Ag-type gap
functions possess line nodes in the antiferromagnetic Brillouin zone boundary perpendicular
to the c-axis, namely, the conventional fully gapped s-wave superconductivity is forbidden
regardless of the pairing mechanism. Our present gap classification as well as the exotic
multi-gap structure in UPt3 shed new light on the understanding of various unconventional
superconductors with spin-orbit coupling and multi-degrees of freedom.
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Chapter 1

Introduction to the superconductivity
with multi-degrees of freedom

In the celebrated microscopic theory by Bardeen, Cooper, and Schrieffer (BCS) in 1957 [6], the
superconducting state is described as a condensation of Cooper pairs. The resulting Cooper
pair wave function or gap function plays a role of the superconducting order parameter, which
spontaneously breaks the U(1) gauge symmetry below the transition temperature Tc.

The BCS theory excellently explained interesting phenomena in the traditional supercon-
ductivity. However, the class of heavy fermion superconductors discovered around 1980 [7]
and also the high-Tc cuprates [8] did not fit the BCS theory. The power-law temperature
behavior in various thermodynamic quantities at low temperatures observed in these super-
conductors was drastically different from the conventional BCS superconductors. In the early
stage, it was clear that an extension of the BCS theory is inevitable. It was soon discussed
that spin-fluctuations can lead to anisotropic pairing states [9, 10], in connection with super-
fluid 3He [11]. In such unconventional superconductivity, one or more symmetries in addition
to the U(1) symmetry are broken below Tc.

For instance, phase sensitive experiments such as π-junction and angle-resolved measure-
ments clarified that the high-Tc cuprates and also CeCoIn5 possess the dx2−y2-wave pairing
state [12, 13, 14], which breaks the C4 rotational symmetry in the tetragonal crystal struc-
ture. In such a case, low-energy excitations below Tc are dominated by nodal quasi-particle
excitations around symmetry protected line nodes (gap zeros) on the Fermi surfaces. This
situation is incompatible with the fully gapped s-wave state in the conventional BCS theory.
The gap structure is closely related to the pairing symmetry and the pairing mechanism.
Thus, the superconducting gap function, which is one of the most fundamental quantities,
continues to be hotly debated in this research field.

In this context, group theoretical classification of the superconducting gap functions
is important and useful to investigate a variety of superconductors. Indeed, the early
works [15, 16, 17] of classification have been indispensable for the analysis of various uncon-
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ventional superconductors including heavy fermion [18, 19, 20], cuprate [21], and ruthenate
superconductors [22, 23, 24].

1.1 Overview of the early works
One of the main assumptions of early works is the presence of space inversion and time
reversal symmetries. In such a case, there appears twofold degeneracy at every k point in
energy spectra, which is a consequence of the Kramers theorem. Furthermore, in the presence
of spin-orbit coupling, momentum (or orbital) and spin degrees of freedom are no longer
independent each other, and then only simultaneous transformations of the real and spin
spaces can be the symmetry operations, which leave the system invariant. Thus, if we regard
the Kramers degrees of freedom as those come from pure spin 1/2, the transformation of the
Bloch states ψ(k), or the corresponding creation operators c†(k) in the second quantization,
is given by

p c†
nσ(k) p−1 =

∑
σ′
c†

nσ′(pk)D(1/2)
σ′σ (p), (1.1.1)

for any rotation p ∈ SU(2), which acts on both the real and spin spaces. Here, n denotes the
band index and σ denotes the Kramers index. D(1/2)(p) is the two dimensional representation
matrix of the irreducible representation ℓ = 1/2 in SU(2) group, which corresponds to the
electron spin. Note that with respect to the symmetry, the superconducting gap functions
∆(k) can be regarded as the Cooper pair wave functions. Therefore, for the zero momentum
Cooper pairs, Eq. (1.1.1) implies that (the inter-band components of) the gap functions are
transformed as [1],

p : ∆σ1σ2(k) →
∑
σ′

1σ′
2

D
(1/2)
σ1σ′

1
(p)∆σ′

1σ′
2
(p−1k)(D(1/2)

σ′
2σ2

(p))T . (1.1.2)

Equation (1.1.2) gives us the basis of gap classification. Here, AT denotes the transpose
matrix of the matrix A. Note that in the absence of spin-orbit coupling, the real and spin
space transformations can be treated independently. The classification based on such a limit
was developed in Refs. [25, 26], although we do not consider in this thesis.

On the other hand, Landau theory for the second order phase transition tells us that the
order parameter of the symmetry broken phase has to belong to an irreducible representa-
tion of the broken symmetry through the transition. In the class of superconductors called
anisotropic superconductors, the point group symmetry in addition to the U(1) symmetry is
broken below Tc, and thus, the order parameters also belong to an irreducible representation
of the point group symmetry. For example, when the order parameter belongs to ith basis of
Γ , which is an irreducible representation in the point group symmetry P , the corresponding
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gap function ∆(Γ,i)(k) satisfies,

p : ∆(Γ,i)
σ1σ2(k) →

∑
j

∆(Γ,j)
σ1σ2(k)D(Γ )

ji (p), (1.1.3)

for all p ∈ P in addition to Eq. (1.1.2). Here, D(Γ )(p) is the representation matrix of p in Γ .
Since the space inversion operator I is not an element of SU(2) group but may be that of P ,
we define that D(Γ )(I) for the Bloch states is identical with the identity matrix as usual. The
equivalence between Eqs. (1.1.2) and (1.1.3) imposes the constraint to the momentum and
the spin dependence, and in certain cases, can yield symmetry protected nodal structure.

In particular, we can immediately see that the even and odd parity representations cannot
be mixed in the superconducting states in the presence of the space inversion symmetry,
which is one of the key consequences of the classification based on the point group symmetry.
Such superconductors are often called centrosymmetric superconductors. Because fermion
antisymmetry imposes an additional constraint for the gap functions ∆(k) = (∆(−k))T , a
spin-singlet pairing ∆g(k) is of even parity and a spin-triplet ∆u(k) is of odd parity in the
centrosymmetric superconductors. These take the forms,

∆g
σσ′(k) = φ(k)(iσy)σσ′ , (1.1.4)

∆u
σσ′(k) = d(k) · (iσσy)σσ′ , (1.1.5)

with an even φ(k) and an odd function d(k) of momentum k. Here, σ = (σx, σy, σz) denotes
the usual Pauli matrix and the three dimensional vector d(k) defined in Eq. (1.1.5) is called
d-vector. As is well-known, d-vector plays an important role for the nodal structure and the
magnetic response in spin-triplet superconductors. By use of the definitions (1.1.2), (1.1.4),
and (1.1.5), we find that p ∈ P transforms each gap function as follows,

p : φ(k) → φ(pk), for even parity, (1.1.6)
p : d(k) → (pd)(pk), for odd parity. (1.1.7)

From Eq. (1.1.7), we find that d(k) transforms like a usual (pseudo) vector for the point
group operations, which is the origin to be called d-vector. Eqs. (1.1.6) and (1.1.7) are the
basic equations to derive symmetry allowed gap functions composed of pairs of electrons with
the pure spin 1/2. Note that the transformation property of Bloch states Eq. (1.1.1) is a
fundamental assumption to derive that of gap functions (1.1.6) and (1.1.7). However, it is not
so clear that such definition is always best to describe the superconductivity in multiorbital
systems in the presence of strong spin-orbit coupling. Furthermore, in the systems with more
than one atoms in a unit cell, each electron has atomic site (sublattice) degrees of freedom as
well as the spin and orbital. It is also unclear whether the superconductivity in such systems
can be well described by the above gap classification scheme. These are the main subjects in
this thesis and will be discussed in more detail in later Chapters.
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Table 1.1: Basis functions of irreducible representations (IRs) in D4h group [1].

IR(even) Basis functions IR(odd) Basis functions

A1g φ(k) = 1, k2
x + k2

y, k
2
z A1u d(k) = x̂kx + ŷky, ẑkz

A2g φ(k) = kxky(k2
x − k2

y) A2u d(k) = x̂ky − ŷkx

B1g φ(k) = k2
x − k2

y B1u d(k) = x̂kx − ŷky

B2g φ(k) = kxky B2u d(k) = x̂ky + ŷkx

Eg φ1(k) = kxkz Eu d1(k) = x̂kz, ẑkx

φ2(k) = kykz d2(k) = ŷkz, ẑky

Based on the above (conventional) classification scheme, symmetry allowed gap functions
in major point group symmetries were investigated in the early works[15, 16, 17]. For example,
Table 1.1 shows the results in D4h point group symmetry summarized in Ref. [1]. From the
Table 1.1, we find that the dx2−y2-wave gap function, proposed in cuprates and CeCoIn5,
belongs to B1g irreducible representation in D4h group, which guarantees the presence of line
nodes on the symmetry lines along kx ± ky = 0. Among spin-triplet superconductors, it has
been believed that Eu representation in D4h is realized in the zero magnetic field phase of
Sr2RuO4 [24]. In this case, since two basis functions are degenerate, an arbitrarily linear
combination of them are allowed just above Tc. Minimizing fourth order terms appearing
in the Ginzburg-Landau (GL) functional [1], then we find that the time reversal symmetry
breaking gap function d(k) = ẑ(kx ± iky), which has s a chirality given by the ± sign, is the
most stable gap in the zero field phase. Another candidate of such chiral superconductivity is
that in the hidden ordered phase of URu2Si2 [27], with the spin-singlet gap function φ(k) =
(kx ± iky)kz in Eg representation, which also can be seen in Table 1.1. In such ways, the
classification table such as Table 1.1 is very helpful in a comprehensive understanding of
anisotropic superconductivity, and as a result, has been indispensable for the analysis of
various unconventional superconductors.

In the experiments, the nodal structure of the gap functions often is determined by follow-
ing ways; In conventional s-wave superconductors, the existence of excitation gap in energy
spectra leads to the exponential temperature dependence of various physical quantities in-
cluding the specific heat, magnetic penetration depth, and relaxation rate of nuclear magnetic
resonance (NMR). On the other hand, in the presence of nodes (gap zeros) on a part of Fermi
surface, the excitation spectrum starts from zero energy due to the excitations across nodal
points or lines, which leads to the power low behavior in the physical quantities. Thus, the
low energy excitations of anisotropic superconductors often provides the crucial information
about the nodal structure, and thus, also the pairing symmetry (namely, irreducible repre-
sentation to which the order parameter belongs). For example, the temperature dependence
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of the specific heat C depends on the topology of the gap structure in the following ways;
C ∝ T in gapless, C ∝ T 2 in line nodes, C ∝ T 3 in point nodes cases at low temperatures.
Observations of such power-law behavior are crucial for unconventional superconductivity.
Moreover, phase sensitive techniques such as π-junction and angle-resolved measurements
under magnetic field can provide the knowledge of nodal positions on the Fermi surface.

In the spin-triplet superconductors, the gap function has the spin component, denoted
by the d-vector, as well as the momentum. The direction of the d-vector is a key property
to determine the magnetic response of the triplet superconductors. For example, it is known
that magnetic susceptibility parallel to d-vector is suppressed in the superconducting phase
as the same as the spin-single superconductivity, while that perpendicular to d-vector re-
mains unchanged. By use of that, in general, the direction of d-vector can be determined by
measuring the reduction of Knight shift in various field directions through the superconduct-
ing transition. The Pauli paramagnetic suppression of upper critical field Hc2 is also helpful
in the identification of d-vector because this is only expected in H ∥ d. Note that d-vector
is defined with the pseudo-spin of electrons in the band basis as in Eq. (1.1.1). Thus, the
response to the magnetic field does not have to be isotropic even with the isotropic triplet
state as the BW state of 3He. Such a behavior is generally expected in the multiorbital
superconductors with the strong spin-orbit coupling. This is one of the reasons to complicate
the identification of d-vector in practice.

1.2 Recent developments
The early theories of classification have been a great success to unveil the fundamental
properties of various unconventional superconductors [1]. However, in the last decade, novel
superconductors beyond these major classifications have attracted much attentions. Here,
we briefly summarize such superconductors.

1.2.1 Non-centrosymmetric superconductors
In the non-centrosymmetric superconductors, such as CePt3Si [28], UIr [29] and LaBiPt [30],
lack of spatial inversion symmetry admits the presence of antisymmetric spin-orbit coupling,
and then the spin part of the pairing state explicitly breaks SU(2) symmetry. Rashba spin-
orbit coupling is a typical example of antisymmetric spin-orbit coupling, which has the form
of g(k) = α(ky,−kx, 0) leading to the interaction H = g(k) · σ = α(kyσ

x − kxσ
y). In the

presence of such antisymmetric spin-orbit coupling, each twofold degenerate band splits to
non-degenerate two bands with the fixed spin components at each k point. Thus, in the
case with much larger antisymmetric spin-orbit coupling than the superconducting gap am-
plitudes, the only one of three possible spin-triplet gap functions with d(k) ∝ g(k) can be
stable while the spin-singlet superconductivity is largely unaffected by the broken inversion
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symmetry. In addition, broken inversion symmetry also permits that the so-called parity
mixing occurs between spin-singlet and triplet states, which are separable under the space
inversion symmetry [31]. Although the degree of the singlet-triplet mixing is determined
by the pairing interactions as well as the spin-orbit coupling, such mixing can also lead to
additional gap nodes that are not imposed by symmetry [32, 33] and may induces interesting
topological properties [34]. Moreover, the effect of broken inversion symmetry also appears
in the magnetic (Zeeman) field response. Namely, in the presence of g-vector perpendicular
to Zeeman field H , there is no coupling to H in the Hamiltonian at the strong spin-orbit
coupling limit [35]. This suggests that there will be no paramagnetic suppression of Hc2

even for a spin-singlet superconductivity. The anisotropic Pauli suppression observed in the
CePt3Si [35] is well described by this mechanism. Furthermore, many fascinating phenom-
ena including topological [36] and novel magneto-electric effects [37, 38, 39] have been also
attracted much attention in this class of superconductors.

1.2.2 Multiorbital superconductors
Regarding centrosymmetric superconductors, the importance of multiorbital character of gap
functions has been gradually recognized, for example, through the study on iron based su-
perconductors [40, 41, 42]. As mentioned above, in the early works, the Bloch states are
assumed to have pure spin 1/2 degrees of freedom and the gap classification has been per-
formed based on the band-based representation. Although this procedure is always possible,
the electrons have other internal degrees of freedom such as orbital and sublattice in the
realistic situations. Here, let us briefly consider the effect of orbital degree of freedom on the
transformation property of gap functions.

The Hamiltonian describing electron systems can be expressed in terms of the Wannier
states, as well as the Bloch states that diagonalize a quadratic term of the Hamiltonian.
The Wannier states are constructed from the Bloch states to be localized at some site with
the same symmetry as an atomic or a molecule orbital. In the presence of time reversal
symmetry, such a local orbital has Kramers degrees of freedom. Here, we suppose a real
atomic orbital with angular momentum ℓ. Then, the Wannier states w(ℓ)(R), where R is a
lattice vector (and also denotes the center of the Wannier states), are specified by bases of
the orbital and spin, denoted by l and σ, respectively. Then, the transformation property of
corresponding creation operator c(ℓ)†(R) is given by

p c
(ℓ)†
lσ (R) p−1 =

∑
l′σ′

c
(ℓ)†
l′σ′ (pR)D(ℓ)

l′l (p)D(1/2)
σ′σ (p), (1.2.1)

for any p ∈ SU(2). Here, D(ℓ)(p) is a representation matrix describing the transformation
among the orbital bases with angular momentum ℓ, which results in various phenomena with
respect to the orbital degrees of freedom.

12



Table 1.2: Pairing basis matrices carrying even parity irreducible representations (IRs) of the
two-orbital model. [43]. The spin/orbital parity is shown as S(singlet) or T(triplet)/O(odd) or
E(even) in the third column. The fourth column describes the behavior of the quasi-particle
excitation gap in the momentum space.

IR Basis S/O Gap IR Basis S/O Gap

A1g τ0 S/E Full A1g (cos kx + cos ky)τ0 S/E Nodal

A1g (cos kx − cos ky)τ3 S/E Nodal A2g (cos kx − cos ky)τ1 S/E Nodal

A2g iτ2 T/O Gapless A2g (cos kx + cos ky)iτ2 T/O Gapless

B1g τ3 S/E Nodal B1g (cos kx − cos ky)τ0 S/E Nodal

B1g (cos kx + cos ky)τ3 S/E Nodal B2g τ1 S/E Nodal

B2g (cos kx + cos ky)τ1 S/E Nodal B2g (cos kx − cos ky)iτ2 T/O Gapless

Eg (sin kx + i sin ky)iτ2 S/O Gapless Eg (sin kx + i sin ky)τ0 T/E Full

(sin kx − i sin ky)iτ2 (sin kx − i sin ky)τ0

Eg (sin kx + i sin ky)τ3 T/E Nodal Eg (sin kx + i sin ky)τ1 T/E Nodal

(sin kx − i sin ky)τ3 (sin kx − i sin ky)τ1

If we reconstruct the Bloch states, by diagonalizing the Hamiltonian, from the Wannier
states and discuss the symmetry allowed gap functions in the band-based representation, the
previous classification scheme is then reproduced. However, we can consider the gap functions
also in the local orbital-based representation, based on Eq. (1.2.1) or its momentum space
form as

p c
(ℓ)†
lσ (k) p−1 =

∑
l′σ′

c
(ℓ)†
l′σ′ (pk)D(ℓ)

l′l (p)D(1/2)
σ′σ (p). (1.2.2)

Here, c(ℓ)†(k) is defined by c
(ℓ)†
lσ (k) = 1√

N

∑
R e

ik·Rc
(ℓ)†
lσ (R), where N is the number of unit

cell in the crystal. For example, the minimal model describing iron-based superconductor
may be composed of two real atomic orbital dyz and dzx on a lattice with D4h point group
symmetry [44, 45, 46]. Thus, the gap functions in the local basis are represented by 4 × 4
matrix ∆lσ,l′σ′(k) where l denotes the orbital dyz/dzx and σ the spin up/down. Then, the
transformation of the gap functions can be obtained from Eq. (1.2.2) similar to Eq. (1.1.2)
from Eq. (1.1.1). For instance, resulting basis functions for even-parity pairing states are
shown in Table 1.2. Here, τµ represents the identity (µ = 0) or the Pauli matrix (µ = 1, 2,
or 3), which acts on the orbital space. We find that there appears spin-triplet (and orbital-
triplet) gap functions in the even parity pairing, which is a characteristic of multiorbital
systems. Indeed, the complete set of classification tables for the pairing states allowed in
two or three orbital models has been provided in Refs. [47, 43, 48, 49, 50]. These works have
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revealed many important aspects of the orbital properties in the gap functions and also in
the pairing mechanism. However, in spite of such progress in iron based superconductors,
there are few works of the extension to the other materials or the other point groups. In
addition, many of the previous works are performed in the basis of real atomic orbital, and
thus, the extension to the systems with strong spin-orbit coupling is also necessary. These
are remaining issues of gap classification and one of the main subjects in this thesis.

1.2.3 Non-symmorphic superconductors
Next, let us focus on remaining electron degrees of freedom, namely, atomic sites (or sub-
lattice) degrees of freedom. Indeed, the classification in several iron based superconductors
requires an appropriate treatment for the sublattice character of gap functions [51, 52, 53].
One of the simplest examples with sublattice degrees of freedom may be the multilayered
superconductors, which have been widely investigated in the context of high-Tc cuprates and
recently attracted locally non-centrosymmetric superconductors [54, 55, 56, 57, 58]. Let us
consider the gap functions in bilayer superconductors, which are examples of two sublattice
systems. We denote by α or β one of the two layers and suppose that the inversion center is
located at the center of the two layers. In this case, since the creation operator of the α-layer
electron c†

ασ(k) transforms to that of the β-layer c†
βσ(−k) by the space inversion operation,

staggered spin-singlet (triplet) pairing states belong to the odd (even) parity representation.
As a result, for example, finite magnetic susceptibility persists at low temperatures even in
even parity pairing states [55]. These features are quite similar to the multiorbital systems
when we identify a label of orbital degrees of freedom with that of sublattice. However, in
non-symmorphic superconductors, it is known that such sublattice degrees of freedom often
play more essential roles on the nodal structure than the orbital degrees of freedom [3].

In the presence of two or more equivalent atoms in each unit cell, the space group de-
scribing the systems often becomes non-symmorphic, some of whose elements include a point
group operation p associated with a non-primitive translation a. Screw or glide operations
are examples of such non-symmorphic operations. For such an operation, which is denoted
by g = {p|a} in the Seitz notation [59], c†

ασ(k) is transformed as followings,

g c†
ασ(k) g−1 = e−ik·a ∑

σ′
c†

βσ′(pk)D(1/2)
σ′σ (p)

=
∑
α′σ′

c†
α′σ′(pk)Dsite

α′α(g; k)D(1/2)
σ′σ (p), (1.2.3)

when g interchanges α with β-sites. Here, Dsite
α′α(g; k) = e−ik·aδβα is a representation matrix

describing the interchange of the two sites. Note that Eq. (1.2.3) holds for c†
ασ(k), which is

defined by the sublattice dependent Fourier transformation of that in the Wannier basis (see
the discussion in Appendix A.2.3). Here, the transformation (1.2.3) appears to be very similar
to Eq. (1.2.2) in multiorbital systems except for the k dependence in the representation matrix
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Dsite
α′α(g; k). However, it has been realized that this momentum dependence is crucial in the

classification of gap functions in non-symmorphic superconductors, and indeed, can induce
additional nodes on the Fermi surface. Lines nodes protected by such non-symmorphic space
groups are investigated through the study on spin-triplet superconductivity of UPt3 in the
context of the breakdown of the Blount’s theorem [3, 60, 61]. However, in spite of its general
versatility, there are few works on the gap classification in non-symmorphic superconductors
so far.

1.3 Heavy fermion superconductors
Among many strongly correlated electron systems, heavy fermion superconductors may be the
most suitable systems for the investigation of unconventional superconductivity with multi-
degrees of freedom [7, 20]. For instance, the first discovered heavy fermion superconductor
CeCu2Si2 had been widely believed as the first example of the unconventional superconduc-
tors [62]. Many observations including T -linear behavior at low T in C/T [63], no coherence
peak just below Tc and the T 3 behavior in the NMR relaxation rate 1/T1 [64, 65] support line
nodal d-wave superconductivity. However, recent specific-heat measurements [66] show the
exponential behavior below 60 mK and the H-linear dependence under the magnetic field
H, which is more compatible with the multigapped s-wave pairing state. As a result, the
importance of the multiband or the multiorbital nature of gap functions has been focused in
this material [67, 68, 69].

Furthermore, other prototypical heavy fermion superconductors such as UBe13 [70] and
UPt3 [71] exhibit many fascinating phenomena including a spin-triplet pairing and a mul-
tiple phase diagram, which may be related to the complicated electronic structure due to
the presence of multi-degrees of freedom. Indeed, the heavy fermion superconductor UPt3

have attracted continuous attentions since its discovery [18, 19]. Although there have been
steady progress in group theoretical considerations about the gap symmetry [18, 23, 19, 3],
no consensus has been reached on the gap structure as well as the pairing mechanism. The
subsequently discovered superconductivity in URu2Si2 [72, 73] appears to be more exotic be-
cause the superconducting transition occurs deep inside so called “hidden ordered” phase [27].
In this compound, the gap symmetry has been believed as the chiral d-wave of Eg represen-
tation in D4h point group symmetry. However, in actual, the broken symmetry associated
with the hidden ordered transition will affect the gap functions in the coexisting phase. Such
coexisting between superconductivity and the other long range orders (typically, the mag-
netic orders) was discovered successively after that. Namely, the hexagonal UPd2Al3 [74]
and UNi2Al3 [75] show the superconductivity coexisting with antiferromagnetism and the
UGe2 [76], URhGe [77], and UCoGe [78] show that with ferromagnetism. In such U-based
compounds, nevertheless the underlying magnetic ordering is well-established, there are few
study on the systematic gap classification in the coexisting phases [79, 80].
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In most of heavy fermion superconductors, it is difficult to determine the pairing mecha-
nism and also the gap structure in the microscopic calculations, which is due to the presence
of strong electronic correlations as well as the spin-orbit coupling and the multi-degrees of
freedom. However, in order to unveil the exotic properties in the heavy fermion super-
conductors more completely, such microscopic calculations are necessary. Recent progress of
first-principles theoretical approach allows us to investigate the superconductivity considering
the realistic electronic structure in heavy fermion systems [81, 67, 82], although the electronic
correlations can be treated only in the perturbative level. In such situations, cooperation
between the microscopic calculations and the group theoretical consideration is necessary to
understand various fascinating phenomena inherent in the heavy fermion superconductors.

1.4 Organization of the thesis
In this thesis, we investigate the superconducting symmetry and the gap structure in various
unconventional superconductors with spin-orbit coupling and multi-degrees of freedom. In
Chapter 2, we first present an exotic multi-gap structure in the heavy fermion superconductor
UPt3, which is revealed based on the first-principles calculations [2]. The obtained E2u pairing
state has in-plane twofold vertical line nodes, point and horizontal nodes on each Fermi sur-
face, which is completely different from the previous phenomenological models. This requires
an explicit consideration of the multiorbital and the non-symmorphic character in UPt3. Mo-
tivated by the study on UPt3, we then provide general group theoretical classification of gap
functions in the multiorbital superconductors with spin-orbit coupling [4] in Chapter 3 and
in non-symmorphic space groups [5] in Chapter 4. In the former study [4], we perform the
gap classification by introducing generalized Cooper pairs, which possess spin-orbital cou-
pled (multipole) degrees of freedom, instead of the conventional spin-singlet/triplet in the
single orbital systems. On the other hand, in Chapter 4, we extend the gap classification in
non-symmorphic space groups to the magnetic crystals [5]. The results are applied to the
analysis of superconductivity in UCoGe and UPd2Al3. Our present gap classification as well
as the exotic multi-gap structure in UPt3 shed new light on the understanding of various
heavy fermion superconductors.
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Chapter 2

Exotic multi-gap structure in UPt3
unveiled by the first-principles
analysis

The heavy fermion superconductor UPt3 is one of the candidates for a spin-triplet super-
conductor. Because of the rareness of spin-triplet superconductivity and the presence of a
multiple superconducting phase, this material has attracted great attention in the field of
superconductivity. However, in spite of extensive efforts, its pairing gap structure remains
unclear. For example, it has been widely believed that the most promising gap structure is
the phenomenological E2u models [18], while the state-of-the-art measurement of field-angle
resolved thermal conductivity has indicated that the low-energy quasi-particle excitations are
compatible with the E1u representation [83, 84].

In this chapter, we provide the first report on the microscopic gap structure in the heavy
fermion superconductor UPt3 based on an advanced first-principles approach. We found that
an unprecedented E2u gap structure can consistently explain experimental observations. Our
obtained E2u gap structure has the following peculiar features; Nodal structure is completely
different for each Fermi surface, and also the in-plane twofold vertical line nodes emerge on
a small Fermi surface. These features cannot be explained in the conventional pseudo-spin
representation, but are described with the representation of the Cooper pairs in the total
angular momentum j = 5/2 space.

The organization is as follows. In Sec. 2.1, we introduce the experimental observations
related to our work and also the phenomenological E1u [83] and E2u [18] models. Our results
are summarized in Secs. 2.2-2.4. In Sec. 2.2, we derive a model Hamiltonian to describe the
electronic structure of UPt3 and focus on the orbital-resolved property of its Fermi surfaces.
In Sec 2.3, we discuss the magnetic susceptibility obtained within our model calculations.
Finally, in Sec 2.4, we present the phase diagram and the corresponding gap structure in our
model. We also discuss the relation to the experiments and the phenomenological models.
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2.1 Introduction to the superconductivity in UPt3

Identifying a pairing state or a pairing mechanism is one of the most interesting and important
issues in the field of unconventional superconductivity. In particular, a spin-triplet type of
pairing state attracts much attention, since there are few examples except for the superfluid
3He. In the strongly correlated electron systems, the heavy fermion superconductor UPt3 is
one of the rare candidates for a spin-triplet superconductor. The most impressive feature of
this material is showing a multiple superconducting phase diagram under a magnetic field.

The left panel of Fig. 2.1 shows a schematic H-T phase diagram under the field parallel
to and perpendicular to the c-axis determined by the sound velocity measurement [85]. At
the zero field, there appears superconducting double transition into the A phase at the upper
critical temperature T+

c ∼ 500 mK, and then into the B phase at the lower T−
c ∼ 440 mK [86].

Moreover, the C phase appears at the high field and the low temperature [87]. The phase
transition lines separating the three phases appear to meet at a tetracritical point both
for H ∥ c and H ⊥ c, although the case for a tetracritical point is strongest for H ⊥
c [85]. In addition, the clear anisotropy between in and perpendicular to the basal plane
is observed in the upper critical field Hc2 [88]. The crossover in the anisotropy ratio of Hc2

indicates the presence of paramagnetic suppression of Hc2 for H ∥ c, but no suppression for
H ⊥ c. Because of such prominent features, a lot of theoretical works have been devoted
to understand its superconductivity [89, 90, 91, 92]. Today, two incompatible scenarios,
called E2u model proposed by the Sauls’ group [18] and E1u or spin model by the Machida’s
group [93], are widely believed as a possible pairing state in UPt3. Here, we summarize key
features of these two scenarios.

UPt3 possesses hexagonal crystal structure with the space group P63/mmc (see the right
panel of Fig. 2.1). The presence of multiple phases implies that the order parameter has
(nearly) degenerate two components which should be bases of an irreducible representation
in D6h point group symmetry. Moreover, considering the paramagnetic suppression, it is
natural to assume that the order parameter belongs to an odd parity representation with
d-vector locked to the c-axis by strong spin-orbit coupling, because the Zeeman energy is
then pair-breaking for H ∥ c, but not for H ⊥ c. Along this line, Sauls’ group proposed the
phenomenological E2u model with following characteristics [94, 95, 18, 96, 97];

1. The order parameter belongs to E2u irreducible representation in D6h. Thus, the gap
functions are represented by a linear combination of two basis functions as ∆(k) =
η1∆1(k) + η2∆2(k), where η = (η1, η2) is a complex two-component vector correspond-
ing to a GL order parameter [1]. Here, they suppose

∆1(k) = (k2
x − k2

y)kzz, ∆2(k) = 2kxkykzz, (2.1.1)

as the basis functions. Since d-vectors are locked to the c-axis, this can reproduce the
observed crossover behavior in the anisotropy ratio of Hc2 [94].

18



H//c

Temperature (K)

M
ag

ne
tic

 F
ie

ld
 (T

)

0.0 Tc
- Tc

+

B phase

C phase

0.3 0.6
0.0

1.0

2.0

A phase

H⊥c

Figure 2.1: (Left) A schematic H-T phase diagram determined by the sound velocity mea-
surement [85]. The phases separated by the red and blue lines correspond to those in H ∥ c

and H ⊥ c, respectively. (Right) Crystal structure of UPt3. Red and green spheres indicate
U and Pt atoms, respectively. The space group is non-symmorphic P63/mmc.

2. The two component order parameters, η1 and η2, are coupled with the tiny antiferro-
magnetic order observed in the neutron measurements [98, 99, 100]. As a result, the
degeneracy of the transition temperatures is lifted and the double transition occurs.
The three phases are specified by η = (η1, 0) in A phase, (η1, η2) in B phase, and (0, η2)
in C phase, respectively.

3. Since d-vector is locked to the one direction, the time reversal symmetry breaking
in B phase is promised within the GL theory [1, 96]. This is compatible with the
observations in the µSR [101], the Josephson tunnel junctions [102], and the Kerr effect
measurements [103].

4. One horizontal and two vertical line nodes are present in A and C phases while a point
and a horizontal line nodes in B phase. Such hybrid structure between point and line
nodes is well compatible with the nodal quasi-particle excitations observed in various
quantities [104, 105, 106, 107].

Because of the above successes in the description of observations, the E2u model has been
believed to be the most promising scenario until recently. However, several contradicting
observations, including the robust existence of the tetracritical point in the various field
directions [85] and the absence of Knight shift in the NMR measurements [108], remain to
be solved so far.
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On the other hand, the recent measurement of field-angle resolved thermal conductivity
has detected in-plane twofold oscillations in C phase [109]. This seems to be inconsistent with
the E2u model because fourfold oscillations are naively expected. Indeed, based on a group
theoretical argument, it is believed that any gap function in the E2u representations does not
possess such an in-plane twofold symmetry, namely, a single vertical line node [1]. This is
rather compatible with the E1u model proposed by K. Machidia and the collaborators [110,
93, 83]. The key assumption of the E1u model is that the spin-orbit coupling in the pairing
channel is sufficiently weak compared to the energy scale of the magnetic field, and thus, the
d-vector can freely rotate to be in perpendicular to the field direction. The E1u model also
has the following properties.

1. The orbital (or momentum) part of the order parameter belongs to E1u irreducible
representation in D6h. Due to the approximate SU(2) symmetry in the spin space,
gap functions are represented by a linear combination of six basis functions. The two
orbital basis functions, λ1(k) and λ2(k), are supposed by

λ1(k) = ka(5k2
c − 1), λ2(k) = kb(5k2

c − 1). (2.1.2)

By use of λ1 and λ2, for example in H ⊥ c, the order parameters of A, B, and C

phases are identified with λ1b, λ1b + λ2c, and λ2c, respectively [109]. Note that the
resulting gap functions do not belong to any irreducible representation in D6h point
group symmetry, and thus, often called a mixed representation theory.

2. While the assumption of the weak spin-orbit coupling is compatible with the Knight
shift in the NMR[108], this is inconsistent with the paramagnetic suppression in H ∥ c.
Similar difficulty appears also in the superconductivity of Sr2RuO4 [24].

3. In A (C) phase, there exists one vertical line node at ka = 0 (kb = 0), which is consistent
with the twofold oscillations observed in the thermal transport measurements [109]. In
addition, point ant line nodes are present in the B phase, which is also consistent with
the various observations [104, 105, 106, 107].

4. The orthogonality of d-vectors in A and C phases promises the existence of the tetra-
critical point independently of the magnetic field directions. This is well compatible
with the observations than that of the E2u model, because the tetracritical point is
guaranteed only at the spherical Fermi surface limit in the latter case.

In addition, the E1u model is also supported by the following recent observations. A small
residual thermal conductivity [84] suggests the presence of point nodes with linear disper-
sion, which is compatible with the E1u models because the E2u model has the point nodes
with quadratic dispersion. The Josephson effect [111] with s-wave superconductor is also
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compatible with E1u planar states due to the existence of in-plane d-vector components. As
a result, recently, the E1u model has been revisited.

Note that the revisit of the E1u model has been strongly promoted by the field-angle
resolved thermal transport measurement. However, the complementary specific heat mea-
surements have not detected any signature of in-plane symmetry breaking in all phases [112].
Although this seems to be contradict with the thermal conductivity, it is expected to be
explained by considering the multiband nature of UPt3. Namely, if the twofold vertical line
nodes are located on the Fermi surface with a light band mass, then the twofold oscillations
will be more remarkable in the thermal conductivity than the specific heat measurement. In
order to clarify how reasonable such plausible story is, the microscopic analysis of supercon-
ductivity including the electronic structure in UPt3 is worth consideration [113, 114, 115]. In
this regard, recent progress on the first-principles theoretical approach allows us to investi-
gate the gap structure microscopically even in the complicated band structure like the heavy
fermion compounds [116, 81, 67].

In this study, we provide the first report on a microscopic theory of superconductivity in
UPt3 based on the first principles approach. Based on the first principles approach, we find
that the promising gap structure is an unprecedented E2u pairing state, which is supported
by the j = 5/2 representation of Cooper pairs, instead of conventional pseudo-spin represen-
tations. Its nodal structure is completely different on each Fermi surface; the point nodes
with linear dispersion in the large hole Fermi surface, and the twofold vertical line nodes
in small electron Fermi surfaces. These features are not expected in the well-known phe-
nomenological E2u model. The low-energy nodal excitations are similar to those in the E1u

model rather than the previous E2u model. The peculiar properties can give a comprehen-
sive explanation for the above-mentioned experimental observations, including the seemingly
inconsistent result between the thermal conductivity and specific-heat measurement.

2.2 Model Hamiltonian and Fermi surface
In studying the superconductivity of UPt3, the itinerant 5f model is considered to be a good
starting point, since the Fermi surface in the first-principles calculations has been partially
supported by the de Haas van Alphen measurements [117, 118]. Following the previous
studies [116, 67], we here figure out the magnetic fluctuations in UPt3, based on the first-
principles theoretical approach.

First of all, we perform the ab initio band structure calculation in the paramagnetic state
of UPt3 using the WIEN2K package [119], in which the relativistic full-potential (linearized)
augmented planewave (FLAPW) + local orbitals method is implemented. The crystallo-
graphical parameters are the space group P63/mmc which holds the in-plane six-fold ro-
tational symmetry and the experimental lattice constants a = 5.764 Å, c = 4.899 Å[19].
Note that the so-called symmetry breaking term [120, 121] is not included in the present
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Figure 2.2: (a) Band structure along high-symmetry line and (b) enlarged one near the
Fermi level. Red line is the result of ab initio calculation by WIEN2K. Blue dashed line is
the Wannier fit. The dispersion below 1 eV is reproduced completely (c) The partial density
of states near Fermi level.

calculations for simplicity. For the self-consistent calculations, we used PBE-GGA exchange-
correlation potential [122], 12 × 12 × 12 k-point grid in the Brillouin zone, and a cut-off
parameter RKmax = 13. The spin-orbit interactions is included with the fully relativistic
calculations. Using the self-consistent solutions, we then construct an effective tight-binding
model in the Wannier bases using the wien2wannier interface [123] and the wannier90
code [124, 125, 126]. The resulting model Hamiltonian is composed of 120 Wannier bases,
containing U(5f), U(6d), Pt(5d), Pt(6s) orbitals and spin degrees of freedom. These bases
are transformed into the bases of the total angular momentum j.

In Fig. 2.2, we illustrate the result of the band-structure calculations. Fig. 2.2(a) depicts
the GGA band structure (red line) and its Wannier fit [127] (blue line). Fig. 2.2(b) is the
enlarged figure near the Fermi level. We can see that the fitting works well. Fig. 2.2(c) shows
the partial density of states (DOS). Blue, cyan, and magenta lines correspond to j = 5/2 and
7/2 partial DOS of U(5f), and the total DOS of Pt atoms. We find that the states crossing
the Fermi level are dominated by the U(5f) orbitals, especially, the j = 5/2 component. The
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Figure 2.3: Orbital-resolved Fermi surfaces in our tight-binding model H0, obtained by the
first-principles calculations. The colors correspond to the weight of jz component in the
total angular momentum j = 5/2 space. In the text, (a)-(e) are referred to as band1-5,
respectively.

j = 7/2 states are located around 1 eV higher due to the moderate spin-orbit coupling in U
atoms. Therefore, we can expect that the low-energy excitations in this system are dominated
by the j = 5/2 components. Thus, hereafter, we focus on the j = 5/2 electrons, and regards
the other electrons as the conduction electrons. The resulting tight-binding Hamiltonian is
formally expressed as

H0 =
∑

k

f∑
12
εf

12(k)f †
1(k)f2(k) +

∑
k

c∑
12
εc

12(k)c†
1(k)c2(k)

+
∑

k

f∑
1

c∑
2

(
v12(k)f †

1(k)c2(k) + v∗
12c

†
2(k)f1(k)

)
,

(2.2.1)

where f †(k)(f(k)) and c†(k)(c(k)) correspond to the creation (annihilation) operators of
U(5f) electrons with j = 5/2 and the other electrons, which are denoted by f and c respec-
tively in the following. Here, ε̂f (k) is the dispersion relation of f electrons measured from
the chemical potential µ and ε̂c(k) is of c electrons. v̂(k) is a hybridization matrix between
these states. The subscripts (1 and 2) symbolically represent both orbitals (in J-basis) and
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atomic sites (sublattice) degrees of freedom. Taking into consideration the correlation ef-
fects, we need to add a Hubbard type interaction Hint to f electrons, which is given in the
next Section, and then obtain a 120-orbital periodic Anderson Hamiltonian describing the
electronic state of UPt3.

The Fermi surface in our model Hamiltonian is illustrated in Fig. 2.3. Colors on the
Fermi surface, red, green, and blue, correspond to each weight of jz = ±5/2, ±3/2 and
±1/2 components, respectively. The obtained Fermi surface topology is well consistent with
the previous studies [19, 128, 129]. The Fermi surfaces of Figs. 2.3(b) and (c) have a large
contribution to the density of states at the Fermi level. Here, we realize that each Fermi
surface possesses relatively separated orbital components, especially, the small Fermi surfaces
in Figs. 2.3(d) and (e) roughly involve only jz = ±3/2 component. This characteristic feature
is the key to the emergence of the unprecedented E2u gap structure as discuss later.

2.3 Magnetic susceptibility
Next we study the magnetic fluctuations in the model Hamiltonian, including the on-site
Hubbard type repulsions, U,U ′, J , and J ′ between U(5f) electrons, where U is the intra-orbital
Coulomb repulsion, U ′ the inter-orbital one, J the Hund’s coupling, and J ′ the pair hopping
interaction. The interactions between j = 5/2 electrons can be obtained by transformed the
following LS-basis form into the representation of the j = 5/2 space,

Hint = 1
4

∑
Rα

f∑
ζ1ζ2ζ3ζ4

Γ(0)
ζ1ζ4,ζ3ζ2

f †
αζ1

(R)f †
αζ2

(R)fαζ3(R)fαζ4(R), (2.3.1)

where ζi denote both the orbital (angular) and spin quantum numbers. R denotes a lattice
vector and α = U1 or U2 is a label of two U atoms in a unit cell. Γ̂(0) is the Hubbard-type
interaction, given by Γ(0)

ζ1ζ4,ζ3ζ2
= −1

2S
(0)
l1l4,l3l2

σσ1σ4 · σσ2σ3 + 1
2C

(0)
l1l4,l3l2

δσ1σ4δσ2σ3 , where li and σi

(i = 1 ∼ 4) denote the orbital and spin quantum number respectively. The explicit forms of
Ŝ(0) and Ĉ(0) are given by,

Ŝ(0) =



U

U ′

J

J ′

, Ĉ(0) =



U (l1 = l2 = l3 = l4)
2J − U ′ (l1 = l3 , l2 = l4)
2U ′ − J (l1 = l4 , l2 = l3)
J ′ (l1 = l2 , l3 = l4)

(2.3.2)

In the actual calculations, we transform this representation of Eq.(2.3.1) into that of J-basis,
and then neglect the interactions with j = 7/2 space, since we focus on the low-energy excita-
tions of the j = 5/2 electrons as mentioned above. As demonstrated in Ref. [116], momentum
dependence of susceptibilities, which is important in unconventional superconductivity, is well
described within this approximation.
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By use of resulting on-site interactions acting among j = 5/2 electrons, magnetic suscep-
tibilities within the random phase approximation (RPA) can be obtained by the following
way [116, 81]. First, the non-interacting Green’s functions Ĝ(k, iωn), which are expressed as
a 12 × 12 matrix in the j = 5/2 space of two U atoms in the unit cell, are given by

G12(k, iωn) = −
∫ β

0
dτeiωnτ ⟨Tτ (f1(k, τ)f †

2(k, 0))⟩ , (2.3.3)

=
∑
m

u1m(k)u†
m2(k)

iωn − Emm(k)
, (2.3.4)

where û(k) and Ê(k) are the unitary matrix diagonalizing H0 and the energy eigenvalues
matrix, respectively. Here, ⟨·⟩ denote a thermal average and Tτ is a time ordering operator
with respect to a imaginary time τ . ωn = πT (2n + 1) is a fermionic Matsubara frequency.
The index m runs over all 120 degrees of freedom. Then, the irreducible susceptibilities
χ̂

(0)
14,32(q, iωq) are defined by

χ
(0)
14,32(q, iωq) = − T

N

∑
k,n

G13(k + q, iωn + iωq)G24(k, iωn). (2.3.5)

By use of χ̂(0)(q, iωq), the RPA susceptibility χ̂RPA(q, iωq) in the matrix form can be obtained
as follows,

χ̂RPA(q, iωq) = (1̂ − ˆ̃Γ(0)χ̂(0)(q, iωq))−1χ̂(0)(q, iωq). (2.3.6)

Note that ˆ̃Γ(0) is a 144 × 144 matrix describing a Hubbard type interaction restricted to the
j = 5/2 electrons of two U atoms. In general, the magnetic (dipole) correlation functions,
χab(q), with χ̂(q) = χ̂(0)(q) or χ̂RPA(q) are given by

χab(q) =
∑
αα′

e−iq·(xα−xα′ )
∫ β

0
dτ ⟨Tτ (Jα

a (q, τ)Jα′†
b (q, 0))⟩ (2.3.7)

≈
∑
1234

e−iq·(xα1 −xα3 )(J̃a)12χ21,34(q, 0)(J̃b)34. (2.3.8)

Here, we have used the definition of the dipole operator Jα
a (q, τ),

Jα
a (q, τ) =

∑
k

∑
jzj′

z

(Ja)jzj′
z
f †

αjz
(k, τ)fαj′

z
(k + q, τ), (2.3.9)

where the matrix elements of Ĵa for j = 5/2 subspace can be obtained by the operator
equivalent method as usual. ˆ̃Ja is the corresponding 12 × 12 matrix. xα is a position of atom
α relative to the lattice vectors and a, b = x, y, or z. In the case of UPt3, xU1 = (1

3 ,
2
3 ,

1
4)

and xU2 = (2
3 ,

1
3 ,

3
4) in a unit of primitive lattice vector. Note that the phase factor in
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Eq. (2.3.8) comes from the current definition of the Fourier transformation, given by (see
also Appendix A.2.3),

f †
αjz

(k) = 1√
N

∑
R

eik·Rf †
αjz

(R). (2.3.10)

Such a sublattice independent definition is suitable for the calculation using the fast Fourier
transformations. The magnetic fluctuation parallel (perpendicular) to the c-axis χ∥(q) (χ⊥(q))
is defined by χ∥(q) = χzz(q) (χ⊥(q) = (χxx(q) +χyy(q))/2), given that a total magnetic mo-
ment M̂a = L̂a +2Ŝa ≃ gĴa with the Lande g-factor g = 6/7. From Eq.(2.3.8), the periodicity
of χab(q) in UPt3 is (3, 3, 2) in the unit of reciprocal lattice vector.

Fig. 2.4 depicts the wave-vector dependence of the magnetic fluctuations calculated with
the bear susceptibility χ̂(0)(q, iωq). We find that the most dominant fluctuations are located
at Q = (0, 0, 1) and (1, 0, 0). The Q vector corresponds to the antiparallel alignment of
the magnetic moment of two U atoms in the unit cell. This is well consistent with the
observed dispersive magnetic excitations by inelastic neutron scattering measurements [130,
131]. On the other hand, the presence of the sub-dominant peaks at Q = (0, 0, 1/2) and
(1, 0, 1/2) may correspond to the fragile magnetic phase transition at TN ≃ 5 K [[99, 98, 100]].
Indeed, this sub-dominant fluctuation is much enhanced within RPA. However, it needs
further investigations along with a problem of magnetic anisotropy. Similarly to the previous
study [81], the magnetic anisotropy of the uniform susceptibility is not so large, and slightly
Ising-type, χ∥(0) ≥ χ⊥(0). Although this is the opposite to the experimental observation, we
need to consider the large contribution from the localized f -electron part due to the strong
electron correlations in the heavy fermion systems. This is a challenging issue in the future.

2.4 Superconductivity
Now, let us proceed to a study of the superconducting gap structure. Note that, for suffi-
ciently large interaction parameters, magnetic fluctuations at Q = (0, 0, 1/2) and (1, 0, 1/2)
are enhanced, and those at Q = (0, 0, 1) and (1, 0, 0) are concealed. On the other hand, the
superconducting gap structure is not drastically changed for interaction parameters, irrespec-
tive of whether the pairing interaction V̂ (q, iωq) is given by the second-order perturbation
or RPA. Based on these results, we restricted ourselves to the weak-coupling approach for
simplicity. The second-order perturbation for the renormalized interactions is valid as asymp-
totically exact weak-coupling limit. Here, we focus on probable spin-triplet states emerging
in this limit.

By use of the effective pairing interaction V̂ (q, iωq), possible candidates can be obtained
by calculating the linearized gap equation at around Tc.

λ∆12(k) =
∑
k′

∑
343′4′

V13,42(k − k′)G33′(k′)G44′(−k′)∆3′4′(k′), (2.4.1)
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Figure 2.4: Magnetic structure of the bare susceptibilities. (a)-(c) show the magnetic suscep-
tibilities parallel to c-axis, χ∥(ka, kb, kc), in kc = 0, 1/2, and 1 plane. (d) shows the magnetic
susceptibility perpendicular to c-axis, χ⊥(ka, kb, kc), in kc = 1 plane. Difference between (c)
and (d) corresponds to the magnetic anisotropy. Note that in actual, the angle between ka

and kb axes is π/3.

where ∆̂(k) is the J-basis gap functions. Here, k, k′ denote both the momentum k and
the Matsubara frequency iωn. The maximum eigenvalue λ equals to 1 at Tc. Solving the
self-consistent gap equations, we obtain two type of predominant spin-triplet pairing states
with two dimensional representation E1u and E2u, as shown in Fig. 2.5. This means that the
present microscopic theory supports the phenomenological candidates. In our calculations,
the E2u state is more dominant than the E1u state over a wide parameter range. From these
results, we conclude that the most promising candidate for the pairing state of UPt3 is the
E2u odd-parity state.

Next, let us elucidate the detailed microscopic structure of these pairing states. In Fig. 2.6,
we show the superconducting gap amplitude on each Fermi surface of band1, 3 and 4. Deep
blue corresponds to the gap nodes and/or minima. Slight fluctuation of colors is attributed to
the exemplification of the Blount’s theorem [60] and some numerical errors. Strictly speaking,
the Blount’s theorem says that the symmetry protected line nodes cannot exist in odd-parity
representation except for a rare case as discussed later. Therefore, when we do not single
out a specific basis function as in the present calculations, the line nodes appear just as
a “pseudo” line nodes, where the gap amplitude is not exact zero. Hereafter, we call the
“pseudo” line nodes by the line nodes.

It is instructive to start with the E1u state. In such two-dimensional representation, there
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Figure 2.5: Superconducting phase diagram for the intra-orbital on-site repulsion U and
Hund’s coupling J . The unit of energy is eV. Here we set the inter-orbital interaction U ′ = U

and the pair hopping J ′ = J . E2u state is predominant over the wide range. Even if assuming
SU(2) condition, U = U ′ + 2J , the tendency is almost unchanged.

are two kinds of basis functions. Illustrated in Figs. 2.6(a)-(c) is one possible gap structure
in the E1u state. Another one is not shown here. Roughly speaking, the nodal structure on
the Fermi surface at around the Γ point in Fig. 2.6(b) is the f -wave pairing state having
one vertical line nodes and two horizontal line nodes at kz , 0 plane. This nodal structure
is identical to the E1u model, which has been proposed based on the observations in the
field-angle resolved thermal conductivity. Since the relevant Fermi surface has a large DOS,
the in-plane twofold oscillation should be detected also in any experimental observations.
However, this is incompatible with the observation in the field-angle resolved specific heat
measurement [112].

Furthermore, let us consider the gap structure in the E2u state in Figs. 2.6(d)-(f). Sur-
prisingly, we find that the nodal feature is completely different on each Fermi surface; a
horizontal nodes in Fig. 2.6(d), point nodes at the top of Fermi surface in Fig. 2.6(e), and in-
plane twofold vertical line nodes in Fig. 2.6(f). Note that the point nodes at kx = ky = 0 are
observed in all bands, but remarkable in band3. These nodal structures are completely dif-
ferent from those of the previous phenomenological E2u models despite the same irreducible
representation.

Generally, the superconducting order parameter is classified by the irreducible represen-
tations of the symmetry in the space group, since the linearized gap equation is separable
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Figure 2.6: Superconducting gap amplitude, ∑
n′=±n |∆̄nn′(k)|2, on the Fermi surfaces of

band1, band3 and band4, where ∆̄nn′(k) = ∑
12 u

∗
1n(k)∆12u

∗
2n′(−k) with the unitary matrix

u1n(k) diagonalizing H0. n′ = ±n means a sum of the Kramers degeneracy for bandn. (a)-(c)
correspond to the E1u state, and (d)-(f) the E2u state. Line/point nodes colored by orange
are pointed by arrows. We recognize that the nodal structure is completely different for each
Fermi surface.

for each representation, by virtue of the identity property of the pairing interactions (see the
discussion in Sec. 3.2). For the strong spin-orbit coupling, symmetry operations act on all
the spin, orbital and wave-vector degrees of freedom in our case. If we as usual consider a
spin one-half Fermion system without any other internal degrees of freedom, then following
Refs. [19] and [1], we can see that the only a possible type of p-wave gap function in E2u

representation is (d̂xkx − d̂yky, −d̂xky − d̂ykx) in the d-vector notation. This minimal gap
function has only a point node at the top of Fermi surface. Even if considering its higher-
harmonics, there does not appear any twofold vertical line nodes. Therefore, it has been
widely believed that in D6h point group, twofold vertical line nodes are allowed only in E1u

representation, and generally forbidden in E2u representation according to the group theoret-
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ical argument [1]. In this regard, our E2u gap structure seems to be very curious. However,
in our case, we need to consider the Cooper pairs in the effective j = 5/2 space, instead of
conventional pseudo-spin 1/2. Such extension can be performed with the help of projection
operator method as in the case of spin 1/2. Thereby, we find that for the minimal p-wave
pairing, one of two bases in E2u representation can be described as follows,

∆1(k) =



jz = 5/2 3/2 1/2 −1/2 −3/2 −5/2
c1(kx − iky) c2kz c3kx + c4iky c5kz c6(kx + iky) 0

c2kz c7kx + c8iky c9kz c10(kx + iky) 0 c6(−kx + iky)
c3kx + c4iky c9kz c11(kx + iky) 0 c10(−kx + iky) c5kz

c5kz c10(kx + iky) 0 c11(−kx + iky) c9kz −c3kx + c4iky

c6(kx + iky) 0 c10(−kx + iky) c9kz −c7kx + c8iky c2kz

0 c6(−kx + iky) c5kz −c3kx + c4iky c2kz c1(−kx − iky)


,

where ci (i = 1 ∼ 11) are material-dependent parameters. From the expressions of the
second and fifth diagonal elements, we can verify that twofold vertical line nodes appear
in the jz = ±3/2 subspace. Similarly, we find that the gap functions in the jz = ±5/2
or ±1/2 subspace yield only point nodes with the linear dispersion along c-axis, and the
twofold vertical line nodes are forbidden. Anomalous twofold vertical line nodes in the
E2u representation emerge only in the jz = ±3/2 space. For more complete discussions,
see Sec. 3.1. In UPt3, the Fermi surfaces in Figs. 2.2(d) and (f) involve plenty of jz = ±3/2
component. Thus, it is natural that twofold vertical line nodes emerge in these Fermi surfaces
even in E2u gap symmetry. Moreover, it should be noted that these Fermi surfaces have a
light band mass. In this case, it can be expected that the in-plane twofold oscillation in the
field-angle resolved measurements is more prominent in the thermal conductivity than in the
specific heat measurements. This can provide an explanation for the seemingly inconsistent
observations between these measurements. In addition, since the Fermi surface around Γ in
Fig. 2.2(c) is almost composed of jz = ±5/2, we recognize that the point nodes observed in
Fig. 2.6(e) have linear dispersion, which can be consistent with the small residual thermal
conductivity [84].

In order to understand more about this unprecedented E2u gap structure, let us dissect
the superconducting gap structure in Fig. 2.6(f). Although the p-wave line nodes on the
kx = 0 plane are remarkable as mentioned above, we can realize additional gap minima on
the ky = 0 and kz = 0 planes. This implies a mixing of f -wave component with the form
of kxkykzd̂z, which is indeed allowed in the group theoretical arguments. Therefore, roughly
speaking, the gap structure in Fig. 2.6(f) can be described as a linear combination between
the p-wave kxd̂x and f -wave kxkykzd̂z in the d-vector representation in the jz = ±3/2 space.
Interestingly, in this case, under the applied field parallel to the c-axis, the Pauli-limiting
behavior will be expected in the upper critical field. Although such suppression has been
observed experimentally, we need further investigations, considering the magnetic anisotropy.
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Here, we comment on the phase diagram expected within our calculations. Although it
is very interesting to study the H-T phase diagram based on the gap structure we found,
this is quite difficult in the present situation. Instead, we discuss the phase diagram with
the help of the phenomenological E2u theory [18]. In this case, we can identify the gap
structure shown in Fig. 2.6 as that in A or C phase. Therefore, we can expect that the
vertical line nodes appear in both A and C phases, although it may be difficult to observe
the corresponding twofold oscillation in A phase. It should be noted that, in the present
situation, gap functions below Tc cannot be obtained with high accuracy, since our model
Hamiltonian includes numerical errors in the downfolding process. For this reason, we can
discuss B phase only in the qualitative level. Following the E2u theory in Ref. [18], we consider
B phase as a time reversal symmetry breaking state, which are described by (η1, η2) with
real η1 and pure imaginary η2 in the two-dimensional representation. In general, it will be
a non-unitary state, and thus, it is unclear whether such a time reversal symmetry breaking
state is really stabilized at low temperatures. In our case, for example in the jz = ±3/2
Fermi surfaces, a (η1, η2) state with a pure p-wave (or f -wave) gap function is a unitary state
without line nodes because there is only one d-vector component. In this case, β2 term in the
GL functional (the definition is given in Ref. [1]) takes a positive value, and thus, the time
reversal symmetry breaking state is favorable [18]. Therefore, also in our p + f -wave state,
we may expect that the time reversal symmetry breaking state is stabilized, although it is
a non-unitary state in this case. On the other hand, in jz = ±1/2 or ±5/2 Fermi surfaces,
pure p-wave states do not favor the time reversal symmetry breaking state, in contrast to the
f -wave states. In the expected p + f -wave case, the time reversal symmetry breaking state
with a number of Weyl point nodes may be realized, as recently proposed by Yanase [132].
However, in order to discuss its stability in our model Hamiltonian, we have to solve the gap
equation with high accuracy, or calculate β2 term in GL functional based on the microscopic
electronic state and the gap structure. This is a challenging issue.

Finally, let us comment on the horizontal line nodes at kz = ±π in Fig. 2.6(d). As men-
tioned above, in an ordinary case, there are only point nodes in E2u representation. However,
in the non-symmorphic system like UPt3, there exists additional C2 screw symmetry, which
protects the horizontal line nodes. Such symmetry protected line nodes are known as excep-
tions to the Blount’s theorem [3]. Note that as pointed out by Yanase [132], these horizontal
line nodes appear only in the presence of spin-orbit coupling on the kz = ±π plane. This is
quite small in UPt3, which can be seen as the small energy splitting between band1 and 2 on
the kz = ±π plane. Thus, the resulting gap structure has very sharp kz dependence near the
kz = ±π plane as seen in Fig. 2.6(d). In addition, in the actual situation, the line nodes may
be lifted, or slightly shifted from the plane, due to the presence of a weak symmetry-breaking
term [100, 121]. This is also a challenge for the future.
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2.5 Conclusion
Based on the advanced first-principles theoretical approach, we clarify the microscopic gap
structure in the heavy fermion superconductor UPt3. We find that the obtained antiferro-
magnetic fluctuations with Q = (0, 0, 1) and (1, 0, 0), which are consistent with the neutron
scattering measurements, lead to the spin-triplet pairing states with E1u and E2u repre-
sentations in the D6h space group. The obtained E1u gap structure is consistent with the
phenomenological f -wave pairing state. On the other hand, the latter E2u state, having nodal
structure different for each band, is distinct from the well-known E2u models. In particular,
the in-plane twofold vertical line nodes emerge on the small Fermi surface, which can consis-
tently explain the field-angle resolved measurements in both the thermal conductivity and
the specific heat. Such peculiar feature cannot be explained in the conventional pseudo-spin
representation, but is described by the group theoretical representation of the Cooper pairs
in the j = 5/2 space. Furthermore, the study of magnetic anisotropy and the mixture of
p-wave and f -wave with different d-vectors can provide a clue to understand the remaining
problems of the Pauli limiting of the upper critical field [88, 94, 112] and the anomalous
behavior of the Knight shift [108] and so on. These are interesting issues in future, together
with the understanding of the multiple superconducting phases. Thus, our findings shed new
light on the long-standing problems in the superconductivity of UPt3.
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Chapter 3

Classification of multipole
superconductivity in multiorbital
systems

As is demonstrated by the analysis on the superconductivity of UPt3, the multiorbital nature
of gap functions as well as the spin-orbit coupling can yield unusual nodal structure. In
actual, most of superconductors possess the orbital degrees of freedom although this has
been focused only in specific materials such as iron-based superconductors so far. Thus,
motivated by a growing interest in multiorbital superconductors with spin-orbit interactions,
we here perform the group theoretical classification of various superconducting gap functions.
We focus on the pairing states with zero total momentum, and demonstrate the classification
of unconventional superconductivity emerging in symmorphic O, D4, and D6 space groups.
Complete sets of basis functions are summarized in several tables. Because of the spin-orbit
coupling, multiorbital degrees of freedom appear as multipole characters. Similarly to d-
vector in spin-triplet states, they can be specified by multipole operators in the corresponding
point groups. Thus, we here call the generalized pairing state “multipole” superconductivity.
From its classification, we obtain the following key consequences.

1. A superconducting gap function with Γ9 ⊗ Γ9 in D6 possesses nontrivial momentum
dependence different from that in the usual spin 1/2 classification. This is related to
twofold symmetric line-nodes found in the microscopic study of UPt3 [2].

2. Unconventional gap structure can be realized in the BCS approximation with purely lo-
cal (on-site) interactions irrespective of attractive or repulsive. It implies the emergence
of an electron-phonon driven unconventional superconductivity. Although the conven-
tional electron-phonon interactions favor s-wave (A1g) pairing states, the Hund’s cou-
pling and the electron-phonon interactions in magnetically ordered states can enhance
such anisotropic pairing states.
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3. In anisotropic s-wave (A1g) states composed of the pairing of orbitals with different
symmetries, there appear not symmetry protected but inevitable line nodes/gap min-
ima. For examples, a B2g pairing state of degenerate px and py orbitals in tetragonal
crystals is an s-wave with line nodes along kx/ky axis in band based representation. A
possibility of such anisotropic s-wave pairing via inter-orbital pairing can provide an
interpretation for the emergence of accidental nodes/gap minima as observed in several
superconductors. It is in sharp contrast to an anisotropic s-wave driven by two kinds
of competing interactions, such as electron-phonon interactions and spin fluctuations,
which was discussed for the appearance of point nodes in (Y,Lu)Ni2B2C [133].

This chapter is organized as follows. In Sec. 3.1, we will discuss the classification of
superconducting order parameters in multiorbital systems in terms of the local orbital bases
that transform as irreducible representations of the point group in the system. Complete
tables of the Cooper pair basis functions for representative point group symmetries O, D4,
and D6 will be demonstrated. The classification scheme used here is justified in Sec. 3.2. In
Sec. 3.3, we will show the relations between the band based representation and the orbital
one, and clarify how the band based Cooper pairs are related to the orbital based ones. In
Sec. 3.4, we will discuss two models for the cubic Oh and tetragonal D4h point groups as the
applications of the present group theoretical theory. In the former case, we will discuss what
kinds of anisotropic pairing states can emerge near quadrupole ordered phases. In the latter,
we will point out the possibility of anisotropic pairs mediated by local fluctuations. Finally,
in Sec. 3.5, we will summarize the present study.

3.1 Classification of superconducting order parameters
In this section, we explain how to classify superconducting order parameters in multiorbital
systems. Our main interest is to extend the classification of unconventional superconductiv-
ity [15, 16, 17, 1] into generic multiorbital systems. Generally, the conventional BCS super-
conducting state is characterized by the presence of Cooper pairs with zero total momentum
and the breaking of U(1) gauge symmetry. Unconventional superconductivity additionally
breaks other symmetries, for example, point group symmetry of a given system.

Here, we consider the classification of the BCS superconductivity with zero total mo-
mentum in symmorphic-lattice systems with spacial inversion and time reversal symmetries.
In this case, one-particle states possess the Kramers degeneracy, which can be labeled by
a pseudo-spin 1/2 at each k point. Note that superconducting order parameters, i.e., the
Cooper pair wave functions can be classified by irreducible representations of a point group
symmetry P , regardless whether the systems belong to symmorphic or non-symmorphic space
groups. That a consequence of the Landau theory of second order phase transition and can
be directly confirmed by explicit mean field calculations. However, the classification given
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below is not applicable to non-symmorphic systems because the sublattice degrees of freedom
cannot be deduced into the local ones. In this section, we simply illustrate the classification
under the above assumptions, and the detailed discussions will be provided in Sec. 3.2.

In the previous studies [15, 16, 17, 1], it was implicitly supposed that the transformation
property of the pseudo-spin 1/2 equals to that of pure-spin 1/2. Although such convention
in band based representation is always applicable in systems we consider, the knowledge of
orbital character of band electrons contains interesting and rich physics, as the multipole
degrees of freedom do. Thus, it will be useful to describe the pairing states not in the band
but in the local orbital bases. In this study, we will explicitly write down the transformation
property of the Kramers degeneracy in the orbital based representation. Since the classi-
fication of superconducting order parameters is very similar to that of localized multipole
moment [134], we call the classified multiorbital superconductivity “multipole” superconduc-
tivity. In what follows, we will show several definitions and transformation rules, and then,
summarize the consequences in several tables. Throughout this section, we will discuss pair
amplitudes rather than the gap functions since the gap functions are readily calculated from
the pair amplitudes and the symmetry properties are identical as seen in Sec. 3.2.

3.1.1 Pair amplitude
First of all, let us introduce an electron creation operator c†

ℓα(r) with the orbital ℓ and the
spin α at the site r. From a viewpoint of the classification, it is convenient to consider that
ℓ indicates a basis function labeled by an irreducible representation of a given point group
P , and α denotes the Kramers degrees of freedom rather than pure-spin 1/2. For the case
containing two or more atoms in a unit cell, see Sec. 3.2.2. One-particle part of Hamiltonian
is diagonalized by a unitary matrix uℓα,nσ(k) with the band n, the pseudo-spin σ and the
wavenumber k. A band based creation operator c̃†

nσ(k) is given by

c̃†
nσ(k) = 1√

N

∑
R

eik·R ∑
ℓα

c†
ℓα(R)uℓα,nσ(k), (3.1.1a)

≡
∑
ℓα

c†
ℓα(k)uℓα,nσ(k), (3.1.1b)

where N is the number of unit cells. The corresponding annihilation operator is obtained by
the Hermite conjugate of Eq. (3.1.1).

In the orbital bases, a pair amplitude is defined as

Fℓα,ℓ′α′(k) ≡ ⟨cℓα(k)cℓ′α′(−k)⟩, (3.1.2)

where ⟨·⟩ denotes the thermal average, and the fermion antisymmetry requires

Fℓα,ℓ′α′(k) = −Fℓ′α′,ℓα(−k). (3.1.3)

Hereafter, we will discuss the classification of Fℓα,ℓ′α′(k).
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3.1.2 List of irreducible representations for the Kramers sector
We perform the classification of the pair amplitude Fℓα,ℓ′α′(k) in typical point groups O, D4,
and D6. The classification consists of that in the orbital sectors ℓℓ′, the Kramers sector αα′,
and the wavenumber k. Once the orbital sectors are fixed, we can decompose F as,

Fℓα,ℓ′α′(k) =
[(

Φℓℓ′(k)σ0+ dℓℓ′(k) · σ
)
iσy

]
αα′
, (3.1.4)

where σ0 is a 2×2 identity matrix, and σ = (σx, σy, σz) are the Pauli matrices in the Kramers
sector. The explicit form of the Kramers pairs (α = ±) in each point group P is listed in
Appendix A.2.2. From the transformation property under the point group operations, we
classify the Kramers part,

σ̄µ ≡ σµiσy, (µ = 0, x, y, and z) (3.1.5)

into the corresponding irreducible representations. The results are summarized in Tables
3.1-3.3. It should be noted that the generalized d-vector, dℓℓ′(k), is no longer a net spin
moment of Cooper pairs, although we conventionally use the unit vectors x, y, and z.

Finally, the classification of Fℓα,ℓ′α′(k) is completed by classifying k dependence of the
basis functions, Φℓℓ′(k) and dℓℓ′(k). Representative examples of these basis functions are
listed in a column ϕΓ (k) in Tables 3.1-3.3. In space inversion invariant systems, all irreducible
representations are classified into even/odd parity, which is conventionally labeled with g/u.
By adding the label g/u to Γ in an appropriate manner, one can make tables for Oh, D4h,
and D6h groups straightforwardly. For complete set of basis functions, ϕΓ (k), see Ref. [135].

Now, we discuss the consequence of the lists in Tables 3.1-3.3. We realize that even in
a single-orbital system, orbital character can play crucial roles. Within the whole 32 point
groups, there exists one and only one nontrivial combination whose transformation properties
are completely different from the other cases. That is Γ9⊗Γ9 in D6 and the equivalent groups,
which do not include E1 representation in sharp contrast to the other products Γ7 ⊗ Γ7 or
Γ8 ⊗Γ8. In this case, the gap functions can show an anomalous k dependence, which explains
the emergence of an exotic gap structure in the microscopic study for UPt3 [2]. To the best
of our knowledge, this point has not been recognized so far, which is one of nontrivial results
in this study.

As highlighted in Γ9 ⊗ Γ9 in D6 point group, it is noteworthy that, in Tables 3.1-3.3,
the Kramers sector takes different irreducible representations, depending on the constituting
orbitals. For example, direct products for pure-spin 1/2 s-orbital electrons in D4h point
group, which correspond to Γ6g ⊗ Γ6g in Table 3.2, include A1g and A2g representations. In
contrast, Γ6g⊗Γ7g includes B1g and B2g, while it does not include A1g and A2g representations.
Moreover, a spin-singlet state described by 0 in Γ6g⊗Γ7g belongs to B1g, while that in Γ6g⊗Γ6g

belongs to the identity representation. This is an essential aspect of the electron pairing in
multiorbital systems. Note that we have used the word“ spin-singlet/triplet”according to
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Table 3.1: Basis functions of irreducible representations in O group. σ̄µ = iσµσy is rep-
resented by µ = 0,x,y, z, symbolically. Index a(b) of µa(b) represents that the pair
consists of one of the non-Kramers doublet a(b) in Γ8 (Appendix A.2.2) and the other
orbital Γ6 or Γ7. µa± = −1

2(µa ±
√

3µb) and µb± = 1
2(−µb ±

√
3µa). τµ’s are the

Pauli matrices in the orbital space spanned by the non-Kramers degrees of freedom (a/b).
ζ = cos θ(τ 0, τ 0, τ 0) + sin θ(τ z

−, τ
z
+, τ

z) and η = cos θ(τ y, τ y, τ y) + i sin θ(τx
−, τ

x
+, τ

x), where
τ z

± = −1
2(τ z ±

√
3τx) and τx

± = 1
2(−τx ±

√
3τ z). θ is an arbitraly real parameter.

IR ϕΓ (k) Γ6 ⊗ Γ6 / Γ7 ⊗ Γ7 Γ6 ⊗ Γ7

A1 k2
x + k2

y + k2
z 0

A2 kxkykz 0

E (3k2
z − k2, k2

x − k2
y)

T1 (kx, ky, kz) (x,y, z)

T2 (kykz, kzkx, kxky) (x,y, z)

IR Γ6 ⊗ Γ8 Γ7 ⊗ Γ8 Γ8 ⊗ Γ8

A1 τ 00

A2 τ y0

E (0b,0a) (0a,−0b) (τ z, τx)0

T1 (xb+,yb−, zb) (xa+,ya−, za) (ζ1x, ζ2y, ζ3z)

T2 (xa+,ya−, za) (xb+,yb−, zb) (η1x, η2y, η3z)

the usual convention, although this means antisymmetrized/symmetrized representations for
the pairs of Kramers degrees of freedom.

As seen in Table 3.1, the pairs including non-Kramers doublet Γ8 are complicated because
the Γ8 bases labeled by a and b (see Appendix A.2.2) are inseparable under the point group
operations. This degeneracy also can lead to the exotic pairing state, as recently proposed
for the superconductivity in half-Heusler semimetal YPtBi [136, 137]. About the inter-
orbital pairs including Γ8 states, the classification can be performed by introducing the Pauli
matrices τµ

a(b) acting on Γ8a(b) and Γ6,7, which represent a part of 3 × 3 orbital matrix space
(see Eq. (3.1.7)).
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Table 3.2: Basis functions of IRs in D4 group.

IR ϕΓ (k) Γ6 ⊗ Γ6 / Γ7 ⊗ Γ7 Γ6 ⊗ Γ7

A1 k2
z 0

A2 kz z

B1 k2
x − k2

y 0

B2 kxky z

E (kx, ky) (x,y) (x,−y)

Table 3.3: Basis functions of IRs in D6 group. i = 7(8) corresponds to upper(lower) expres-
sions.

IR ϕΓ (k) Γi ⊗ Γi Γ9 ⊗ Γ9 Γ7 ⊗ Γ8 Γi ⊗ Γ9

A1 k2
z 0 0

A2 kz z z

B1 k3
y − 3kyk

2
x y y

B2 k3
x − 3kxk

2
y x x

E1 (kx, ky) (x,±y) (x,∓y)

E2 (2kxky, k
2
x − k2

y) (iz,0) (iz,∓0)

3.1.3 List of full irreducible representations
Now, let us complete a list of irreducible representations of gap functions, which is constructed
via the subduction of (

k dependence ϕΓ (k)
)

⊗ (Kramers part) ↓ P, (3.1.6)

(see Sec. 3.2.2). The results are summarized in Tables 3.4-3.6. These basis functions obtained
by the subduction should still be antisymmetrized to meet the fermion antisymmetry. For
this purpose, it is instructive to explicitly write down the pair amplitudes of Eq. (3.1.4) as,

Fℓα,ℓ′α′(k) =
∑
µν

dµν(k)τ ν
ℓℓ′σ̄

µ
αα′ , (3.1.7)

where the matrix τ ν
ℓℓ′ characterizes the orbital sector of the pair amplitudes. In the follow-

ings, we call τ ν
ℓℓ′σ̄

µ
αα′ in Eq. (3.1.7) a multipole part of the pair amplitudes and denote τ σ̄
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symbolically. In terms of dµν(k),Φℓℓ′(k) and dµ
ℓℓ′(k) in Eq. (3.1.4) are given by,

Φℓℓ′(k) =
∑

ν

d0ν(k)τ ν
ℓℓ′ , (3.1.8a)

dµ
ℓℓ′(k) =

∑
ν

dµν(k)τ ν
ℓℓ′ . (3.1.8b)

The dimension of matrix τ ν
ℓℓ′ depends on a given set of the two orbital (ℓ and ℓ′). For example,

τ ν
ℓℓ′ is the Gell-Mann matrix in three-orbital systems with Γ6 ⊗ Γ8 and Γ7 ⊗ Γ8 in O group,

which is implicitly reflected in µa,b in Table 3.1. In other cases, the τ ν
ℓℓ′ is simply the Pauli

matrix, which represents the different orbital degrees of freedom or the non-Kramers indices
for Γ8 in O group. Remember that we are considering a pair with a given set of orbital ℓ and
ℓ′, and the realized pair in reality is generally in a linear combination of such pairs.

Hereafter, let us consider two-orbital systems for simplicity. The generalization to generic
multiorbital systems is straightforward. For the τ σ̄ pairing states, we can define orbital (o)
singlet/triplet after spin (s) singlet/triplet. In what follows o-triplet s-singlet or o-singlet
s-triplet is referred to be multipole (m) singlet, while o-singlet s-singlet or o-triplet s-triplet
to be m-triplet. Note that the singlet(triplet) just means odd(even) under the exchange of
the corresponding indices.

Let us discuss the properties of dµν(k). First, the fermion antisymmetry imposes a con-
straint,

dµν(k)τ ν σ̄µ = −dµν(−k)(τ ν)T (σ̄µ)T , (3.1.9)

where AT denotes the transpose of the matrix A. From this relation, one can see that dµν(k)
should be even (odd) under the transform k → −k for m-singlet (triplet) pairings. Next, the
time reversal symmetry imposes another constraint,

dµν(k)τ ν σ̄µ = −dµν∗(−k)(τ ν)T (σ̄µ)T . (3.1.10)

From Eqs. (3.1.9) and (3.1.10), we find that dµν(k) is real whenever the time reversal symme-
try is preserved. Note also that the multipole part of pair amplitudes τ σ̄ is time reversal even
(odd) for m-singlet (triplet), according to the fact (τ ν)T (σ̄µ)T = −τ ν σ̄µ for m-singlet and
τ ν σ̄µ for m-triplet. Furthermore, the space inversion symmetry requires that pair amplitudes
belong to the even or odd parity representation, which is denoted by the index g or u:

dµν(k) = (−)Pdµν(−k) for Γg irreducible representations, (3.1.11a)
dµν(k) = (−)P +1dµν(−k) for Γu irreducible representations, (3.1.11b)

where P = 0 for ν = 0, z and is equal to the total parity of two orbitals ℓ and ℓ′ for ν = x, y.
Therefore, the m-singlet/triplet pairing corresponds to the even/odd parity representation
when the two orbitals have the same parity.
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As a demonstration, let us mention a two-orbital system with Γ6g and Γ7g orbitals in
D4h point group. Both orbitals are twofold degenerate Kramers doublets. This two-orbital
model has been studied as a minimal model of iron-based superconductors [47, 43]. The
decomposition of direct products is given by Γ6g ⊗ Γ6g = Γ7g ⊗ Γ7g = A1g ⊕ A2g ⊕ Eg and
Γ6g ⊗Γ7g = B1g ⊕B2g ⊕Eg (Table 3.2). Here, let us consider two examples of pairing states:

0 in Γ6g ⊗ Γ6g (A1g), (3.1.12a)
z in Γ6g ⊗ Γ7g (B2g). (3.1.12b)

These basis functions can be easily read from the third and the fourth column in Table 3.2.
Next, we attach a function ϕΓ (k) in Table 3.2 to the bases (3.1.12a) and (3.1.12b). For
simplicity, we consider the following k dependence:

ϕB1g(k) 0 in Γ6g ⊗ Γ6g (B1g = B1g ⊗ A1g), (3.1.13a)
ϕA2g(k) z in Γ6g ⊗ Γ7g (B1g = A2g ⊗B2g). (3.1.13b)

These two are both B1g irreducible representations and we can find them in Table 3.5. How-
ever, they are not the final expression yet. Finally, we need to antisymmetrize Eqs. (3.1.13a)
and (3.1.13b). Equation (3.1.13a) is already an antisymmetric expression, since ϕB1g(k) is
an even function and 0 is antisymmetric (odd). As for Eq. (3.1.13b), it is necessary to anti-
symmetrize the orbital sector, Γ6g and Γ7g. Since ϕA2g(k) is even and z is symmetric (even),
we should take an o-singlet τ y. Thus, we obtain the final form of the gap function with
B1g m-singlet, ϕA2g(k) τ yz. This is the outline to construct pair amplitudes with a specific
irreducible representation in multiorbital systems.

Before the end of this section, let us make some remarks on inter-orbital pairings in
Tables 3.4 and 3.6. One is that representations of some basis functions are mixed-parity and
ambiguous. For example, ϕA1(k) × (z, i0) belongs to E2 representations of Γ7 ⊗ Γ9 in Table
3.6. Depending on ϕA1 = ϕA1g or ϕA1u , the basis functions are classified into two types of
basis functions,

ϕA1g(k) × (τ yz, τx0) (m-singlet), (3.1.14a)
ϕA1u(k) × (τxz,−τ y0) (m-triplet), (3.1.14b)

after considering the fermion antisymmetry.
Another is a special case in Γ6(7) ⊗Γ8 of O group in Table 3.4 as noted in Sec. 3.1.2. Since

the pair can be Γ6(7) ⊗Γ8a or Γ6(7) ⊗Γ8b, we need two kinds of τ matrices: one for Γ6(7) ⊗Γ8a

and the other for Γ6(7) ⊗ Γ8b.
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Table 3.4: Basis functions of irreducible representations in O group. The following ab-
breviations are used; ϕΓ

i = ϕΓ
i (k), ϕE

1± = 1
2(−ϕE

1 ±
√

3ϕE
2 ), ϕE

2± = −1
2(ϕE

2 ±
√

3ϕE
1 ), and

ϕT1
i (k) = ki, ϕT2(k) = k̃i with i = 1, 2, 3. Basis fucntions in Γ6 ⊗ Γ8 space are obtained by

replacing µa → µb,µb → −µa with µ = 0,x,y, z in the table of Γ7 ⊗ Γ8 space. The other
notations are the same as in Table 3.1.

IR Γ6 ⊗ Γ6 / Γ7 ⊗ Γ7

A1 ϕA10 k1x+k2y+k3z

A2 ϕA20 k̃1x+k̃2y+k̃3z

E (ϕE
1 , ϕ

E
2 )0

(
k1√

3x+ k2√
3y−2k3√

3z, k2y−k1x
)
,

(
k̃1x−k̃2y,

k̃1√
3x+ k̃2√

3y−2k̃3√
3z

)
T1 (k1, k2, k3)0 (ϕA1x, ϕA1y, ϕA1z), (k2z−k3y, k3x−k1z, k1y−k2x),

(ϕE
1+x, ϕE

1−y, ϕE
1 z), (k̃2z+k̃3y, k̃3x+k̃1z, k̃1y+k̃2x)

T2 (k̃1, k̃2, k̃3)0 (ϕA2x, ϕA2y, ϕA2z), (k2z+k3y, k3x+k1z, k1y+k2x),

(ϕE
2+x, ϕE

2−y, ϕE
2 z), (k̃2z−k̃3y, k̃3x−k̃1z, k̃1y−k̃2x)

IR Γ6 ⊗ Γ7

A1 ϕA20 k̃1x+k̃2y+k̃3z

A2 ϕA10 k1x+k2y+k3z

E (ϕE
2 ,−ϕE

1 )0
(
k1x−k2y,

k1√
3x+ k2√

3y−2k3√
3z

)
,

(
k̃1√

3x+ k̃2√
3y−2k̃3√

3z, k̃2y−k̃1x
)

T1 (k̃1, k̃2, k̃3)0 (ϕA2x, ϕA2y, ϕA2z), (k2z+k3y, k3x+k1z, k1y+k2x),

(ϕE
2+x, ϕE

2−y, ϕE
2 z), (k̃2z−k̃3y, k̃3x−k̃1z, k̃1y−k̃2x)

T2 (k1, k2, k3)0 (ϕA1x, ϕA1y, ϕA1z), (k2z−k3y, k3x−k1z, k1y−k2x),

(ϕE
1+x, ϕE

1−y, ϕE
1 z), (k̃2z+k̃3y, k̃3x+k̃1z, k̃1y+k̃2x)

IR Γ7 ⊗ Γ8 / Γ6 ⊗ Γ8 (µa → µb,µb → −µa)

A1 ϕE
1 0a−ϕE

2 0b

{
k1xa++k2ya−+k3za, (k → k̃, a → b)

}
A2 ϕE

2 0a+ϕE
1 0b

{
k̃1xa++k̃2ya−+k̃3za, (k̃ → k, a → b)

}
E (ϕA10a,−ϕA10b),

{(
k1√

3xa++ k2√
3ya−− 2k3√

3za, k2ya−−k1xa+
)
, (k→ k̃, a → b)

}
,

(ϕA20b, ϕ
A20a),

{(
k̃1xa+−k̃2ya−,

k̃1√
3xa++ k̃2√

3ya−− 2k̃3√
3za

)
, (k̃→k, a → b)

}
(ϕE

1 0a+ϕE
2 0b,−ϕE

2 0a+ϕE
1 0b)
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T1 (k10a+, k20a−, k30a),
{
ϕA1(xa+,ya−, za), (A1 → A2, a → b)

}
,

(k̃10b+, k̃20b−, k̃30b)
{
(ϕE

1+xa+, ϕ
E
1−ya−, ϕ

E
1 za), (ϕE

1 → ϕE
2 , a → b)

}
,{

(k2za−k3ya−, k3xa+−k1za, k1ya−−k2xa+), (k→ k̃, a→b)
}
,{

(k̃2za+k̃3ya−, k̃3xa++k̃1za, k̃1ya−+k̃2xa+), (k̃→k, a→b)
}

T2 (k̃10a+, k̃20a−, k̃30a),
{
ϕA1(xb+,yb−, zb), (A1 → A2, b → a)

}
,

(k10b+, k20b−, k30b)
{
(ϕE

1+xb+, ϕ
E
1−yb−, ϕ

E
1 zb), (ϕE

1 → ϕE
2 , b → a)

}
,{

(k2za+k3ya−, k3xa++k1za, k1ya−+k2xa+), (k→ k̃, a→b)
}
,{

(k̃2za−k̃3ya−, k̃3xa+−k̃1za, k̃1ya−−k̃2xa+), (k̃→k, a→b)
}

IR Γ8 ⊗ Γ8

A1 ϕA1τ 00, ϕA2τ y0,
{
k1ζ

1x+k2ζ
2y+k3ζ

3z, (k → k̃, ζ → η)
}

ϕE
1 τ

z0 + ϕE
2 τ

x0

A2 ϕA2τ 00, ϕA1τ y0,
{
k̃1ζ

1x+k̃2ζ
2y+k̃3ζ

3z, (k̃ → k, ζ → η)
}

ϕE
2 τ

z0 − ϕE
1 τ

x0

E (ϕA1τ z, ϕA1τx)0,
{(

k1√
3ζ

1x+ k2√
3ζ

2y−2k3√
3ζ

3z, k2ζ
2y−k1ζ

1x
)
, (k → k̃, ζ → η)

}
,

(ϕA2τx,−ϕA2τ z)0,
{(
k̃1ζ

1x+k̃2ζ
2y, k̃1√

3ζ
1x+ k̃2√

3ζ
2y+2k̃3√

3ζ
3z

)
, (k̃ → k, ζ → η)

}
(ϕE

1 τ
z −ϕE

2 τ
x,−ϕE

2 τ
z −ϕE

1 τ
x)0,

(ϕE
1 , ϕ

E
2 )τ 00, (ϕE

2 ,−ϕE
1 )τ y0

T1 (k1, k2, k3)τ 00,
{
ϕA1(ζ1x, ζ2y, ζ3z), (A1 → A2, ζ → η)

}
,

(k̃1, k̃2, k̃3)τ y0,
{
(ϕE

1+ζ
1x, ϕE

1−ζ
2y, ϕE

1 ζ
3z), (ϕE

1 → ϕE
2 , ζ → η)

}
,

(k1τ
z
−, k2τ

z
+, k3τ

z)0,
{
(k2ζ

3z−k3ζ
2y, k3ζ

1x−k1ζ
3z, k1ζ

2y−k2ζ
1x), (k → k̃, ζ → η)

}
,

(k̃1τ
x
−, k̃2τ

x
+, k̃3τ

x)0
{
(k̃2ζ

3z+k̃3ζ
2y, k̃3ζ

1x+k̃1ζ
3z, k̃1ζ

2y+k̃2ζ
1x), (k̃ → k, ζ → η)

}
T2 (k̃1, k̃2, k̃3)τ 00,

{
ϕA2(ζ1x, ζ2y, ζ3z), (A2 → A1, ζ → η)

}
,

(k1, k2, k3)τ y0, (ϕE
2+ζ

1x, ϕE
2−ζ

2y, ϕE
2 ζ

3z), (ϕE
2 → ϕE

1 , ζ → η)
}
,

(k̃1τ
z
−, k̃2τ

z
+, k̃3τ

z)0,
{
(k̃2ζ

3z−k̃3ζ
2y, k̃3ζ

1x−k̃1ζ
3z, k̃1ζ

2y−k̃2ζ
1x), (k̃ → k, ζ → η)

}
,

(k1τ
x
−, k2τ

x
+, k3τ

x)0
{
(k2ζ

3z+k3ζ
2y, k3ζ

1x+k1ζ
3z, k1ζ

2y+k2ζ
1x), (k → k̃, ζ → η)

}
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Table 3.5: Basis functions of irreducible representations in D4 group.

IR Γ6 ⊗ Γ6 / Γ7 ⊗ Γ7

A1 ϕA10 ϕA2z, ϕE
1 x + ϕE

2 y

A2 ϕA20 ϕA1z, ϕE
2 x − ϕE

1 y

B1 ϕB10 ϕB2z, ϕE
1 x − ϕE

2 y

B2 ϕB20 ϕB1z, ϕE
2 x + ϕE

1 y

E (ϕE
1 , ϕ

E
2 )0 ϕA1(x,y), ϕA2(y,−x), ϕB1(x,−y), ϕB2(y,x), (ϕE

2 ,−ϕE
1 )z

IR Γ6 ⊗ Γ7

A1 ϕB10 ϕB2z, ϕE
1 x − ϕE

2 y

A2 ϕB20 ϕB1z, ϕE
2 x + ϕE

1 y

B1 ϕA10 ϕA2z, ϕE
1 x + ϕE

2 y

B2 ϕA20 ϕA1z, ϕE
2 x − ϕE

1 y

E (ϕE
1 ,−ϕE

2 )0 ϕA1(x,−y), ϕA2(y,x), ϕB1(x,y), ϕB2(y,−x), (ϕE
2 , ϕ

E
1 )z

Table 3.6: Basis functions of irreducible representations in D6 group. Expressions for Γ7(8)

correspond to upper(lower) signs.

IR Γ7 ⊗ Γ7(upper) / Γ8 ⊗ Γ8(lower)

A1 ϕA10 ϕA2z, ϕE1
1 x ± ϕE1

2 y

A2 ϕA20 ϕA1z, ϕE1
2 x ∓ ϕE1

1 y

B1 ϕB10 ϕB2z, ϕE2
1 x ± ϕE2

2 y

B2 ϕB20 ϕB1z, ϕE2
2 x ∓ ϕE2

1 y

E1 (ϕE1
1 , ϕE1

2 )0 ϕA1(x,±y), ϕA2(y,∓x),

(ϕE2
2 x ± ϕE2

1 y, ϕE2
1 x ∓ ϕE2

2 y), (ϕE1
2 ,−ϕE1

1 )z

E2 (ϕE2
1 , ϕE2

2 )0 ϕB1(x,±y), ϕB2(y,∓x),

(ϕE1
2 x ± ϕE1

1 y, ϕE1
1 x ∓ ϕE1

2 y), (ϕE2
2 ,−ϕE2

1 )z
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IR Γ9 ⊗ Γ9

A1 ϕA10 ϕA2z, ϕB1y, ϕB2x

A2 ϕA20 ϕA1z, ϕB2y, ϕB1x

B1 ϕB10 ϕB2z, ϕA1y, ϕA2x

B2 ϕB20 ϕB1z, ϕA2y, ϕA1x

E1 (ϕE1
1 , ϕE1

2 )0 (ϕE2
1 , ϕE2

2 )y, (ϕE2
2 ,−ϕE2

1 )x, (ϕE1
2 ,−ϕE1

1 )z

E2 (ϕE2
1 , ϕE2

2 )0 (ϕE1
1 , ϕE1

2 )y, (ϕE1
2 ,−ϕE1

1 )x, (ϕE2
2 ,−ϕE2

1 )z

IR Γ7 ⊗ Γ8

A1 ϕB1y, ϕB2x ϕE2
1 z − iϕE2

2 0

A2 ϕB2y, ϕB2x ϕE2
2 z + iϕE2

1 0

B1 ϕA1y, ϕA2x ϕE1
1 z − iϕE1

2 0

B2 ϕA2y, ϕA1x ϕE1
2 z + iϕE1

1 0

E1 (ϕE2
1 , ϕE2

2 )y, (ϕE2
2 ,−ϕE2

1 )x ϕB1(z,−i0), ϕB2(i0, z),

(ϕE1
2 z − iϕE1

1 0, ϕE1
1 z + iϕE1

2 0)

E2 (ϕE1
1 , ϕE1

2 )y, (ϕE1
2 ,−ϕE1

1 )x ϕA1(z,−i0), ϕA2(i0, z),

(ϕE2
2 z − iϕE2

1 0, ϕE2
1 z + iϕE2

2 0)

IR Γ7 ⊗ Γ9(upper) / Γ8 ⊗ Γ9(lower)

A1 ϕE1
1 x ∓ ϕE1

2 y ϕE2
1 z ± iϕE2

2 0

A2 ϕE1
2 x ± ϕE1

1 y ϕE2
2 z ∓ iϕE2

1 0

B1 ϕE2
1 x ∓ ϕE2

2 y ϕE1
1 z ± iϕE1

2 0

B2 ϕE2
2 x ± ϕE2

1 y ϕE1
2 z ∓ iϕE1

1 0

E1 ϕA1(x,∓y), ϕA2(y,±x), ϕB1(z,±i0), ϕB2(i0,∓z),

(ϕE2
2 x ∓ ϕE2

1 y, ϕE2
1 x ± ϕE2

2 y) (ϕE1
2 z ± iϕE1

1 0, ϕE1
1 z ∓ iϕE1

2 0)

E2 ϕB1(x,∓y), ϕB2(y,±x), ϕA1(z,±i0), ϕA2(i0,∓z),

(ϕE1
2 x ∓ ϕE1

1 y, ϕE1
1 x ± ϕE1

2 y) (ϕE2
2 z ± iϕE2

1 0, ϕE2
1 z ∓ iϕE2

2 0)
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Tables 3.4-3.6 are one of the main results. Even considering systems with two or more
orbitals, the present results can be always applied by focusing on the 4 × 4 submatrix em-
bedded in the entire space. Therefore, the basis functions in Tables 3.4-3.6 are sufficient
for any symmorphic systems. Although Tables 3.4-3.6 seem to be rather complicated, they
include important physical information about the pairing mechanism. This is because one
can deduce what kinds (symmetry) of order parameters are realized when the system shows
a characteristic fluctuation, since we have classified the superconducting order parameters
in the orbital bases, which is easily related to the form of the characteristic interaction. In
Sec. 3.4, we will see this point by discussing several examples.

3.2 General consideration of classification
In the previous section, we have classified superconducting gap functions according to irre-
ducible representations of a given point group P . Before proceeding to the next step, we here
show that superconducting order parameters can be characterized by irreducible represen-
tations of P in both symmorphic and non-symmorphic systems. Moreover, in symmorphic
systems, the form of gap functions can be determined by considering only the spin-orbital
coupled degrees of freedom.

3.2.1 Mean field theory under the space group G

Let us consider a BCS type model Hamiltonian, H = H0 +Hint, under a space group G,

H0 =
∑

k

∑
12

[
ĥ(k)]12c

†
1(k)c2(k), (3.2.1)

Hint = − 1
2N

∑
kk′

∑
1234

v14,32(k − k′)c†
1(k)c†

2(−k)c3(−k′)c4(k′), (3.2.2)

where ĥ(k) is a Hermitian matrix describing the band structure, and the subscripts (1 ∼ 4)
symbolically represent the orbital, the spin, and the atomic site (sublattice) degrees of free-
dom. In this Hamiltonian, H0 and Hint should respectively be invariant under any operation
g in the space group G. That is to say, [H0, g] = 0 and [Hint, g] = 0. The space group element
g is denoted as g = {p|a} in Seitz notation, where p is an operation of the point group P

associated with G, and a is a translation. From [H0, g] = 0, we obtain,

Û(g; k)ĥ(k)Û †(g; k) = ĥ(pk), (3.2.3)

using the following relation,

g c†
1(k) g−1 =

∑
2
c†

2(pk)[Û(g; k)]21, (3.2.4)
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where the matrix Û(g; k) describes the transformation property of c†
1(k), which generally

depends on k (see Appendix A.2.3). As for Hint, one can expand v14,32(k − k′) into the
following form,

v14,32(k − k′) =
∑
Γ

∑
i

vΓ
[
φ̂Γ

i (k)
]

12

[
φ̂Γ

i (k′)
]∗

43
. (3.2.5)

Here, the sum of Γ contains non-equivalent irreducible representations of P and the label
i denotes degenerate bases in the same Γ . vΓ can be regarded as a pairing interaction in
Γ irreducible representation channel, which is a real number due to the Hermitian of Hint.
The matrix φ̂Γ

i (k) is the ith basis function for the Γ irreducible representation of P , which
transforms according to,

Û(g; k)φ̂Γ
i (k)ÛT (g; −k) =

∑
j

φ̂Γ
j (pk)D(Γ )

ji (p), (3.2.6)

where D(Γ )
ji (p) is the representation matrix of Γ irreducible representation. Equation (3.2.6)

can be obtained from a requirement that

Ψ†
Γ i =

∑
k

∑
12

[
φ̂Γ

i (k)
]

12
c†

1(k)c†
2(−k), (3.2.7)

satisfies the following transformation properties,

gΨ†
Γ i g

−1 =
∑

j

Ψ†
Γ jD

(Γ )
ji (p). (3.2.8)

Thus, Hint is written as follows,

Hint = − 1
2N

∑
Γ

∑
i

vΓ Ψ†
Γ iΨΓ i. (3.2.9)

This clearly shows that Hint is certainly invariant under any operation g.
Now, let us confirm the requirements of basis functions:

φ̂Γ
i (k) = −

(
φ̂Γ

i (−k)
)T
, (3.2.10a)

1
N

∑
k

Tr
[
φ̂Γ

i (k)φ̂Γ ′†
j (k)

]
= δijδΓ Γ ′ . (3.2.10b)

The first equation (3.2.10a) is evident from Eq. (3.2.5), while the second one (3.2.10b) can
be derived by using the grand orthogonal theorem among irreducible representations;∑

k

Tr
[
φ̂Γ

i (k)φ̂Γ ′†
j (k)

]
= 1
m

∑
k

∑
p

Tr
[
φ̂Γ

i (pk)φ̂Γ ′†
j (pk)

]
= 1
m

∑
k

∑
i′j′

Tr
[
φ̂Γ

i′ (k)φ̂Γ ′†
j′ (k)

] ∑
p

(
D(Γ )

ii′ (p)
)∗

D(Γ ′)
jj′ (p)

= 1
dΓ

δijδΓ Γ ′
∑

k

∑
i

Tr
[
φ̂Γ

i (k)φ̂Γ †
i (k)

]
,
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where m is the order of P , and dΓ the dimension of Γ . Thus, with the appropriate normal-
ization, we can choose φ̂Γ

i (k) to satisfy Eqs. (3.2.10a) and (3.2.10b).
Next, we apply the mean-field theory to Eq. (3.2.2), and introduce the superconducting

order parameter,
[
∆̂(k)

]
12

= 1
N

∑
k′

∑
34
v14,32(k − k′)⟨c4(k′)c3(−k′)⟩

= 1
N

∑
k′

∑
34
v14,32(k − k′)F43(k′). (3.2.11)

Substituting Eq. (3.2.5) to (3.2.11), we obtain

∆̂(k) =
∑
Γ

∑
i

∆Γ
i φ̂

Γ
i (k), (3.2.12a)

∆Γ
i = vΓ 1

N

∑
k

∑
12
F12(k)

[
φ̂Γ

i (k)
]∗

12
. (3.2.12b)

Just below the transition temperature T = Tc, we can linearize F12(k) as

F12(k) = T
∑

n

[
Ĝ(k, iωn)∆̂(k)Ĝ∗(−k, iωn)

]
12
, (3.2.13)

with Matsubara frequency ωn = πT (2n + 1). The one-particle normal Green’s function
Ĝ(k, iωn) meets a similar relation to Eq. (3.2.3),

Û(g; k)Ĝ(k, iωn)Û †(g; k) = Ĝ(pk, iωn). (3.2.14)

Finally, from Eqs. (3.2.12b), (3.2.13), and the grand orthogonal theorem, we obtain the gap
equations as follows,

∆Γ
i = vΓ∆Γ

i

1
dΓ

T

N

∑
k

∑
j

∑
n

Tr
[
Ĝ(k, iωn)φ̂Γ

j (k)Ĝ∗(−k, iωn)φ̂Γ †
j (k)

]
. (3.2.15)

It should be noted that the gap equation (3.2.15) is decoupled in each Γ , and also does not
depend on the label i. This fact means that the gap function just below Tc can be classi-
fied according to irreducible representations of P in both symmorphic and non-symmorphic
systems. In practice, φ̂Γ

i (k) may be a linear combination of several basis functions in the
same irreducible representation, namely, φ̂Γ

i (k) = ∑
α CΓ αφ̂

Γ
α,i(k). The generalization to such

situations is straightforward.

3.2.2 Classification in symmorphic systems
In a symmorphic space group, apart from the lattice translations T , all generating symmetry
operations leave at least one common point fixed. The generators consist of the elements
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in the semi-direct product of T and the point group P . In this case, for all point group
operations p = {p|0} ∈ P , we can always set Û(p; k) in Eq. (3.2.4) to be k-independent Û(p).
This can be verified by the following discussions.

Let us denote c†
ℓαb(R) as the electron creation operator, where ℓ indicates a basis function

labeled by an irreducible representation of P , α and b denote the Kramers degrees of freedom
and the position of the atom within a unit cell, respectively. R represents the position for
the unit cell (lattice vector) and we also define the relative position for the b-atom xb in a
unit cell. In general, space group operations exchange the equivalent atoms in the same or
the different unit cells. Considering the Fourier transform,

c†
ℓαb(k) = 1√

N

∑
R

eik·(R+xb)c†
ℓαb(R), (3.2.16)

we can check the symmetry property of c†
ℓαb(k) (see Appendix A.2.3),

g c†
ℓαb(k) g−1 = e−ipk·a ∑

α′b′
c†

ℓα′b′(pk)Dsite
b′b (p)D(ℓ)

α′α(p), (3.2.17)

where g = {p|a} ∈ G. Here, Dsite(p) and D(ℓ)(p) are the unitary matrices corresponding
to the exchange of equivalent atoms and the rotation of the Kramers degrees of freedom,
respectively. Since the phase factor e−ipk·a in Eq. (3.2.17) is irrelevant to the point group
operations alone, Û(p; k) appearing in Eq. (3.2.4) becomes k-independent.

Equation (3.2.17) also indicates that c†
ℓαb(k) is a basis function for a reducible represen-

tation of P regarding c†
ℓαb(k) p7→ p c†

ℓαb(p−1k)p−1 as the action of p. Therefore, in the usual
manner, we can construct the basis functions of the irreducible representations of P from
c†

ℓαb(k), by using the projection method. The obtained basis c†
Γ i(k) satisfies,

p c†
Γ i(k) p−1 =

∑
j

c†
Γ j(pk)

[
D̂(Γ )(p)

]
ji
, (3.2.18)

where Γ and i are the irreducible representation of P and its basis, respectively. D̂(Γ )(p) is
the corresponding representation matrix. Here, we omit the other labels for simplicity. Due
to the unitarity of the irreducible decomposition, we can always rewrite the Hamiltonian in
the new basis c†

Γ i(k).
By using c†

Γ i(k) given above, Eq. (3.2.1) can be divided into each block for irreducible
representations of P ,

H0 =
∑

k

∑
Γ1Γ2

∑
ij

[
ĥ(k;Γ1Γ2)

]
ij
c†

Γ1i(k)cΓ2j(k), (3.2.19)

where ĥ(k;Γ1Γ2) satisfies

ĥ(pk;Γ1Γ2) = D̂(Γ1)(p)ĥ(k;Γ1Γ2)D̂(Γ2)†(p). (3.2.20)
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Similarly, Eq. (3.2.7) leads to,

ΨΓ
i =

∑
k

∑
Γ1Γ2

∑
j1j2

[
φ̂Γ

i (k;Γ1Γ2)
]

j1j2
c†

Γ1j1(k)c†
Γ2j2(−k), (3.2.21)

D̂(Γ1)(p)φ̂Γ
i (p−1k;Γ1Γ2)(D̂(Γ2)(p))T =

∑
j

φ̂Γ
j (k;Γ1Γ2)D(Γ )

ji (p). (3.2.22)

Equation (3.2.22) indicates that φ̂Γ
i (k;Γ1Γ2) with Γ irreducible representation can be ob-

tained from the subduction Γk ⊗ (Γ1⊗Γ2)↓P [See Eq. (3.1.6)], where Γk denotes the irre-
ducible representation of the momentum transform: φ̂Γ

i (k) p7→ φ̂Γ
i (p−1k).

Note that Eq. (3.2.20) is similar to the case of Γ = A1g in Eq. (3.2.22), apart from the
irreducible representation for the Kramers sector. It is given by Γ1 ⊗ Γ2 for (3.2.22), while
Γ1 ⊗ Γ ∗

2 for (3.2.20). Therefore, the tables derived in this chapter will be helpful also in
constructing a generic tight-binding model in multiorbital systems.

Finally, let us comment on non-symmorphic systems. In this case, the above discussion
is no longer applicable due to inevitable k dependence in the phase factor of Û(g; k). An
available alternative method [138, 139, 3] is the classification based on a little group at a
given k point. This is applicable in both symmorphic and non-symmorphic systems and
discussed in detail in Chapter 4.

3.3 Band based representations
So far, we have discussed the pair amplitudes and their basis functions in orbital based
representations. Here, let us examine the relation between the orbital based and the band
based representations, since many observables strongly depend on the (band based) energy
gap on the Fermi surfaces.

3.3.1 Nodal structure in band basis
As usual, an intra-band Cooper pair amplitude can be defined by (the band index omitted),

F̃σσ′(k) =
[(

Φ(k)σ0 + d(k) · σ
)
iσy

]
σσ′
, (3.3.1)

with pseudo-spin-singlet amplitude Φ(k) and triplet d(k). Strictly, pseudo-spin σ(σ′) =↑, ↓
is the Kramers index for a given band. From Eqs. (3.1.1) and (3.1.2), one can obtain the
relation between the band and the orbital based pair amplitudes,

F̃σσ′(k) =
∑

ℓα,ℓ′α′
u∗

ℓα,σ(k)u∗
ℓ′α′,σ′(−k)Fℓα,ℓ′α′(k). (3.3.2)
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Before discussing the details, let us explain our phase convention. We use a convention
that the degenerate pair for a given k satisfies

(θI)c†
ℓ±(k)(θI)−1 = ∓c†

ℓ∓(k), (3.3.3)

under the time reversal (θ) and spatial inversion (I) operations. Using this convention, one
obtains

uℓ+,↑(k) = (−1)Pℓu∗
ℓ−,↓(k), (3.3.4a)

uℓ+,↓(k) = (−1)Pℓ+1u∗
ℓ−,↑(k), (3.3.4b)

where Pℓ is the parity of the orbital ℓ. Furthermore, in centrosymmetric systems, one can
take

uℓα,σ(k) = uℓα,σ(−k)(−1)P̄ℓ , (3.3.5)

with P̄ℓ ≡ Pℓ + P0, where P0 is the parity for a reference orbital ℓ0 of the band electron
concerned (See the definition of ℓ0 below).

Although the sum of ℓ(ℓ′) in Eq. (3.3.2) contains all of orbitals, it is sufficient to consider
the case of two orbitals ℓ(ℓ′) = 1, 2 in the discussion below. In Eq. (3.1.7), Fℓα,ℓ′α′(k) is
expressed by dµν

ℓℓ′(k), which is related to Φ(k) and d(k) in the following way,Φ(k)

d(k)

 = (−1)P̄ℓ
∑
s=±

∑
ν=0,x,y,z

Ws
ν(k)

d0ν
s (k)

d⃗ν
s(k)

 , (3.3.6)

with [d⃗ν
s(k)]µ = dµν

s (k), dµν
± = 1

2(dµν
12 ± dµν

21 ), and Ws
ν(k) are transformation matrices defined

below. When the two orbitals have the same parity P1 = P2, due to the fermion antisymmetry,
only W+

0,x,z and W−
y are non-vanishing, and the others are zero;

W+
ν (k) =

w0
0ν 0 0 0

0⃗ −w⃗xν w⃗yν −w⃗zν

 , (3.3.7a)

W−
y (k) = i

 0 −w0
xy w0

yy −w0
zy

w⃗0y 0⃗ 0⃗ 0⃗

 , (3.3.7b)

where ν = 0, x, and z. Here, 0⃗ = (0, 0, 0)T and

w0
µν = (−1)Pℓ(uσµτ νu∗), (3.3.8a)

w⃗µν =
[
Re(uσ̄µτ νu), Im(uσ̄µτ νu),−w0

µν

]T

, (3.3.8b)
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with

(uσµτ νu′) ≡
±∑

αα′

1,2∑
ℓℓ′
uℓα,↑(k)σµ

αα′τ ν
ℓℓ′u′

ℓ′α′,↑(k), (3.3.9)

and σµ → σ̄µ. Even when the two parities are different P1 , P2, Ws
ν can be easily obtained

by multiplying (−1) and replacing W±
ν → W∓

ν in Eqs. (3.3.7a) and (3.3.7b). Note also that
in this case, W±

ν (k) = −W±
ν (−k) holds from Eq. (3.3.5).

Equation (3.3.6) indicates that F̃σσ′(k) is the product of Ws
ν(k) and the orbital based

Fℓα,ℓα′(k). Thus, the k dependence of W±
ν (k) can yield additional nodes in the band based

gap functions [140]. We will discuss this aspect in Sec. 3.4, but before that, we need to
explain how to fix the phase ambiguity involved in W±

ν (k).
Generally, when the time reversal and space inversion symmetries are held, W±

ν (k) is
accompanied by at least U(2) phase ambiguity for every band and at every k point, due to the
U(1) gauge and the Kramers degeneracy. In order to remove such ambiguity, a natural phase
fixing procedure is necessary. Here, we consider assigning an irreducible representation of
the point group to each band n in such a way that the irreducible representation corresponds
to that of the dominant orbital ℓ0 for the band n. Indeed, the choices of the irreducible
representations are arbitrary, but the above choice is one of natural ways as explained below.
This can be performed by the following procedure; for the dominant orbital component
ℓ0 in the band n, uℓ0±,n∓(k) are set to zero and uℓ0±,n±(k) to a real number, respectively
(see Sec. 3.3.2). This way of the phase convention naturally connects generic situations
to the orbital-diagonal limit, where there exist no hybridizations between different orbitals.
With this, the band n and the main orbital ℓ0 have the same symmetry without ambiguity.
Therefore, Tables 3.4-3.6 are still valid in the band based Cooper pairs (see Sec. 3.3.3).

Using the phase-fixed bases, one can discuss the additional nodes through W±
ν (k). In-

formation of the irreducible representation in the orbital based Cooper pairs is encoded in
W±

ν (k), and thus, W±
ν (k) can possess nodes if this belongs to an anisotropic irreducible repre-

sentations. Equation (3.3.6) means that the k dependence of the band based pair amplitudes
is determined by a product of W±

ν (k) and the orbital based ones. This implies that even
local orbital pairs can be transformed into anisotropic ones in the band representation, and
also non-A1g inter-orbital pairs can lead to an anisotropic A1g band based pairs in connection
with non-A1g W±

ν (k). In the following section, we will discuss these mechanisms to realize
anisotropic superconductivity in detail.

3.3.2 Phase fixing procedure
Here, we describe a procedure to fix the U(2) phase ambiguity in the band based represen-
tation, and demonstrate that the gap structure looks apparently different, depending on the
choice of the fixed phase, although the structure of excitations is unchanged.
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Let us consider an N -orbital system. If all the orbitals are independent and not hybridized
with each other, then any electron in the band representation consists of single orbital; a
unitary matrix u(k) is an identity matrix. No matter how complicated the band structure
is, we can line up orbital indices in such a way that the dominant orbital in each band is
arranged in a diagonal position of the matrix u(k). After this procedure, we now fix the U(2)
gauge.

Under the presence of the space inversion and time reversal symmetries, the following
relation holds

(θI) c†
nσ(k) (θI)−1 =

∑
σ′
c†

nσ′(k)(iσy)σ′σ. (3.3.10)

Substituting Eq. (3.1.1) into the both sides of Eq. (3.3.10), we obtain,

uℓα,nσ(k) = (−1)Pℓ
∑
α′σ′

(iσy)αα′u∗
ℓα′,nσ′(k)(iσy)†

σ′σ, (3.3.11)

where Pℓ is the parity of the orbital ℓ. In what follows, we focus on the 2 × 2 submatrix
û(k; ℓn), where

[
û(k; ℓn)

]
ασ

≡ uℓα,nσ(k). From Eq. (3.3.11), we find that each submatrix
û(k; ℓn) satisfies,

û(k; ℓn)û†(k; ℓn) = | det û(k; ℓn)|I2×2, (3.3.12)

which is independent of Pℓ. Here, I2×2 is the 2 × 2 identity matrix. Let us consider the
following matrix,

K̂n(k) = 1√
| det û(k;nn)|

û(k;nn). (3.3.13)

Then, the U(2) phase ambiguity can be fixed by redefining the unitary matrix as follows,

ũℓα,nσ(k) =
[
û(k; ℓn)K̂†

n(k)
]

ασ
. (3.3.14)

Indeed, this matrix diagonalizes H0, and the phase for ℓ = n component is fixed to be positive
real as,

ũnα,nσ(k) =
√

| det û(k;nn)|δασ. (3.3.15)

In the following sections, u(k) means this ũ(k), unless otherwise noted. It should be noted
that the unitary matrix preserves the Kramers label α for each orbital. In other words, if the
nth orbital belongs to a Γ irreducible representation, the corresponding band electron also
belongs to the same Γ irreducible representation. It is useful to discuss the nodal positions
in the band based gap functions as will be shown in Secs. 3.3.3 and 3.3.4. In addition,
the unitary matrix obtained in the above way smoothly connects to the 2N × 2N identity
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matrix in the limit where there is no hybridization between different orbitals, which is one
of desirable properties as a diagonalizing matrix.

Note that the gap structure in the multiorbital systems strongly depends on the way of the
phase fixing, although observable quantities are unchanged. Depending on the way, mean-
ingless complicated structure can appear in the obtained gap structure. We will demonstrate
this point in Sec. 3.3.4.

3.3.3 Symmetry of unitary matrix and band based pair amplitude
Here, let us study the symmetry of the unitary matrix uℓα,nσ(k). In our case, due to the phase
fixing mentioned in Sec. 3.3.2, we can explicitly discuss the symmetry. In actual calculations,
we first diagonalize H0 in the irreducible Brillouin zone. At this stage, the obtained unitary
matrix still has an arbitrary phase. Then, we fix the phase, following the procedure explained
in Sec. 3.3.2. The unitary matrix in the whole first Brillouin zone can be obtained by the
following transformation,

û(pk; ℓn) = D̂(Γℓ)(p)û(k; ℓn)D̂(Γn)†(p), (3.3.16)

where Γℓ(Γn) denotes irreducible representations of ℓ(n), and k is in the irreducible Brillouin
zone. Note that Eq. (3.3.16) is similar to Eq. (3.2.20). This indicates that our unitary matrix
has the same structure as ĥ(k) with respect to the symmetry. From this property, the
symmetry of the band based gap functions is readily available from that of orbital based
ones.

Indeed, using Eqs. (3.2.18) and (3.3.16), we obtain

p c̃†
nσ(k) p−1 =

∑
ℓαα′

c†
ℓα(pk)

[
D̂(Γℓ)(p)

]
αα′
uℓα′,nσ(k)

=
∑
ℓασ′

c†
ℓα(pk)uℓα,nσ′(pk)

[
D̂(Γn)(p)

]
σ′σ

=
∑
σ′
c̃†

nσ′(pk)
[
D̂(Γn)(p)

]
σ′σ
. (3.3.17)

This transformation property for the band n is the same as the orbital based case in Eq. (3.2.18).
Therefore, when we consider the band based pair amplitude,

F̃nσ,n′σ′(k) ≡ ⟨c̃nσ(k)c̃n′σ′(−k)⟩, (3.3.18)

the symmetry arguments in Sec. 3.1 hold for this band based gap functions. Also it is
evident that Tables 3.4-3.6 are valid. However, such band based arguments are insufficient
to understand a variety of multiorbital superconductivity, because the pairing interactions
can be more clearly defined in the orbital based representation. Indeed, in the band based
representation, we will miss the presence of additional nodes as discussed in Sec. 3.4, which
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are not symmetry protected but inevitable from the orbital based viewpoint. Thus, it is clear
that the unitary matrix uℓα,nσ(k) can possess significant information about k dependence of
gap functions.

3.3.4 Efficacy of the phase fixing
Finally, let us demonstrate an advantage of our phase fixing method. We consider a two-
orbital model constructed from Γ7g and Γ9g orbitals in D6h group. The general form of ĥ(k)
in Eq. (3.2.1) is given as

ĥ(k) = h
A1g

1 τ 0σ0 + h
A1g

2 τ zσ0 + h
E1g

1 τ yσx

− h
E1g

2 τxσy + h
E2g

1 τ yσz + h
E2g

2 τxσ0,
(3.3.19)

where hΓ
1,2 consists of basis functions of Γ irreducible representations:

h
A1g

1 = −t0
(

cos
√

3kx+2 cos
√

3kx

2
cos 3ky

2

)
− µ,

h
A1g

2 = −t1, h
E1g

1 = t2s
′
x sin kz, h

E1g

2 = t2s
′
y sin kz,

h
E2g

1 = 2t3s′
xs

′
y, h

E1g

2 = t3(s′2
x − s′2

y ),

with

s′
x = sin

√
3kx + sin

√
3kx

2
cos 3ky

2
,

s′
y =

√
3 sin 3ky

2
cos

√
3kx

2
.

Here, we set t0 to the unit of energy and (t1, t2, t3) = (0.25, 0.05, 0.05) and µ = −1.20. With
these parameters, the dominant component of the lower (upper) band is almost composed
of Γ7g(Γ9g) orbital. Below, we will focus on the band mainly composed of Γ9g and will not
discuss the other band for simplicity.

For example, let us consider one of E2u pairing states in Γ9g orbital, i.e., ϕE1u
1 y for Γ9 ⊗Γ9

pairs in Table 3.6:

φ̂E2u(k) = ϕE1u
1 (k)(τ 0 − τ z)y, (3.3.20)

with ϕE1u
1 (k) = s′

x. Here, τ 0 − τ z represents the pair in Γ9 ⊗Γ9. In Fig. 3.1, we illustrate the
band based gap function for the lower band, which is evaluated via Eq. (3.3.2). Figures 3.1(a),
(b) and (c) depict, respectively, dx, dy, and dz components with our phase fixing method,
where the upper (lower) band is smoothly connected with the Γ7g (Γ9g) orbital. Through
the unitary matrix, dx and dz components are induced, but the magnitude is very small. dy

component is almost the same as ϕE1u
1 (k) given in Eq. (3.3.20). In contrast, one can see the
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Figure 3.1: Band-based gap functions of the lower band in kz = π plane. (a) dx, (b) dy,
and (c) dz components of the band based gap functions are obtained by our phase fixing
procedure, where the Kramers index is labeled by that of the major Γ9g orbital. (d) dx, (e)
dy, and (f) dz components of the gap functions, labeled by the Kramers index of the minor
Γ7g orbital. Green dashed lines denote gap nodes.

complicated gap structures in Figs. 3.1(d)-(f), the magnitudes of which are comparable to
each other. Here, the Kramers index for the lower band is labeled by that for the minor Γ7g

orbital. At a glance, there seem to exist complicated additional nodes. The gap amplitude√
|d|, however, is identical to that shown in Figs. 3.1(a)-(c), and is independent of the way

of the phase fixing. This demonstrates that our phase fixing method is effective and useful
in the discussion about the gap structures in the multiorbital systems.

3.4 Applications : Superconductivity mediated by mul-
tipole fluctuations

In this section, we discuss (i) the pairing states emerging in close proximity to (anti-)ferroic
quadrupole ordering, (ii) a mechanism of anisotropic s-wave (A1g) pairing state, and (iii)
anisotropic pairing states mediated by local fluctuations. The case (i) is a generalization of
spin-fluctuation mechanism; d-wave pairing state [9, 10] next to antiferromagnetic phases,
or p-wave to ferromagnetic phases. We will discuss these features unique to multiorbital
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superconductors. Here, we focus on gap functions rather than the Cooper pair amplitudes,
since the former can be more easily obtained in actual calculations.

3.4.1 Γ8 model in a cubic lattice
First, let us consider a model with non-Kramers doublet Γ8u on a simple-cubic lattice. It may
be related to recently discovered superconductivity in Pr-based 1-2-20 compounds [141, 142].
Local bases |Γ8a,b; ±⟩ are fourfold degenerate with the orbital a, b and the Kramers degeneracy
±. For simplicity, as a pairing interaction Hint, we take the nearest-neighbor Eg-orbital
(quadrupole) fluctuations,

Hint = 1
N

∑
q

∑
i

v(q)MEi
g
(−q)MEi

g
(q), (3.4.1)

MEi
g
(q) =

∑
k

∑
12

[
M̂Ei

g

]
12
c†

1(k)c2(k + q), (3.4.2)

where the sum of 1(2) symbolically represents the sum of the fourfold local bases |Γ8a,b; ±⟩,
and the matrices of the multipole part M̂Ei

g
are defined by

M̂E1
g

= τ zσ0

2
, M̂E2

g
= τxσ0

2
. (3.4.3)

Thus, [τ νσµ]12 = τ ν
a1a2σ

µ
σ1σ2 with aj = a or b and σj = ±. The momentum dependence

of the pairing interaction is v(q) = 2v(cx + cy + cz), where v is a constant, cµ = cos qµ

(µ = x, y, z) and the lattice constant is set to unity. Note that the normalization condition
Tr

[
M̂Ei

g
M̂ †

Ej
g

]
= δij is satisfied, where Tr is taken for both the orbital and the Kramers indices.

Now, let us solve a superconducting gap equation within the mean field theory. It is
convenient to decouple Eq. (3.4.1) into each Cooper channel. To this end, we rewrite v(q) as
follows,

v(k − k′) = v
∑
Γ

∑
i

ϕΓ
i (k)ϕΓ

i (k′), (3.4.4)

where Γ runs over A1g, Eg, and T2g irreducible representations, and i is the label for different
bases in Eg and T2g. The basis functions ϕΓ

i (k) are defined as follows,

ϕA1g =
√

2
3 (cx + cy + cz) , (3.4.5a)

ϕ
Eg

1 = 1√
3 (2cz − cx − cy) , (3.4.5b)

ϕ
Eg

2 = cx − cy, (3.4.5c)
ϕT1u

µ =
√

2sµ, (µ = x, y, z) (3.4.5d)
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with sµ = sin kµ. These basis functions meet the orthonormality condition:
1
N

∑
k

ϕΓ
i (k)

(
ϕΓ ′

j (k)
)∗

= δijδΓ Γ ′ . (3.4.6)

Then, we can decompose the pairing interaction into the zero-momentum Cooper channels,

Hint = − 1
2N

∑
Γ α

∑
i

vΓ
α Ψ†

Γ i,αΨΓ i,α, (3.4.7)

Ψ†
Γ i,α =

∑
k

∑
12

[
φ̂Γ

α,i(k)
]

12
c†

1(k)c†
2(−k). (3.4.8)

Here, the form factor φ̂Γ
α,i(k), which will be calculated below and shown in Eqs. (3.4.11) and

(3.4.12), is regarded as a basis function of the Cooper channel labeled by Γ , i, and α. The
k dependence of gap functions is determined by one or a linear combination of φ̂Γ

α,i(k).
For the decomposition into the Cooper channels, it is convenient to use the following

identity

2σ0
14σ

0
23 =

∑
µ

σ̄µ
12σ̄

µ∗
43 , (3.4.9)

and similar ones for the orbital components. Signs arising from these decomposition are
summarized in Table 4.3, which is also useful to understand what kinds of Cooper channel
are attractive. In the present case, we obtain the following decomposition,∑

i=z,x

[τ iσ0]14[τ iσ0]23 = 1
2

∑
µ

(
[τ 0σ̄µ]12[τ 0σ̄µ]∗43 − [τ yσ̄µ]12[τ yσ̄µ]∗43

)
. (3.4.10)

This indicates that the pairing interaction is v for o-singlet, and −v for o-triplet.
Now, let us illustrate a possible phase diagram. In the case of v > 0 (antiferroic Eg

fluctuations), the o-singlet channels τ yσ̄µ in Eq. (3.4.10) is attractive. Thus, the gap functions
for the following channels can be realized;

ϕA1gηνµ, ϕ
Eg

1,2η
νµ, ϕT1u

µ τ y0, (3.4.11)

which belong to, respectively, T2g, T2g,1g, and T2u irreducible representations in Table 3.4.
Following the symmetrization procedure in Sec. 3.1.3, we find that µ = 0 components in
Eq. (3.4.11) are forbidden due to the fermion antisymmetry, since ϕA1g(k) and ϕEg(k) are
even functions in k. Thus, it is natural that the superconducting states in close proximity to
an antiferroic quadrupole ordered phase belong to three-dimensional representations. In this
regards, it is very interesting to explore what kinds of superconducting state are realized in
Pr-based 1-2-20 compounds under high pressures, where the quadrupole order is suppressed.

Next, in the case of v < 0 (ferroic quadrupole fluctuations), o-triplet channels τ 0σ̄µ in
Eq. (3.4.10) are favored. The gap functions in attractive channels are

ϕA1gτ 00, ϕEg

1,2τ
00, ϕT1u

µ ζνµ, (3.4.12)
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Table 3.7: Signs ci
µν involved in the decomposition from particle-hole (ph) to the Cooper chan-

nels: 2τµ
a1a4τ

µ
a2a3 = ∑

ν c
1
µντ

ν
a1a2τ

ν∗
a4a3 for the orbital sector, and 2σµ

σ1σ4σ
µ
σ2σ3 = ∑

ν c
2
µν σ̄

ν
σ1σ2σ̄

ν∗
σ4σ3

for the spin sector.

ph-channels Cooper channels

τ 0τ 0∗ τxτx∗ τ yτ y∗ τ zτ z∗

2τ 0τ 0 1 1 1 1

2τxτx 1 1 −1 −1

2τ yτ y −1 1 −1 1

2τ zτ z 1 −1 −1 1

σ̄0σ̄0∗ σ̄xσ̄x∗ σ̄yσ̄y∗ σ̄zσ̄z∗

2σ0σ0 1 1 1 1

2σxσx −1 −1 1 1

2σyσy −1 1 −1 1

2σzσz −1 1 1 −1

which belong to, respectively, A1g, Eg, and {A1u, Eu, T1u,2u} irreducible representations.
Again, the fermion antisymmetry requires µ , 0 in Eq. (3.4.12). It should be noted that the
intersite fluctuations can lead to an A1g pairing state.

Finally, let us illustrate schematic phase diagrams expected for antiferroic fluctuations
in Fig. 3.2(a) and for ferroic ones in Fig. 3.2(b). The superconducting states in Fig. 3.2(a)
are expected to be three dimensional representations, while, in Fig. 3.2(b), there are several
candidates for the superconductivity within the present analysis. Fluctuations beyond the
mean field approximation may favor some of the gap functions. Elaborated calculations are
needed to clarify this. Note that the present results are based on a simple model, and the
details depend on the electronic structures in actual materials.

It is often hard to observe quadrupole orderings experimentally. Several materials have
been reported to exhibit quadrupole orders; CeB6 [134, 143], PrPb3 [144, 145], Pr-based 1-2-
20 compounds [146] and so on. As far as we know, among these systems, superconductivity is
observed only in Pr-based 1-2-20 compounds [141, 142]. Strictly speaking, as Pr-based 1-2-20
compounds are non-symmorphic systems, our theory is not directly applicable. However, the
pressure-temperature phase diagram for PrV2Al20 is similar to Fig. 3.2(a). We can expect
the emergence of unconventional three-dimensional superconductivity mentioned above.
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Figure 3.2: Schematic phase diagram near (a) antiferroic and (b) ferroic quadrupole (Eg)
ordered phase as a function of temperature T and a control parameter g, such as pressures.
irreducible representations of the obtained superconductivity belong to T1g, 2T2g, and T2u in
the region I, while A1g, A1u, Eg, Eu, T1u, and T2u in the region II.

3.4.2 Γ6u and Γ7u model in a tetragonal lattice
The second example is a two-orbital model with px/py orbitals in a two dimensional square
lattice with D4h symmetry. This corresponds to a model for BiS2-layered superconductors,
LaO1−xFxBiS2 [147]. Under D4h symmetry, px and py orbitals are classified into Γ6u and Γ7u;

c†
Γ6u,± = 1√

2

(
ic†

px,∓ ∓ c†
py ,∓

)
, (3.4.13a)

c†
Γ7u,± = 1√

2

(
ic†

px,∓ ± c†
py ,∓

)
. (3.4.13b)

Here, c†
px,y ,σ is the creation operator for the px,y orbital with the pure-spin σ = ±, while

c†
Γ6u,7u,α is that for the Γ6u,7u orbital with the Kramers degrees of freedom ±. In terms of
c†

Γ6u,7u,α, we define the non-interacting Hamiltonian by

H0 =
∑

k

∑
12

[
ĥ(k)

]
12
c†

1(k)c2(k), (3.4.14)

with

ĥ(k) =
(
h0(k)τ 0 + ∆τ z + hx(k)τx

)
σ0 + hy(k)τ yσz. (3.4.15)
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Following Ref. [148], we set,

h0(k) = t1(cx + cy) + t2cxcy + t3(c′
xcy + cxc

′
y) − µ, (3.4.16a)

hx(k) = t4(cx − cy), (3.4.16b)
hy(k) = [t5 + t6(cx + cy)]sxsy, (3.4.16c)

where c′
x,y = cos 2kx,y and (t1, t2, t3, t4, t5, t6, µ) = (−0.334, 1.948, 0.166,−0.214,−1.572,−0.220,−1.40)

in the unit of eV. The additional ∆ term in Eq. (3.4.15) simply comes from the atomic spin-
orbit coupling for the Bi p-electrons, and we set ∆ = −0.15. Note that the model (3.4.14)
holds D4h symmetry, although the actual material LaO1−xFxBiS2 belongs to non-symmorphic
space group. Hereafter, by using the model (3.4.14), we discuss unconventional supercon-
ductivity due to two kinds of pairing mechanisms: (A) an inter-site orbital density wave
fluctuations [149, 150], and (B) a local fluctuation, e.g., driven by electron-phonon interac-
tions.

First, let us consider fourfold-symmetry breaking orbital fluctuations. For simplicity, we
consider B1g and B2g type orbital fluctuations, which are respectively described by M̂B1g =
τxσ0/2 and M̂B2g = τ yσz/2 in Γ6u ⊗Γ7u space. The corresponding pairing interaction is given
by

Hint = 1
N

∑
q

∑
Γ =B1g ,B2g

vΓ (q)MΓ (−q)MΓ (q), (3.4.17)

with vΓ (q) = 2vΓ (cx + cy). For q = k − k′, vΓ (k − k′) can be decomposed into A1g, B1g, and
Eu irreducible representations:

ϕA1g = cx + cy, (3.4.18a)
ϕB1g = cx − cy, (3.4.18b)

(ϕEu
1 , ϕEu

2 ) =
√

2(sx, sy). (3.4.18c)

Thus, Eq. (3.4.17) simply reads

Hint = − 1
4N

∑
µν

vµν
∑
1234

[
τ ν σ̄µ

]
12

[
τ ν σ̄µ

]∗

43

×
∑
kk′

∑
Γ i

ϕΓ
i (k)ϕΓ

i (k′)c†
1(k)c†

2(−k)c3(−k′)c4(k′),
(3.4.19)

with Γ = A1g, B1g, or Eu. Here, vµν are given as follows,

4vI = −(vB1g + vB2g), (3.4.20a)
4vII = −(vB1g − vB2g), (3.4.20b)
4vIII = (vB1g − vB2g), (3.4.20c)
4vIV = (vB1g + vB2g), (3.4.20d)
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where the indices I ∼ IV indicate the following sets of (µ, ν):

I : (0, 0), (z, 0), (x, x), (y, x), (3.4.21a)
II : (x, 0), (y, 0), (0, x), (z, x), (3.4.21b)

III : (0, y), (z, y), (x, z), (y, z), (3.4.21c)
IV : (x, y), (y, y), (0, z), (z, z). (3.4.21d)

From the same analysis as in Sec. 3.4.1, for example, ϕ(k)τ 00 is favored for the ferroic B1g/B2g

fluctuations, while ϕ(k)τ 0x for the ferroic B1g and the antiferroic B2g fluctuations, and so
on. When we focus on even-parity pairing states, the gap functions favored by the present
interactions are listed as follows:

I : φ̂
A1g

1 = ϕA1gτ 00, φ̂
B1g

1 = ϕB1gτ 00, (3.4.22a)

II : φ̂
A1g

2 = ϕB1gτx0, φ̂
B1g

2 = ϕA1gτx0, (3.4.22b)
III : φ̂A2g = ϕB1gτ yz, φ̂B2g = ϕA1gτ yz, (3.4.22c)

IV : φ̂
A1g

3 = ϕA1gτ z0, φ̂
B1g

3 = ϕB1gτ z0,
(φ̂Eg

1,1, φ̂
Eg

1,2) = ϕA1gτ y(−x,y), (φ̂Eg

2,1, φ̂
Eg

2,2) = ϕB1gτ y(x,y). (3.4.22d)

These orbital based gap functions φ̂Γ
i are transformed into the band based ones φ̃Γ

i via
unitary transformations as discussed in Sec. 3.3. It should be noted that the band based φ̃Γ

i

is crucially important in low-energy excitations observed experimentally. In what follows, let
us elucidate the nodal structure of φ̃Γ

i .
For the case I, the nodal structures of φ̃’s solely come from those in φ̂

A1g

1 or φ̂B1g

1 , since
τ 00 is A1g. In contrast, in the case II, due to a unique property of multiorbital systems, both
φ̃

A1g

2 and φ̃B1g

2 possess nontrivial nodal structure along kx ±ky = 0 lines. In the orbital based
φ̂

B1g

2 , since the k dependence of ϕA1g belongs to A1g, the nodal structures of φ̃B1g

2 come from
the unitary matrix through Eq. (3.3.6). Indeed, τx0 is B1g irreducible representation in Table
3.2. The elements of the unitary matrix, which transform into the band mainly composed of
Γ6u orbital, are given by

(uΓ6u+,↑, uΓ6u−,↑) ∼ (1, 0) ,

(uΓ7u+,↑, uΓ7u−,↑) ∼
(
e2iθk , e−iθk

)
,

with θk being the angle in the kx-ky plane. Then,

[W+
x (k)]11 ∼ cos 2θk ∼ k2

x − k2
y, (3.4.23)

which has, indeed, B1g symmetry (see Sec. 3.3.3). As for the gap function with A1g symmetry,
it is commonly considered that it does not have symmetry protected nodes. However, for
φ̂

A1g

2 in Eq. (3.4.22b), since both ϕB1g and Eq. (3.4.23) have line nodes along kx ±ky = 0, φ̃A1g

2
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Figure 3.3: (a) Schematic phase diagram of the simple two-orbital model for BiS2 layered
superconductors. B1g and B2g type ferroic(F)/antiferroic(AF) orbital fluctuations have been
considered. A typical band based gap structure φ̃Γ (k) is illustrated in (b) Γ = B1g, (c) A1g,
and (d) A2g states. The (green) solid lines indicate the Fermi surface in this model.

possesses B1g-like gap nodes [Fig. 3.3(c)]. Although these nodes are not symmetry protected,
one can expect that a specific fluctuation leads to such accidental nodes in A1g gap functions.

Figure 3.3(a) depicts the schematic phase diagram for the even parity sector obtained by
numerical calculations. The corresponding nodal structures are summarized in Figs. 3.3(b)-
(d). The region around IV is regarded as a normal state, because the corresponding Tc is
very low due to the fact that the attractive pairs are in inter-band pairing rather than intra-
band pairing. Figure 3.3(c) clearly shows that the A1g gap function is strongly anisotropic as
discussed above. It should be emphasized that this orbital-driven anisotropic A1g gap is not
specific to the present model, but can commonly appear in any multiorbital superconductors.
This mechanism may provide a clue to understanding gap anisotropies in, e.g., CeRu2 [151]
and PrOs4Sb12 [152, 153]. Furthermore, the appearance of the A2g gap structure can be also
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Figure 3.4: (a) Schematic phase diagram for local (on-site) B1g and B2g fluctuations in the
same model as in Fig. 3.3. (b) The momentum dependence of the band based gap function
for B2g state appearing around the region III .

regarded as a characteristic property of multiorbital systems, because if the k dependence
of the gap function comes only from ϕA2g(k), ϕA2g(k) must take the form of ϕA2g(k) ∼
sin kx sin ky(cos kx − cos ky). To realize such gap function in a single orbital system, there
need much longer-range interactions than in the present nearest-neighbor model.

3.4.3 Nodal gap derived from local fluctuations
Next, we focus on local fluctuations with no k dependence. First, we show that only the
local fluctuations can induce anisotropic and nodal superconductivity [140] in sharp contrast
to a naive expectation. As in Sec. 3.4.2, we consider B1g and B2g fluctuations, setting a
constant vΓ (q) = vΓ in Eq. (3.4.17). In this case, the basis functions in the orbital basis are
also independent of k. Therefore, the possible gap functions in attractive channels are:

I : φ̂
A1g

1 = τ 00, (3.4.24a)
II : φ̂B1g = τx0, (3.4.24b)

III : φ̂B2g = τ yz, (3.4.24c)

IV : φ̂
A1g

2 = τ z0, (φ̂Eg

1 , φ̂
Eg

2 ) = τ y(−x,y), (3.4.24d)

where I ∼ IV represent the regions specified in Eqs. (3.4.21a)-(3.4.21d). Note that any odd
parity φ̂Γu is not allowed in stark contrast to the cases in Sec. 3.4.2. As typical examples,
we focus on the φ̃B1g and φ̃B2g . As mentioned in Sec. 3.4.2, φ̃B1g and φ̃B2g in the band
representation must have nodes. The k dependence of φ̃B1g(φ̃B2g) come from u(k) and shows
line nodes along kx ± ky = 0 (kxky = 0).
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Figure 3.4(a) depicts the vB2g -vB1g phase diagram. We find that, due to only local fluc-
tuations, anisotropic B2g gap structure can emerge in the region around III. The obtained
B2g nodal structure is illustrated in Fig. 3.4(b). In particular, for large repulsion of vB1g ,
the nodal superconductivity with B1g symmetry can be induced by only repulsive local in-
teractions. This can be understood via Table 4.3; the repulsion in B1g-channel leads to the
attractive interaction in B2g channel. Thus, in multiorbital systems, anisotropic gap struc-
ture can be also realized in the BCS approximation of purely local (on-site) interactions.
This indicates that anisotropic pairing states can emerge without characteristic momentum
dependent fluctuations in multiorbital systems, which differs from the case of single-orbital
systems. It also implies that in multiorbital systems, the electron-phonon interaction can
lead to anisotropic superconductivity. In what follows, let us elucidate local fluctuations
arising from electron-phonon couplings.

In general, a specific phonon mode couples to electronic multipoles with the same irre-
ducible representation. Local nonmagnetic multipoles in the present two-orbital model with
Γ6u and Γ7u are written as

MΓ (r) =
∑
12

[
M̂Γ

]
12
c†

1(r)c2(r), (3.4.25)

with Γ = A1g, B1g, or B2g, and M̂Γ ’s are given by

M̂A1g = τ 0σ0

2
, M̂B1g = τxσ0

2
, M̂B2g = τ yσz

2
. (3.4.26)

Integrating out the phonon degrees of freedom, we obtain an effective interaction,

Hint = −
∑
Γ

g2
Γ

ΩΓ

∑
r

MΓ (r)MΓ (r), (3.4.27)

where gΓ is the local electron-phonon couplings and ΩΓ is the local phonon frequency for
Γ = A1g, B1g, and B2g mode. Following the procedure in Secs. 3.4.2 and 3.4.3, Eq. (3.4.27)
can be decomposed in the same way as in Eq. (3.4.19) with appropriate vµν . Using Table 4.3,
we obtain e.g., 4v0x = vA1g +vB1g −vB2g , and so on. Note that such interactions vΓ = g2

Γ/ΩΓ

are always positive, different from the electron-electron interactions. Therefore, since A1g

pairing channel τ 00 is always attractive in all the phonon modes, namely, 4v00 = ∑
Γ v

Γ , we
re-realize that a fully gapped A1g state is the most favorable.

One possibility of electron-phonon mediated anisotropic superconductivity arises when
the Hund’s coupling and the pair hopping term of on-site Coulomb repulsions are taken into
account. For example, local interactions are 4v00 = U +J for τ 00 pairing, and 4v0x = 4vzy =
U − J for τx0 and τ yz, with the intra-orbital repulsion U and the Hund’s coupling J . Thus,
the presence of the on-site Coulomb repulsions works against the isotropic pairing state as
is well known. Another possibility is the k-dependent interaction via the electron-phonon
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coupling, but here we do not go into detail. Instead, let us focus on the fact that e.g.,
τ 0τ 0 × σzσz = −1 in Table 4.3, which indicates that time reversal symmetry-breaking mode
can suppress A1g pairing states. It implies that the electron-phonon interaction may lead to
anisotropic pairing states in a magnetically-ordered state. These mechanisms for electron-
phonon driven anisotropic superconductivity in combinations with other degrees of freedom
are fascinating issues and we leave the detailed analysis in our future works.

3.5 Conclusion
We have constructed a complete table of irreducible representations of superconducting gap
functions in symmorphic multiorbital systems. Classification in the orbital based pairing
functions offers novel entries in the classification tables. The Cooper pairs in multiorbital
systems can be regarded as ones with multipole degrees of freedom, and we have called it
multipole superconductivity. From this viewpoint, we find that unconventional superconduc-
tivity can be realized not only by the momentum dependence of the pairing interactions, but
also by the orbital degrees of freedom.

One of the nontrivial results appears in the system composed of Γ9 ⊗ Γ9 orbitals in D6

group. The transformation properties of the Cooper pairs are not explained by those for the
pure-spin 1/2 in the conventional classification. This is an important consequence of orbital
degrees of freedom.

We have also clarified how the superconducting gap nodes appear in multiorbital systems.
We have explained the relation between the gap functions in the orbital bases and those in
the band ones. The momentum dependence of the band based gap functions depends on
that of the orbital based ones and the unitary matrix transforming the two bases. The latter
depends on the irreducible representation for the corresponding Kramers degrees of freedom
in the orbital bases, which include both the pure-spin and the orbital angular momentum
and are generally not only the pure-spin 1/2.

On the basis of the present group theoretical analysis, we have discussed a cubic Γ8u model
and tetragonal Γ6u + Γ7u models. In the former model, superconductivity with anisotropic
three-dimensional representations emerges in the vicinity of an antiferroic quadrupole or-
dered phase. In the latter, we have discussed the formation of anisotropic gap functions
including anisotropic s-wave (A1g) type functions induced by various orbital fluctuations.
We have also proposed nodal/anisotropic superconductivity mediated by local fluctuations,
which can be realized only in the multiorbital systems. Our findings imply that fluctuations
arising from electron-phonon couplings also may induce anisotropic superconductivity with
the help of the time reversal symmetry-breaking and the local Coulomb interactions, although
the conventional local electron-phonon interactions favor isotropic s-wave pairing. We hope
that the present study provides a renewed interest in multiorbital systems and encourages
experimental research for new superconducting materials.
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Chapter 4

Nodal structure in non-symmorphic
magnetic superconductors

Micklitz and Norman demonstrated in the pioneering work [3] that, in systems with non-
symmorphic space groups, new types of symmetry protected nodes can appear at the Brillouin
zone boundary. This can be shown by the classification scheme based on the representation
theory of the space group. In contrast to the conventional classifications, which are based on
the point group symmetry, this gives us the correct way to take into account a non-trivial
phase due to a non-primitive translation in a space group operation, which arises in the small
representation at the Brillouin zone boundary. In this chapter, we extend the classification
into non-symmorphic magnetic space groups, which has been less understood in spite of the
growing interest in superconductors coexisting with a magnetic order. The results are applied
to the analysis of the superconductivity in UPd2Al3 and UCoGe as examples.

The organization of this chapter is as follows. First, in Sec. 4.1, we introduce the super-
conductivity in two heavy fermion compounds with a magnetic order UPd2Al3 and UCoGe
especially focusing on their nodal structure. Then, in Sec. 4.2, we provide the minimal space
groups describing the magnetic structure of each compound and discuss emergent symmetry
protected line nodes by the group theoretical argument based on the space group approach [3].
The details of the methods are summarized in Appendix A.3.5. The relations to experimen-
tal observations are discussed in Sec. 4.3. Finally, in Sec. 4.4, the limits of its validity are
discussed with the help of specific model calculations. Here, the importance of the band split-
ting on the Brillouin zone boundary is pointed out. In Sec. 4.5, we summarize the present
study.
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4.1 Introduction to the superconductivity in UPd2Al3
and UCoGe

In the research field of superconductivity, its coexistence of magnetism is a very interesting
topic. The microscopic coexistence between superconductivity and magnetism is often discov-
ered in the strongly correlated electron systems. For example, it is known that the 122 fam-
ily of iron-pnictide superconductors, such as BaFe2(As1−xPx)2 and Ba(Fe1−xCox)2As2, shows
superconductivity coexisting with an antiferromagnetic order, which is associated with the
quantum critical behavior of the spin density wave transition [154]. As for heavy fermion com-
pounds, the centrosymmetric CePd2Si2 [155], CeIn3 [155, 156], and CeRhIn5 [157, 158], and
also the non-centrosymmetric CeRhSi3 [159] and CeIrSi3 [160] exhibit such superconductivity
with an antiferromagnetism under high pressure. However, observing the coexistence without
any tuning is still a rare event. In this point of view, the U-based heavy fermion superconduc-
tors UPd2Al3 [74] and UNi2Al3 [75] were unique candidates to show such coexistence, as well
as the subsequently discovered non-centrosymmetric superconductor CePt3Si [28]. Although
UNi2Al3 is considered a spin-triplet superconductor, as is indicated by the absence of Knight
shift [161] and the anisotropy of Hc2 [162], it is still controversial because the paramagnetic
suppression in the thin film sample [163] and the indication of line nodes [164] are naively
incompatible with the spin-triplet scenario. On the other hand, the superconducting prop-
erty in UPd2Al3, including not only the gap structure but also the pairing mechanism, is
well-established by various experiments. Here, we summarize basic features of this material.

4.1.1 Superconductivity in UPd2Al3
UPd2Al3 is known as a heavy fermion compound with symmorphic hexagonal lattice struc-
ture in a paramagnetic phase (see the left panel of Fig. 4.1). At the transition temperature
TN = 14K, this enters into an antiferromagnetic phase, and then coexists with unconventional
superconductivity below Tc = 2K [74]. In the antiferromagnetic phase, the magnetic moments
are lying in the basal plane and ordering with the propagating vector Q = (0, 0, π/c), as is
revealed by the neutron diffraction study [165]. Moreover, it is believed that the antifer-
romagnetism occurs in a different electronic subsystem to the main superconducting band,
i.e., one of the three U 5f-electrons is itinerant and contributes the superconductivity while
the others are localized and form the magnetic order with a relative large magnetic moment
about 0.85µB per U atom. Such a dual nature has been confirmed by comparing the Fermi
surfaces determined in the de Hass-van Alphen measurements [166, 167, 168] with those
obtained in the band calculations with the duality model [169]. Indeed, this is considered
to play a key role for its pairing mechanism. Namely, inelastic neutron scattering measure-
ments detect broad peak structure at Q = (0, 0, π/c) corresponding to the virtual exchange
of magnetic excitons [170, 171], and the tunneling junction experiments imply the pairing
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Figure 4.1: (Left) Crystal structure of UPd2Al3. Red, green and blue spheres indicate U,
Pd, and Al atoms, respectively. The space group is symmorphic P6/mmm. (Right) Crystal
structure of UCoGe. Red, blue and white spheres indicate U, Co, and Ge atoms, respectively.
The space group is non-symmorphic Pnma.

states mediated by its excitations [172]. Here, the magnetic exciton is a Frankel type exciton
propagating among the local crystalline electric filed states, and thus, the presence of local-
ized U 5f-electrons is essential for the emergence of its unconventional superconductivity. As
for gap structure, there seems to exist a horizontal line node at the magnetic Brillouin zone
boundary perpendicular to the c-axis, because this should be compatible with the magnetic
exciton excitations. Such nodal structure is also consistent with the power law behavior of
the spin-relaxation ratio 1/T1 ∼ T 3 observed in the NMR measurements [173, 174]. More-
over, recently performed field-angle resolved thermal conductivity [175] and specific heat [176]
measurements support this scenario.

Theoretically, the relations between superconductivity and antiferromagnetism has been
attracted much attentions since many of the unconventional superconductivity appear in the
vicinity of an antiferromagnetic phase boundary [9, 10]. However, in spite of extensive studies
on the pairing mechanism, there is little progress about the gap structure in the coexisting
phase. In UPd2Al3, the emergence of line nodes in the magnetic Brillouin zone boundary
was studied based on the microscopic theory in Ref. [177]. They demonstrated that a on-site
spin-singlet gap function yields line node like excitations when the exchange coupling with
the antiferromagnetic moments is sufficiently larger than the gap amplitude. Although this
seems to be consistent with the observations, it is not so clear whether or not such a nodal
feature should appear in a realistic model or a material with multiorbital or sublattice degrees
of freedom.
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4.1.2 Superconductivity in UCoGe
The superconductivity coexisting with a ferromagnetic order is also hardly observed in nature.
For example, several rare-earth compounds, such as ErRh4B4 and HoMo6S8, show magnetic
transitions deep inside superconducting phases [178], however, their coexisting phases possess
complex magnetic structures called a cryptoferromagnetism, including magnetic domains or
spiral spin textures. Moreover, the superconductivity finally disappears at low temperatures
with growing of the ferromagnetic moments, which is due to the ordinary paramagnetic effect
on the spin-singlet superconductivity. Recently, the series of U-based superconductors, in-
cluding UGe2 [76], URhGe [77], UIr [29], and UCoGe [78], has been attracted much attention
as a promising system of the spin-triplet superconductivity coexisting with ferromagnetism.
These compounds encounter a superconducting transition in a ferromagnetic phase at high
or ambient pressure. Moreover, a rare reentrant superconductivity has been discovered un-
der the magnetic field in URhGe [179]. Among these compounds, UCoGe has the lowest
ferromagnetic and the highest superconducting transition temperatures, and thus, is suited
to study the cooperation between superconductivity and ferromagnetism. Therefore, in the
following, we focus on UCoGe and briefly summarize its basic properties.

UCoGe possesses TiNiSi type crystal structure (space group Pnma) with zigzag chains
composed of U atoms (see the right panel of Fig. 4.1). This shows the ferromagnetic transition
at TC = 3.0K with the magnetic moments lying along the c-axis. The superconductivity
then appears below Tc = 0.8K. In this compound, it has been considered that the Ising-
like ferromagnetic fluctuation leads to a spin-triplet equal spin pairing state [180, 181], and
many fascinating phenomena including the peculiar H-T phase diagram have been studied
so far [182, 183, 184, 185, 186, 187]. However, in spite of the growing interest, the properties
characteristic of the coexisting phase are less well understood systematically. For example,
with respect to the gap structure, the power law behavior of the spin-relaxation ratio 1/T1 ∼
T 3 observed in Co-NQR measurements [188, 189] seems to indicate the presence of line nodes.
However, the analysis of the H-T phase diagram in various field directions implies that the
point nodal states are the most compatible with the observations [181]. In this situation, the
group theoreical classification, which provides definite statements independent of the details
of materials, plays an important role in general. Indeed, the gap classification in ferromagnetic
superconductors has been performed by several groups [79, 80, 182]. According to the results
for UCoGe [182], there are two types of possible gap symmetries, Au and Bu, within the
weak coupling BCS theory. The former possesses only point nodes, which are considered as
Weyl nodes [190], while the latter possesses only a horizontal line node. Therefore, the nodal
structures expected by the spin-relaxation and the H-T phase diagram are incompatible
with each other. Note that the recently performed thermal conductivity measurements will
be compatible with both nodal structures [191].

Here, we should remark that the classification given in Ref. [182] is based on the usual
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point group symmetry. Today, however, it is known that there is another gap classification
based on the space group symmetry [138, 139, 3], which provide the correct nodal structure
at the Brillouin zone boundary even in the non-symmorphic systems [59, 192]. Since the
coexisting phase of UCoGe belongs to the non-symmorphic space group, it is unclear, for
instance, whether the existence of both point and line nodes is really forbidden. The results
in Ref. [3] cannot directly apply to the superconductivity in magnetic crystals because the
time reversal symmetry assumed in Ref. [3] no longer holds. Thus, the extension to the
coexisting phase is necessary.

Motivated by the above observations, in this study, we extend the gap classification into
non-symmorphic magnetic space groups, which can be applied to the analysis of superconduc-
tivity in UCoGe and UPd2Al3. In these compounds, the magnetic ordered phase belongs to
the type III or IV Shubnikov space groups due to the presence of time reversal symmetry with
a point group operation and/or a non-primitive translation (see Appendix A.1.3). Based on
the classification, we obtain the following nontrivial consequences within the weak-coupling
BCS theory.

1. The UCoGe-type ferromagnetic superconductors have horizontal line nodes on either
the kz = 0 or the kz = ±π/c plane. In addition, it is likely that additional Weyl point
nodes exist along the kx = ky = 0 line.

2. In UPd2Al3-type antiferromagnetic superconductors, Ag gap functions always have line
nodes on the kz = ±π/c plane (i.e., the magnetic Brillouin zone face), in other words,
the conventional fully gapped s-wave superconductivity is forbidden.

Needless to say, in both cases, it is necessary that the Fermi surface crosses nodal planes.
The obtained symmetry protected nodal structures are fully consistent with the various
observations both of the cases in UPd2Al3 and UCoGe. Thus, we conclude that UPd2Al3 and
UCoGe are candidate unconventional superconductors possessing hidden symmetry protected
line nodes, peculiar to non-symmorphic magnetic space groups.

4.2 Classification based on space group approach
Here, we consider minimal space groups describing the crystal structure in the magnetic
phase of UPd2Al3 and UCoGe. First, we focus on a space group G0 that is given as a coset
decomposition

G0 = {E|0}T + {2z|tz}T + {I|0}T + {σh|tz}T, (4.2.1)

where the translation group T defines a Bravais Lattice, and tz = c
2ec is a non-primitive

translation along the c-axis (for details, see Appendix A.1.1). The notation {p|a} is a con-
ventional Seitz space group symbol with a point-group operation p and a translation a. E
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Figure 4.2: A side view of the unit cell in the typical structures with three types of space
groups considered in this study. PP and FP contain a zigzag structure, and AP possesses
staggered ordered moments along the c-axis, in which the orientations are in the ab-plane.

denotes an identity operation, 2z a π-rotation around c-axis, I a space inversion, and σh a
mirror about ab-plane. Taking into account the magnetism order, we here consider the three
types of systems given as follows,

G = G0 + {θ|0}G0 : PP
G = G0 : FP
G = G0 + {θ|tz}G0 : AP

(4.2.2)

where θ denotes a time reversal operation. We can easily see that PP, FP, and AP correspond
to paramagnetic, ferromagnetic, and antiferromagnetic phase of matter, respectively. Typical
crystal structures for corresponding space groups are shown in Fig. 4.2. Unless otherwise
assigned, the spin-orbit coupling is included in all systems. Note that the space group G of
PP is the same as discussed in Ref. [3].

Let γk be a small representation of a little group Kk, which represents the Bloch state
with the crystal momentum k. Through this chapter, we have used the word “representation”
both as a representation of a unitary group and a corepresentation of a non-unitary group.
We should note that the (zero-momentum) Cooper pairs have to be formed between the
degenerate states present at k and −k within the BCS theory. Therefore, these two states
should be connected by some symmetry operations except for an accidentally degenerate
case. As a result, the representation of Cooper pair wave functions, which we denote by Pk,
can be constructed from γk as summarized in Refs. [138, 139, 3]. Here, we do not repeat the
details of the prescription, and instead, indicate the practical procedure step by step. For
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Table 4.1: The characters of γ̄k in the case of PP, FP, and AP. Upper and lower expressions
in PP and FP correspond to the two non-equivalent irreducible representations.

Basal plane

K̄k {E|0} {σh|tz}

PP 2 0

FP 1 ±i

AP 2 0

Zone face

K̄k {E|0} {σh|tz}

PP 2 ±2i

FP 1 ±i

AP 2 0

details of the formulation, see also Appendix A.3
Here, we only consider the Cooper pairs in the basal plane (kz = 0) and the zone face

(kz = ±π/c) for simplicity. It should be noted that the discussions given below may not
be applicable for non primitive lattice systems, such as base, body, or face centered lattice
systems, since the kz = ±π/c plane may not be the Brillouin zone boundary in such cases.
Indeed, the present arguments cannot be simply applied to eight of the fourteen Bravais
lattices.

Focusing on the both planes in the primitive lattice systems, the little groups Kk are
given by the following coset decompositions,

Kk =


{E|0}T+{σh|tz}T+{θI|0}T+{θ2z|tz}T : PP
{E|0}T+{σh|tz}T : FP
{E|0}T+{σh|tz}T+{θI|tz}T+{θ2z|0}T : AP

(4.2.3)

To obtain the small representations, it is sufficient to see the (projective) irreducible rep-
resentations of the corresponding little co-groups K̄k = Kk/T with the appropriate factor
systems [59, 192] (see also Appendix A.3). We denote them by γ̄k. Here, we specifies the
elements of K̄k as the representatives r = {p|a} of the decompositions (4.2.3) γ̄k can be
obtained by calculating the irreducible representations for the unitary part of K̄k, and then
inducing them by an anti-unitary operation [193]. In Table 4.4, we summarize the characters
of γ̄k for the unitary operations in K̄k. Now, the corresponding small representations are
given by γk(g) = γ̄k(r)Fk(t) where g = rt for g ∈ Kk and t ∈ T . Fk is the irreducible
representation of T defined by Fk(t) = e−ik·t for t = {E|t}. From Table 4.4, we can see that
the irreducible representations of K̄k in PP and AP become two-dimensional, which reflect
the Kramers degeneracy for the anti-unitary operations {θI|0} and {θI|tz}. In the case of
AP, since the non-primitive translation included in {θI|tz} cancels out the phase factor aris-
ing from that in {σh|tz}, γ̄k({σh|tz}) in the zone face is the same in the basal plane. This
situation is in sharp contrast to the case of PP.

72



Table 4.2: The characters of P̄k in PP, FP, and AP.
Basal plane

Mk/T {E|0} {2z|tz} {I|0} {σh|tz}

PP 4 2 −2 0

FP 1 1 −1 −1

AP 4 2 −2 0

Zone face

Mk/T {E|0} {2z|tz} {I|0} {σh|tz}

PP 4 −2 −2 4

FP 1 −1 −1 1

AP 4 −2 −2 0

Next, we consider the representation of the Cooper pairs Pk. In the space group operation
d connecting two states of the paired electrons, its rotation/inversion part pd satisfies pdk =
−k modulo a reciprocal lattice vector. In the present cases, {I|0} and {2z|tz} are the
candidates for the operator d in FP, while {θ|0} ({θ|tz}) is also in PP (AP). Regardless of
the choice of d, Mk = Kk + dKk is identical to the space group G. Taking into account
the antisymmetry of the Cooper pairs and the degeneracy of the two states, we can regard
Pk as an antisymmetrized Kronecker square [59], with zero total momentum, of the induced
representation γk ↑ Mk. In practice, this is obtained by using the following formula,

χPk(g) = χγk(g)χγk(d−1gd), (4.2.4)
χPk(dg) = −χγk(dgdg), (4.2.5)

where χPk(g) (χγk(g)) is a character of Pk (γk) for g ∈ Kk. These are special cases of
Mackey-Bradley theorem [194, 195]. For details, see Appendix A.3.5. The obtained results
are summarized in Table 4.2. Here, P̄k is the representation of Mk/T satisfying Pk(g) = P̄k(r)
where g = rt for g ∈ Mk, r ∈ Mk/T , and t ∈ T . In the case of AP, χPk({σh|tz}) is equal to
zero even in the zone face, different from the case of PP. This comes from the difference of
γ̄k({σh|tz}) in Table 4.4. On the other hand, since P̄k in FP is one-dimensional representation,
only one irreducible representation is allowed both in the basal plane and the zone face.

Finally, we reduce the representation P̄k into the irreducible representations. In both
planes, there are four irreducible representations, Ag, Bg, Au, and Bu since the coset group
Mk/T is isomorphic to the point group C2h. Note that, strictly, Mk/T is isomorphic to the
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Table 4.3: The reduction of P̄ (k) to the irreducible representations of C2h in the case of PP,
FP, and AP.

Basal plane

PP Ag + 2Au +Bu

FP Au

AP Ag + 2Au +Bu

Zone face

PP Ag + 3Bu

FP Bu

AP Bg + Au + 2Bu

gray point group of C2h in PP and AP. However, its corepresentations are trivial because the
anti-unitary operations do not cause the extra degeneracy. The results are summarized in
Table 4.3. Note that the gap functions should be zero, which means the appearance of gap
nodes, if the corresponding irreducible representations do not exist in the reduction of P̄k.
The absence of Au in PP corresponds to the emergent horizontal line node of the recently
proposed E2u state in UPt3 superconductors [3, 2, 132, 196]. On the other hand, in the case of
AP, we find that Ag does not appear in the zone face, in other words, Ag possesses horizontal
line nodes in the zone face (i.e., the magnetic Brillouin zone boundary). This means that the
conventional fully gapped s-wave superconductivity is forbidden, if the Fermi surfaces cross
kz = ±π/c plane. On the other hand, in the case of FP, only odd-parity pairing is allowed
in both planes, due to the absence of Kramers degeneracy. Au is forbidden in the zone face,
and Bu is forbidden in the basal plane. Therefore, the line nodes always appear, as for as the
Fermi surface crosses kz = 0 and kz = ±π/c planes. It should be noted that the emergence of
such nodal structure does not depend on the pairing mechanism. These are the main results
of this study. Note that these results are applicable to not only conventional magnetic dipole
ordered states, but also magnetic multipole ordered states.

4.3 Relation to the experiments
Here, we discuss several U-based materials in non-symmorphic magnetic space groups. First,
we focus on the case of AP. The space group G = G0 + {θ|tz}G0 corresponds to Pb21/m

(the unique axis is chosen to be c-axis). As mentioned in Sec. 4.1, its typical example is the
antiferromagnetic phase of UPd2Al3, in which the ordering vector is Q = (0, 0, π/c) and the
orientations of moments are in the basal plane [165]. Many experimental observations [170,
172, 197, 175, 176] imply the presence of horizontal line nodes at the magnetic Brillouin
zone boundary perpendicular to the c-axis. Moreover, it has been expected that the gap
function belongs to even parity irreducible representations [173, 174, 198, 199] and the Fermi
surfaces cross kz = ±π/c plane [166, 167, 200, 168]. These findings are also supported in
the self-consistent calculations based on the microscopic electronic structure obtained by the
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first principles calculations [201]. Following our results, the expected horizontal line nodes
are symmetry protected nodes in the non-symmorphic magnetic space groups.

Next, let us consider the case of FP. Its candidates are hotly-debated ferromagnetic su-
perconductors, UCoGe, URhGe and UGe2. In the paramagnetic phase, the space group of
UCoGe and URhGe is Pnma1′, while UGe2 possesses symmorphic Cmmm1′. In the ferro-
magnetic phase, the former two belong to FP as shown below, while the latter does not meet
the condition. In the former two, since the ordered moments align parallel to c-axis in the fer-
romagnetic phase, the space group is reduced from Pnma1′ into Pn′m′a. This group is given
explicitly by G = G′

0 +{θ2y|ty}G′
0 where G′

0 = {E|0}T +{2z|tn}T +{I|0}T +{σh|tn}T with
ty = b

2ey and tn = a
2ex + c

2ez. Here, a, b, and c are the lattice parameters and 2y represents
the π-rotation around b-axis. At first glance, this seems rather different from that of FP.
However, considering a general point in the basal plane and the zone face, we can ignore the
anti-unitary part because this is not the element of the little groups. Therefore, the only dif-
ference is that the non-primitive translation becomes tn instead of tz. As a result, γ̄k({σh|tz})
in the zone face changes from ±i to ±ie−ikx/2. We can easily confirm that this change does
not affect the final results given in Table 4.2 and 4.3. Therefore, any superconductivity in
these materials have line nodes in either the basal plane or the zone face.

Now, let us consider the nodal structure of superconductivity in UCoGe in details.
Unfortunately, the Fermi surfaces of this compound have not been established in experi-
ments [202, 203, 204], however, the first-principles calculations show the existence of many
complicated Fermi surfaces, some of which cross the kz = 0 and kz = ±π/c planes [202].
Therefore, our results suggest the existence of horizontal line nodes in the coexistent phase
of UCoGe. Both power law behaviors of the spin-lattice relaxation rate 1/T1 ∼ T 3 [188, 189]
and the behavior of the residual thermal conductivity [191] are consistent with our predic-
tion. Note that in the pressure-temperature phase diagram, the ferromagnetic transition
seems to have little effect on the superconductivity [205, 206]. In the absence of magnetism,
the straightforward calculation shows that the space group Pnma1′ leads to the same nodal
structure as the case of PP in Table 4.3, by regarding the irreducible representations of D2h

as those of C2h with the compatibility relation. Therefore, the line nodes in the basal plane
of Bu irreducible representation (B2u and B3u irreducible representations of D2h group) are
forbidden in the paramagnetic phase, which is consistent with the Blount’s theorem of the
triplet superconductors [60, 61]. Therefore, we may expect that the realized gap function
belongs to Au irreducible representation (A1u or B1u in the paramagnetic phase) and has the
line nodes at kz = ±π/c plane. As for the Au gap functions in the coexistent phase, there
should be an additional point node at kx = ky = 0, which is regarded as Weyl nodes [79, 190].
Thus, the hybrid gap structure of line and point nodes would be realized such as proposed
in URu2Si2 [27] and UPt3 [19].

75



4.4 Numerical results for minimal models
Finally, we demonstrate the above-mentioned group theoretical arguments by using a specific
model, and discuss the stability of horizontal line nodes on the zone face. We consider a
Bogoliubov-de Gennes (BdG) Hamiltonian of an AP (FP) superconductivity Ag (Au) with
the given gap structure, which is regarded as a minimal model of UPd2Al3 (UCoGe).

4.4.1 Minimal models
In this subsection, we briefly show our model Hamiltonians, which mimic UPd2Al3 or UCoGe
superconductors. For simplicity, we set the lattice constant to unity, and consider a single
orbital on each U site.

The antiferromagnetic phase of UPd2Al3 belongs to the magnetic space group Pb21/m (the
unique axis is chosen to be c-axis). In the unit cell, two U atoms are placed at x1 = (0, 0, 0)
and x2 = (0, 0, 1

2). A minimal tight-binding Hamiltonian contains four orbitals, corresponding
to two atoms (sublattice) and the spin-1/2 degrees of freedom. The Hamiltonian H is defined
by,

H =
∑

k

∑
αβ

∑
σσ′

hασ,βσ′(k)c†
ασ(k)cβσ′(k), (4.4.1)

where c†
ασ(k) (cβσ′(k)) is a creation (annihilation) operator of electrons with spin σ (σ′) =↑, ↓

on an atom α (β) = 1, 2. Here, we have used the sublattice dependent Fourier transformation
defined as,

c†
ασ(k) = 1√

N

∑
R

eik·(R+xα)c†
ασ(R), (4.4.2)

where N is a total number of unit cell, R is a lattice vector, and xα is a relative position for
the site α in the unit cell. In this case, hασ,βσ′(k) in the matrix form is given by,

h(k) = ε0(k)τ 0 ⊗ σ0 + ε1(k)τx ⊗ σ0 + δMτ
z ⊗ σx, (4.4.3)

where ε0(k) = −2txy(cos kx + cos ky) − 2t′z cos kz − µ and ε1(k) = −2tz cos kz

2 . τµ and σµ

(µ = 0, x, y, and z) are the Pauli matrices acting on the sublattice and the spin degrees of
freedom, respectively. The third term of Eq. (4.4.3) tunes the magnitude of the staggered
magnetic moment along a-axis in the antiferromagnetic phase.

In the superconducting state, the anomalous part ΨΓ given by

ΨΓ =
∑

k

∑
αβ

φΓ
ασ,βσ′(k)c†

ασ(k)c†
βσ′(−k) (4.4.4)

should be added in the Hamiltonian H. Here, φΓ
ασ,βσ′(k) is the corresponding order parameter.

The superscript Γ denotes an irreducible representation of the point group C2h. For the Ag
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spin-singlet pairing state discussed in Fig. 1, we can take momentum-independent (constant)
order parameter,

φAg(k) = ∆τ 0 ⊗ (iσy), (4.4.5)

where ∆ is the gap amplitude.
On the other hand, the ferromagnetic phase of UCoGe belongs to the magnetic space

group Pn′m′a. U atoms are placed at x1 = (x, 1
4 , z),x2 = (1

2 −x, 3
4 , z− 1

2),x3 = (1−x, 3
4 , 1−z),

and x4 = (1
2 + x, 1

4 ,
3
2 − z) in the unit cell, where x = 0.0101, z = 0.7075. The ferromagnetic

moments are aligned along c-axis. In this case, h(k) in Eq. (4.4.1) is given by,

h(k) = h0(k) + hS(k) + hM , (4.4.6)

where h0(k), hS(k), and hM represent the hopping integral, the spin-orbit coupling, and the
exchange interaction with the magnetic moments, respectively. These are given by,

h0(k) =



ε0(k) ε12(k) ε13,−(k) ε14(k)

ε∗
12(k) ε0(k) ε14(k) ε13,+(k)

ε∗
13,−(k) ε∗

14(k) ε0(k) ε∗
12(k)

ε∗
14(k) ε∗

13,+(k) ε12(k) ε0(k)

 ⊗ σ0, (4.4.7a)

hS(k) = δS sin ky diag(1,−1,−1, 1) ⊗ σz, (4.4.7b)
hM = δM diag(1, 1, 1, 1) ⊗ σz. (4.4.7c)

Here, we only consider a simple spin-orbit coupling term, which lifts the band degeneracy
on the zone face. Each element of the hopping matrix ε0(k), ε12(k), ε13,±(k), and ε14(k) is
given by,

ε0(k) = −2ty cos ky − µ (4.4.8a)

ε12(k) = 4t12 cos ky

2
cos kz

2
(e−(4x−1)kx/2i + λ1e

−(4x+1)kx/2i), (4.4.8b)

ε13,±(k) = 2t13 cos ky

2
(e−(2z−1)kzi + λ2e

−(2z−2)kzi)e±2xkxi, (4.4.8c)

ε14(k) = 2t14 cos kx

2
e−(4z−3)kz/2i. (4.4.8d)

In the superconducting phase, we set a typical Au-type gap function,

φAu(k) = ∆ diag(1, 1, 1, 1) ⊗ (sin kxiσ
xσy + sin kyiσ

yσy), (4.4.9)

where ∆ is the gap amplitude. Note that each element of the (magnetic) point group P is
given by P = {E, 2z, θ2y, θ2x, I, σh, θI2y, θI2x}, whose irreducible representations are sum-
marized in TABLE 4.4 [182]. Since the unitary transformation to the basis functions can
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Table 4.4: The character table of point group P in UCoGe. ω is an arbitrary phase factor.

IRs E 2z θ2y θ2x I σh θI2y θI2x

Ag 1 1 ω ω 1 1 ω ω

Bg 1 −1 ω −ω 1 −1 ω −ω

Au 1 1 ω ω 1 1 ω ω

Bu 1 −1 ω −ω −1 1 −ω ω

connect the representations with different ω in TABLE 4.4, these representations are equiv-
alent in the sense of corepresentations. Eq. (4.4.9) corresponds to the case of ω = 1. Gap
functions of finite ω , 1 can be simply obtained by the transformation φΓ (k) 7→ ω− 1

2φΓ (k)
without any change of the nodal structure.

Note that the band structure in Fig. 4.3(a) is the result for the parameters

(txy, tz, t
′
z, δM ,∆, µ) = (1.0, 0.4, 0.1, 0.4, 0.1,−2.0).

Figures 4.3(c) and 4.4(a) were obtained by changing ∆ and δM , respectively. And also, the
band structure in Fig. 4.3(b) is the result for the parameters,

(ty, t12, t13, t14, λ1, λ2, δM , δS,∆, µ) = (0.1, 0.4, 1.0, 0.8, 0.8, 0.8, 0.2, 0.2, 0.02,−1.9).

Figures 4.3(d) and 4.4(b) were obtained by changing ∆ and δS, respectively.

4.4.2 Numerical results
Here, we discuss the nodal structure in our model Hamiltonians. Figure 4.3(a) depicts the
band structure along the high-symmetry line (0, 0, π)-(0, π, π) in the AP model of UPd2Al3,
and its inset shows the Fermi surface. Figure 4.3(b) is the case of UCoGe. In both Figs. 4.3(a)
and (b), we can find that the superconducting gap remains closed at the Fermi level in the
particle-hole symmetric Bogoliubov band (red arrows), while a gap is open at the inter-band
crossing point far from the Fermi level (blue arrows). The emergence of gap zero on the zone
face is fully consistent with the group theoretical arguments. On the other hand, the group
theory does not say anything about the inter-band gap opening, since the above-mentioned
arguments are based on the intra-band pairs. As readily understood, if the inter-band gap
is sufficiently large, then the symmetry protected intra-band gap nodes can be lost. In our
models, the emergence of gap nodes is controlled by three parameters, ∆, δM , and δS, which
correspond to respectively the gap amplitude, the strength of the magnetic order and the
spin-orbit coupling. δM and/or δS lift the band degeneracy on the zone face.

Note that, in order to lift the band degeneracy on the face, we require both the spin-orbit
coupling and the exchange interaction with the magnetic moments in UCoGe, while only
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Figure 4.3: Typical band structure of the BdG Hamiltonian assuming (a) the Ag gap function
in the AP model of UPd2Al3 and (b) the Au gap function in the FP model of UCoGe. The
lattice constants are set to be unity. The measure of energy is the unit of the nearest neighbor
hopping integral. Blue dashed lines correspond to the original band in the normal state. The
inset shows the corresponding Fermi surface. (c) and (d) Enlarged figure of the Bogoliubov
band for several ∆.

latter is necessary in UPd2Al3. This comes from the following reasons. Without the spin-
orbit coupling, the direction of the magnetic moments can be freely chosen, and then, the
extended time reversal symmetry {θ2z|tz} is restored in UCoGe. As a result, there remains
twofold degeneracy on the zone face due to the corresponding Kramers theorem, even in
the presence of ferromagnetism. Note also that, in UCoGe, the spin-orbit coupling vanishes
along ky = 0 line on the zone face, which is also protected by the Kramers theorem for
the anti-unitary operation {θ2yσh|ty + tn}. This implies that the present line nodes also
disappear along ky = 0 line, which can be directly confirmed by the present group theoretical
arguments, and become arc line nodes similar to ones discussed in Ref. [33].

Figures 4.3(c) and (d) are the Bogoliubov band structure for several ∆. As expected, we
can find the vanishing of gap nodes for larger ∆ via a kind of Lifshitz transition. Figures 4.4(a)
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Figure 4.4: kz dependence of the excitation gap amplitude |∆(kz)| on the Fermi surface at
kx = 0 for several (a) δM in the AP model and (b) δS in the FP model.

and (b) show kz dependence of the excitation gap amplitude |∆(kz)| on the Fermi surface
at kx = 0 for several δM and δS. For relatively large δM(δS), ∆(kz) behaves like ∆(kz) ∼
cos(kz/2). In the AP model, such nodal structure is similar to the self-consistent solution in
the previous study of UPd2Al3 [201]. On the other hand, for relatively small δM(δS), the gap
amplitude sharply changes around the nodes on the zone face, which was also discussed in
Ref. [132]. In the limit of δM(δS) = 0, the nodal structure is completely lost. Note that, in
the FP model, the Weyl point nodes emerging along the kx = ky = 0 line are insensitive to
the ratio δS/∆. These nodes exist unless the pair amplitude of antiparallel spin components
exceeds the magnitude of a ferromagnetic exchange splitting. Also, in an antiferromagnetic
state, generally, a singlet pairing may induce a staggered pairing. [207, 208] However, it does
not affect the present nodal structure.

In our model, such kz dependence originates only from the unitary matrix diagonalizing
the BdG Hamiltonian. It implies that even the BCS approximation of purely local (on-site)
interactions, such as the conventional electron-phonon interactions, can induce the anisotropic
gap structure in the non-symmorphic magnetic superconductors. In the realistic situations,
the band splittings on the zone face will be sufficiently larger than the gap amplitude. There-
fore, it is expected that the present nodal structure can be observed as the usual power-law
behavior in thermodynamic and/or transport properties at low temperatures. Consequently,
nontrivial symmetry protected line nodes in the non-symmorphic magnetic space groups will
be observed in magnetic superconductors UCoGe and UPd2Al3.
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4.5 Conclusion
In this chapter, we investigate the nodal structure in superconductors with a non-symmorphic
magnetic space group symmetry. Within the weak-coupling BCS theory, we show that
UCoGe-type ferromagnetic superconductors must have horizontal line nodes on either the
kz = 0 or kz = ±π/c plane. Moreover, it is likely that additional Weyl point nodes ex-
ist along the kx = ky = 0 line. On the other hand, in UPd2Al3-type antiferromagnetic
superconductors, gap functions with Ag symmetry possess horizontal line nodes in the an-
tiferromagnetic Brillouin zone boundary perpendicular to the c-axis. In other words, the
conventional fully gapped s-wave superconductivity is forbidden in this type of antiferro-
magnetic superconductors, regardless of the pairing mechanism, as long as the Fermi surface
crosses a zone boundary. In both cases, the emergence of the non-trivial line nodes requires
the sufficiently larger band splitting than the gap amplitude at the Brillouin zone boundary.
The obtained nodal structures are fully consistent with the various observations both of the
cases in UPd2Al3 and UCoGe. Thus, we conclude that UPd2Al3 and UCoGe are candidate
unconventional superconductors possessing hidden symmetry protected line nodes, peculiar
to non-symmorphic magnetic space groups.
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Chapter 5

Conclusion

In this thesis, we investigate the superconducting symmetry and the gap structure in various
unconventional superconductors with spin-orbit coupling and multi-degrees of freedom.

In Chapter 2, we present an exotic multi-gap structure in the heavy fermion superconduc-
tor UPt3, from the gap analysis based on the first-principles calculations [2]. The obtained
E2u pairing state has in-plane twofold vertical line nodes, axial point and horizontal line
nodes on each Fermi surface, which is completely different from the previous phenomeno-
logical models. In particular, the twofold vertical line nodes in the small Fermi surface can
consistently explain the field-angle resolved measurements in both the thermal conductivity
and the specific heat. This nodal structure is well consistent with the group theoretical con-
sideration of the Cooper pairs in the j = 5/2 space, instead of in the (pseudo) spin 1/2 space.
In addition, the obtained gap structure can be naturally explained by the mixture of p and
f -wave components with different d-vectors. These peculiar features may provide a clue to
understand the remaining problems of the Pauli limiting of the upper critical field and the
anomalous behavior of the Knight shift and so on.

In Chapter 3, we perform the group theoretical classification of various unconventional
superconductivity emerging in multiorbital systems with spin-orbit coupling. [4]. The order
parameters are classified by introducing generalized Cooper pairs, which possess spin-orbital
coupled (multipole) degrees of freedom instead of the conventional spin singlet/triplet in sin-
gle orbital systems. In systems with the symmorphic space group symmetry, the atomic site
(sublattice) degrees of freedom can always be reduced to such multipole degrees of freedom.
Thus, the classification tables obtained here include all the possible gap functions in any
symmorphic superconductor that belongs to O, D4, or D6 point group symmetry. The re-
sults can easily be extended to the other point groups. From the classification, we obtain the
following key consequences: (1) A superconducting gap function with Γ9 ⊗Γ9 in D6 possesses
nontrivial momentum dependence, which is different from the usual spin 1/2 classification.
(2) Unconventional gap structure can be realized in the BCS approximation of purely local
interactions irrespective of attraction/repulsion. (3) Reflecting symmetry of orbital basis
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functions, there appear not symmetry protected but inevitable line nodes/gap minima, and
thus, anisotropic s-wave superconductivity can be naturally explained even in the absence of
competing fluctuations.

In Chapter 4, we extend the gap classification in non-symmorphic space groups to the
magnetic crystals [5]. This is performed based on the representation theory of space group
symmetry, which gives us the correct way to take into account the non-symmorphic property
of the space group. The results are applied to the analysis of superconductivity in UCoGe
and UPd2Al3. We show that the UCoGe-type ferromagnetic superconductors have horizontal
line nodes on either the kz = 0 or kz = ±π/c plane. In addition, in UPd2Al3-type antifer-
romagnetic superconductors, Ag gap functions always have line nodes on kz = ±π/c plane,
in other words, the conventional fully gapped s-wave superconductivity is forbidden. Thus,
we conclude that UCoGe and UPd2Al3 are candidate unconventional superconductors pos-
sessing hidden symmetry protected line nodes, peculiar to non-symmorphic magnetic space
groups. Note that although we here investigate the nodal structure in UCoGe and UPd2Al3,
the obtained results are generally applicable in various non-symmorphic superconductors.
The extension to more complicated situations such as interface and FFLO superconductivity
is a interesting problem in future.
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Appendix A

Space groups and their
representations

In the appendix, we summarize fundamentals of the space groups and their representations
used in this thesis. First, we define several groups specifying the crystal structure, and then
introduce two representations, which we denote by orbital-based and band-based representa-
tions respectively. The symmetry of the Cooper pair wave functions in the orbital-based
representation, which explicitly deals with all internal degrees of freedom in electrons, is a
main subject discussed in Chapter 3. On the other hand, the band-based representation is
necessary for the investigation of nodal structure protected by the non-symmorphic space
group symmetry, which is extended in Chapter 4. Part of the contents given below overlap
with the usual band theory, for example, as seen in Ref. [192].

A.1 Space groups
Let C be a given crystalline structure. The crystal C determines the space group G, the
point group P , and the lattice translation group T . The space group G is defined as the
symmetry group that does not change the crystal C. Any element of g ∈ G consists of point
group operation p and translation a. The point group P is defined as the projection from G

by forgetting the translations. Here, p ∈ P describes a space rotation or a space inversion
operation. The lattice translation group T is defined as the set of translations t ∈ G that is
invariant under the point group operations. Namely, if t ∈ T , then pt ∈ T for any p ∈ P .
In three-dimensional crystals, it is known that there are 230 types of crystallographic space
groups and 32 types of point groups. The point group is also classified into one of 7 crystal
systems by its rotational symmetry. The 14 types of Bravais lattices are specified by the
crystal system and the centering pattern, which are identical with the types of T .
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A.1.1 Seitz notation
Any element of the space group g ∈ G consists of point group operation p ∈ P and translation
a. It is convenient to specify g ∈ G by use of the Seitz space group symbol g = {p|a}, which
represents the following transformation,

{p|a}x = ax + a, (A.1.1)

for a three-dimensional vector x. Note that the center of point group operations is fixed once
the crystal C is given. According to Eq. (A.1.1), the product of two space group elements
{p1|a1} and {p2|a2} is given by,

{p1|a1}{p2|a2} = {p1p2|p1a1 + a2}. (A.1.2)

Then, the inverse {p|a}−1 can be naturally defined to satisfy {p|a}{p|a}−1 = {p|a}−1{p|a} =
{E|0} where E is the identity operation of P (and of course {E|0} is of G), thus,

{p|a}−1 = {p−1| − p−1a}. (A.1.3)

Eqs. (A.1.2) and (A.1.3) defines the group structure of G.

A.1.2 Symmorphic and non-symmorphic space groups
The lattice translation group T is an invariant abelian subgroup of G, which is immediately
seen from pt ∈ T for all t ∈ T and p ∈ P . Therefore, if we decompose G as left cosets,

G =
∑
p∈P

{p|a}T, (A.1.4)

then the cosets {p|a}T form a quotient group G/T . In the following, the coset representatives
{p|a} are fixed once the decomposition Eq. (A.1.4) is chosen. The set of the representatives
r = {p|a} for all p ∈ P is denoted by R. An element of the quotient group G/T , which
corresponds to the coset rαT , is denoted by α.

Here, if we can choose R to form a group, which is isomorphic with P , then G is called a
symmorphic space group. If not, G is called a non-symmorphic space group and R no longer
forms a group. This means that the symmorphic space groups G can be represented as the
semi-direct product of T and P as G = T ⋊ P while the non-symmorphic ones cannot be.
As was shown by Fedorov, there are 230 types of space groups, which often called Fedorov
groups to distinguish from Shubnikov groups in magnetic crystals. Among them, 73 space
groups are symmorphic and 157 space groups are non-symmorphic. Note that, in either case,
one can see that any element of g ∈ G has a unique decomposition of the form g = rt with
r ∈ R and t ∈ T .
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A.1.3 Magnetic space groups
In the description of magnetic crystals, it is necessary to consider a time reversal operation θ
as well as the other space group operations. θ is defined as the operation that inverses mag-
netic moments, arranged in some symmetrical way, with no change of the lattice structure.
Namely, θ commutes any elements of space groups,

θ{p|a}θ−1 = {p|a} for all g = {p|a} ∈ G, (A.1.5)

and flips the internal degree of freedom describing the magnetic moments on the atomic
sites. According to the well-known result in quantum mechanics, θ should be regarded as
an anti-unitary operator. In general, any non-unitary group M can be divided into a set of
unitary operators G and of anti-unitary operators aG where a is an anti-unitary operation.
Then, G is an invariant subgroup of M whose order is |M/G| = 2, and thus, we can always
write down M as the form of M = G+ aG.

The space groups describing general magnetic crystals are called Shubnikov groups. It is
known that there are 1651 Shubnikov groups, 230 (type I) correspond to the classical Fedorov
space groups, (type II) 230 to these groups together with time reversal, and the remaining
(type III and type IV) 1191 to groups in which time reversal occurs only in combination with
other operations and not by itself. These Shubnikov space groups M are given by,

Type I : M = G, (A.1.6)
Type II : M = G+ {θ|0}G, (A.1.7)

Type III : M = H + {θ|0}(G−H), (A.1.8)
Type IV : M = G+ {θ|a}G, (A.1.9)

where G is any Fedorov group, H a halving subgroup of G which G − H contains no pure
translation. Type III and IV Shubnikov groups represent the crystal structure with finite
magnetic moments, and thus, are called magnetic space groups.

In addition, we can consider the time reversal operator θ also in the point group P . Then,
similar to the space group, any point group is classified into one of three Shubnikov point
groups, which are given by,

Type I : P = G, (A.1.10)
Type II : P = G+ θG, (A.1.11)

Type III : P = H + θ(G−H), (A.1.12)

where G is any Fedorov point group and H is a subgroup of G. Note that the Shubnikov
point groups corresponding to type IV Shubnikov groups belong to type II, as the same as
of type II Shubnikov groups describing paramagnetic crystals.
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A.1.4 Representations of space groups
According to the quantum mechanics, the eigenstate of the Hamiltonian can be regarded as
the basis of the irreducible representation of the symmetry group, whose elements leave the
Hamiltonian invariant. In the solids, the Hamiltonian possesses the same symmetry as the
crystal, i.e., the space group symmetry. Thus, the representation theory of the space group
symmetry often is the main subject of the symmetry consideration of the quantum states or
the Hamiltonian.

In practice, depending on the purpose, it is convenient to use several representations
to describe the Hamiltonian, which will be connected by the unitary transformations. In
particular, since the crystal momentum k of each one-particle state is preserved in the non-
interacting electron systems, it is convenient to extend the discussion on the Hamiltonian in
the momentum space. In the rest of the appendix, we introduce two types of such represen-
tations, which we call orbital-based and band-based representations, used in this thesis.

More concretely, a representation Γ of the space group G is defined as the homomorphic
projection Γ : G → GL(m), which holds the group structure,

D(Γ )(g1)D(Γ )(g2) = D(Γ )(g1g2), (A.1.13)

for all g1, g2 ∈ G. Here, D(Γ ) ∈ GL(m) is called the representation matrix of Γ and m is the
dimension of D(Γ ). Then, the basis of the representation f

(Γ )
i is defined to be satisfied,

gf
(Γ )
i =

∑
j

f
(Γ )
j D

(Γ )
ji (g). (A.1.14)

On the other hand, the representation Γ of the magnetic space group M = G+aG is defined
by the following relations,

D(Γ )(g1)D(Γ )(g2) = D(Γ )(g1g2) (A.1.15)
D(Γ )(g1)D(Γ )(a2) = D(Γ )(g1a2) (A.1.16)

D(Γ )(a1)(D(Γ )(g2))∗ = D(Γ )(a1g2) (A.1.17)
D(Γ )(a1)(D(Γ )(a2))∗ = D(Γ )(a1a2) (A.1.18)

for the unitary g1, g2 ∈ G and the anti-unitary operations a1, a2 ∈ aG. The representation
of the non-unitary group often is called a corepresentation. In this thesis, we only deal with
the unitary representation, whose representation matrix is an element of U(m).
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A.2 Orbital-based representations
The Hamiltonian on the Fock space describing the electrons in the solids can be expressed in
terms of the Wannier state, which approximately represents an atomic or a molecule orbital
tightly localized at some site. In the Wannier basis, a quadratic term of the Hamiltonian can
be written as follows,

H =
∑
RR′

∑
αβ

∑
ij

hαi,βj(R,R′)c†
αi(R)cβj(R′), (A.2.1)

where c†
αi(R) (cαi(R)) is a creation (annihilation) operator of the electron in the Wannier

basis. Here, the lattice vector R ∈ T represents a center of unit cells, which is an element
of the lattice translation symmetry group, namely, R = ∑3

i=1 niti where ni is an integer
and ti is the fundamental translation. α labels an atom located at R + xα, i denotes the
other internal degrees of freedom, such as spin and orbital. In this thesis, we denote by the
orbital-based Hamiltonian the Fourier transformation of Eq. (A.2.1),

H =
∑

k

∑
αβ

∑
ij

hαi,βj(k)c†
αi(k)cβj(k). (A.2.2)

In the following, we will investigate the transformation property of the creation operator
c†

αi(k) and find that the set of c†
αi(k) forms a (reducible) representation of G. First, we focus

on a transformation property of the internal degrees of freedom.

A.2.1 Representations of point groups
Let us focus on the point group symmetry P , which contains the real Rr and the spin Rs space
rotations, the space inversion I, and the time reversal θ operations. Taking into account the
double-valuedness of the electron spin for SO(3) group, it is convenient to deal with both the
space rotations as the elements of SU(2) group, and regard the orbital and the spin degrees
of freedom as its integer and half-integer irreducible representations, respectively. Let l ∈ N
and s ∈ N + 1

2 be such representations corresponding to the orbital and the spin. Then, the
transformations of their basis functions, |l, lz⟩ and |s, sz⟩, are given as follows,

Rr(|l, lz⟩ ⊗ |s, sz⟩) =
∑
l′z

(|l, l′z⟩ ⊗ |s, sz⟩)D(l)
l′zlz

(Rr), (A.2.3)

Rs(|l, lz⟩ ⊗ |s, sz⟩) =
∑
s′

z

(|l, lz⟩ ⊗ |s, s′
z⟩)D(s)

s′
zsz

(Rs), (A.2.4)

where D(l)(Rr) and D(s)(Rs) are the representation matrices of l and s, respectively. In the
presence of spin-orbit coupling, the system is invariant only under the simultaneous rotation
R = RrRs. Thus, it is convenient to introduce a following representation j and its basis

88



|(ls)j, jz⟩, which holds,

R |(ls)j, jz⟩ =
∑
j′

z

|(ls)j, jz⟩D(j)
j′

zjz
(R), (A.2.5)

where |(ls)j, jz⟩ = ∑
lzsz

(|l, lz⟩⊗|s, sz⟩) ⟨llzssz|jjz⟩. Here ⟨llzssz|jjz⟩ := (⟨l, lz|⊗⟨s, sz|) |(ls)j, jz⟩
is known as a Clebsch-Gordan coefficient, which is obtained by reducing the direct product
representation l⊗ s into the irreducible representations of SU(2) group. Due to the electron
spin, j is also the double-valued representation for SO(3) group.

Since the space inversion I and the time reversal θ are not the elements of SU(2) group,
the representation of those have to be defined by the physical insight. In this thesis, we used
the following definitions,

I(|l, lz⟩ ⊗ |s, sz⟩) = (−1)l(|l, lz⟩ ⊗ |s, sz⟩), (A.2.6)
θ(|l, lz⟩ ⊗ |s, sz⟩) = (−1)l+lz(−1)s+sz(|l, l̄z⟩ ⊗ |s, s̄z⟩), (A.2.7)

then we get,

I |(ls)j, jz⟩ = (−1)l |(ls)j, jz⟩ , (A.2.8)
θ |(ls)j, jz⟩ = (−1)j+jz |(ls)j, j̄z⟩ , (A.2.9)

where l̄z = −lz, s̄z = −sz, and j̄z = −jz. This is obtained as follows,

θ |(ls)j, jz⟩ =
∑
lzsz

(−1)l+lz(−1)s+sz(|l, l̄z⟩ ⊗ |s, s̄z⟩) ⟨llzssz|jjz⟩

=
∑
lzsz

(−1)j−lz−sz(|l, lz⟩ ⊗ |s, sz⟩) ⟨llzssz|jj̄z⟩

= (−1)j+jz ⟨(ls)j, j̄z⟩ .

Here, we have used the following identities, ⟨llzssz|jjz⟩ = (−1)l+s−j ⟨ll̄zss̄z|jj̄z⟩ and ⟨llzssz|jjz⟩ =
δlz+sz ,jz ⟨llzssz|jjz⟩. In this definition, the representation matrices D(j)(R) and D(j)(θ) do
not depend on both l and s. (Note that the definition that θ satisfies θ(|l, lz⟩ ⊗ |s, sz⟩) =
(−1)lz+sz(|l, l̄z⟩ ⊗ |s, s̄z⟩) so that θ |(ls)jjz⟩ = (−1)j+jz−l−s |(ls)jj̄z⟩ is also often used in some
literature.) In the following, we neglect the index ls in |(ls)j, jz⟩ and write simply by |j, jz⟩.

In practice, the representation matrices of SU(2) group can be obtained with the help of
extended Euler’s angle [209]. Namely, R ∈ SU(2) can be assigned by the rotation axis n

and the angle ϕ ∈ [0, 4π), and thus, we make (n, ϕ) correspond to the Euler’s angle (α, β, γ)
which are defined in α ∈ [0, 2π), β ∈ [0, π], and γ ∈ [0, 4π) using the convention α = 0 when
β = 0 or π. By use of such (α, β, γ), an irreducible representation j or its representation
matrix D(j)(R) is given by,

D
(j)
jzj′

z
(R(n, ϕ)) = D

(j)
jzj′

z
(R(α, β, γ))

= e−ijzα(e−iβj
(j)
y )jzj′

z
e−ij′

zγ. (A.2.10)
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Here, j(j)
y is a representation matrix of the operator jy, which is defined as the generator of

anti-clockwise rotation along y axis, of the representation j (e.g., j(1/2)
y = σy/2). Physically,

j means a total angular momentum of the electron. Note that, when γ̃ ∈ [0, 2π) is used, the
set (α, β, γ̃) becomes usual Euler’s angle for the SO(3) group rotations.

A.2.2 Basis functions in O, D4, and D6 point groups
In general, P is composed of the (finite number of) rotations R, the space inversion I, and
the time reversal θ operations. Thus, the irreducible representations of P can be obtained
by restricting j of SU(2) into its subgroup P̃ = P ∩ SU(2), and then inducing by I and θ.
Here, we list basis functions of double-valued irreducible representations in O, D4 and D6

point groups, which are constructed with j = 5/2 states, |j, jz⟩.

• O group

|Γ7,±⟩ =
√

1
6

∣∣∣∣52 ,±5
2

⟩
−

√
5
6

∣∣∣∣52 ,∓3
2

⟩
,

|Γ8a,±⟩ =
√

5
6

∣∣∣∣52 ,±5
2

⟩
+

√
1
6

∣∣∣∣52 ,∓3
2

⟩
,

|Γ8b,±⟩ =
∣∣∣∣52 ,±1

2

⟩
, (A.2.11)

|Γ8a,±⟩ = ±
∣∣∣∣32 ,∓3

2

⟩
,

|Γ8b,±⟩ = ±
∣∣∣∣32 ,±1

2

⟩
. (A.2.12)

• D4 group

|Γ6,±⟩ =
∣∣∣∣52 ,±1

2

⟩
,

|Γ7,±⟩ = cos θ
∣∣∣∣52 ,±5

2

⟩
+ sin θ

∣∣∣∣52 ,∓3
2

⟩
, (A.2.13)

|Γ6,±⟩ = ∓
∣∣∣∣32 ,±1

2

⟩
,

|Γ7,±⟩ = ∓
∣∣∣∣32 ,∓3

2

⟩
. (A.2.14)
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• D6 group

|Γ7,±⟩ =
∣∣∣∣52 ,±1

2

⟩
,

|Γ8,±⟩ =
∣∣∣∣52 ,±5

2

⟩
,

|Γ9,±⟩ =
∣∣∣∣52 ,∓3

2

⟩
, (A.2.15)

|Γ7,±⟩ = ∓
∣∣∣∣32 ,±1

2

⟩
,

|Γ9,±⟩ = ∓
∣∣∣∣32 ,∓3

2

⟩
. (A.2.16)

In space inversion invariant systems, these basis functions are classified into even or odd
parity, following the orbital angular momentum l = j ∓ s with the spin s = 1/2. Under our
convention, the basis functions defined above satisfy θ |Γ,±⟩ = ∓ |Γ,∓⟩ for any Γ .

A.2.3 Symmetry property of orbital-based representation
Next, let us consider the atomic site (sublattice) as well as the other internal degrees of
freedom. Let w(Γ )

αi (x − R − xα) = ⟨x − R − xα|w(Γ )
αi ⟩ be a Wannier state describing the ith

basis orbital of Γ representation in α-atom located at R + xα. This satisfies

w
(Γ )
αi (p−1(x − R − xα)) =

∑
j

w
(Γ )
αj (x − R − xα)D(Γ )

ji (p), (A.2.17)

for the point group operation p around r0 = R + xα. Then, we introduce two states ψ(Γ )
αi (k)

and ψ̃
(Γ )
αi (k) constructed from w

(Γ )
αi (x) by the Fourier transformations,

ψ
(Γ )
αi (k; x) =

∑
R

eik·Rw
(Γ )
αi (x − R − xα), (A.2.18)

ψ̃
(Γ )
αi (k; x) =

∑
R

eik·(R+xα)w
(Γ )
αi (x − R − xα), (A.2.19)

Thus, for the space group operation g = {p|a}, these transform like following ways,

gψ
(Γ )
αi (k) = e−ik·(pxα−xgα+a) ∑

j

ψ
(Γ )
gαj(pk)D(Γ )

ji (p), (A.2.20)

gψ̃
(Γ )
αi (k) = e−ik·a ∑

j

ψ̃
(Γ )
gαj(pk)D(Γ )

ji (p), (A.2.21)
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when the α-atom transforms to the (equivalent) gα-atom. This is obtained by,

gψ
(Γ )
αi (k) =

∑
R

eik·Rw
(Γ )
αi (g−1x − R − xα)

=
∑
R′
eik·(R′−pxα+xgx−a)w

(Γ )
αi (p−1(x − R′ − xgα))

= e−ik·(pxα−xgα+a) ∑
j

ψ
(Γ )
gαj(pk)D(Γ )

ji (p),

and the similar relations for ψ̃(Γ )
αi (k). Here, we have used g(R + xα) = R′ + xgα with the

uniquely determined R′. Thus, the corresponding creation operations, c(Γ )†
αi (k) and c̃(Γ )†

αi (k),
meet following relations,

gc
(Γ )†
αi (k)g−1 = e−ik·(pxα−xgα+a) ∑

j

c
(Γ )†
gαj (pk)D(Γ )

ji (p), (A.2.22)

gc̃
(Γ )†
αi (k)g−1 = e−ik·a ∑

j

c̃
(Γ )†
gαj (pk)D(Γ )

ji (p). (A.2.23)

We can write Eqs. (A.2.22) and (A.2.23) as gc†(k)g−1 = c†(pk)U(g; k) and gc̃†(k)g−1 =
c̃†(pk)Ũ(g; k) respectively, by use of the momentum dependent unitary matrix U(g; k) and
Ũ(g; k) in the symbolic manner.

Note that c†(k) is periodic under the transformation k → k+g with the reciprocal vectors
g while c̃†(k) is not. Thus, c†(k) representation is useful for the numerical calculation using
the fast Fourier transformation, and used in Chapter 2. On the other hand, since the phase
factor arising in Eq. (A.2.23) does not depend on the atomic positions, c̃†(k) representation
is more convenient for the symmetry based arguments discussed in Chapter 3. In the model
calculations in Chapter 4, we have used c̃†(k).
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A.3 Band-based representations
In the following, we discuss another type of representation, which we call a band-based repre-
sentation. The band-based Hamiltonian can be obtained by diagonalizing the orbital-based
one, which can be written as,

H =
∑

k

∑
n

hn(k)c†
n(k)cn(k), (A.3.1)

where n is the band index including the degenerate states. Here, c†
n(k) (cn(k)) is a creation

(annihilation) operator corresponding to the Bloch state with the momentum k. As is seen
in Chapter 3, for operations connecting c†

n(k) with different k points, its transformation
property can be freely chosen by use of an arbitrary unitary transformation among the de-
generate bands. However, for the operations leaving k invariant, we can uniquely determine
its transformation property. In contrast to the orbital-based one, such band-based represen-
tation is an irreducible representation of a subgroup of the space group, and thus, can be
obtained with the help of the usual band theory. For our purpose, it is sufficient to find the
eigenstates of a quadratic part of the Hamiltonian labeled by k. The subgroup of the space
group to leave k invariant is called a little group of k, and the corresponding eigenstates are
identical with the Bloch states. In the following, we summarize the little groups and their
representations, and then discuss the representations of Cooper pairs in the basis of them,
which is used in Chapter 4.

A.3.1 Little groups
Since the lattice translation group T is an abelian group, its irreducible representations
are all one-dimensional, labeled by the crystal momentum k. Let Fk be the irreducible
representation of T , which meets,

Fk(t) = e−ik·t, for t = {E|t} ∈ T. (A.3.2)

Then, the set α ∈ G/T for which Fk(t) = Fk(r−1
α trα) for all t ∈ T forms a subgroup of G/T .

This is called a little co-group of Fk in G, which we denote by K̄k. By use of K̄k, the subgroup
Kk of G defined by,

Kk =
∑

α∈K̄k

rαT, (A.3.3)

is called a little group of Fk inG. Note that the requirement Fk(t) = Fk(r−1
α trα) for rα = {p|a}

is identical with the following relation,

e−ik·t = e−ipk·t ↔ pk = k + g (A.3.4)

where g meets e−ig·t = 1 for all t = {E|t} ∈ T and is a reciprocal lattice vector. Thus, in
other words, the little group Kk can be regarded as the subgroup of G whose point group
operations leave k invariant modulo reciprocal lattice vectors.
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A.3.2 Magnetic little groups
In analogy with the little group Kk in the space group G, we can define a magnetic little
group Qk in the magnetic space group M . Similar to Eq. (A.1.4), M can be decomposed as
left cosets,

M =
∑
p∈P

{p|a}T, (A.3.5)

where p ∈ P runs over not only unitary operations but also anti-unitary operations. Then the
cosets {p|a}T form quotient groupM/T . The magnetic little co-group Q̄k is defined as follows;
Q̄k = Q̄u

k + Q̄a
k where Q̄u

k is the set of unitary cosets α ∈ M/T for which Fk(t) = Fk(r−1
α trα)

for all t ∈ T and Q̄a
k is the set of anti-unitary cosets α ∈ M/T for which Fk(t) = F ∗

k (r−1
α trα)

for all t ∈ T . Then the magnetic little group Qk is given by,

Qk =
∑

α∈Q̄u
k

rαT +
∑

α∈Q̄a
k

rαT. (A.3.6)

Here, the requirement Fk(t) = F ∗
k (r−1

α trα) for Q̄a
k comes from the relation θe−ik·tθ−1 = eik·t,

which indicates that θ reverses the crystal momentum k.

A.3.3 Small representations
In the paramagnetic crystals, any Bloch state is a basis of an irreducible representation in a
little group Kk. This is called a small representation. More concretely, a small representation
γk is defined as an irreducible representation of Kk, whose subduction to T yields an integral
multiple 1̂ of Fk. Here, 1̂ is the identity matrix with the dimension of γk, and thus, γk ↓ T =
1̂Fk. Note that γk is a usual vector (or linear) representation if we consider SU(2) rotations
as the space rotations, namely, the double space group.

In order to obtain γk, let us focus on that the relation

γk(ri)γk(rj) = γk(rktij) = Fk(tij)γk(rk), (A.3.7)

holds for rirj = rktij, where ri = {pi|ai} are representatives in Eq. (A.3.3) and tij is given by

tij = {E|p−1
k (ai + piaj − ak)} ∈ T. (A.3.8)

Here, we have used the fact γk ↓ T = 1̂Fk. Note that, if we consider usual space groups (i.e.,
SO(3) rotations as the spin space rotations), there can appear an additional phase factor in
Eq. (A.3.7) describing the double-valuedness of the electron spin.

Eq. (A.3.7) implies that if we introduce a representation γ̄k of K̄k to satisfy γ̄k(α) = γk(rα)
for all α ∈ K̄k, then γ̄k forms a projective representation of K̄k with the factor system
ωij = Fk(tij), namely,

γ̄k(αi)γ̄k(αj) = ωij γ̄k(αk), (A.3.9)
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for αi ∈ K̄k, where αiαj = αk in the sense of quotient group. Inversely, by use of γ̄k defined
in Eq. (A.3.9), we can redefine γk as γk(gα) = Fk(tα)γ̄k(α) for all gα = rαtα ∈ Kk since the
decomposition of g ∈ G into the form g = rt with r ∈ R and t ∈ T is unique. We can easily
see that they indeed satisfy eq. (A.3.7), and also, corresponding to gigj = gk,

γk(gi)γk(gj) = γk(gk), (A.3.10)

for all gi = riti ∈ Kk. This is shown by,

l.h.s = Fk(ti + tj)γ̄k(i)γ̄k(j) = Fk(ti + tj + tij)γ̄k(k), (A.3.11)
r.h.s = Fk(tk)γ̄k(k) = Fk(tij + g−1

j tigj + tj)γ̄k(k). (A.3.12)

Here, we have used tk = {E|p−1
k (ai + piaj − ak + piti + pktj)} = tij + g−1

j tigj + tj. Because
Fk(g−1

j tgj) = Fk(t) for all g = {p|a} ∈ Kk and t ∈ T , Eqs. (A.3.11) and (A.3.12) show that
γk satisfies Eq.(A.3.10).

If γ̄k is irreducible, then γk is also irreducible since γk is an constant multiple of γ̄k.
Therefore, we can obtain the small representations γk from the irreducible projective rep-
resentations γ̄k of the little co-group K̄k with the factor system ωij. This is the practical
prescription to obtain the Bloch states in a given k.

Note that, if we decompose G in terms of its left cosets with respect to Kk,

G =
∑

i∈{k}
riFk, (A.3.13)

then the set {k} forms what is called the star (or orbit) of Fk. Now, the irreducible repre-
sentation of G can be obtained as the induced representation γk ↑ G. However, this is not
necessary for our purpose.

A.3.4 Small corepresentations
Similarly, we can obtain the small corepresentation λk for the magnetic little group Qk. By
the definition of corepresentations, λk meets the following relations,

rirj = rktij ⇔ λk(ri)λk(rj) = Fk(tij)λk(rk), (A.3.14)
rirJ = rKtiJ ⇔ λk(ri)λk(rJ) = F ∗

k (tiJ)λk(rK), (A.3.15)
rIrj = rKtIj ⇔ λk(rI)λ∗

k(rj) = F ∗
k (tIj)λk(rK), (A.3.16)

rIrJ = rktIJ ⇔ λk(rI)λ∗
k(rJ) = Fk(tIJ)λk(rk), (A.3.17)

where ri, rj, and rk (rI , rJ , and rK) are representatives of quotient group Q̄u
k (Q̄a

k) in Eq. (A.3.6).
Note that the double-valuedness of the time reversal operation, i.e., θ2 = −1, can be absorbed
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into the space group as the same manner of that of electron spin. Then, we introduce a pro-
jective corepresentation λ̄k of Q̄k = Q̄u

k + Q̄a
k to meet λ̄k(αi) = λk(rαi

) and λ̄k(αI) = λk(rαI
)

for all αi ∈ Q̄u
k and αI ∈ Q̄a

k. Thus,

αiαj = αk ⇔ λ̄k(αi)λ̄k(αj) = ωijλ̄k(αk), (A.3.18)
αiαJ = αK ⇔ λ̄k(αi)λ̄k(αJ) = ω∗

iJ λ̄k(αK), (A.3.19)
αIαj = αK ⇔ λ̄k(αI)λ̄∗

k(αj) = ω∗
Ijλ̄k(αK), (A.3.20)

αIαJ = αk ⇔ λ̄k(αI)λ̄∗
k(αJ) = ωIJ λ̄k(αk), (A.3.21)

where αi ∈ Q̄u
k and αI ∈ Q̄a

k. Here, the set ωij, ωiJ , ωIj, and ωIJ are defined for all l,m ∈ Q̄k

to meet ωlm = Fk(tlm) as the same as the unitary little co-group. In this definition, the set
ωlm forms the factor system of a projective corepresentation in Q̄k, which satisfies

ω(lm)iωlm = ωl(mi)ωmi (A.3.22)
ω(lm)Iω

∗
lm = ωl(mI)ωmI (A.3.23)

where l,m ∈ Q̄k, i ∈ Q̄u
k, and I ∈ Q̄a

k.
Inversely, by use of λ̄k defined in Eqs. (A.3.18)-(A.3.21), we can obtain λk as λk(gi) =

Fk(ti)λ̄k(i) and λk(gI) = F ∗
k (tI)λ̄k(I) where gi = riti (gI = rItI) is any unitary (anti-unitary)

operation in Qk. This satisfies, for example,

gigj = gk ⇔ λk(gi)λk(gj) = ω′
ijλk(gk), (A.3.24)

gigJ = gK ⇔ λk(gi)λk(gJ) = ω′∗
iJλk(gK), (A.3.25)

gIgj = gK ⇔ λk(gI)λ∗
k(gj) = ω′∗

Ijλk(gK), (A.3.26)
gIgJ = gk ⇔ λk(gI)λ∗

k(gJ) = ω′
IJλk(gk), (A.3.27)

which are shown by, for example,

l.h.s in Eq. (A.3.25) = Fk(ti − tJ)γ̄k(i)γ̄k(J) (A.3.28)
= Fk(ti − tJ − tiJ)γ̄k(k), (A.3.29)

r.h.s in Eq. (A.3.25) = F ∗
k (tk)γ̄k(k) (A.3.30)

= Fk(−tiJ − g−1
J tigJ − tJ)γ̄k(k), (A.3.31)

and the relation Fk(g−1
J tigJ) = F ∗

k (ti) = Fk(−ti) to be satisfied for all ti ∈ T and the anti-
unitary operations gJ ∈ Qk. The others are also shown in the similar way. Since λk is
irreducible when λ̄k is irreducible, we can obtain the small corepresentations λk from the
irreducible projective corepresentations λ̄k of the magnetic little co-group Q̄k with the factor
system ωlm.
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A.3.5 Representations of Cooper pairs
The Bloch states are regarded as the bases of the small representations γk (or a small corep-
resentations λk). As shown in the previous sections, γk (λk) can be obtained from the
irreducible projective (co)representations γ̄k (λ̄k) in the (magnetic) little co-groups K̄k (Q̄k),
which have the appropriate factor systems ω. Here, we show how to calculate the represen-
tations describing the Cooper pair wave functions, which we call representations of Cooper
pairs, when the correct small (co)representations γk(λk) are given. In the following discus-
sion, because it is irrelevant whether the space group is unitary or non-unitary, we do not
distinguish them and simply use γk and Kk.

Let ΨΓ
i be a BCS mean field term in a BdG Hamiltonian. Here, Γ and i, which are the

irreducible representation of P and its basis respectively, specify the realized superconducting
symmetry. As shown in Sec. 3.1, this takes the form like

ΨΓ
i =

∑
k

∑
12

[φΓ
i (k)]12c

†
1(k)c†

2(−k), (A.3.32)

in the band basis. Here, c†
1(k) is a creation operator of Bloch state with the crystal momentum

k. The suffix 1, 2 generally denotes the band index n and the others such as Kramers index ±.
φΓ

i (k) is a band based gap function belonging to Γ . According to the Fermion anti-symmetry,
the relation

[φΓ
i (k)]12 = −[φΓ

i (−k)]21, (A.3.33)

holds for any superconductivity.
Here, we focus on the fact that the (zero-momentum) Cooper pairs have to be formed

between the degenerate states present at k and −k within the weak coupling BCS theory.
Thus, in the following, we neglect the inter-band pairing and only focus on a single state
labeled by γk for simplicity. Due to the degeneracy of paired states, these should be con-
nected by some symmetry operations except for an accidentally degenerate case. Here, we
assume that a space group operation d = {pd|ad} ∈ G connects two states of the paired
electrons, namely, its rotation/inversion part pd meets pdk = −k modulo a reciprocal lattice
vector. In this case, the creation operator c†

i (γk; k), which corresponds to a basis i of a small
representation γk, can form a pair with d c†

j(γk; k) d−1 and the corresponding mean field term
takes the form as,

ΨΓ
k (γk; k) =

∑
ij

[φΓ
k (γk; k)]ijc†

i (γk; k) d c†
j(γk; k) d−1. (A.3.34)

Note that, as shown later, the representation of Cooper pair does not depend on the chose
of d, and thus, we can neglect its label in ΨΓ

k (γk). Since the transformations of [φΓ
k (γk; k)]ij

and of c†
i (γk; k) d c†

j(γk; k) d−1 are convertible, we will consider the symmetry property of
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later term. For the discussion based on the small representations, we introduce the ordered
pairs of two basis function ϕγk

i and dϕγk
j , which we denote by (ϕγk

i , dϕ
γk
j ). Here, ϕγk

i is a basis
of γk and dϕγk

j is a possible paired states at −k. Taking into account the anti-symmetry of
creation operators, we find the following correspondence,

c†
i (γk; k) d c†

j(γk; k) d−1,

⇔ Φij(γk) := (ϕγk
i , dϕ

γk
j ) − (dϕγk

j , ϕ
γk
i ). (A.3.35)

Namely, the representation of the Cooper pairs is the same as that of Φij(γk).
Note that Φij(γk) can be regarded as an anti-symmetrized Kronecker square with zero

total momentum of the induced representation γk ↑ Kk + dKk [59]. The character of its
representation, denoted by Pγk

, is given by,

χPγk (g) = χγk(g)χγk(d−1gd), (A.3.36)
χPγk (dg) = −χγk(dgdg). (A.3.37)

This is a key relation to investigate the nodal structure in non-symmorphic superconductors
in Chapter 4. Note that Eqs. (A.3.36) and (A.3.37) are special cases of Mackey-Bradley
theorem deduced with the double coset decomposition [59]. Before showing the derivation of
Eqs. (A.3.36) and (A.3.37), we make some remarks.

1. First, we note that the little group K−k at −k point is the same as Kk at k point.
This is simply because the condition pk = k + g for all {p|a} ∈ Kk is identical with
p(−k) = −k + g′ for all {p|a} ∈ K−k, where g′ = −g. This implies Kk = dKkd

−1, in
other words, Kk is an invariant subgroup of Mk = Kk + dKk. Therefore, we can define
the induced representation γk ↑ Mk for any d. Moreover, r.h.s of Eq. (A.3.36) makes
sense because d−1gd ∈ Kk. Note that, by the definition,

gϕγk
i =

∑
i′
ϕγk

i′ [γk(g)]i′i, (A.3.38)

gdϕγk
j =

∑
j′
dϕγk

j′ [γk(d−1gd)]j′j, (A.3.39)

hold for any g ∈ Kk.

2. For any d = {pd|ad}, d2 ∈ Kk because d2 is an element of G and satisfies (p2
d)k = k.

Kk = dKkd
−1 and d2 ∈ Kk immediately lead dgdg = d2 ·d−1gd · g ∈ Kk, and thus, r.h.s

of Eq. (A.3.37) makes sense. Note that

dgϕγk
i =

∑
i′
dϕγk

i′ [γk(g)]i′i, (A.3.40)

dgdϕγk
j =

∑
j′
ϕγk

j′ [γk(dgd)]j′j, (A.3.41)

hold for any dg ∈ dKk, and thus, Φij(γk) indeed forms a representation of Kk + dKk.
This originates from the fact d ∈ dKk ∩Kkd

−1.
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3. For any d and d′, the induced basis dϕγk
i and d′ϕγk

i are convertible by a unitary trans-
formation. Therefore, the character of P (γk) is independent of the choice of d. This is
guaranteed by the fact that Kk is an invariant subgroup of Mk.

Now, we are ready to prove Eqs. (A.3.36) and (A.3.37). After the straightforward calcu-
lations using Eqs. (A.3.38)-(A.3.41), we get,

gΦij(γk) =
∑
i′j′

Φi′j′(γk)[γk(g)]i′i[γk(d−1gd)]j′j, (A.3.42)

dgΦij(γk) = −
∑
i′j′

Φj′i′(γk)[γk(g)]i′i[γk(dgd)]j′j, (A.3.43)

= −
∑
i′j′

Φi′j′(γk)[γk(g)]j′i[γk(dgd)]i′j. (A.3.44)

Thus, their characters are given by,

P γk
i′j′,ij(g) = [γk(g)]i′i[γk(d−1gd)]j′j ⇒ χPγk (g) = χγk(g)χγk(d−1gd), (A.3.45)

P γk
i′j′,ij(dg) = −[γk(g)]j′i[γk(dgd)]i′j ⇒ χPγk (dg) = −χγk(dgdg). (A.3.46)

Note that as shown above, the original Mackey-Bradley theorem, which is a theorem for
the double coset decomposition [59] and is used in the previous works [138, 139, 3], is not
necessary in the symmetry consideration on the zero-momentum Cooper pairs. It may be
applied, for example, to the classification of order parameters in the superconductivity or the
other long range orders with finite ordering momentum.
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