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Chapter 1

General Introduction

Calculation of potential energy surface (PES) with respect to the atomic positions is crucially
important to perform molecular dynamics (MD) simulation and estimate stability of systems.
Those simulations are very useful and widely applied for material science and engineering.
For example, MD simulation and estimation of stability is applied to study on deformation of
materials. Dislocation processes [1] and deformation twinning [2] in nanocrystalline are studied
by MD simulation. Estimation of generalized stacking fault energy (GSFE) is also common
method to analyze deformation of materials using PES [3,4]. MD simulation can also estimate
diffusion coefficients at limited temperature [5,6]. Apart from material science, MD simulation
is also applied for biochemistry such as study on chemical property of protein [7].

To perform those calculations, fast and accurate method to estimate PES is desired. One
of popular method is quantum mechanical method like density functional theory (DFT) cal-
culations [8,9]. Even this method is reliable for many systems, however, the computational
costs are large and usually limited to system including less than a few thousand atoms. For a
large scale simulations, empirical potentials, which are simple functions to represent interatomic
interaction energy and provide PES much faster than DFT, are widely used.

Conventionally, the functional form is determined with physical consideration and fitting
parameters are determined with a set of experimental data or first principles results. For exam-

ple, one of the simplest interatomic potential, Lennard-Jones (LJ) potential [10] is expressed
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where E® is summation of interaction energy between atom i and neighbor atom j, R;; is
a distance between atom 7 and atom j, € and o are fitting parameters. First terms and sec-
ond terms are repulsive interaction due to overlapping electron orbitals and dispersion force
between two atoms, respectively. Parameters ¢ and ¢ can be determined to reproduce some
experimental data for example equilibrium distance and bond-dissociation energy, or accurate
DFT calculations.

Such method is very simple and can be applied to simulation of rare gas, however, it is
known that LJ potential cannot provide accurate PES of bulk crystal. For example, because LJ
potential is merely summation of pair interaction, elastic constants satisfy Cauchy relation [11]
as

Cha = Chy, (1.2)

which real cubic materials usually do not satisfy. To construct interatomic potentials of more
accuracy and of more transferability, more interatomic potential models have been proposed.
Embedded atom model (EAM) [12-14] includes many-body interactions from quantum me-
chanical consideration, and EAM is widely applied for simulations of bulk metals. Tersoff
potentials [15-17] adopts bond angle among three atoms, and those are used for systems whose
bonds are covalent like C, Si, and other semiconductors. Modified EAM [18,19] is often used
for transition metals.

To construct more accurate interatomic potential, machine learning interatomic potentials
(MLIPs) are also proposed. In these procedures; the relationship between the energy of a
crystal structure and a set of descriptors expressing the crystal structure is estimated. In
beginning, application of MLIP had been limited to molecules containing few atoms [20, 21],
however, recently MLIPs which can be applied to periodic systems are proposed [22-24]. In the
literature, a few regression techniques such as artificial neural networks [22,25-30], Gaussian
process regression [23] and least absolute shrinkage and selection operator (LASSO) [24, 31]
have been adopted to estimate MLIP for solids.

Once framework to apply machine learning technique and appropriate descriptor set are
determined, MLIP can be automatically constructed to reproduce energies and forces of large
set of DFT calculations. However, it is still difficult to think about how machine learning

technique must be applied and what descriptors should be used. One solution of this problem



is expressing interatomic potential model linearly (I call such potential linear potential) and
using LASSO technique, which can select effective descriptors. Indeed, it is reported that
such model can be applied to several elemental metals and optimal interatomic potential can
reproduce several material properties like total energies of structures and phonon dispersion
curve from DFT calculations [24,31]. However, using LASSO technique, it is still difficult to
choice candidate descriptors. In this thesis, firstly I show what descriptors should be used
from mathematical consideration and reveal the relationship between conventional interatomic
potentials and MLIPs. From approximate general potential model by polynomial, more general
framework to construct linear potential can be obtained. Then, I applied the generalized
framework for 31 elemental metals and estimated the accuracy of interatomic potentials.

In chapter 2, the general interatomic potential model is derived. The relationship between
conventional interatomic potentials and MLIPs is also discussed. In chapter 3, I construct
interatomic potential using such framework for 31 elemental metals by only radial descriptors
and compare the accuracy of generalized framework with previous linear potential. The accu-
racy is also estimated by calculating several properties of metals. For Al and Cu, the properties
obtained from linear potential are also compared with conventional interatomic potentials, such
as EAM. In chapter 4, descriptors which include bonding angles are considered. I examine the
effect of such descriptors for prediction of linear potentials. I also estimated some properties of

metals by linear potentials. For Ti, interatomic potential is also compared with conventional

EAM and modified EAM.



Chapter 2

General interatomic potential model

2.1 Introduction

Interatomic potential have been widely used for large scale molecular dynamics (MD) simu-
lations. As shown in Chapter 1, many functional forms like embedded atom model (EAM),
Tersoff, and modified EAM are developed to perform reliable MD simulation.

According to a general classification of the interatomic potential by milestone paper by
Carlsson [32], interatomic potentials can be classified into four class, namely, pair potential, pair
functional potential, cluster function potential, and cluster functional potential. Even present
day, the most of interatomic potentials are classified into such classification. For example, EAM,
which is used widely for simulation for bulk metal, is classified into pair functional potential.
Modified EAM, which adopts bond angle and used for transition metals, is classified into cluster
functional potential.

Incidentally, machine learning interatomic potentials (MLIP) are proposed and used re-
cently. These potentials are constructed by estimating the relationship between the energy
of a crystal structure and a set of descriptors expressing the crystal structure by machine
learning techniques. In the literature, a few regression techniques such as artificial neural net-
works [22,25-30], Gaussian process regression [23] and least absolute shrinkage and selection
operator (LASSO) [24,31] have been adopted to estimate MLIP for solids. Also, several descrip-
tors have been proposed [22-24,33-39], while only a few of them have succeeded in obtaining

accurate MLIP. Although MLIP model and descriptors set crucially determine the accuracy



and computational costs of interatomic potential, method to apply machine learning and de-
scriptor set are determined by trial and error rather than by clear theory based on physical and
mathematical consideration. One way to select effective descriptors is expressing interatomic
potential model linearly and the use of compressing sensing methods like LASSO technique.
Indeed, it is reported that such model can be applied to several elemental metals and optimal
interatomic potential can reproduce several material properties like total energies of structures
and phonon dispersion curve from DFT calculations [24,31]. Although LASSO potentials can
select effective descriptors and construct accurate interatomic potentials, the preparation of
candidate descriptors is still difficult. If we use unnecessary candidate descriptors, the compu-
tational costs of construction of interatomic potential becomes large and such extra descriptors
may cause overfitting and decrease generalization ability of the interatomic potential model.
Moreover, when the candidate set lacks necessary descriptors, we can never obtain the accurate
model no matter how we select descriptors.

The difficulty of consideration of descriptor sets can be ascribed to the deficiency of math-
ematical interpretation of MLIP and comprehension of the relationship between MLIP and
already existing interatomic potentials. It is not understood what type of Carlsson’s classifi-
cation MLIP is classified into. Machine learning has been used only as a tool for estimating a
black-box function.

In this chapter, firstly, I enumerate the condition which interatomic potentials need to sat-
isfy. Next, I derive the general functional form of interatomic potential from such conditions
based on mathematical consideration. I also show the relationship among the general expres-
sion, MLIP, and conventional interatomic potential. Such consideration will make it easy to

introduce existing physical insights into MLIP.

2.2 Derivation

In this section, the general functional form of interatomic potentials is derived and it is shown
that when we consider sufficient terms, the general form can approximate any interatomic
potential within any small error.

Interatomic potential determines a contribution to the total energy of the system of a target



atom (in this study such energy is called atomic energy) from 3N coordinates {ry,rs,..., N}
(the vectors of origin is the position of the target atom) of N atoms. For nonmagnetic unary
system without external field, generally interatomic potential satisfies the following four condi-
tions.

(A) Interaction is continuous:

e > 0,"N,0 <" i < N7ds.t. When 3N coordinates are displaced by small [|Ar;| <
d, or under the transformation {ry,ro,..., 7, ..., 7n} — {71, 72,...., 7+ Ar;, ..., rN}, the
difference between the total energy before displacement and the total energy after displacement
is smaller than e.

(B) Interaction of long range can be ignored:

When the distance between target atom and the ¢th neighbor atom is larger than cutoft
radius R., or ||r;|]] > R., the existence and displacement of 7; has no effect on the atomic
energy until the norm of r; becomes shorter than R..

(C) The contribution energy has symmetry for permutation:

The atomic energy is invariable under any permutation like

{ri,ro,...,ri ..,y PN = P, e, T T TN )

(D) The contribution energy has symmetry for rotation and mirroring:

The atomic energy is invariable under orthogonal group, O(3) transformation. O(3) is
generated from rotation and mirroring transformation and can be represented as 3 x 3 matrix
whose determinant is 1 or -1. Therefore, the condition (D) can be expressed that "R € O(3),
atomic energy is invariable under following the transformation where

{ri,ra,...,°n} = {Rry,Rrs,..., Rry}.

Here, first I define an atomic distribution function like

p(r) =Y p(r—rn), (2.1)

where p(r) is a positive C* function which has only one peak at 7 = 0 and the range where
the p(r) has non-zero value is so small that any pair of functions p(r — r;) are not superposed.
Clearly, the relationship between distribution functions and atomic environment of 3N coordi-

nates is one-to-one because we can obtain one atomic distribution function from 3N coordinates



and determine the set of 3N coordinates from positions of peak of the atomic distribution func-
tion. Then, interatomic potential can be interpreted as a mapping from atomic distribution
function to one scalar. Using the notation of functional, we can express an interatomic potential
function as E [p(r)]. Because atomic distribution function has symmetry for permutation of
atoms, if the model which approximates E [p(7)] is derived then condition (C) is automatically
satisfied.

Next, continuity of F [p(r)] has to be considered. The atomic distribution function which

is displaced can be expressed as,

pu(r) = Y plr =) plr e+ Ar)) + Y plr—72) 22)

Then, following condition is satisfied.
Ve >0, %0 s.t. |Ari|| < 6= |lp — paispl* < €, (2.3)

where ||p — paispl|> = [ [p(r) — paisp(r)]° dr. Therefore, if functional E [p(r)] is constructed

under the condition as
Ye>0, 2 s.t. || Ap(r)|]? = /Ap(r)zdr <d=|Elp(r)+Ap(r)] —E[p(®)]|*<e (2.4)

the functional satisfies the condition (A).
Incidentally, for any e¢; > 0, using sufficiently large number M and linearly independent

function set {p,,(r) i<m<nr, p(7) can be expanded as

p) = cnpm(r) +er(r), (2.5)

m=1

where ¢, is weight parameters and €;(r) satisfies the relationship |le;(7)]|> < ¢. From
Eqn.(2.4), E[p(r)] can be accurately approximated by E [fozl cmpm(r)] if sufficient ba-
sis functions are used. Because basis functions {p,(7)}i<m<m are fixed, weight parameters

{em Y1<menr completely specify S ¢, p, (1) and functional E [an\le cmpm(r)] can be rewr-



ited by multivariable function as

Z P (T

E(ci,e9,...4). (2.6)

Weight parameters ¢, are calculated from inner product of functions (f,g), expressed as

(f.9) = / f(r)g(r)dr. (2.7)

If { pim(7) }1<m<n are normalized orthogonal functions, in other words, for any n and m functions

have the relationship as

<fmfm> = Onm, (2.8)

where 6, is Kronecker’s delta, then c¢,, can be expressed as

m = {fm, p)- (2.9)

Then, Eqn.(2.6) can be expressed as

Elp(r)] = E((fu,0): {fas s (Fyr: ). (2.10)

Inner products are expressed as

(fm, P) Z/ r—1;)fm(r dr—ZF ), (2.11)

where Fy,(r;) = [ p(r fm(7)dr.

The calculation of ( fm, p) depends on what p(r) is used in Eqn. (2.1) and what basis
functions f,,(r) are used. It is not always easy to calculate this integration. However, that
is equivalent to prepare complete basis functions {g,,(r)},, and use descriptors expressed as
> gm(r;) because set of {F,(r)},, can be calculated by linear combination of {g,,(r)},, and
it can be regarded E as composite function of function representing energies by { F,, ()}, and
such linear combination. For the same reason, linearly independent functions are sufficient even

if functions are not orthogonal.



Next, condition (B) and condition (D) need to be considered. Then, using spherical coor-
dinates, basis functions are set to f, (7)Y, (0, @), where Y;,,(0, ¢) (0<I,—I<m<l) is spherical
harmonics function. When we don’t consider long range interaction, f,(r) is zero when r > 0.
Then condition (B) is satisfied.

Whereas radial parts f,(r) have obviously rotation symmetry and those descriptors . f,(r;)
can be used without translation, when angular basis functions are included, descriptors ¢, =
> i [a(1i)Yim (0;, i) need to be translated to some functions which satisfy rotational symmetry.

When spherical harmonic functions Y}, are translated into R(«, 3,7)Ys, by rotation of

Euler angle o, 8 and ~, following relationship is satisfied.

Rla, B, 7)Y, Z Dby (@, B,7) Yo (6, 6), (2.12)

where D! («,3,7) are elements of Wigner D-matrix. Therefore, descriptor of rotated distri-

bution function R(a, f,7)Cum also can be expressed as

( B 7 Cnlm = Z D ﬁvﬁ)/)Cnlm’- (213)
To satisfy rotational symmetry, descriptors need to converted by function G, satistying

f(coo00s - - - Cnim, - - - ) = Gp(R(a, B,7)co00s - - - R, B,7) Cnims - - - )- (2.14)

Because there are 2] + 1 coefficients of [ and rotational operation in three dimensional space
has two degree of freedom, there are 2/ — 1 independent rotationally symmetrical functions.
It is difficult to find such functions, however, because Wigner D-matrix is unitary matrix and
norm of vector is invariant under unitary transformation, it can be easily found that one of

those functions is

l
Pnt = Z ||Cnlm||2- (215)

l=—m
When radial function is not considered, such function is also known as bond order parame-
ter, which represents local structures in liquid crystal and glass states [40]. Besides, by the

combination of the third order bond order parameter and radial functions, other rotationally



invariant can be created like

l
[,1,1
Wnl = Z Cnlimy Cnlmso Cnlms (2 : 16)

mi,mama=—1 \T11,M2,MM3

, where the coefficient written by the parentheses is the Wigner 35 symbol.

2.3 Relationship among general interatomic potentials,
conventional potentials and MLIP

For the simplicity, firstly only radial descriptors are considered. Then, interatomic potential

without angular descriptors are written as
Efp(r)] :E(Zfl(ﬁ),Zfz(ﬁ),.--7). (2.17)

Incidentally, according to a general classification of the interatomic potential by milestone
paper by Carlsson [32], interatomic potentials can be classified into four classes, namely,
(a) Pair potential
E= % > Vi (12), (2.18)

(b) Pair functional potential

E = %Z Vpair (’m) +U (Z gpair(ri>> ) (2‘19)

(c) Cluster function potential
1 1
b= Ez%air(ri> +§Z‘/three(ri;rj) + ..., (220)
7 2,7

and (d) Cluster functional potential

1
E= 5 Z V}Jair(ri) + U (Z gpair(ri)7 thhree<ri7 Tj), v ) . (221)
i 7 i,j

10



When angular terms are not considered, conventional interatomic potentials are classified into
pair potential expressed as FEqn.(2.18) or pair functional potential expressed as Eqn.(2.19).
When the rotational symmetry is satisfied, the both potential is expressed by distance r;.
Then, these conventional potentials are also expressed by form of Eqn.(2.17). However, these
conventional potentials can not express all potentials expressed by Eqn.(2.17). For example,
potential like [, f1(7:)]>+[>2, fa(rs)]? can be expressed by Eqn.(2.17) but can not be expressed
by neither Eqn.(2.18) nor Eqn.(2.19). It can be said that in conventional interatomic potential
idea, the special case of Eqn.(2.17) are constructed on physical consideration and trial and
error.

Next, MLIP is compared to Eqn.(2.17). A formula of neural network potential (NNP)
proposed by Behler [22] and Gaussian approximation potentials (GAP) proposed by Bartdk [23]
using only radial descriptor can be interpreted that the model in which function E of Eqn.(2.17)
is determined with artificial neural network method and with Gaussian process, respectively.
LASSO potentials proposed by Seko [24,31] is expressed as

p
+C, (2.22)

E= Z Winp [Z fn(13)

1<m<M,1<p<P

where w,,, and C are fitting parameter determined by linear regression method. When func-
tions f,,(r;) are linearly independent, this expression is less general than Eqn.(2.17) because
some potentials like [, f1(r)]° +3 32, fi(r)] [ fa(ri)] + 22, fa(rs)]? can not be expressed by
Eqn.(2.22). The expression of interatomic potential by linear combination of descriptors should

be considered by polynomial approximation of Eqn.(2.17) and expressed as

E= Z Wsy,s3,...,5p Z f81 (TZ) Z f52 (Tl) e Z fSP (Tl) ) (223)

1<s51<-+<sp<M+1

where P is order of polynomial approximation. The difference of this form and Eqn.(2.22) is only
existence of cross terms, namely, product of summation of different basis functions. Evidently,
this form is more general than previous linear potential. Construction of interatomic potentials
by Eqn.(2.23) will be examined in Chapter 3.

Next, angular descriptors are considered. In this case, general form of interatomic potential

11



is expressed as
= E(Z fl(T’Z'), ng(?”i), ey P11y Pnlyee ey WH, e ,th e ) (224)

Firstly, the relationship between descriptor p,; and bonding angle are discussed. For the simplic-
ity, at first radial parts are not considered and only the case of unit vectors are shown. Then, let
us represent descriptors when there are N atoms whose coordinates are r; = (6;, ¢;)(1 <i < N),

namely, S0 leml> = S0 (O Vi (05, ¢0) 32, Vi, (6, ¢4)). Incidentally, the following re-

lationship is satisfied.

Bla-y) = o S Vil )i (0, 6), (2.25)

20 +1

where P, is a Legendre polynomial of degree [ and « and y are unit vectors which have spherical
coordinates (6, ¢) and (€', ¢’). Then, by calculate the sum of Eqn.(2.25) over 4, the following

formula is obtained.

5> (ZYM 00 S 0:0)) -

Z;l (Zy;m i & w%)) — (2.26)
Z P(r;-r;).

Considering radial function,

Pni = Z

m=—1

> Yim(6s, 1) fu(r:)

: Z (03, &3) fu Tz)] =
Z (Zylm Z’¢l Jagbj)fn(ri)fn(rj)) = (2-27)

m=—1

. ' T . .
Inner product of two vector is also expressed as ™ - - = cos(7;;), where 7;; is bonding an-

i Ty

12



gle. Therefore, p, can be expressed by function of radial r;,r; and bonding angle ~;;. The
use of descriptor set p,; is also equivalent to use exponential functions of cos'(y;;), namely
> fn(ri) fu(ry) cos!(7;;). Then, using p,; can be interpreted as expansion of three body po-
tential. By the same idea, probably the set of W,,; expresses four body potential and other
rotationally invariants express many body potential.

Conventional interatomic potentials including angular terms are classified into cluster func-
tion potential expressed as Eqn.(2.20) or cluster functional potential expressed as Eqn.(2.21).
When the rotational symmetry is satisfied, the both potentials are expressed by distance r;,r;
and 7,;;. As with the relationship among pair potential, pair functional potential and Eqn.(2.17),
conventional cluster potential and cluster functional potential are less general than Eqn.(2.24).
For example, potential like |>_, i fi(r;) fi(r;) cos %jr + [Z” fa(ri) f2(r;) cos i can be ex-
pressed by Eqn.(2.24) but can not be expressed by neither Eqn.(2.20) nor Eqn.(2.21).

A formula of NNP and GAP using angular descriptor can be interpreted that the model
in which function E of Eqn.(2.24) is determined with artificial neural network method and
with Gaussian process, respectively. Interatomic potential model by linear combination of
descriptors with angular terms can be considered by polynomial approximation of Eqn.(2.24.

Construction of such interatomic potentials will be examined in Chapter 4.

2.4 Summary

In this study, I defined interatomic potential as continuous mapping from atomic distribution
function to scalar which satisfies rotational symmetry. I also showed that such mapping can
be represented by multivariable function of descriptors, which are rotationally symmetrical
functions of coefficients of expansion of atomic distribution function by radial and spherical
harmonics function. It was shown that this model is more general expression of interatomic
potentials than conventional potentials. NNP and GAP can be interpreted the method in
which such multivariable function is determine by NNP and GAP. LASSO potential previously
supposed is less general than the formula proposed in this study. To construct interatomic
potential model by linear combination of descriptors, polynomial approximation should be

applied to the formula proposed in this study and cross terms of different descriptors should

13



be added.
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Chapter 3

Construction of interatomic potentials

by generalized linear expression

3.1 Introduction

Machine learning interatomic potential (MLIP) has great potential for facilitating the discovery
of new physics. Its frameworks applicable to periodic systems have recently been proposed
[22-24], which derive a reliable interatomic potential by a combination of density functional
theory (DFT) calculations for many different atomic configurations and a regression method.
Unknown coefficients describing MLIP are estimated from the energies of the training data set
using a regression method. Importantly, MLIP is described by some descriptors obtained from
atomic positions, satisfying several invariances, such as translational and rotational invariance.
General advantages of MLIP are as follows. Its accuracy should be much better than that
of conventional interatomic potentials and very close to that of DFT calculation. On the
other hand, the computational cost of MLIP is very close to that of conventional interatomic
potentials. In addition, because the framework and descriptors are flexible, MLIP is applicable
to a wide range of materials regardless of their nature of chemical bonding.

In the literature, only a few regression techniques such as artificial neural networks [22,
25-30], Gaussian process regression [23| and least absolute shrinkage and selection operator
(LASSO) [24,31] have been adopted to estimate MLIP for solids. Applications to solids have

been actually limited to a small number of metallic [24,25,27,31], covalent [22,23,28] and ionic

15



materials [26]. Also, several descriptors have been proposed [22-24,33-39], while only a few of
them have succeeded in obtaining accurate MLIP.

MLIP provides a description for energy with high accuracy, however, it is still unclear how
we should prepare the MLIP model and descriptor set. Although MLIP model and descriptors
set crucially determine the accuracy and computational costs of interatomic potential, method
to apply machine learning and descriptor set are determined by trial and error rather than
by clear theory based on physical and mathematical consideration. One way to select effective
descriptors is expressing interatomic potential model linearly and the use of compressing sensing
methods like LASSO technique. Indeed, it is reported that such model can be applied to several
elemental metals and optimal interatomic potential can reproduce several material properties
like total energies of structures and phonon dispersion curve from DFT calculations [24, 31].
Although LASSO potentials can select effective descriptors and construct accurate interatomic
potentials, the preparation of candidate descriptors is still difficult. If unnecessary candidate
descriptors are used, the computational costs of construction of interatomic potential becomes
large and such extra descriptors likely cause overfitting and decrease generalization ability of
the interatomic potential model. Moreover, when the candidate set lacks necessary descriptors,
we can never obtain the accurate model no matter how we select descriptors.

The difficulty of consideration of descriptor sets can be ascribed to the fact that mathemat-
ical interpretation of MLIP and the understanding the relationship between MLIP and already
existing interatomic potentials are still lacking. Machine learning has been used only as a
tool for estimating a black-box function. The main purpose of this study is to express general
formula of interatomic potential and show the relationship between conventional interatomic
potentials and MLIP.

In Chapter 2, however, I showed the general interatomic potential model and relationship
among such model, conventional potential, and MLIP. I also showed that linear potential model
should be constructed by polynomial approximation of general model and such model is more
general than previous linear potential model. In this chapter, linear interatomic potentials of
31 elemental metals are constructed by the generalized framework and the previous framework
[24,31], and compare the accuracy of both models. At last, I estimated several properties

of materials, namely energies of structures which is not used to fitting, elastic constants, and

16



phonon dispersion curves. For Al and Cu, linear potential constructed by generalized framework
is compared also with conventional EAMs and the applicability of the new framework proposed

in this study is investigated.

3.2 Methodology

3.2.1 Linear expressions of interatomic potentials

In general interatomic potential idea, the total energy of a target system E''? is decomposed

into contribution of each atoms included the system. Therefore, E*%! can be written as
Etotal — ZE(l); (31)
i

where E® is the contribution of atom i.
As discussed in Chapter 2, if target system is nonmagnetic and unary, a general interatomic

potential model is written as
E(l) = E(Z fl(rj — ’l"z‘), Z fg(’l“j — ’I"i), ceey Z fM(rj — 'r,-)), (32)
J J J

where functions {f,,(7)}1<m<nm are smooth basis functions and in the region where r > R.,
function is zero. R, is a finite cutoff radius and if the distance between two atoms is larger
than R., the interaction of such atoms is ignored.

When there is no external field, Eqn.(3.2) has to satisfy the rotational symmetry. The
simplest way is preparing the basis functions which satisfy the rotational symmetry, however,
it is not easy to prepare such basis functions. In this chapter, I only consider the function
which is depends on only distance between atoms as the basis functions. For other functions
which satisfy rotational symmetry will be written in the Chapter 4. When we consider only

radial basis functions, Eqn.(3.2) can be rewrite as

EY = E(Z filris), Zﬁ(?”ij)a = >ZfM(7“ij))’ (3.3)

17



where 7;; is a distance between atom 7 and atom j. For the simplicity, I denote the variable in

the Eqn.(3.3) as
b8 =" funl(rij) (3.4)
J

and rewrite Eqn.(3.3) as
ED =E@00 6, ... (3.5)

A linear interatomic potential can be derived by expressing E of Eqn.(3.2) by a multivariable
polynomial. Using radial descriptors, by expanding Eqn.(3.5), linear interatomic potential can

be written as a polynomial of degree P, namely

B — 3 Wiy s, sp DB L 0L, (3.6)

SpYsy Vso
1<s1<<sp<M+1

where by = 1 and wy, 4,5, 1s fitting parameters. A framework to construct linear inter-

P
atomic potential is proposed previously [24,31] and in this framework, interatomic potential is

expressed as

ED = Y w, Y]+ C. (3.7)

1<m<M,1<p<P
Comparing with a linear interatomic potential model previously, Eqn.(3.6) is more general form
than previous model because Eqn.(3.6) includes cross terms of different descriptors whereas
previous model uses only exponentials of same descriptor.
In this study, I used total energies of crystal structures and forces acting on atoms composing
the crystal structures to construct interatomic potential model and estimate several material
properties. The total energy of crystal structures of Eqn.(3.6) and Eqn.(3.7) can be expressed

as

EToe =% > Wy 53,050 DD LB (3.8)

1 1<s1<-<sp<M+1

and

ETo =% S ww P+ (3.9)

7 1<m<M,1<p<P
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respectively. A force vector acting on atom k of the both models can be expressed as

P

) Total 5bs i
a ?azk == > Wsy 595 stl W= ...bg’g (3.10)

i 1<s1<-<sp<M+1

and

Total (4)
e I DI 11 ) (3.11)

i 1<m<M,1<p<P

3.2.2 Regression method

After we prepare an interatomic potential model, the principal task of constructing an inter-
atomic potential is to estimate regression coefficients from DFT calculation set with regression
technique. In this study, I use total energies and forces acting on atoms computed with DF'T
calculations of many structures as samples in the regression process because all of them can
be expressed by linear equations with the same expansions. As can be seen from Eqn.(3.8)
and Eqn.(3.9), total energy of crystal structure n of both the interatomic potentials with cross

terms and without cross terms can be denoted as

E(ntotal) Zwm [Z a(’”] : (3.12)

where a{"" and w,, is the mth descriptor of atom ¢ of structure n and its weight parameter,

. N . NP
respectively. a'n” corresponds to bb() ... b%) of Eqn.(3.8) and [b%)] of Eqn.(3.9). Force

acting on atom k can be also expressed as

) 5E (n,total) ) (nyi)
) _ _ —Zwm [ m ] . (3.13)

7

Because the both of equations are linear connection of weight parameters w,,, w,, are

determined with linear regression. Let us denote the explanation variables matrix X of M
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descriptors of N structures as
(L,3) (L9) (L)
Soar oo Sian o Y ay!

N N Ni
Ziag . Zia&) iagw)

Z 5a§1’i> Jaf’rll,i) Z 5a§\}[ﬂ)
i Orig U i Orig i orig
) . 17.
5, e i
i 57‘1y_ e 7 5T1y tee i Or ‘
IR S
X = salt? PR sal | (3.14)
ZA 1 9Am Z M
L T i Oroy i Srog

I Y L
i Orig T i Orig e i 0Ty
s s i
Z’L 6r1y cte Z’L 57~1y R Zl 67'1y‘
5a(1N’i) Ja%\f’i) 5a§g’z>
Z’L’ 67“12 e Z’L 57”12 Zl 6'[‘12

where rj,,1;,, and rj, are z,y, and z component of r;. The numbers of rows and columns
are corresponds to the number of observed data and descriptors, respectively. For objective
variables, DFT calculations are used. Let us denote the total energy of structure n and the
component of force acting on atom k of structure n as Eg’é%fal and FS;T%(Z = z,y,2). Objective

variables vector y is expressed as

1,total
EDFT

N, total
EDFT

y=| ris | (3.15)

N,1,x
FDFT

The dimension of y corresponds to the number of observed data set. The weight parameters
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vector w is expressed as

w = u.}Q . (3.16)

W p
There are several linear regression methods like ordinary least-squares regression, partial
least-squares regression, using pseudo-inverse matrix, and LASSO technique. In this study,
for the simplicity, I used simple linear ridge regression to determine the regression coefficients
to estimate and compare performance of the descriptor sets. In this method, the regression

coefficients vector w is determined to minimize the minimization function expressed as
Lw) = (y — Xw) (y — Xw) + \w'w, (3.17)

where A controls the magnitude of the penalty. The first terms of Eqn.(3.17) is the residual sum
of squares error between the properties of samples and predicted properties with constructed
model, and the second term is regularization terms, which is introduced to prevent overfitting
due to excessively large regression coefficients.

w minimizing L(w) can be easily determined by solving a normal equation. Because
Eqn.(3.17) is a quadratic equation of fitting parameters of w, w minimizing L(w) satisfies

the condition

dL(w)
——F =0. 3.18
o (3.18)
From this equation, w can be denoted as
w=(XTX+ )Xy, (3.19)

where [ is an unit matrix whose dimension is the number of descriptors.

3.3 Target elements and structures

The training and test data sets are generated by the DFT calculation. To generate training

and test data sets, I started to fully optimize the atomic positions and lattice constants of
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conventional FCC, BCC, HCP, simple cubic (SC), w, and S-tin structures for each element.
Next, from the six ideal structures, I constructed supercells, which are 2 x 2 x 2 FCC (32
atoms), 3 x 3 x 3 BCC (54 atoms), 3 x 3 x 3 HCP (54 atoms), 4 x4 x 4 SC (64 atoms), 3 X 3 x 3
w (81 atoms), and 2 x 2 x 2 S-tin (32 atoms) structures. Using the supercells, training and
test set are generated by 30 isotropic expansions and 470 random expansions and distortions
on the basis of the six ideal supercells. The volumes of 30 structures generated by isotropic
expansions. Volume ratio of optimized structure and generated structures varies from 0.5 to 5.0.
Because framework to construct MLIP has no physical background, such greatly compressed
and expanded structures are necessary to make interatomic potential predicts high energy when
distances between atoms are very close or when atoms isolate. Then, 500 deformed structures
are generated for one structure and totally 3000 structures are generated for one elemental
metal. Finally, the 3000 configurations are divided into 2700 training data sets and 300 test
data sets of each element, respectively.

For all the configurations, energy and forces acting on each atom are calculated by the
DFT calculation using the plane-wave basis projector augmented wave (PAW) method [41,42]
within the Perdew-Burke-Ernzerhof exchange-correlation functional [43] as implemented in the
VASP code [44,45]. The cutoff energy was set to 500 eV. The total energies converged to less
than 1072 meV /supercell. For optimization of lattice constants of ideal structures, the lattice

constants were optimized until the residual forces became less than 10~3 eV /A.

He
C N (o] F Ne
Si P S Cl| Ar

Fe | Co | Ni Ge As Se | Br| Kr
Ru | Rh | Pd Sn Sb Te I Xe
Os | Ir Pt Pb Bi Po | At | Rn
Hs [ Mt | Ds | Rg | Uub | Uut | Uug | Uup | Uuh Uuo

*1La|Ce | Pr | Nd|Pm|Sm|Eu| Gd [ To | Dy | Ho | Er | Tm | Yb | Lu
*|1Ac| Th |Pa| U | Np|Pu|[Am| Cm Bk | Cf | Es | Fm | Md | No | Lr

Figure 3.1: 31 nonmagnetic elements of which interatomic potentials are constructed.
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3.4 Construction of interatomic potential

The principal task of constructing an interatomic potential is to estimate regression coefficients.
To construct interatomic potentials, it is necessary to optimize some hyperparameters like cutoff
radius, the order of expansion of polynomial approximation, and number of basis functions. In
this section, how to optimize those parameters in this research and the dependence of accuracy

on those input parameters are shown.

3.4.1 Cutoff radius

In this subsection, optimal cutoff radius for construction of interatomic potentials by framework
with cross terms and that without cross terms is determined. I searched for an optimal cutoff
radius for 31 elements by constructing interatomic potentials whose cutoff radius is ranging
from 5 Ato 14 Awith intervals of 1.0 A. For all cutoff radius, 12 Gaussian functions is used as

basis functions as expressed

fu(r) = exp(—an(r — bn)2). (3.20)

(amb”)lSnSlQ’ or 12 pairs of Gaussian parameters is determined by fixed a and arithmetic
sequence from 0 to byay, Or (an,bn)lgn§12 = (a,(n — 1)bmax/11)1§n§12. I constructed totally
81 interatomic potentials with a = 0.1,0.25,0.5,1.0,1.5,2.0,2.5,3.0, 3.5 and by, is varied from
5.0 Ato 13.0 Afor each cutoff radii, and the interatomic potentials whose RMS error of test set
is the lowest is selected as the optimal one of the cutoff radii. The order of polynomials was
set to 3 for both the model with cross terms and the model without cross terms. The ridge
penalty terms was set to A = 107°.

Figure 3.2 and figure 3.3 shows the relationship between cutoff radius and test set root mean
square (RMS) errors of total energies and the relationship between cutoff radius and test set
RMS errors of forces acting on atoms, respectively. For all elements, converged cutoff radii of
model with cross terms are not greatly different from that of model without cross terms. Table
3.1 shows cutoff radius which minimized RMS errors for energies. In this study, those cutoff

radii were applied to construct interatomic potentials as optimal cutoff radii.
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Table 3.1: The optimal cutoff radius for 31 elements.

Element  cutoff radius (A) cutoff radius (A)
(with cross terms) (without cross terms)

Li 12 13
Be 7 14
Na 12 14
Mg 10 7
Al 10 7
K 13 14
Ca 13 8
Sc 14 7
Ti 13 6
\% 7 12
Cr 7 6
Cu 9 8
Zn 8 8
Ga 11 11
Rb 14 12
Sr 12 9
Y 11 8
Zr 9 7
Nb 8 8
Mo 6 14
Ag 10 12
Cd 13 9
In 12 12
Cs 14 14
Ba 10 9
Hf 8 7
Ta 7 14
W 6 9
Au 6 6
Hg 10 13
Tl 10 10
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3.4.2 Basis functions and expansion order

Accuracy and the computational costs of interatomic potential depend on what and how many
basis functions are used. In this subsection, I investigate the relationship and optimize species
and number of basis functions.

The computational costs of prediction energy and force depend on not the number of total
terms but on the number of basis functions. This is because exponential and cross terms can be
calculated with only several multiple variables from sum of basis functions ) ; n(ri;) whereas
sum of basis functions } . f,(r;;) need calculation of function f,(r;;) as many as neighbor
atoms (usually 10 ~ 100 atoms), and because calculation of cross terms can be accelerated with
recursive method. Therefore, in this study the number of basis function is used as criterion of
the computational costs of prediction. In this section, I investigate the relationship between
difference of prediction value from DFT calculations and number of basis functions for various
species of basis functions and expansion order.

Firstly, I investigated the relationship between accuracy of interatomic potentials and the
number of basis functions. I constructed using Bessel function J,(7;;), Neumann function
Y, (rij), spherical Bessel function j,(r;;), spherical Neumann function y,(r;;), cosine function
cos(anr;;), modified Morlet wavelet (MMW) cos(a,1;;)/ cosh(r;;), and Gaussian function like
Eqn.(3.20) as f, with interatomic potential model with cross terms and that without cross
terms.

For Bessel, Neumann, spherical Bessel, and spherical Neumann functions, I set the minimum
and interval of the n to zero and one, respectively. For cosine function and MMW function, a,,
is given by arithmetic sequence. Minimum of a,, is fixed to zero and maximum of a,, is varied
from 1.0 A" to 10.0 A~ with intervals of 0.1 A_l, and the maximum of a,, which minimize
the RMS error of energies of test set is adopted. For Gaussian function, a,, and b, is optimized
by the same manner as the previous Subsection 3.4.1.

The expansion power P is fixed to 3 for the both interatomic potential models. The same
cutoff radii as previous Subsection 3.4.1 are used. The ridge penalty terms was set to A =
1073,107*, and 107° and penalty terms which minimize the RMS error of energies of test set
is adopted.

Figure 3.4 and 3.5 show the convergence of the RMS errors for energies and forces with
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respect to the number of basis functions for various basis function types of interatomic potential
model without cross terms. Similarly, figure 3.6 and 3.7 show the convergence of the RMS errors
for energies and forces with respect to the number of basis functions for various basis function
types of interatomic potential model with cross terms. For the both interatomic potential
models, RMS errors of both potential models whose basis functions are Bessel and spherical
Bessel functions were relatively large for the most of elements. Gaussian, cosine and MMW
functions are good basis functions because both RMS errors for energies and forces are relatively
low. RMS errors of Neumann and spherical Neumann are middle of all basis functions applied
in this study. For all elements and both of two models, Gaussian functions construct the most
accurate or close to the most accurate interatomic potentials. Therefore, I applied Gaussian
functions as basis functions for both model with cross terms and model without cross terms.

Next, I investigated the relationships between expansion power P and RMS error. I used
Gaussian function of Eqn.(3.20) as basis functions. Figure 3.8 and 3.9 show the dependency of
RMS errors for energies and forces of both models on P. As can be seen, for all elements, both
of the converged number of basis functions and RMS errors of model with cross terms are lower
than those of model without cross terms. As mentioned above, because the number of basis
functions crucially determines the computational costs, this result indicates the computational
cost of model with cross terms is as much as that without cross terms. It can be seen that
RMSESs of the most of 31 elements are converged at P = 3 for the both models.

Table 3.2 and 3.3 show the optimal parameters and RMS errors of energies and forces of the
model without cross terms and the model with cross terms, respectively. For all 31 elements,
using cross terms, RMS errors of energies decreased by more than 46% and RMS errors of forces

decreased by more than 23%.
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Table 3.2: The optimal basis functions for 31 elements for framework without cross terms.

Element  Number of a bmax RMS error (energy) RMS error (force)
basis functions (A_2) (A) (meV /atom) (eV/A)
Li 27 0.5 10.0 0.5 0.004
Be 27 2.0 13.0 9.0 0.049
Na 30 0.25 13.0 0.3 0.001
Mg 30 1.0 13.0 1.6 0.011
Al 21 1.0 12.0 3.1 0.021
K 30 025 13.0 0.3 0.001
Ca 12 0.25 13.0 2.0 0.018
Sc 24 1.0 13.0 9.4 0.068
Ti 24 1.5  13.0 17.0 0.134
\Y 27 1.5 6.0 15.5 0.132
Cr 30 1.5 5.0 25.2 0.159
Cu 27 1.0 13.0 1.8 0.013
Zn 18 1.5 10.0 3.4 0.018
Ga 18 0.5 10.0 2.3 0.021
Rb 18 025 13.0 0.4 0.001
Sr 18 0.5 13.0 1.9 0.013
Y 27 1.0 13.0 9.2 0.060
Zr 21 0.5 13.0 12.4 0.111
Nb 30 1.5 11.0 16.6 0.140
Mo 27 1.5 11.0 22.1 0.170
Ag 30 1.0 11.0 1.1 0.008
Cd 15 1.0 8.0 2.3 0.013
In 15 0.5 13.0 1.9 0.018
Cs 21 0.1 13.0 0.3 0.001
Ba 30 025 13.0 3.4 0.016
Hf 18 1.0 9.0 16.6 0.139
Ta 21 2.0 8.0 20.2 0.161
W 24 1.0 8.0 32.9 0.212
Au 27 1.0 13.0 3.0 0.027
Hg 24 0.5 13.0 1.8 0.010
Tl 15 0.5 120 3.3 0.019
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Table 3.3: The optimal basis functions for 31 elements for framework with cross terms. Values
in brackets are ratio of RMSE of model with cross terms to RMSE of model without cross
terms.

Element Number of a bmax RMS error (energy) RMS error (force)
basis functions (A7) (A) (meV /atom) (eV/A)
Li 24 1.5 11.0 0.2 (0.30) 0.002 (0.53)
Be 21 30 8.0 2.6 (0.29) 0.033 (0.67)
Na 27 1.5 10.0 0.1 (0.41) 0.001 (0.70)
Mg 21 3.0 9.0 0.5 (0.30) 0.005 (0.44)
Al 27 25 9.0 0.8 (0.27) 0.011 (0.51)
K 24 1.0 12,0 0.1 (0.49) 0.001 (0.67)
Ca 27 2.0 10.0 0.7 (0.36) 0.006 (0.34)
Sc 24 2.0  10.0 2.5 (0.27) 0.036 (0.53)
Ti 24 20 9.0 3.8 (0.22) 0.073 (0.54)
\ 27 20 7.0 7.7 (0.50) 0.093 (0.70)
Cr 24 30 6.0 6.4 (0.26) 0.096 (0.61)
Cu 27 3.5 7.0 0.7 (0.38) 0.008 (0.67)
Zn 21 30 7.0 1.0 (0.30) 0.014 (0.75)
Ga 27 20 80 0.8 (0.35) 0.012 (0.57)
Rb 24 1.0 13.0 0.2 (0.50) 0.001 (0.77)
Sr 27 20 11.0 0.5 (0.29) 0.006 (0.44)
Y 27 2.5 10.0 2.5 (0.27) 0.033 (0.56)
Zr 21 20 8.0 4.7 (0.38) 0.071 (0.64)
Nb 27 20 7.0 7.0 (0.42) 0.095 (0.68)
Mo 18 30 7.0 7.8 (0.35) 0.126 (0.74)
Ag 24 20 11.0 0.6 (0.53) 0.005 (0.62)
Cd 27 1.5 10.0 0.6 (0.28) 0.006 (0.44)
In 27 25 10.0 0.8 (0.42) 0.010 (0.58)
Cs 18 0.5  13.0 0.1 (0.48) 0.001 (0.61)
Ba 21 1.0 9.0 0.9 (0.27) 0.010 (0.61)
Hf 27 25 6.0 5.7 (0.34) 0.096 (0.69)
Ta 24 30 6.0 8.3 (0.41) 0.117 (0.72)
W 27 35 7.0 12.4 (0.38) 0.153 (0.72)
Au 18 20 6.0 1.6 (0.54) 0.021 (0.77)
He 24 15 9.0 0.7 (0.37) 0.007 (0.65)
Tl 27 20 9.0 0.8 (0.23) 0.010 (0.53)
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3.5 Prediction of physical properties

3.5.1 Energies of test set structures

Here, I calculated energies of 300 structures of test set for each element by linear interatomic
potential with cross terms and DF'T calculations. Figure 3.10 shows the comparison of DFT and
linear potential for all 31 elemental metals. As can be seen, for all elements, linear interatomic
potentials very accurately reproduce the energies calculated by DF'T calculation even energies
of 300 structures vary very widely.

Figure 3.11 and 3.12 shows the comparison of DFT, linear potential, and conventional EAMs
for Al and Cu, respectively Conventional EAM data set are obtained from potentials interatomic
potential repository site [46,47] and energies are calculated by LAMMPS code [48,49]. For both
of Al and Cu, all interatomic potentials reproduce energies of FCC and HCP structures well.
Because parameters of conventional EAMs are constructed from properties of stable structures,
even conventional EAMs can be applied to such stable structures. However, DFT energies
of other structures such as BCC, SC, w, and (-tin are reproduced accurately by only linear
potentials. This can be ascribe to the fact that linear potential is constructed from such a large
training data and the flexibility of linear interatomic potentials allows training data to include
a few thousand structures. It is very difficult to construct conventional potentials with many
parameters from such training data because usually coefficients are determined by algorithm
require many steps like quasi-Newton method and calculation of gradient of error takes many
computational costs, whereas linear potential can be constructed from a large training data by

only solving normal equation.
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Figure 3.11: Energies of structures of test set predicted by the linear potential and DFT for
Al elemental metals measured from the lowest FCC structures. Examined conventional EAMs
are Mendelev EAM [50], Winey EAM [51, 52], and Zope EAM [53]. Extremely expanded or
compressed structures are excluded.

39



0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Energy by interatomic potential (eV/atom)

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

EAM (Mendelev et al.)
EAM (Mishin et al.)
EAM (Zhou et al.)
Linear potential

=)

+

FCC HCP
BCC SC
(0] B-tin

B o

7

0
0 0.10.20.304050.60.70.80 0.10.20.30.40.50.60.70.8

Energy by DFT calculation (eV/atom)

Figure 3.12: Energies of structures of test set predicted by the linear potential and DFT for
Cu elemental metals measured from the lowest FCC structures. Examined conventional EAMs

are Mendelev EAM [50], Mishin EAM [54], and Zhou EAM [55].

compressed structures are excluded.

40

Extremely expanded or



3.5.2 Elastic constants and bulk modulus

Elastic constants are fundamental properties of bulk material and to evaluate them accurately
is important when interatomic potentials are used to predict mechanical properties. In this
study, I calculated the elastic constants of cubic crystals and hexagonal crystals with both
interatomic potentials and DFT calculations. I estimated the elastic constants of cubic crystals
by the same way as the book written by Finnis [11] and those of hexagonal crystals by the
same way as literature of Fast et al. [56].

According to the literature of Finnis, Elastic constants can be estimated by energies of

strained structures. Now I denote a homogeneous strain matrix as

€11 €12 €13
€= |€12 €2 €23 - (3.21)

€13 €23 €33

The elements of € is defined as follows. If the strain carries the point r = (ry,r2,73) to a new
position r 4+ u, elements of € are defined by

1 (du, Oug
_1 , 22
Cab 2 ((51‘5 + (5:13'5) (3 )

In practice, such transformation can be achieved by changing basis vectors from {a;, as, a3}
/ / /
to {a}, a}, aj} where

a;a = Gja + Z €apaif, (323)
B

in which a;, is the Cartesian component along the x, axis of basis vector a;.

Using Voigt notation, strain matrix can also be expressed as

€1 € €5
€ = €g €2 €4 - (324)
€ €4 €3

41



Then, stress-strain relationship is expressed as

6
g; = Z Cij€j7 (325)
j=1

where 0; and C;; are elements of strain 6 x 6 matrix and elastic constants 6 x 6 matrix using Voigt
notation, respectively. Then, elastic energy per unit volume stored homogeneously strained
body is given by
Bl = % > Cyeiey. (3.26)
]

Therefore, considering appropriate symmetry transformation matrix 7" and scholar parameter
~ and calculating E(~,T), which is energy when structure is strained by matrix 7T, elastic
constants matrix can be obtained from second derivative of the elastic energy with respective

. §2E(~,T
to strain, namely 5(772’ )|7:0.

For cubic system, there are three independent elastic constants C'y, Cis, and Cyy. Elastic

constant matrix can be expressed as

Ciy Cip Cip 0 0 0
O Ci2 Ci2 Ci1 0 0 0 (3.27)
0 0 0 Cyu O 0
0 0 0 0 Cu O
0 0 0 0 0 Cyu
Elastic energy per unit volume is
1
Felas — 5011 (6% + €5+ 6%) + Cha (€162 + €263 + €3€61) + Cyy (6?1 + Eg + 6%) . (3.28)
Elastic constants can be calculated by consideration of three matrices expressed as
1 00
T.= 10 1 0 (3.29)
001
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0 05 05

T,=105 0 05 (3.30)
05 05 0
1 0 0

T,=10 —05 0 |. (3.31)
0 0 —05

From Eqn.(3.28), the relationships between elastic constants and second derivatives of energy

respective to strain are

E(v,T,
Lw = 3%(011 + 2012), (3.32)
oy =0

8 E(vy,T,) 3

77 | = 5‘/0(011 — Cha), (3.33)
2

OB T EWQ Tl _ 3VoClua, (3.34)

0y V=0

where Vj is volume per atoms of structure at v = 0. Elastic constants are obtained by solving
these equations.
For hexagonal system, there are five independent elastic constants Cy, Cia, Cs3, Css5, and

C13. Elastic constants can be calculated by consideration of five matrices expressed as

Tiv=10 1 0 (3.35)

Tr=10 10 (3.36)

5= 10 —1 0. (3.37)
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Ty=10 0 0f. (3.38)

Ts=10 0 0f. (3.39)
100

The relationships between elastic constants and second derivatives of energy respective to strain

are
8E(y, T 2
—(72’ Y- Vo(2C11 + 2C12 + 4C13 + Cs3), (3.40)
oy = 9
5*E(y, T
# = 2W(Cn1 + Cha), (3.41)
oy =0
5?E(y, T
# = 2Vp(C1 — Ch2), (3.42)
0y =0
2
M = VoCss, (3.43)
07y =0
2E(y, T
Lw = 4V Css. (3.44)
oy =0

Elastic constants are obtained by solving five equations.

In this study, to calculate second derivative, I calculated energies in the case 7 ranging
from —0.01 to 0.01 in steps of 0.001 for those strain matrices, fitted those energies by quar-
tic polynomials, and obtained second derivative from coefficient of second-order term by DFT
calculations, linear potentials without cross terms, linear potentials with cross terms, and con-
ventional potentials. For all methods to calculate energies, lattice constants when v = 0 are
same as those obtained from DFT structure optimization.

Figure 3.13, 3.14, 3.15, 3.16, and 3.17 shows the second derivative of the energies for the
strain matrices for 31 elements of FCC, BCC, SC, HCP, and w structures, respectively. For
alkali metals and noble metals, both of linear potentials with cross terms and linear potentials
without cross terms reproduce elastic constants of DF'T calculations well. For elements at the

upper right of periodical table, such as Be, Mg, Al, Ga, In, and T1, the prediction of potentials
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with cross terms is better than potential without cross terms. Because cross terms of linear
potentials can be regarded as a parts of many-body interaction terms, it can be said that for
those metals the detail description of many body interaction is more important than alkali and
noble metals. However, even linear potentials with cross terms predict elastic second derivatives
of those metals worse than those metals. It may be ascribed to the fact that electronic structures
of those metals differs from free electron model and radial information may be not sufficient to
describe PES of such elements. For transition metals of group 3, 4, 5, and 6, namely Sc, Y,
Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W, prediction of linear potential with cross terms is also
improved, but there are relatively large discrepancies for some structures. Relatively large errors
of some elements also may be ascribed to deficiency of angular information. Because transition
metals have some d electrons, angular information is needed to construct interatomic potentials
for those elements.

Figure 3.18, 3.19, 3.20 show the elastic constants and bulk modulus B = %(CH + 2C45) for
31 elements of FCC, BCC, and SC structures, respectively. Figure 3.21 and 3.22 also show the
elastic constants and bulk modulus B = %(2011+2C'12+4C’13+C'33) for 31 elements of HCP and
w structures, respectively. For cubic structures of some elements, such as Mg-FCC structure,
there are discrepancies between elastic constants predicted by DFT and linear potentials even
there are a little difference between second derivatives predicted by DFT and linear potentials.
This fact can be ascribed to linear regression optimize the error of all structures by same
criterion. As can be seen fig. 3.13, 3.14, and 3.15, absolute value of errors of T, and T} are
the same degree to errors of T,. However, because degree of second derivatives of T} and T;
is smaller than T, ratio of errors are large. When elastic constants are calculated by solving
Eqn.(3.32), Eqn.(3.33), and Eqn.(3.34), such errors are enhanced due to multiplication of large
coefficients. Therefore, to predict elastic constants well, it is necessary for potential to reproduce
anisotropic transformation which shows little increase energies of DFT very accurately. To
predict such elastic constants, maybe training data need more structures which are strained
anisotropically. On the contrary, bulk modulus, which is equivalent to second derivative of
energies respective to isotropic transformation of Eqn.(3.29), can be reproduced better than
other elastic constants. Probably it is because such isotropic transformation largely increases

energy and because training data include isotropically deformed structures. For hexagonal
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structures, accuracy of prediction of elastic constants has same tendency as that of second
derivatives.

Figure 3.23 and 3.24 show the second derivatives and elastic constants predicted by DFT,
linear potentials, and conventional EAMs for Al of cubic crystals and hexagonal crystals, re-
spectively. Figure 3.25 and 3.26 show the second derivatives and elastic constants predicted by
DFT, linear potentials, and conventional EAMs Cu of cubic crystals and hexagonal crystals,
respectively. For both metals, linear potentials can predict elastic constants as well as conven-

tional EAMSs, whereas the training set of linear potential include very unstable structures.
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Figure 3.23: Second derivatives of energies respective to matrices expressed as Eqn.(3.29),
(3.30), and (3.31) and elastic constants for Al BCC, FCC, and SC crystals obtained from DFT
calculations, linear potentials, Mendelev EAM [50], Winey EAM [51,52], and Zope EAM [53].
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Figure 3.25: Second derivatives of energies respective to matrices expressed as Eqn.(3.29),
(3.30), and (3.31) and elastic constants for Cu BCC, FCC, and SC crystals obtained from DFT
calculations, linear potentials, Mendelev EAM [50], Mishin EAM [54], and Zhou EAM [55].
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3.5.3 Phonon dispersion curves

For MD simulation, prediction of acting force on atoms and estimation of stability of structures
play very important roles. Then, I examined the applicability of the interatomic potentials by
comparing phonon dispersion curves computed with DFT calculation and interatomic poten-
tials. The phonon dispersion curves were calculated with the supercell approach [57] for FCC,
HCP, BCC, simple cubic, w, and 8-Sn structures with the equilibrium lattice constant. For all
methods to calculate energies, lattice constants when 7 = 0 are same as those obtained from
DFT structure optimization. To evaluate the dynamical matrix, each symmetrically indepen-
dent atomic position was displaced by 0.01 A. The forces acting on atoms by the interatomic
potential can then be analytically computed. Supercells were made by 4 x 4 x 4 expansion of
the conventional unit cells for all 6 structures. The phonon calculations were performed using
the PHONOPY code [58].

Figure 3.27, 3.28, 3.29, 3.30, 3.31, and 3.32 show the dispersion curves with FCC, HCP,
BCC, simple cubic, w, and §-tin structures.

As can be seen, for the most metals linear potentials with cross terms predicted phonon
dispersion curves better than linear potentials without cross terms. The degree of improvement
shows the same tendency as the prediction of elastic constants. For alkali metals except Cs,
namely Li, Na, K, and Rb, phonon dispersion curves with 6 structures predicted by interatomic
potentials are very accurately reproduced those by DFT calculations. For Cs, phonon dispersion
curve with g-tin structure is not very accurately reproduced. It could not reproduce imaginary
modes of dispersion curves with HCP and BCC structures. For alkali earth metals like Be, Mg,
Ca, Sr, and Ba, phonon dispersion curves are reproduced less accurately than alkali metals,
however, still phonon dispersion curves by interatomic potentials are in good agreements with
those predicted by DFT. For Be, phonon dispersion curves with FCC and w structures are
less accurately predicted than the other alkali earth metals. For transition metals of group
3, 4, 5, and 6, namely Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W, error between phonon
dispersion curves predicted by interatomic potentials and DFT calculations are relatively large.
Even noble metals like Cu, Ag, and Au are also transition metals, phonon dispersion curves by
interatomic potentials for those noble metals are in good agreements with those predicted by

DFT. For group 13 and 14 such as Zn, Cd, Hg, Al, Ga, In, and TI, phonon dispersion curves

61



by interatomic potentials are also in relatively good agreements with those predicted by DFT,
however, for In, Hg, and T1, there are large errors for some structures like w structures.

Relatively large errors of some elements may be ascribed to deficiency of angular information.
For example, because transition metals have some d electrons, angular information is needed
to construct interatomic potentials for those elements.

Figure 3.33 and 3.34 show the phonon dispersion curves obtained from DFT, linear po-
tentials, and conventional EAMs for Al and Cu, respectively. For both of elements, linear
potentials can be predict phonon dispersion curves of six structures accurately, whereas dis-
crepancy between DFT and EAMs can be found especially of unstable structures. To predict
phonon dispersion curves accurately, it is necessary to forces of structures which is made by
small displacement with preciseness of 1-10 meV/ A. Tt is notable that linear potentials can
predict both energies of unstable structures as discussed in the above and phonon dispersion

curves of stable structures.
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Wave vector
Figure 3.32: Phonon dispersion curves for 31 elemental metals with §-tin structures by linear potentials without cross terms,

linear potenitals with cross terms, and DFT calculations. Negative values indicate imaginary modes.
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Figure 3.33: Phonon dispersion curves for Al metals of DF'T, linear potential, Mendelev EAM
[50], Winey EAM [51,52], and Zope EAM [53].
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Figure 3.34: Phonon dispersion curves for Cu metals of DFT, linear potential, Mendelev EAM
[50], Mishin EAM [54], and Zhou EAM [55].
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3.6 Conclusion

In this chapter, I showed generalized formula of linear potential and construction of interatomic
potentials using the generalized formula. Firstly I constructed by both previous and generalized
model for 31 elemental metals using only radial descriptor. For all elements, compared with
the previous model, generalized model constructed more accurate interatomic potentials for the
same computational costs. Next, I predicted several properties of elements, namely, energies
of structures which are not used for construction of interatomic potentials, elastic constants
of cubic crystals, and phonon dispersion curves. For typical elements, interatomic potentials
constructed in this study reproduced energies, bulk modulus, and phonon dispersion curves
obtained from DFT calculations accurately. The predictions of elastic constants excepting bulk
modulus were relatively poor. It may be ascribed to training data set. For transition metals,
the predictions of elastic constants and phonon dispersion curves were relatively worse than that
for typical elements. In terms of predictions of elastic constants and phonon dispersion curves
of the most of metals, linear interatomic potentials generalized formula are better than linear
potentials obtained by previous model. It may be ascribed to deficiency of angular information.
For Al and Cu, these properties are also compared to conventional EAMs. The predictions
of this work were more accurate than conventional EAMs, especially for unstable structures.
This fact implies that generalized potential model can construct interatomic potentials of wide

transferability and good accuracy.
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Chapter 4

Descriptors of angular information

4.1 Introduction

In Chapter 3, only radial descriptors are considered to construct linear potentials. Even angular
information was not considered, for typical elements predictions were accurate.

However, for transition metals and some elements in upper right of the periodical tables,
some properties were not reproduced well. To construct interatomic potential models for such
materials, usually bonding angle are considered. For example, for semiconductor or insulator,
widely Tersoff potentials [15-17] are used and simulations for transition metals are often per-
formed using modified EAMs [18,19]. For construction of MLIP, some descriptors adopting
bonding angle [22,35] are proposed.

In this chapter, I constructed linear potentials including angular terms and predicted some

properties of metals by those potentials.

4.2 Methodology

In general interatomic potential idea, the total energy of a target system E%%! is decomposed

into contribution of each atoms included the system. Therefore, E*%! can be written as

Etotal _ Z E(Z), (41)
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where E® is the contribution of atom 7.

In the previous chapter, I defined radial descriptor b\ as
b8 = fm(riy) (4.2)
J
and expressed interatomic potential model as

B = 3 Way s, ep DB 50 (4.3)

sp?
1<s1 < <sp<M+1

where by = 1 and wy, 5, s, is fitting parameters.

HSP

Let us add the angular terms to Eqn.(4.3). As discussed in Chapter 2, interatomic potentials

with angular terms can be expressed as
E(Z) = E(Z fl(rij)a Z fQ(Tij), . ,pgzl), e 7p7("jl)’ ceny Wl(i)ﬂ “eoy Wé?, e ), (44)
J J

where 75, fn(745), pffl) and WT(L;) are distance between atom ¢ and atom 7, radial basis function,
second order bond order parameters and third order bond order parameters with radial func-
tions, respectively. Because I construct for unary system, long range interaction can be ignored
and I use radial basis functions which are zero if distance is larger than cutoff radius R.. In

this study, only p,; are used as angular descriptors. p,; is expressed as

Pl = D Falrig) Falri) Pilcos yige), (4.5)

jik
where ;5 is bonding angle among atom 4, j and k, and P, is a Legendre polynomial function.
The interatomic potential model of linear combination of descriptors can be obtained from
polynomial approximation of Eqn.(4.4). However, if polynomial expansion is naively applied,
too many terms are generated. Such many terms causes overfitting and make difficult regression

computationally due to demanding of large memory. In this study, only angular Fourier series

(AFS), expressed as
AFSS,)n’,l = Z fn<rij)fn’ (7ik) COSI(%jk) (4.6)

Jk
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are added to Eqn.(4.3). Therefore, the model with angular terms is expressed as

EY = Z Wsy,s2,..., spbgl s b( D+ Z wﬁEL’SZAFSn n’,l (4.7)
1<51 < <sp<M+1 n,n’,l
where wAFS ', 1s fitting parameters for angular terms.

4.3 Target elements and structures

The training and test data sets are generated by the DFT calculation. To generate training
and test data sets, I started to fully optimize the atomic positions and lattice constants of
conventional FCC, BCC, HCP, simple cubic (SC), w, and S-tin structures for each element.
Next, from the six ideal structures, I constructed supercells, which are 2 x 2 x 2 FCC (32
atoms), 3 x 3 x 3 BCC (54 atoms), 3 x 3 x 3 HCP (54 atoms), 4 x4 x4 SC (64 atoms), 3 x 3 x 3
w (81 atoms), and 2 x 2 x 2 [-tin (32 atoms) structures. Using the supercells, training and
test set are generated by 30 isotropic expansions and 470 random expansions and distortions
on the basis of the six ideal supercells. The volumes of 30 structures generated by isotropic
expansions. Volume ratio of optimized structure and generated structures varies from 0.5 to 5.0.
Because framework to construct MLIP has no physical background, such greatly compressed
and expanded structures are necessary to make interatomic potential predicts high energy when
distances between atoms are very close or when atoms isolate. Then, 500 deformed structures
are generated for one structure and totally 3000 structures are generated for one elemental
metal. Finally, the 3000 configurations are divided into 2700 training data sets and 300 test
data sets of each element, respectively.

For all the configurations, energy and forces acting on each atom are calculated by the
DFT calculation using the plane-wave basis projector augmented wave (PAW) method [41,42]
within the Perdew-Burke-Ernzerhof exchange-correlation functional [43] as implemented in the
VASP code [44,45]. The cutoff energy was set to 500 eV. The total energies converged to less
than 1073 meV /supercell. For optimization of lattice constants of ideal structures, the lattice

constants were optimized until the residual forces became less than 1073 eV /A.
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Figure 4.1: 31 nonmagnetic elements of which interatomic potentials are constructed.
4.4 Construction of interatomic potential

In this section, interatomic potentials including AFS expressed as Eqn.(4.7) are constructed
for 31 elements. To estimate the effect of AFS for regression error and construct optimal
potential, interatomic potentials are constructed varying ly.x from 0 to 3. When [, = 0, the
potential model coincide with Eqn.(4.3), namely potential model used in previous chapter 3.
The potential is constructed by linear ridge regression, in which the coefficients w is determined
by solving

w=(XTX + X)Xy, (4.8)

where X, y and [ are descriptors matrix, DF'T data and an unit matrix whose dimension is the
number of descriptors. For training data, energy and forces acting on atom are included. The
detail about regression method is written in subsection 3.2.2.

The expansion power P is fixed to 3. Gaussian functions expressed as

fulr) = exp(—an(r — bn)Z) (4.9)

are used as radial basis set. (ay, b, ), namely pairs of Gaussian parameters is determined by fixed
a and arithmetic sequence from 0 to byax, or (ay, bn)1gngN = (a,(n — 1)byax/(N — 1)1§n§N' I
constructed totally 81 interatomic potentials with a = 0.1,0.25,0.5,1.0,1.5,2.0,2.5, 3.0, 3.5 and

by is varied from 5.0 A to 13.0 A for each cutoff radii, and the interatomic potentials whose

5



RMS error of test set is the lowest is selected as the optimal one of the cutoff radii. The same
cutoff radii as subsection 3.4.1 are used. The ridge penalty terms was set to A = 1073,107%,
and 107° and penalty terms which minimize the root mean square (RMS) error of energies of
test set is adopted.

Figure 4.2 and 4.3 show the dependency of RMS errors for energies and forces of both
models on .. As can be seen, RMS errors of both energies and forces for 31 elements are
decreased by adopting AFS.

Table 4.4 shows the optimal parameters and RMS errors of energies and forces of the model
with AFS. For all 31 elements, using AFS, RMS errors of energies and forces are less than those

of interatomic potential without angular terms shown in table 3.3.
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Table 4.1: The optimal basis functions for 31 elements for framework with angular terms.

Element Number of a bmax lmax RMS error (energy) RMS error (force)
basis functions (A_2) (A) (meV /atom) (eV/A)
Li 18 1.0 12.0 2 0.1 0.001
Be 18 2.5 6.0 3 1.5 0.017
Na 18 1.5 11.0 3 0.1 0.000
Mg 18 1.0 11.0 3 0.4 0.002
Al 18 1.5 10.0 3 0.7 0.006
K 15 1.5 11.0 3 0.1 0.000
Ca 15 1.0 120 3 0.4 0.002
Sc 18 1.5 9.0 3 1.1 0.019
Ti 18 1.5 10.0 3 1.7 0.039
A% 18 3.0 6.0 2 2.5 0.057
Cr 18 2.0 6.0 3 2.6 0.063
Cu 18 2.0 9.0 3 0.3 0.003
YA 15 1.5 8.0 3 0.6 0.005
Ga 18 1.0 10.0 3 0.6 0.005
Rb 18 1.0 12.0 3 0.2 0.000
Sr 18 1.0 11.0 3 0.2 0.002
Y 18 1.0 10.0 3 0.9 0.018
Zr 18 2.0 8.0 3 1.7 0.041
Nb 18 2.0 7.0 3 2.9 0.052
Mo 18 1.5 8.0 3 4.1 0.073
Ag 18 1.5 10.0 3 0.4 0.002
Cd 15 1.0 120 3 0.5 0.003
In 18 1.5 10.0 3 0.6 0.005
Cs 18 0.5 130 3 0.1 0.000
Ba 18 1.0 9.0 3 0.4 0.005
Hf 18 1.5 7.0 3 2.6 0.047
Ta 18 2.0 7.0 2 3.4 0.068
W 15 2.0 6.0 3 6.2 0.097
Au 12 2.0 7.0 3 0.8 0.009
Hg 18 1.0 9.0 3 0.3 0.004
Tl 18 1.5 10.0 3 0.5 0.005
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4.5 Prediction of physical properties

4.5.1 Elastic constants and bulk modulus

Elastic constants are fundamental properties of bulk material and to evaluate them accurately
is important when interatomic potentials are used to predict mechanical properties. In this
study, I calculated the elastic constants of cubic crystals and hexagonal crystals with both
interatomic potentials and DFT calculations. I estimated the elastic constants of cubic crystals
by the same way as the book written by Finnis [11] and those of hexagonal crystals by the
same way as literature of Fast et al. [56].

According to the literature of Finnis, Elastic constants can be estimated by energies of

strained structures. Now I denote a homogeneous strain matrix as
€= |€12 €22 €23 - (4.10)

The elements of € is defined as follows. If the strain carries the point © = (ry,re, r3) to a new

position r + u, elements of € are defined by

1 (du,  Ou,
€ab — 5 <@ + E) . (411)

In practice, such transformation can be achieved by changing basis vectors from {ai, as, a3}
/ / /
to {a}, al, a4} where

Ujy = Gia + Y _ €apllip, (4.12)
B

in which a;, is the Cartesian component along the z, axis of basis vector a;.

Using Voigt notation, strain matrix can also be expressed as

€1 €g €5
€= |€g €2 €4 - (413)

€5 €4 €3
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Then, stress-strain relationship is expressed as

6
g; = Z Cij€j7 (414)
j=1

where 0; and C;; are elements of strain 6 x 6 matrix and elastic constants 6 x 6 matrix using Voigt
notation, respectively. Then, elastic energy per unit volume stored homogeneously strained
body is given by
Bl = % > Cyeiey. (4.15)
]

Therefore, considering appropriate symmetry transformation matrix 7" and scholar parameter
~ and calculating E(~,T), which is energy when structure is strained by matrix 7T, elastic
constants matrix can be obtained from second derivative of the elastic energy with respective

. §2E(~,T
to strain, namely 5(772’ )|7:0.

For cubic system, there are three independent elastic constants C'y, Cis, and Cyy. Elastic

constant matrix can be expressed as

Ciy Cia Ci2 0 0 0
Cip Cnu Cip 0 0 0
O Cz Cr2 Cpii 0 0 0 (4.16)
0 0 0 Cu O 0
0 0 0 0 Cyu O
0 0 0 0 0 Cy
Elastic energy per unit volume is
o1
Eels — 5011 (6% + € + 6%) + Oz (162 + €263 + €361) + Oy (6?1 + € + 6%) . (4.17)
Elastic constants can be calculated by consideration of three matrices expressed as
1 00
T.= 10 1 0 (4.18)
0 01
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0 05 05

T,=105 0 05 (4.19)
05 05 0
1 0 0

T,=10 —05 0 |. (4.20)
0 0 —05

From Eqn.(4.17), the relationships between elastic constants and second derivatives of energy

respective to strain are

2E(~, T,
Lw =3V (Ch1 + 2C49), (4.21)
oy =0
8 E(vy,T,) 3
2
OE(, Ty EWQ?Tt) — 3V, O, (4.23)
0y V=0

where Vj is volume per atoms of structure at v = 0. Elastic constants are obtained by solving
these equations.
For hexagonal system, there are five independent elastic constants Cy, Cia, Cs3, Css5, and

C13. Elastic constants can be calculated by consideration of five matrices expressed as

Ti=101 0 (4.24)

Th=10 1 0 (4.25)

5= 10 —1 0. (4.26)
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Ty=10 0 0] - (4.27)

Ts=10 0 0f- (4.28)
1 00

The relationships between elastic constants and second derivatives of energy respective to strain

are
82E(y, T 2
—(72’ Y- Vo(2C11 + 2C12 + 4C13 + Cs3), (4.29)
oy = 9
2E(vy, T
# =2Vo(Cu + C12), (4.30)
oy =0
8?E(v,T:
# = 2Vp(C1 — Ch2), (4.31)
0y =0
2
M = VoCss, (4.32)
07y =0
2E(v, T
Lw = 4V Css. (4.33)
07y =0

Elastic constants are obtained by solving five equations.

In this study, to calculate second derivative, I calculated energies in the case 7 ranging
from —0.01 to 0.01 in steps of 0.001 for those strain matrices, fitted those energies by quartic
polynomials, and obtained second derivative from coefficient of second-order term by DFT cal-
culations, linear potentials, and conventional potentials. For all methods to calculate energies,
lattice constants when v = 0 are same as those obtained from DFT structure optimization.
Elastic constants of conventional potentials are calculated by LAMMPS code [48,49].

Figure 4.4, 4.5, 4.6, 4.7, and 4.8 show the second derivatives of the energies for the strain
matrices for 31 elements of FCC, BCC, SC, HCP, and w structures, respectively. Figure 4.9,
4.10, 4.11 4.12, and 4.13 show the elastic constants and bulk modulus 31 elements of FCC,
BCC, SC, HCP, and w structures, respectively. For most of typical metals, there is little

difference between second derivatives obtained from linear potentials without angular terms
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and that with angular terms. Angular terms improve the prediction of the most of all elastic
constants. Especially, for some transition metals such as Sc, Y, Ti, V, Nb, Ta, Cr, Mo, and W,
improvement is remarkable. For some of elements at the upper right of periodical table, such
as Be, Mg, Zn, Cd, Hg, Al, Ga, In, and T1, there are still rather large discrepancy between
DFT and linear potentials for some structures. As discussed in Chapter 3, it can be ascribed
to training set and/or as discussed in Chapter 2 it can be ascribed to lack of other descriptors.

Figure 4.14 and 4.15 show the second derivatives and elastic constants predicted by DFT,
linear potentials, and conventional EAM and conventional modified EAM for Ti of cubic crys-
tals and hexagonal crystals, respectively. For stable structures such as HCP and FCC, the
linear potential with angular terms reproduces elastic constants obtained from DFT as well as
conventional potentials. For unstable structures such as SC, the linear potential with angular

terms reproduces elastic constants obtained from DFT better than conventional potentials.
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Figure 4.14: Second derivatives of energies respective to matrices expressed as Eqn.(4.18),
(4.19), and (4.20) and elastic constants for Ti BCC, FCC, and SC crystals obtained from DFT
calculations, linear potentials without angular terms, linear potentials with angular terms, Zhou
EAM [55], and Hennig modified EAM [60].
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4.5.2 Phonon dispersion curves

For MD simulation, prediction of acting force on atoms and estimation of stability of structures
play very important roles. Then, I examined the applicability of the interatomic potentials by
comparing phonon dispersion curves computed with DFT calculation and interatomic poten-
tials. The phonon dispersion curves were calculated with the supercell approach [57] for FCC,
HCP, BCC, simple cubic, w, and 8-Sn structures with the equilibrium lattice constant. For all
methods to calculate energies, lattice constants when 7 = 0 are same as those obtained from
DFT structure optimization. To evaluate the dynamical matrix, each symmetrically indepen-
dent atomic position was displaced by 0.01 A. The forces acting on atoms by the interatomic
potential can then be analytically computed. Supercells were made by 4 x 4 x 4 expansion of
the conventional unit cells for all 6 structures. The phonon calculations were performed using
the PHONOPY code [58].

Figure 4.16, 4.17, 4.18, 4.19, 4.20, and 4.21 show the dispersion curves with FCC, HCP, BCC,
simple cubic, w, and S-tin structures. For the most of typical metals, the both linear potentials
with angular terms and linear potentials without angular terms reproduce phonon dispersion
curves of DFT well. For some typical metals such as Be and transition metals, the prediction
by linear potentials without angular terms is relatively poor and angular terms improve the
prediction of phonon dispersion curves. There are some discrepancies between the phonon
dispersion curves obtained by linear interatomic potentials even with angular terms and those
obtained by DFT calculations. As discussed in Chapter 2, independent 2/41 descriptors are
needed for each [ to describe any interatomic potentials and the discrepancies can be ascribed
to the absent of those descriptors.

Figure 4.22 shows the phonon dispersion curves obtained from DFT, linear potentials, and
conventional EAM and modified EAM for Ti. While discrepancies between DFT and even
modified EAM are found, linear potential with angular terms predicts phonon dispersion curve

relatively well.
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Figure 4.22: Phonon dispersion curves for Ti metals of DFT, linear potential without angular
terms, linear potential with angular terms, Zhou EAM [55], and Hennig modified EAM [60].
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4.6 Conclusion

In this chapter, I constructed linear potentials for 31 metals using AFS as angular descriptors
and calculated prediction errors, elastic constants, and phonon dispersion curves.

Firstly, I constructed linear potentials with angular descriptors for 31 elements and com-
pared accuracy of linear potentials with angular descriptors and that without angular descrip-
tors. For all 31 elements, RMS errors of energies and forces decreased.

Next, I evaluated elastic constants of 31 elements. For the most of transition metals, pre-
diction of elastic constants improved by adopting angular terms. On the contrary, for some
elements in upper right of periodical table, there were still large discrepancy between elastic
constants obtained by DFT and those obtained by linear potentials with angular terms. For
those metals, more training data and/or other descriptors may be needed to predict elastic
constants well.

At last, phonon dispersion curves are calculated by linear potentials. For the most of
elements, angular descriptors also improved prediction of phonon dispersion curves.

For Ti, these properties are also compared to conventional EAM and modified EAM. In
comparison to conventional potentials, prediction of elastic constants was good especially for
unstable structures like SC. Phonon dispersion curves were also reproduced by linear potentials

better than conventional potentials.

4.7 Appendix: fast implementation of angular terms

As discussed above, AFS can be calculated by both spherical harmonics and bonding angle.
However, those two methods has practical problem to implement. If AFS is calculated by
spherical harmonics, it is difficult to calculate force acting on atoms because spherical harmonics
function is calculated by spherical coordination and the differential of that have singular point
on z-axis. Calculation by bonding angle like Eqn.(4.6) has no such singular point, however,
that takes much computational costs due to double notation of summation. Therefore, it is

desirable to represent Eqn.(4.6) by Cartesian coordination and summation of single index. This
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can be achieved by formula deformation such as

l
E TijTik + YijYir + Zij%i
AFS), 0 = D falrig) fonlrae) (g - mae)' = fn(nj)fm(’f’jk>( B k> =
ok ik

TijTik

l! x@.yb.z?.x@kykaGk
2 alblcvzfn(ﬁj)fm(m) B

atbrem) B0C T LT

Z a‘b'c' (Z fn 7”” z]yzj Z]> (Z fm sz zjyzj zg)

a+b+c=l j

(4.34)
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Chapter 5

(General conclusion

In this study, firstly I defined what interatomic potential is and derived the general form of
interatomic potentials. Interatomic potentials of linear combination of descriptors by polyno-
mial approximation. I constructed interatomic potential for 31 elements by such models and
estimated accuracy of interatomic potentials.

In Chapter 2, firstly I defined interatomic potential as mapping from atomic distribution
function to energy and derived the generalized formula of interatomic potential. I also showed
the relationship between the generalized formula, conventional interatomic potentials and ma-
chine learning interatomic potential (MLIP). It was also revealed that the model of interatomic
potential expressed by linear combination of descriptors [24,31] can be generalized by polyno-
mial approximation of the generalized formula.

In Chapter 3, I constructed by both previous and generalized linear interatomic potential
for 31 elemental metals using only radial descriptor. For all elements, compared with the
previous model, generalized model constructed more accurate interatomic potentials with less
basis functions. Next, I predicted several properties of elements, namely, energies of structures
which are not used for construction of interatomic potentials, elastic constants of cubic crystals,
and phonon dispersion curves. For typical elements, interatomic potentials constructed in this
study reproduced energies, bulk modulus, and phonon dispersion curves obtained from density
functional theory (DFT) calculations accurately. The predictions of elastic constants excepting
bulk modulus were relatively poor. It may be ascribed to training data set. For transition met-

als, the predictions of elastic constants and phonon dispersion curves were relatively worse than
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that for typical elements. For Al and Cu, these properties are also compared to conventional
EAMs. The predictions of this work were more accurate than conventional EAMs, especially
for unstable structures.

In Chapter 4, linear potentials are constructed including angular Fourier series (AFS) for 31
elements. For all elements, AFS decreased root mean square (RMS) errors of both energies and
forces acting on atoms. For also transition metals, interatomic potentials with AFS reproduced
bulk modulus, and phonon dispersion curves obtained from DFT calculations accurately. For
Ti, these properties are also compared to conventional an EAM and a modified EAM. The
predictions of linear were more accurate than conventional potentials.

The interatomic potentials constructed in this study reproduced properties of 31 elements
obtained by DFT better than conventional potentials and previous linear interatomic potentials.
This fact implies that those potentials are useful to perform reliable atomic scale simulations

like molecular dynamics calculation.
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