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Abstract

The two main goals of cryptography are to achieve an important cryptosystem in
an efficient way, and provide a theoretical proof for ensuring its security.

In this thesis, we investigate ways to achieve an advanced encryption method
(which is now considered to be the most important cryptosystem and whose typi-
cal example is fully homomorphic encryption (FHE)), and authentication methods
(e.g., digital signatures and blind message signatures). We propose cryptosys-
tems that have practical efficiency and proven security under standard assump-
tions. These proposed cryptosystems are more or equally efficient than the exist-
ing cryptosystems with the same security guarantee and are proven secure under
the standard assumptions (the security of a cryptosystem is guaranteed by a cer-
tain computational hardness assumption, and the most desirable assumptions are
the standard assumptions).

FHE allows us to evaluate any function over encrypted data by only using
public information. This can be used, for example, for outsourcing computations
over encrypted data to a remote server. We present the first FHE scheme that en-
crypts matrices into one ciphertext and supports homomorphic matrix operations,
which lead to homomorphic single-instruction-multiple-data (SIMD) operation.
Our FHE scheme has more efficient homomorphic operation algorithms than all
known FHE schemes based on the standard assumptions.

Digital signatures are a way to ensure that data are actually from the sender of
the data, or the data have not been tampered. Our proposed signatures are proven
secure under the RSA assumption in the random oracle model (which is an ideal-
ized model of hash functions). The signature scheme has a simpler construction
than previous schemes with the same security guarantee, since the number of (ide-
alized) hash functions used in our scheme is optimal. The simpler construction of
the proposed scheme enables lower implementation costs for the secure digital
signatures.

Blind message signatures are a variant of digital signatures, and they enable
us to sign data that are hidden from a signer. The proposed scheme is the first
efficient blind message signatures based on the RSA assumption in the random
oracle model. The RSA assumption is the most widely used and so thought as the
most reliable cryptographic assumption.
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Chapter 1

Introduction

1.1 Modern Cryptography
Cryptography is related to secure communications in the presence of an adver-
sary. Behaviors of the adversary are roughly classified into three types of attacks:
wiretapping, tampering, and spoofing. The first attack, wiretapping, is to moni-
tor what data flow through communication lines, and to obtain secret information
from the data. The second attack, tampering, is to change the contents of the data
flowing through that line. The third attack, spoofing, is to impersonate the sender
of the data in order to manipulate the receiver to take some actions. Main goals of
cryptography are to create a method for preventing such attacks: cryptosystems to
hide secret transmitted data and authenticate received data.

The first important objective of cryptography is to construct a cryptosystem
for hiding secret information from an adversary. Let us suppose that Alice wants
to send her secret message to Bob over an insecure communication channel. Then
an adversary, Eve, may wiretap the message to know what Alice told Bob. Public
key encryption (PKE) is a way to deal with this problem. The concept of PKE
was first proposed by Diffie and Hellman [DH76] in 1976, and it enabled secure
communications between Alice and Bob. A particular PKE consists of a triple of
public algorithms (KeyGen,Enc,Dec). Suppose that Alice has message m and
Bob has two keys (pk, sk), public and secret keys, generated by the key genera-
tion algorithm KeyGen. The two keys are used to encrypt messages and decrypt
ciphertexts, respectively. Alice first uses Bob’s public key to encrypt m by com-
puting a ciphertext c = Enc(pk,m), and sends c to Bob. Bob uses sk to decrypt
the ciphertext and obtain the message from Alice, m = Dec(sk, c). Since cipher-
texts encrypted under a public key cannot be decrypted without the corresponding
secret key, no one can know the message from Alice unless Bob’s secret key is
exposed.
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An advanced encryption method is a cryptosystem that provides a certain func-
tionality in addition to PKE. A typical example of this method is fully homomor-
phic encryption (FHE), which is a variant of PKE and allows us to evaluate any
function over encrypted data by only using public information. A FHE scheme
has, in addition to the PKE algorithms, efficient algorithm Eval that for any valid
public key pk, any circuit C 1 , and any ciphertext ci ← Enc(pk,mi), outputs c ←
Eval(pk, c1, . . . , cr) such that the decryption holds C(m1, . . . ,mr) ← Dec(sk, c)
for the secret key sk corresponding to pk. This has various applications in prac-
tical and theoretical studies. One typical practical application of FHE is to out-
source computations to remote servers without compromising privacy. Suppose
that Alice has message m, circuit C, and public and secret keys of a FHE scheme.
Alice first encrypts m under her public key and sends it to a server. The server
receives the ciphertext of m, evaluates C on the ciphertext of m to return a ci-
phertext of C(m). Alice uses her secret key to decrypt the ciphertext from the
server and obtain C(m). In theoretical studies, FHE can be used to construct many
powerful cryptographic tools, such as the candidates of cryptographic multilinear
maps [GGH13a, CLT13, GGH15] and a program obfuscator [GGH+13b].

The second important objective of cryptography is to construct a way for au-
thenticating data. We want to ensure that the data are actually from the sender of
the data, or the data have not been tampered. Suppose that Bob receives a mes-
sage addressed from Alice. Then how does Bob ensure that the received message
is the same as the message actually sent from Alice? In particular, how does he
ensure that the received message has not been tampered with by an adversary?
Digital signatures are a way to accomplish this. A particular digital signature
scheme consists of three algorithms (KeyGen,Sign,Verify). The key generation
algorithm KeyGen generates a pair of keys (pk, sk) as well as the PKE. Anyone
who knows the public key of Alice can verify that a digital signature is generated
by Alice, and such a signature is generated only by someone who knows the corre-
sponding secret key. Alice generates a signature σ for a message m by computing
σ

R←−Sign(sk,m) with her secret key sk, and sends to Bob σ with m (practically,
the message is encrypted by public or private key encryption algorithm). By us-
ing Alice’s public key pk to verify that the received signature is a valid signature
for m, Bob ensures that m is not tampered with by an adversary and the data is
certainly sent from Alice.

The importance of the above cryptosystems will grow in the future as more
everyday tasks, processes, and communications are computationalized. The most
essential things in cryptography are to contrive efficient ways for achieving such
important cryptosystems, and provide a theoretical proof for ensuring their secu-
rity.

1Precisely, C will always be either a Boolean or an arithmetic circuit.
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Constructing more efficient cryptosystems that implement important crypto-
graphic functions allows us to apply their functions to wider areas. An efficient
cryptosystem has smaller keys, ciphertexts, or signatures, or has smaller complex-
ity of algorithms (e.g., key generation, encryption, decryption, signature genera-
tion, or verification). A cryptosystem with smaller keys or smaller complexity of
the algorithms can be used in resource constrained devices. The smaller cipher-
texts, or signatures enable secure communications on capacity-restrained chan-
nels.

Provable security is a central notion in modern cryptography. A cryptosys-
tem is said to be provably secure if breaking security of the cryptosystem leads
breaking a certain assumption (which says that a certain problem is hard to solve)
To prove formally the security of a cryptosystem, we construct a reduction (algo-
rithm) that uses an adversary against the cryptosystem to break the assumption,
i.e., solve the problem assumed to be intractable in the assumption.

In cryptography, the security assumptions are classified into the following five
types of assumptions:

• Standard assumptions. Standard assumptions are the security assumptions
that are widely known and used in cryptography. For example, in the RSA
assumption [RSA78], an adversary is given an RSA modulus N (that is a
composite number of two primes), an integer e ∈ Z such that gcd(e, ϕ(N)) =
1, and a target y ∈ ZN . The task of the adversary is to compute an integer x
such that xe ≡ y (mod N). Other examples of the standard assumptions are
the factoring assumption, the discrete log assumption, and the learning with
errors (LWE) assumption [Reg05].

• Non-standard, falsifiable, non-interactive, and static-size assumptions.
A falsifiable assumption can be modeled as an interactive game between an
challenger and adversary. At the end of the game, the challenger can effi-
ciently decide whether the adversary won that game. The assumption states
that every efficient adversary win the game with negligible probability. If
the falsifiable assumption is false, we can construct an efficient process to
show that the assumption is false. The standard assumptions are also in-
cluded in the falsifiable assumptions. In the non-interactive assumption, the
adversary is not given access to any oracles, and the static-size assumptions
do not depend on any system parameter and only depend on the security
parameter. Examples of this type of assumption are the strong-RSA as-
sumption [CS00], the (asymmetric or symmetric) external Diffie-Hellman
assumption, the Φ-hiding assumption [CMS99], the learning parity with
noise (LPN) assumption [BFKL94], and so on.

• Falsifiable and non-interactive, but dynamic-size (q-type) assumptions.
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These assumptions are the so called q-type assumptions, in which the size
of the assumption grows dynamically. For example, in the q-weak Diffie-
Hellman assumption [MSK02], the adversary is given (g, gx, gx2

, . . . , gxq
)

and asked to compute g1/x. Other examples of this type of assumption
are the q-strong Diffie-Hellman assumption [BB04b], the q-bilinear Diffie-
Hellman inversion assumption [BB04a], and the q-bilinear Diffie-Hellman
exponent assumption [BBG05].

• Falsifiable and interactive assumptions. In the interactive assumptions,
the adversary is given access to some oracles. For example, in the one-
more RSA inversion assumption [BNPS03], the adversary is given ℓ + 1-
targets and access to an RSA-inversion oracle (·)d mod N that it takes input
y ∈ Z∗N and returns its RSA-inverse yd mod N, The task of the adversary
is to compute the RSA-inverses of all the given targets while submitting at
most ℓ queries to the oracle. Another example of this type of assumption is
the LRSW assumption [LRSW99].

• Unfalsifiable assumptions. This type of assumption is not included in the
falsifiable assumptions. A typical example of the unfalsifiable assumption
is the knowledge exponent assumption (KEA1) [Dam91], in which for any
adversary that takes as input q, g, g1 = gx and returns g2, g3 with g3 = gx

2,
there exists an extractor that takes the same inputs as the adversary and out-
puts y such that gy = g2. In the falsifiable assumptions, the adversary is
asked to produce a certain output on certain inputs. To show that such an
assumption is false, we simply give an attack in the form of an adversary
whose success probability is not negligible. However, the KEA1 assump-
tion has a more complex format: it states “for any adversary there exists an
extractor such that ...”. To show that this assumption is false, we must prove
that there is an adversary for which there exists no extractor, so it is difficult
to construct an efficient process to show that the assumption is false.

From the above, we can see that there is a vast number of security assumptions in
cryptography. Among these assumptions, the most desirable assumptions are the
standard assumptions.

To make cryptography an integral part of the information security supporting
our networked society, cryptography must provide important cryptosystems, be
implemented efficiently, and its security be guaranteed theoretically. For achiev-
ing cryptosystems that will become part of such a foundation, this thesis pro-
poses efficient and theoretically secure schemes (under the standard assumptions)
to implement FHE and signatures that are now considered as the most important
cryptosystems.
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1.2 Results of This Thesis
As described in the last section, the most essential goals in cryptography are to
construct an efficient scheme for implementing an important cryptosystem, and to
prove theoretically its security. The security of a modern cryptosystem is proved
under certain computational assumptions and the most desirable assumption is
the standard assumption. Hence, constructing an important cryptosystem that has
both better efficiency and a theoretical security guarantee under the standard as-
sumption is the ultimate goal of cryptography.

In this thesis, we propose three efficient schemes to implement an advanced
encryption method or a data authentication method. The proposed schemes are
proven secure based on the standard assumptions, and they are the most efficient
ones under the same security assumptions. In particular, we construct the follow-
ing cryptographic schemes and protocols:

• An efficient FHE scheme based on the LWE assumption [HAO16a] 2.

• A tightly secure digital signatures based on the RSA assumption [HAO16b].

• An efficient blind message signatures based on the RSA assumption.

In the next three sections, we briefly provide the detail of our constructions.

1.2.1 Efficient FHE based on the LWE Assumption
In 1978, Rivest, Shamir, and Adleman [RSA78] first constructed a PKE scheme,
called RSA. The encryption function of the basic RSA scheme is (multiplicative)
homomorphic 3: given a public key pk := (n, e) ∈ Z × Z and ciphertexts ci :=
me

i mod n of messages mi (for i = 1, 2), we can efficiently compute the ciphertext
of the product m1 · m2 by c1 · c2 ≡ (m1 · m2)e (mod n). That is, in the basic RSA
scheme, we can compute multiplication of data without decrypting the ciphertexts
of them. Shortly after the invention of the RSA scheme, Rivest, Adleman, and
Dertouzos [RAD78] raised an interesting question:

Can we compute arbitrary operations on encrypted data without de-
crypting them?

The way to answer this question had been regarded to be a “holy grail” of cryp-
tography over the years. In 2009, Gentry first presented an answer to it, Fully
Homomorphic Encryption (FHE).

2The preliminary version of this paper is [HAO15].
3 Let G and G′ be groups with operations ◦ and ·, respectively. We say that a function f : G→

G′ is homomorphic if it holds that f (x ◦ y) = f (x) · f (y) for any x, y ∈ G.
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FHE allows us to evaluate any function over encrypted data by only using
public information. A natural example of its application is searching on encrypted
data. Suppose that Alice stores her files on a remote server so that she can access
to the files without having her own computer, and that she encrypts her files to
prevent the server from reading or leaking her private data. Let m1, . . . ,mr be
the files, and let them be encrypted to the ciphertexts c1, . . . , cr. When Alice
later wants to download the encrypted files satisfying a query, she sends to the
server her query, which is expressed as a circuit C. The server homomorphically
evaluates C on the encrypted files c1, . . . , cr, and returns the ciphertext ĉ to Alice.
She decrypts ĉ to obtain C(m1, . . . ,mr), which satisfies her query.

Since the breakthrough work by Gentry [Gen09a, Gen09b], many different
varieties of FHE have been proposed [DGHV10, BV11a, BV11b, BGV12, Bra12,
GSW13, CLT14]. To date, the fastest (and simplest) FHE based on the standard
assumption is the one proposed by Gentry, Sahai, and Waters [GSW13] (hereafter,
referred to as GSW-FHE). However, it is required to take heavy cost for evaluating
a large number of ciphertexts. A way to deal with this issue is to pack multiple
messages into one ciphertext.

Packing messages allows us to apply single-instruction-multiple data (SIMD)
homomorphic operations to all encrypted messages. In the case where a remote
server stores encrypted data and we want to retrieve certain data from this server,
we first apply the equality function to every encrypted data. If the stored data
have been packed into one ciphertext, we can retrieve the desired data by only one
homomorphic evaluation of the equality function.

In this thesis, we construct a variant of the GSW-FHE that supports homo-
morphic matrix operations. Homomorphic matrix operations immediately lead
to implementing SIMD homomorphic operations, so we can obtain SIMD FHE
with very simple (actually, just matrix addition and multiplication) homomorphic
operation algorithms like GSW-FHE. Our construction is based on the LWE as-
sumption, and is more efficient than the previous SIMD FHE based on the same
assumption. Our construction is an extension of the GSW-FHE scheme [GSW13],
which greatly influenced on the construction ideas of some cryptosystems based
on LWE such as fully homomorphic signatures [GVW15, FMNP16], attribute
based encryption [BGG+14, BV16, BCTW16], and multilinear maps [GGH15].
Hence, the idea for constructing our FHE may also be a foundation block for
future cryptographic constructions from the LWE assumption.
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1.2.2 Tightly Secure Efficient Digital Signatures from the RSA
assumption

As described in Section 1.1, the security of a cryptosystem is guaranteed by a
certain computational hardness assumption. To prove the security of the cryp-
tosystem, we reduce breaking the security to break the assumption (i.e., to solve
the problem assumed to be hard in the underlying security assumption). There
is a gap, which is called reduction efficiency, between hardnesses of breaking a
cryptosystem and solving a security problem. The reduction efficiency is defined
as the probability that breaking security of a cryptosystem leads solving a prob-
lem on which the security of the cryptosystem is based. We say that a reduction
from security of a cryptosystem to an underlying problem is tight if its reduction
efficiency is equal to 1 (that is, if we can break the cryptosystem, we can solve
its underlying problem with probability 1). If a security reduction is tight, break-
ing the cryptosystem is as hard as solving the underlying problem. Hence, if we
can prove the security of a cryptosystem with a highly efficient security reduction,
the cryptosystem can be implemented with smaller parameter settings (that is, a
smaller key size). We particularly focus on tightly secure digital signatures in the
random oracle model.

The random oracle model, which was first introduced by Bellare and Rogaway
in 1993 [BR93], is an idealized paradigm in which a hash function is viewed as
an oracle that outputs a random value for every input query. Bellare and Rogaway
in [BR96] proposed full domain hash (FDH) signature scheme that is implemented
by the random oracle in the security proof. The FDH signature scheme is now
used in a wide variety of applications, and serves as the foundation of several
standards such as [RSA93]. The reduction efficiency of the FDH signatures was
improved by Coron in [Cor02]. In [BR96], Bellare and Rogaway also proposed
a probabilistic signature scheme (PSS) whose security is tightly reduced to the
RSA assumption. Since the PSS is tightly secure only for longer random salts,
Coron introduced a probabilistic full-domain hash (pFDH) implemented by the
random oracle to prove that the PSS has a tight security reduction also for shorter
random salts, but the Coron’s signature scheme has a complex construction since
it uses the random oracle multiple times. The above signature schemes are secure
in the random oracle model, and their random oracles are replaced by concrete
hash functions when implementing the signatures in the real world. A security
proof for a cryptographic scheme in the random oracle model does not mean that
it is secure in the real world, but it provides some kind of security guarantee, and
it is still important in a practical sense to prove the security in the random oracle
model.

In this thesis, we propose new digital signature scheme that is tightly se-
cure based on the RSA assumption in the random oracle model. Our signatures
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have a simpler construction than the previous tightly secure RSA-based signa-
tures [BR96, Cor02], since the number of random oracles used in our signatures
is less than those previous ones (and in fact, the number is minimum). The sim-
plicity of our construction leads to lower implementation cost of the secure digital
signatures. To prove the security of our signatures, we introduce a new technique
called α − β hiding technique. This technique relies on the mathematics of the
RSA, so it may become a useful tool to prove the security of other cryptosys-
tems based on the RSA assumption. Our proposed signatures are tightly secure
as well as the PSS [BR96] that is a foundation of PKCS #1 standard [RSA93],
and have a simpler construction than the PSS since the number of random oracles
(implemented by a hash function) is optimal. Therefore, our signatures may be an
alternative for the PSS.

1.2.3 Efficient Blind Message Signatures from the RSA assump-
tion

Digital signatures have many applications such as in e-government and e-business,
but they cannot be applied to information systems in which secrecy is required for
messages to be signed. Blind signatures provide a way to satisfy this requirement.
In the blind signature schemes (actually a cryptographic protocol between two
participants), we can obtain signatures for arbitrary messages while keeping the
messages hidden.

Blind signatures are a variant of digital signatures that were first introduced
by Chaum [Cha82]. They are a cryptographic protocol between two parties (user
and signer) in which the user requests a signature for his message and gets the
signature from the signer, where the signed message is hidden from the signer
(blindness), and the number of signatures generated by the user is not larger than
the number of runs of the blind signature protocol (unforgeability). In particular,
because of the blindness, blind signatures have an important role in applications
such as the electronic cash and electronic voting.

Chaum’s blind signatures [Cha82] from the RSA signatures [RSA78] were
not provably secure. In [BNPS03], Bellare et al. showed that the Chaum’s blind
signature scheme is provably secure, but the underlying assumption is not stan-
dard. Secure blind signatures from the standard assumptions in the random oracle
model were proposed in [PS96,Poi98,AO00,Abe01,AO01], and the most efficient
blind signatures in these works are the ones by Abe [Abe01].

In this thesis, we introduce a new notion blind message signatures, which has
the following features. A signer S executes a blind signature protocol, P, with
a user U and S is divided into two parts,S0 and S1. S0 accepts a request from
the userU and knows the identity ofU. S0 then runs the sub-protocol of P with
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U (say P0) which is P excepting the final round. S1 executes the final round of
P (say P1), i.e., S1 just sends a value to U. Here, unless S0 and S1 collaborate,
the protocol satisfies the requirements of blind signatures. A message m is hidden
before useU releases the message m with a signature σ even if S0 and S1 collude.

We now assumes that the link between the message m and the userU revealed
if S0 and S1 collude. Then we show an application of this concept, blind message
signature. First, we assume that S0 and S1 do not collude usually. For example, in
this application, S0 knows the identity of user, U, and receives a signing request
with some value B from U. S0 then runs sub-protocol P0. After completing P0

with U, S0 gives a string t to S1. Here, S0 keeps (U, t). S1, given t from S0,
executes P1 , i.e., computes Y and sends it to U (without knowing the identity
of U). Here, S1 keeps (t,Y). User U, given Y , computes a signature σ for the
message m. IfU keeps the message m in secret for a certain period, (for example,
m is a secret patent document), the message m is kept secret even if S0 and S1

collude. After a period, U releases m along with the signature σ. Since S0 and
S1 do not collude usually, the privacy of (m, σ) is preserved, i.e., it is a blind
signature. If a warrant of arrest is given to userU under suspicion of e.g., money
laundering and illegal dealing of drugs, the police orders S0 and S1 to provide the
record on U. Given (U, t) and (t,Y) from S0 and S1,, the police traces (m, σ) to
be the signature message ofU from information (U,Y).

Our construction is the first efficient blind message signatures secure under the
RSA assumption. The key generation and verification algorithms are the same as
our digital signature scheme described in the last section. If the proposed digital
signature is implemented to some information systems instead of the PSS, we can
use the same signing and verification key to run our blind signature protocol, and
also generate keys and verify signatures without changing the algorithms.

1.3 Thesis Outline
In Chapter 2, we introduce mathematical definitions used in this thesis. In Chap-
ter 3, we propose FHE with more efficient homomorphic operation algorithms
than the previous FHE schemes based on the standard assumptions. In Chapter
4, we show tightly secure efficient digital signatures based on the RSA assump-
tion, which is thought as the most reliable standard assumption. In Chapter 5, we
construct efficient blind message signatures also from the RSA assumption. In
Chapter 6, we summarize the results presented in this thesis.
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Chapter 2

Notations and Security

In this chapter, we give the mathematical preliminaries commonly required in all
of this thesis. In Section 2.1, we list mathematical notations used in this thesis. In
Section 2.2, we briefly introduce about the notion of provable security.

2.1 Notation
We denote the set of natural numbers by N, the set of integers by Z , the set of
rational numbers by Q, and the set of real numbers by R. For any positive integer
d, let [d] be the set {1, 2, . . . , d}. Let S be some set and P be some probability
distribution over S , then we use a

U←−S to denote that a ∈ S is chosen from S
uniformly at random, and use b

R←−P to denote that b ∈ S is chosen along P. We
take all logarithms to base 2, unless otherwise noted. We denote by U(S ) the
uniform distribution over the set. Let negl(λ) be a set of functions negligible in
λ ∈ N For any two probability distributions X and Y, we define the statistical
distance between them by ∆(X,Y) := 1

2

∑
x∈S | Pr[x

R←−X] − Pr[x
R←−Y]|.

Vectors are in column form and are written using bold lower-case letters, e.g.,
x, and the i-th element of a vector is denoted by xi. We denote the ℓ∞ norm (the
maximum norm) of vector x by ∥x∥∞, and the ℓ2 norm (the Euclidean norm) of
x by ∥x∥2. The inner product between two vectors is denoted by ⟨x, y⟩. Matrices
are written by using bold capital letters, e.g., X, and the i-th column vector of a
matrix is denoted by xi. For matrix X ∈ Rm×n, we define the ℓ∞ and ℓ2 norms of X
as ∥X∥∞ := maxi∈[n]{∥xi∥∞} and ∥X∥2 := maxi∈[n]{∥xi∥2}, respectively. For matrix
X ∈ Rm×n, notation XT ∈ Rn×m denotes the transpose of X. For matrices A ∈ Rm×n1

and B ∈ Rm×n2 , [A ∥ B] ∈ Rm×(n1+n2) denotes the concatenation of A with B. When
we refer to the n × n identity matrix, we denote it by In.
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2.2 Provable Security
Provable Security. Provable security is the central notion of modern cryptogra-
phy. The securities of cryptosystems that we construct are guaranteed by giving a
mathematical proof that breaking the securities is difficult.

To prove the security of a cryptosystem, we show that if assumption A holds,
then cryptosystem S satisfies security notion N in security model M. Typical ex-
amples of M are the standard model and the random oracle model. In the standard
model, adversaries are modeled as probabilistic polynomial time (PPT) algorithms
(Turing machines). So, assumption A states that a certain mathematical problem
is intractable for any PPT algorithm, cryptosystem S consists of PPT algorithms,
and notion N defines that it is difficult for any PPT algorithm to break cryptosys-
tem S. To show the above statement, we construct a PPT reduction (algorithm)
that uses an adversary against notion N to break assumption A (i.e., solve the
problem assumed to be intractable in A) with noticeable probability.

In cryptography, security assumptions are classified into the following five
types of assumptions:

• Standard assumptions. The standard assumptions are security assump-
tions that are widely known and used in cryptography. For example, in the
RSA assumption [RSA78], an adversary is given an RSA modulus N (that is
a composite number of two primes), integer e ∈ Z such that gcd(e, ϕ(N)) =
1, and target y ∈ ZN . The task of the adversary is to compute integer x such
that xe ≡ y (mod N). Other examples of the standard assumptions are the
factoring assumption, the discrete log assumption, and the LWE assump-
tion [Reg05].

• Non-standard, falsifiable, non-interactive, and static-size assumptions.
A falsifiable assumption can be modeled as an interactive game between
a challenger and adversary. At the end of the game, the challenger can
efficiently decide whether the adversary won that game. The assumption
states that every efficient adversary wins the game with negligible proba-
bility. If the falsifiable assumption is false, we can construct an efficient
process to show that the assumption is false. The standard assumptions
are also included in the falsifiable assumptions. In the non-interactive as-
sumption, the adversary is not given access to any oracles, and the static-
size assumptions do not depend on any system parameter and only depend
on the security parameter. Examples of these assumptions are the strong-
RSA assumption [CS00], the (asymmetric or symmetric) external Diffie-
Hellman assumption, the Φ-hiding assumption [CMS99], the LPN assump-
tion [BFKL94], and so on.
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• Falsifiable and non-interactive, but dynamic-size (q-type) assumptions.
Theses assumptions are the so called q-type assumptions, in which the size
of the assumption grows dynamically. For example, in the q-weak Diffie-
Hellman assumption [MSK02], the adversary is given (g, gx, gx2

, . . . , gxq
)

and asked to compute g1/x. Other examples of this type of assumption
are the q-strong Diffie-Hellman assumption [BB04b], the q-bilinear Diffie-
Hellman inversion assumption [BB04a], and the q-bilinear Diffie-Hellman
exponent assumption [BBG05].

• Falsifiable and interactive assumptions. In the interactive assumptions,
the adversary is given access to some oracles. For example, in the one-
more RSA inversion assumption [BNPS03], the adversary is given ℓ + 1-
targets and access to an RSA-inversion oracle (·)d mod N that it takes input
y ∈ Z∗N and returns its RSA-inverse yd mod N, The task of the adversary
is to compute the RSA-inverses of all the given targets while submitting at
most ℓ queries to the oracle. Another example of this type of assumption is
the LRSW assumption [LRSW99].

• Unfalsifiable assumptions. This type of assumption is not included in the
falsifiable assumptions. A typical example of the unfalsifiable assumption
is the Knowledge Exponent Assumption (KEA1) [Dam91], in which for any
adversary that takes as input q, g, g1 = gx and returns g2, g3 with g3 = gx

2,
there exists an extractor that takes the same inputs as the adversary and out-
puts y such that gy = g2. In the falsifiable assumptions, the adversary is
asked to produce a certain output on certain inputs. To show that such an
assumption is false, we simply give an attack in the form of an adversary
whose success probability is not negligible. However, the KEA1 assump-
tion has more complex format. It states “for any adversary there exists an
extractor such that ...”. To show that this assumption is false, we must prove
that there is an adversary for which there exists no extractor, so it is difficult
to construct an efficient process to show that the assumption is false.

From the above, we can see that there are a great number of security assumptions
in cryptography. Among these assumptions, the most desirable assumptions are
the standard assumptions.

Random Oracle Model. The random oracle model, which was first introduced
by Bellare and Rogaway [BR93], is a security model where hash functions are
idealized. In this model, a hash function is considered as a random but public
function. Anyone can query this oracle at arbitrary input x and obtain a com-
pletely random value. That is, the random oracle model allows a cryptographic
scheme and adversaries to make such queries. In the random oracle model, we
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can design a simple and efficient construction for cryptographic schemes. This is
why a security reduction can give an adversary the view of oracles, namely, the
reduction can control the view of the adversary. This means that the reduction not
only knows what the adversary queries to the oracle but also can control what the
adversary sees.

Formally, the random oracle model is a model where all the parties, e.g., algo-
rithms and adversaries, have an oracle access to a random function H(·) : {0, 1}∗ →
{0, 1}n for some n. Whenever a new input x is queried, H chooses random output
y and defines y := H(x). A cryptographic scheme is secure in the random oracle
model if the scheme satisfies a standard syntax, correctness and security defini-
tion, and the scheme and adversaries have an oracle access to H(·) in the security
definition.

As shown in the above, the random oracle model is mathematically precise
and provides formal definitions and security proofs. Let us see what this model
said to us in the real world. It is desired that a cryptographic scheme secure in
the random oracle model is still secure when replacing the random oracle with a
real cryptographic hash function. But, in general, there are no theorem to say that,
so we only have a heuristic way to consider about security in the random oracle
model. It seems that cryptographic schemes proven secure in the random oracle
model work well in the real world, but it is known that in general, such schemes
cannot work. In fact, there are known results [CGH98,GK03,BBP04] where there
exists a cryptographic construction that is secure in the random oracle model but
not secure when the random oracle is replaced by any concrete hash function. This
is a motivation for our studies in Chapters 4 and 5.
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Chapter 3

Packing Messages and Optimizing
Bootstrapping in GSW-FHE

In this chapter, we construct the first fully homomorphic encryption (FHE) scheme
that encrypts matrices and supports homomorphic matrix addition and multipli-
cation. This is a natural extension of packed FHE and thus supports more com-
plicated homomorphic operations. We optimize the bootstrapping procedure of
Alperin-Sheriff and Peikert (CRYPTO 2014) by applying our scheme. Our op-
timization decreases the lattice approximation factor from Õ(n3) to Õ(n2.5). By
taking a lattice dimension as a larger polynomial in a security parameter, we
can also obtain the same approximation factor as the best known one of stan-
dard lattice-based public-key encryption without successive dimension-modulus
reduction, which was essential for achieving the best factor in prior works on
bootstrapping of standard lattice-based FHE.

3.1 Fully Homomorphic Encryption

3.1.1 Background
Fully homomorphic encryption (FHE) allows us to evaluate any function over
encrypted data by only using public information. This can be used, for exam-
ple, to outsource computations to remote servers without compromising privacy.
Since the breakthrough work by Gentry [Gen09a, Gen09b], many different va-
rieties of FHE have been proposed [DGHV10, BV11b, BV11a, BGV12, Bra12,
LTV12, GSW13]. Here we focus on the noise-reduction techniques to see lit-
erature of FHE. Gentry [Gen09a, Gen09b] first constructed a pure FHE scheme
using ideals of polynomial rings. van Dijk, Gentry, Halevi, and Vaikuntanathan
[DGHV10] showed that a pure FHE scheme can also be constructed based on
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integers. In [BV11b], Brakerski and Vaikuntanathan constructed a pure FHE
scheme from polynomial rings, and proved that the scheme do not need to assume
a certain security with the bootstrapping technique. The security of the construc-
tions [Gen09b, Gen09a, DGHV10, BV11b] relies on the hardness of solving the
non-standard (not well studied) mathematical problems. Brakerski and Vaikun-
tanathan [BV11a] used the new noise-management approach, dimension and mod-
ulus reduction, to construct a leveled FHE scheme based on a well-established
problem on integer lattices. Brakerski, Gentry, and Vaikuntanathan [BGV12]
then improved the [BV11b] scheme. In [Bra12], Brakerski constructed a lev-
eled FHE scheme without the modulus reduction procedure. Coron, Lepoint, and
Tibouchi [CLT14] presented a integer-based variant of [Bra12]. Since the noise-
reduction techniques are still very complex, Gentry, Sahai, and Waters [GSW13]
constructed a leveled FHE scheme (hereafter, referred to as GSW-FHE) without
the dimension and modulus reduction technique. This scheme does not use any
noise-reduction procedure, and so has very simple homomorphic operation algo-
rithms (just matrix addition and multiplication). To date, the fastest (and simplest)
FHE based on the standard lattice assumption is the one by Gentry, Sahai, and
Waters [GSW13]. (hereafter, referred to as GSW-FHE). However, it is required to
take heavy cost for evaluating a large number of ciphertexts. The way to deal with
this issue is to pack multiple messages into one ciphertext.

Packing messages allows us to apply single-instruction-multiple data (SIMD)
homomorphic operations to all encrypted messages. In the case where a remote
server stores encrypted data and we want to retrieve certain data from this server,
we first apply the equality function to every encrypted data. If the stored data
have been packed into one ciphertext, we can do that by only one homomorphic
evaluation of the equality function. Smart and Vercautren [SV10], for the first
time, showed that applying the Chinese reminder theorem (CRT) to number fields
partitions the message space of the Gentry’s FHE [Gen09a, Gen09b] scheme into
a vector of plaintext slots. On the standard lattice-based FHE schemes, Brakerski,
Gentry, and Halevi [BGH13] used the method of [PVW08], which described a
way to construct packed Regev’s encryption [Reg05], to pack messages in the
FHE variants [BV11b, BGV12, Bra12] of [Reg05].

Similar to the literature of FHE, several SIMD FHE schemes have been pro-
posed [SV10,BGH13,CCK+13]. Smart and Vercautren [SV10], for the first time,
showed that applying the Chinese reminder theorem (CRT) to number fields parti-
tions the message space of the Gentry’s FHE [Gen09a,Gen09b] scheme into a vec-
tor of plaintext slots. The technique of [SV10] can be applied to [BV11b]. Brak-
erski, Gentry, and Halevi [BGH13] used the technique of [PVW08], which de-
scribed a way to construct packed Regev’s encryption [Reg05], to pack messages
in the FHE variants [BV11a, BGV12, Bra12] of [Reg05]. Cheon et al. [CCK+13]
observed that the integer-based FHE [DGHV10, CLT14] can also be transformed
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into a SIMD variant. A comparison of the recent progresses in normal and SIMD
FHE leads the following natural and important question:

Can we construct a SIMD FHE scheme with simple homomorphic
operations?

We here say that homomorphic operations are simple if the FHE scheme does
not proceed any noise-reduction technique (e.g., dimension-modulus reduction or
bootstrapping) in its homomorphic operation algorithms.

In this chapter, we construct a matrix variant of [GSW13] (whose security is
also based on the standard lattice assumption) to implement SIMD homomorphic
operations, and describe how to bring out the potential of our scheme: specifically
optimizing bootstrapping.

The bootstrapping technique [Gen09a, Gen09b] is currently the only way to
go from limited amount of homomorphism to unlimited amount of homomor-
phism. The limited nature is caused by noise terms included in ciphertexts of all
known FHE, which are needed to ensure security. Since homomorphic operations
increases the noise level and the noise prevents us from correctly decrypting ci-
phertexts if the level increases too high, it is required to consider methods that
reduce the noise. The bootstrapping technique is the one of such a methods, and
achieved by homomorphically evaluating the decryption circuit of FHE.

There have recently been the significant progresses [DM15, HS15, CGGI16]
in reducing the cost of the bootstrapping procedure. In [DM15], Ducas and Mic-
ciancio presented the new computation method of the NAND gate on the Regev’s
encryption [Reg05] that encrypts a single bit, and use a variant of [GSW13] to
bootstrap Regev’s ciphertexts. The implementation of their scheme performs a
homomorphic NAND operation followed by bootstrapping (refreshing noise) in
less than one second. In [HS15], Halevi and Shoup implemented a fast boot-
strapping method, which is a packed variant of bootstrapping on HElib [HS14].
Their scheme has a slower clock time than [DM15], but supports SIMD homo-
morphic operations or has a larger plaintext space. In [CGGI16], Chillotti et
al. reviewed the bootstrapping scheme of Ducas and Micciancio, and rewrote
their scheme in terms of the external products. They obtain a speed up from
less than one second to less than 0.1 second. All of the recent fast bootstrap-
ping schemes [DM15, HS15, CGGI16] rely on the intractability of a problem on
polynomial rings. The problem is called the ring-LWE, and reduced to a shortest
vector problem on a special case of lattices.

There also exist the progresses on the standard lattice-based bootstrapping
[BV14, AP14] schemes. Their progresses stem from the observation that noise
terms in ciphertexts of GSW-FHE grow asymmetrically: for a parameter n (the di-
mension in the underlying lattice assumption), the noise of multiplication between
two ciphertexts with noise size e1 and e2 grows to e1+poly(n) · e2. For example, if
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we want to multiply ℓ ciphertexts with the same noise size in sequence, the noise
in the result increases by a factor of ℓ · poly(n), which is in contrast to the noise
blowup factor by a multiplication tree, poly(n)log ℓ. To suppress the growth in noise
from the bootstrapping procedure, the two recent developments [BV14, AP14]
tried to sequentialize the decryption circuit.

Brakerski and Vaikuntanathan [BV14] transformed the decryption circuit of
[GSW13] to a branching program by using the Barrington’s theorem [Bar86], and
homomorphically evaluated the program. Since the Barrington’s theorem can con-
vert the decryption circuit to a polynomial length branching program, evaluating
the program increases the noise by a factor of poly(n). This procedure, however,
has a significant drawback: the Barrington’s theorem generates a branching pro-
gram of large polynomial length. The scheme [BV14] also used a kind of dimen-
sion leveraging technique and successive dimension-modulus reduction to obtain
the best approximation factor that is the same as standard lattice-based (plain)
PKE.

Unlike most previous works, Alperin-Sheriff and Peikert [AP14] viewed the
decryption as an arithmetic circuit. The decryption of all known standard lattice-
based FHE consists of the inner product and rounding: for a ciphertext vector
c and secret key vector s, the decryption algorithm computes ⌊⟨c, s⟩⌉2 ∈ {0, 1}
(where ⌊·⌉2 is the rounding function introduced later). The authors observed that
the inner product in the decryption can be expressed as a subset sum of the secret
key elements. The subset sum can be computed only in the additive group, and
the additive group is isomorphic to a group of cyclic permutations. The authors
rewrote the inner product to the sequence of compositions of the cyclic permu-
tations. Since this does not use the Barrington’s theorem, the bootstrapping pro-
cedure of [AP14] can refresh ciphertexts faster and keep the noise growth in a
smaller polynomial than that of [BV14], but the underlying security assumption
was slightly stronger than that of [BV14] 1. In addition, the procedure of [AP14]
was not fully sequentialized, that is, there is a little room for sequentializing the
decryption: the rounding.

3.1.2 Our Results
In this chapter, we construct the first FHE scheme that encrypts matrices and sup-
ports homomorphic matrix operations. This is a natural extension of packed FHE
and supports more complicated homomorphic operations. Using this scheme, we
fully sequentialize and thus optimize the bootstrapping procedure of [AP14]. The
result of the optimization is described in the following:

1By using successive dimension-modulus reduction, [AP14] can also obtain the same approx-
imation factor as that of [BV14].

18



Theorem 3.1.1. Our optimized bootstrapping scheme can be secure assuming
the hardness of approximating the standard lattice problem to within the factor
Õ(n1.5λ) on any n dimensional lattices.

For 2λ hardness, we need to take n = Ω(λ). Asymptotically minimal selection
of n = Õ(λ) leads to the approximation factor Õ(n2.5) for the underlying worst-case
lattice assumption, which is smaller than Õ(n3), the factor of [AP14]. Using a kind
of dimension leveraging technique: selecting a larger dimension n = λ1/ϵ for ϵ ∈
(0, 1), we can also obtain the best known approximation factor, Õ(n1.5+ϵ), without
successive dimension-modulus reduction, which was essential for achieving the
best factor in the prior works on bootstrapping of standard lattice-based FHE.

3.1.3 Our Techniques
Matrix GSW-FHE. The starting point of our scheme is the GSW-FHE scheme.
In that scheme, a ciphertext of a plaintext m ∈ {0, 1} is a matrix C ∈ Z(n+1)×N

q such
that sC = m · sG + e for a secret key vector s ∈ Zn+1

q , small noise vector e ∈ ZN ,
and fixed matrix G ∈ Z(n+1)×N

q . A simple extension of the plaintext space from
bits to binary vectors cannot yield plaintext-slot-wise addition and multiplication.
Instead, we use matrices to store binary vectors in their diagonal entries. Actually,
our construction even supports homomorphic matrix addition and multiplication
that are richer than homomorphic plaintext-slot-wise operations.

Let S ∈ Zr×(n+r)
q be a secret key matrix, B ∈ Zn×m

q be a Learning with Errors
(LWE) matrix such that SB ≈ 0, and G ∈ Z(n+r)×N be a fixed matrix. To encrypt
a square integer matrix M ∈ {0, 1}r×r, the ciphertext C ∈ Z(n+r)×N must be of
the form BR + XG for a matrix X ∈ Z(n+r)×(n+r) such that SX = MS, and small
random matrix R ∈ Zm×N . The ciphertext C satisfies SC = E + MSG for a small
noise matrix E ∈ Zr×N . Homomorphic matrix addition is just matrix addition. For
example, given two ciphertexts C1 and C2, it holds that

S(C1 + C2) = (E1 + E2) + (M1 + M2)SG.

Homomorphic matrix multiplication corresponds to a simple preimage sampling
and matrix multiplication. For a matrix C ∈ Z(n+r)×N

q , let G−1(C) be the func-
tion that outputs a matrix X′ ∈ ZN×N

q such that GX′ ≡ C (mod q). If we let
X′2

R←−G−1(C2), then it holds that

SC1X′2 = (E1 + M1SG)X′2
= E1X′2 + M1E2 + M1 M2SG.

Now, the problem is how to construct a matrix X such that SX = MS. By
construction, S includes an identity matrix: S = [I ∥ S′] for a matrix S′ ∈ Zr×n

q .
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The idea is to make X have MS in its top rows and 0 below. This X clearly satisfies
the condition, but cannot publicly be computed without knowing the secret key.
We translate the resulting symmetric scheme to the asymmetric one by using the
method similar to [Bar10,Rot11]. In particular, let M(i, j) ∈ {0, 1}r×r (i, j = 1, . . . , r)
be the matrix with 1 in the (i, j)-th entry and 0 in the others. We first publish
symmetric encryptions of M(i, j) for all i, j ∈ [r]. A ciphertext for a plaintext
matrix M is publicly computed by summing up all encryptions of M(i, j) such that
the (i, j)-th entry of M is equal to 1, and using B to randomize the sum. Since the
public key includes the ciphertexts that encrypt partial information of the secret
key, security of our scheme cannot directly be proven from the LWE assumption.
The way to deal with this problem is to introduce a circular security assumption.

Optimizing Bootstrapping of [AP14]. For a dimension d and modulus q, let
c ∈ {0, 1}d be the ℓ − 1-th column of a binary GSW-FHE ciphertext under a secret
key s ∈ Zd

q. Since the decryption algorithm of GSW-FHE computes ⌊⟨c, s⟩⌉2 (⌊·⌉2
is the rounding function that outputs 1 if the input is close to q/4 and 0 otherwise),
and ⟨c, s⟩ = ∑d

i=1 cisi =
∑

i∈[d]:ci=1 si, the decryption can be viewed as a subset sum
of {si}i∈[d]. To bootstrap ciphertexts, we only have to be able to compute additions
in Zq homomorphically. The additive group Z+q is isomorphic to a group of cyclic
permutations, where x ∈ Z+q corresponds to a cyclic permutation that can be repre-
sented by an indicator vector with 1 in the x-th position. The permutation matrix
for x can be obtained from cyclic rotations of its indicator vector. The addition
in Z+q leads to the composition of the permutations (i.e., the multiplication of the
corresponding permutation matrices), and the rounding function ⌊·⌉2 : Zq → {0, 1}
can be computed by summing the entries of the indicator vector corresponding to
those values in Zq.

The bootstrapping procedure of [AP14] consists of two parts that compute
an inner product and a rounding operation. The rounding checks equalities and
computes summation. Our matrix GSW-FHE scheme allows us to rewrite the
bootstrapping procedure except for the summation as a sequence of homomor-
phic matrix multiplications, while the procedure of [AP14] computes only the
inner product part as a sequence. Intuitively, our optimization use the matrix
GSW-FHE scheme to sequentialize the bootstrapping procedure of [AP14]. The
asymmetric noise growth property is more effective in estimating how much noise
the procedure yields.

The inner product can be computed by compositions of cyclic permutations.
The bootstrapping procedure of [AP14] represents elements in Zq as cyclic per-
mutations, and evaluates their compositions by the naive matrix multiplication
algorithm on the ciphertexts that encrypt every elements in the permutation ma-
trices. Instead of that, our bootstrapping procedure uses homomorphic matrix
multiplication to directly evaluate the compositions. The rounding part tests for
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every value close to q/4 whether the output of the inner product part encrypts the
permutation corresponding to the value, and sums their results (that are 0 or 1).
Our procedure also use homomorphic matrix multiplication to realize the equal-
ity test. The result of the inner product is represented as an indicator vector, and
encrypted component-wise in a SIMD encryption. The inner product equals to x
if and only if its indicator vector has 1 in the x-th position. The homomorphic
equality test between the inner product and x is computed by homomorphically
permuting x-th slot to the first slot in the SIMD ciphertext. The result of the test
is encrypted in the first slot. From the above, the bootstrapping procedure ex-
cept for the summation can be represented as a sequence of Õ(λ) homomorphic
multiplications for a security parameter λ.

3.1.4 Related Work
Multilinear maps [GGH13a,CLT13,GGH15] are extensions of bilinear maps, and
built from variants of FHE. The new multilinear maps construction of Gentry, Gor-
bunov, and Halevi [GGH15] also starts from GSW-FHE. Recall that in GSW-FHE,
a ciphertext of m ∈ {0, 1} is a matrix C ∈ Z(n+1)×N

q such that sC = m · sG+e for a se-
cret key vector s ∈ Z(n+1)

q and small noise vector e ∈ ZN . That is, valid ciphertexts
of GSW-FHE have the secret key as the approximate eigenvector and the message
as the eigenvalue. The multilinear maps construction of [GGH15] replaced the
approximate eigenvector with the approximate eigenspace by increasing the di-
mension. In the construction, an encoding of M ∈ Zr×r is a matrix C ∈ ZN×N

q such
that SC = E+MS for a random matrix S ∈ Zr×N

q and small noise matrix E ∈ Zr×N .
The approximate eigenspace is the matrix S. To obtain the encoding C, the con-
struction samples a preimage of MS + E for the function fS(x) = Sx mod q. In
our scheme, a ciphertext C ∈ ZN×N

q of M ∈ Zr×r is a preimage of

BR +
(

MS
0

)
G

for the function fG. Since the ciphertext C satisfies (SG)C = M(SG) + E for
a small noise matrix E ∈ Zr×N , the matrix SG can be seen as the approximate
eigenspace.

3.1.5 Organiation of This Chapter
In Section 3.2, we introduce some mathematics needed to go through with this
chapter. In Section 3.3, we construct a variant of GSW-FHE whose plaintext
space is a set of matrices over {0, 1}, while the GSW-FHE can encrypt a single bit
(or element in Zq). In Section 3.4, we use the above construction to optimize the
bootstrapping procedure proposed by Alperin-Sheriff and Peikert [AP14].
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3.2 Preliminaries

3.2.1 Subgaussian
A real random variable X is subgaussian with parameter s if for all t ∈ R, its
(scaled) moment generating function holds E[exp(2πtX)] ≤ exp(πs2t2). Subgaus-
sian random variables have the following two properties that can be easily ob-
tained from the definition of subgaussian random variables:

• Homogeneity: If the subgaussian random variable X has parameter s, then
cX is subgaussian with parameter cs.

• Pythagorean additivity: For two subgaussian random variables X1 and X2

(that is independent from X1) with parameter s1 and s2, respectively, X1+X2

is subgaussian with parameter
√

s2
1 + s2

2.

The above can be extended to vectors. A real random vector x is subgaussian
with parameter s if for all real unit vectors u, their marginal ⟨u, x⟩ is subgaus-
sian with parameter s. It is clear from the definition that the concatenation of
subgaussian variables or vectors, each of which has a parameter s and is indepen-
dent of the prior one, is also subgaussian with parameter s. The homogeneity and
Pythagorean additivity also hold from linearity of vectors. It is known that the
euclidean norm of the subgaussian random vector has the following upper bound.

Lemma 3.2.1 ( [Ver12]). Let x ∈ Rn be a random vector that has independent
subgaussian coordinates with parameter s. Then there exists a universal constant
C such that Pr[∥x∥2 > C · s

√
n] ≤ 2−Ω(n).

To suppress the growth in noise, Gentry et al. [GSW13] made use of a pro-
cedure that decomposes a vector in binary representation. Alperin-Sheriff and
Peikert [AP14] observed that instead of the decomposition procedure, using the
following algorithm G−1 that samples a subgaussian random vector allows us to re-
randomize errors in ciphertexts and tightly analyze the noise growth in [GSW13].
Lemma 3.2.2 can be extended to matrices in the obvious way. We here let gT :=
(1, 2, 22, . . . , 2⌈log q⌉−1) and G := gT ⊗ In.

Lemma 3.2.2 ( [AP14], which is adapted from [MP12]). There is a randomized,
efficiently computable function G−1 : Zn

q → Zn·⌈log q⌉ such that for any a ∈ Zn
q,

x R←−G−1(a) is subgaussian with parameter O(1) and a = [Gx]q
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3.2.2 Homomorphic Encryption, Circular Security, and Boot-
strapping

We here describe the syntax and security of homomorphic encryption scheme, and
introduce a definition of circular security and the Gentry’s bootstrapping theorem.
LetM and C be the message and ciphertext space.

Definition 3.2.1 (Homomorphic Encryption). A homomorphic encryption scheme
consists of four algorithms, {KeyGen,Enc,Dec,Eval}.

• KeyGen(1λ): output a public encryption key pk, a secret decryption key sk,
and a public evaluation key evk.

• Encpk(m): using a public key pk, encrypt a plaintext m ∈ M into a cipher-
text c ∈ C.

• Decsk(c): using a secret key sk, recover the message encrypted in the ci-
phertext c.

• Evalevk( f , c1, . . . , cℓ): using the evaluation key evk, output a ciphertext c f ∈
C that is obtained by applying the function f :Mℓ →M to c1, . . . , cℓ.

Security of homomorphic encryption is defined as follows:

Definition 3.2.2 (IND-CPA Security). Let HE = {KeyGen,Enc,Dec,Eval} be a
homomorphic encryption scheme and consider the following game between the
challenger and adversary:

1. The challenger generates (pk, sk, evk)
R←−KeyGen(1λ) and sends (pk, evk) to

the adversary.

2. The adversary sends a pair of messages µ0, µ1 to the challenger.

3. The challenger randomly samples b
U←−{0, 1} and computes c∗

R←−Encpk(µb). It
sends c∗ to the adversary.

4. The adversary outputs b′ ∈ {0, 1}.

The advantage of an adversaryA is |Pr[b′ = b] − 1/2|, where b and b′ are gener-
ated in the above game between the challenger and the adversary.

To prove the security of our construction, we introduce a special kind of cir-
cular security for a homomorphic encryption scheme.
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Definition 3.2.3 (Circular security). Let K be the key space defined by a security
parameter λ. Let f be a function fromK to C. A homomorphic encryption scheme
HE = {KeyGen,Enc,Dec,Eval} is circular secure with respect to f if for all
probabilistic polynomial-time adversary A, the advantage of A in the following
game is negligible in λ:

1. A challenger computes (pk, sk, evk)
R←−KeyGen(1λ), and chooses a bit b

U←−{0, 1}.

2. Let f+ : M×M → M be a function that computes f+(x, y) := x + y ∈ M.
The challenger computes a challenge ciphertext c∗ as follows and sends it
toA.

c∗ :=
{

Evalevk( f+,Encpk(0), f (sk)) if b = 0,
Encpk(0) ∈ C otherwise.

3. A outputs a guess b′ ∈ {0, 1}.

The advantage ofA is Pr[b = b′] − 1/2.

In LWE-based FHE schemes, Evalevk( f+,Encpk(0), f (sk)) can be seen as a
kind of ciphertexts that encrypt f (sk). This is why we call the above security
notion circular security.

3.2.3 Lattices and Learning with Errors Assumption
A lattice is a set of points in n-dimensional space with a periodic structure. For-
mally, the lattice is generated by given n-linearly independent vectors b1, . . . , bn ∈
Rn as

L =
 n∑

i=1

xibi : xi ∈ Z
 .

Lattices are an extremely useful mathematical structure for cryptography, which
provides security against quantum computers, worst-case security guarantee, and
richer structure for constructing highly functional cryptosystems such as FHE,
functional encryption, and so on. From the introduction of the lattices to cryptog-
raphy by Ajtai [Ajt96], many cryptosystems are constructed on the lattices, and
the most of them are proven secure under the learning with errors (LWE) assump-
tion.

The LWE assumption was first introduced by Regev [Reg05]. The construc-
tion of this chapter relies on the decisional version of the LWE assumption:

Definition 3.2.4 (DLWE). For a security parameter λ, let n := n(λ) be an integer
dimension, let q := q(λ) ≥ 2 be an integer modulus, and let χ := χ(λ) be an
error distribution over Z. DLWEn,q,χ is the problem to distinguish the following

24



two distributions: In the first distribution, a tuple (ai, bi) is sampled from uniform
over Zn

q×Zq; In the second distribution, s U←−Zn
q and then a tuple (ai, bi) is sampled

by sampling ai
U←−Zn

q, ei
R←−χ, and setting bi := ⟨ai, s⟩ + ei mod q. The DLWEn,q,χ

assumption is that DLWEn,q,χ is infeasible.

GapSVPγ is the problem to distinguish between the case in which a lattice
has a vector shorter than r ∈ Q, and the case in which all the lattice vectors are
greater than γ ·r. SIVPγ is the problem to find the set of short linearly independent
vectors in a lattice. DLWEn,q,χ has reductions to the standard lattice assumptions
as follows. These reductions take χ to be a discrete Gaussian distribution DZ,αq

(that is centered around 0 and has parameter αq for some α < 1).

Corollary 3.2.1 ( [Reg05, Pei09, MM11, MP12]). Let q := q(n) ∈ N be a power
of primes q := pr or a product of distinct prime numbers q :=

∏
i qi (qi := poly(n)

for all i), and let α ≥
√

n/q. If there exists an efficient algorithm that solves
(average-case) DLWEn,q,DZ,αq ,

• there exists an efficient quantum algorithm that can solve GapSVPÕ(n/α) and
SIVPÕ(n/α) in the worst-case for any n-dimensional lattices.

• if in addition it holds that q ≥ Õ(2n/2), there exists an efficient classical algo-
rithm that can solve GapSVPÕ(n/α) in the worst-case for any n-dimensional
lattices.

3.3 Matrix GSW-FHE
We translate [GSW13] to be able to encrypt a matrix and homomorphically com-
pute matrix addition and multiplication. This is a natural extension of packed FHE
schemes. In Section 3.3.1, we present our matrix FHE scheme. In Section 3.3.2,
we discuss the relationship between our scheme and packed FHE schemes.

3.3.1 Construction
Let λ be the security parameter. Our scheme is parameterized by an integer lattice
dimension n, an integer modulus q, and a distribution χ over Z that is assumed
to be subgaussian , all of which depends on λ. We let ℓ := ⌈log q⌉, m := O((n +
r) log q) , and N := (n + r) · ℓ. Let r be the number of bits to be encrypted, which
defines the message space {0, 1}r×r. The ciphertext space is Z(n+r)×N

q . Our scheme
uses the rounding function ⌊·⌉2 that for any x ∈ Zq, ⌊x⌉2 outputs 1 if x is close to
q/4, and 0 otherwise. Recall that gT = (1, 2, . . . , 2ℓ−1) and G = gT ⊗ In+r.
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• KeyGen(1λ, r): Set the parameters n, q, m, ℓ, N, and χ as described above.
Sample a uniformly random matrix A U←−Zn×m

q , secret key matrix S′ R←−χr×n,
and noise matrix E R←−χr×m. Let S := [Ir ∥ −S′] ∈ Zr×(n+r)

q . We denote by sT
i

the i-th row of S. Set

B :=
(

S′A + E
A

)
∈ Z(n+r)×m

q .

Let M(i, j) ∈ {0, 1}r×r (i, j = 1, . . . , r) be the matrix with 1 in the (i, j)-th posi-
tion and 0 in the others. For all i, j = 1, . . . , r, first sample R(i, j)

U←−{0, 1}m×N ,
and set

P(i, j) := BR(i, j) +

(
M(i, j)S

0

)
G ∈ Z(n+r)×N

q .

Output pk := ({P(i, j)}i, j∈[r], B) and sk := S.

• SecEncsk(M ∈ {0, 1}r×r): Sample a random matrices A′ U←−Zn×N
q and E R←−χr×N ,

parse S = [Ir ∥ −S′], and output the ciphertext

C :=
[(

S′A′ + E
A′

)
+

(
MS
0

)
G
]

q

∈ Z(n+r)×N
q .

• PubEncpk(M ∈ {0, 1}r×r): Sample a random matrix R U←−{0, 1}m×N , and out-
put the ciphertext

C := BR +
∑

i, j∈[r]:M[i, j]=1

P(i, j) ∈ Z(n+r)×N
q ,

where M[i, j] is the (i, j)-th element of M.

• Decsk(C): Output the matrix M = (⌊⟨si, c jℓ−1⟩⌉2)i, j∈[r] ∈ {0, 1}r×r.

• C1 ⊕ C2: Output Cadd := C1 + C2 ∈ Z(n+r)×N
q as the result of homomorphic

addition between the input ciphertexts.

• C1⊙C2: Output Cmult := C1G−1(C2) ∈ Z(n+r)×N
q as the result of homomorphic

multiplication between the input ciphertexts.

Definition 3.3.1. We say that a ciphertext C encrypts a plaintext matrix M with
noise matrix E if C is an encryption of M and E = SC − MSG (mod q).

The following lemma states the correctness of our asymmetric encryption.
Similar to this, the correctness of our symmetric encryption can be proven imme-
diately.
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Lemma 3.3.1. If a ciphertext C encrypts a plaintext matrix M ∈ {0, 1}r×r with
noise matrix E′ such that ∥E′∥∞ < q/8, then Decsk(C) = M.

Proof. We have

SC = S
(
BR +

∑
i, j∈[r]:M[i, j]=1 BR(i, j) +

(
MS
0

)
G
)

= ER +
∑

i, j∈[r]:M[i, j]=1 ER(i, j) + MSG
= ER +

∑
i, j∈[r]:M[i, j]=1 ER(i, j)

+ [M(gT ⊗ Ir) ∥ −MS′(gT ⊗ In)]

Let E′ := E(R +
∑

i, j∈[r]:M[i, j]=1 R(i, j)), then ∥E′∥∞ < q/8. Because of 2ℓ−2 ∈
[q/4, q/2), for all i, j = 1, . . . , r, it holds that ⟨si, c jℓ−1⟩ ≈ q/4 if mi, j = 1, and
⟨si, c jℓ−1⟩ ≈ 0 otherwise. □

Security of SecEnc directly holds from DLWEn,q,χ. For a matrix M ∈ {0, 1}r×r,
let fM be a function from Zr×(n+r)

q to Z(n+r)×N
q such that for a matrix S ∈ Zr×(n+r)

q ,

fM(S) =
(

MS
0

)
G ∈ Z(n+r)×N

q .

The security of PubEnc holds by DLWEn,q,χ and assuming our scheme circular
secure with respect to fM(i, j)

. The IND-CPA security of our scheme is immediately
proven from the following lemma:

Lemma 3.3.2. Let B,M(i, j), R(i, j), P(i, j) (i, j = 1, . . . , r) be the matrices generated
in KeyGen, and R be the matrix generated in PubEnc. For every i, j = 1, . . . , r, if
our scheme is circular secure with respect to fM(i, j)

and DLWEn,q,χ holds, then the
joint distribution (B, BR(i, j), P(i, j), BR) is computationally indistinguishable from
uniform over Z(n+r)×m

q × Z(n+r)×N
q × Z(n+r)×N

q × Z(n+r)×N
q .

We need to estimate the noise growth by the evaluation of homomorphic ma-
trix addition and multiplication. Similar to [AP14], we employ the properties
of subgaussian random variables for tight analysis. We collect the results of the
estimation in the following lemma.

Lemma 3.3.3. Let S ∈ Zr×(n+r) be a secret key matrix. Let C1 ∈ Z(n+r)×N
q and C2 ∈

Z(n+r)×N
q be ciphertexts that encrypt M1 ∈ {0, 1}r×r and M2 ∈ {0, 1}r×r with noise

matrices E1 ∈ Zr×N and E2 ∈ Zr×N , respectively. Let eT
1,i ∈ Z1×N (i = 1, . . . , r) be

the i-th row vector of E1. Let Cadd := C1 ⊕ C2 and Cmult
R←−C1 ⊙ C2. Then, we have

SCadd = Eadd + (M1 + M2)SG ∈ Zr×N
q ,

SCmult = Emult + (M1 M2)SG ∈ Zr×N
q ,

where Eadd := E1 + E2 and Emult := E + M1E2. In particular, E has in the i-th
row the independent subgaussian entries with parameter O(∥e1,i∥2).
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Proof. We can immediately prove the statements for Cadd. For Cmult, we have

SCmult = SC1G−1(C2)

= (E1 + M1SG)G−1(C2)

= E1G−1(C2) + M1E2 + M1 M2SG.

From the subgaussian properties and Lemma 3.2.2, we can see that the i-th row
entries of E := E1G−1(C2) are independent subgaussian with parameter O(∥e1,i∥2).

□

Similar to the original GSW scheme, our scheme also has the asymmetric
noise growth property, and thereby computing a polynomial length chain of ho-
momorphic multiplications incurs the noise growth by a multiplicative polynomial
factor. For ease of analyzing our optimized bootstrapping procedure described in
the next section, we set the following corollary immediately proven from Lemma
3.3.3 and the properties of subgaussian random variables. This corollary includes
the fixed ciphertext G ∈ Z(n+r)×N of the message Ir with noise 0. This makes the
noise in the output ciphertext subgaussian and independent from the noise in the
input ciphertexts.

Corollary 3.3.1. For i = 1, . . . , k, let Ci ∈ Z(n+r)×N be a ciphertext that encrypts
a message matrix Mi ∈ {0, 1}r×r such that for a matrix E ∈ Zr×N , ∥(MiE)T ∥2 ≤
∥ET ∥2 with noise matrix Ei ∈ Zr×N . Let

C R←−
k⊙

i=1

Ci ⊙ G = C1 ⊙ (C2 ⊙ (· · · (Ck−1 ⊙ (Ck ⊙ G))) · · · ).

For i = 1, . . . , k, let eT
i be a row vector of Ei whose norm is equal to ∥ET

i ∥2, and
eT := [eT

1 ∥ eT
2 ∥ · · · ∥ eT

k ] ∈ Z1×kN . Then the noise matrix of C has in every row the
independent subgaussian entries with parameter O(∥e∥2).

Proof. The ciphertext C encrypts
∏k

i=1 Mi with noise E1X1+
∑k

i=2(
∏i−1

j=1 M j)EiXi,
where Xi is the matrix used in the evaluation of each ⊙. By Lemma 3.3.3, the
elements of E1X1 in every row are independent and subgaussian with parameter
O(∥e1∥2). Since we have ∥(MiE)T ∥2 ≤ ∥ET ∥2, (

∏i−1
j=1 M j)EiXi has in its every row

the independent subgaussian entries with parameter O(∥ei∥2). By the Pythagorean
additivity of subgaussian random variables, E1X1 +

∑k
i=2(

∏i−1
j=1 M j)EiXi has in

every row the independent subgaussian entries with parameter O(∥e∥2). □

3.3.2 Relation to Packed FHE
The matrix GSW-FHE above is a natural extension of packed FHE. Plaintext slots
in packed FHE correspond to diagonal entries of plaintext matrices in the matrix
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GSW-FHE scheme. It is easy to see that we can correctly compute homomor-
phic slot-wise addition and multiplication. In applications of packed FHE such
as in [GHS12], we may want to permute plaintext slots. This can be achieved by
multiplying the encryptions of a permutation and its inverse from left and right.
Security and correctness of the following algorithms clearly holds from Lemmas
3.3.2 and 3.3.3.

Let r > 0 be an integer. For any permutation σ : {1, . . . , r} → {1, . . . , r},
its permutation matrix Σ is given as: Σ := [eσ(1) ∥ · · · ∥ eσ(r)] ∈ {0, 1}r×r, where
ei ∈ {0, 1}r (i ∈ [r]) is the standard basis vector with 1 in the i-th position and 0 in
the others.

• SwitchKeyGen(S, σ): Given a secret key matrix S ∈ Zr×(n+r)
q and a permu-

tation σ, let Σ ∈ {0, 1}r×r be the permutation matrix of σ, and generate

Wσ
R←−SecEncS(Σ),

Wσ−1
R←−SecEncS(ΣT ).

Output the switch key sskσ := (Wσ,Wσ−1).

• SlotSwitchsskσ(C): Take as input a switch key sskσ and a ciphertext C, out-
put

Cσ
R←−Wσ ⊙ (C ⊙ (Wσ−1 ⊙ G)),

where G ∈ Z(n+r)×N is the fixed encryption of Ir with noise zero.

One nice feature of our plaintext-slot switching is not to suffer from the incon-
venience of the security as in [BGH13]: we do not have to use a larger modulus
than the matrix GSW-FHE scheme. Brakerski et al. [BGH13] made use of a larger
modulus Q = 2ℓq to suppress noise growth when switching decryption keys, so
the security of the plaintext-slot switching in [BGH13] must have related to Q.
The larger modulus leads the larger modulus-to-noise ratio. To obtain the same
security level as the underlying SIMD scheme of [BGH13], it was required to se-
lect a larger dimension. As opposed to this, our plaintext-slot switching can use
the same modulus as the matrix GSW-FHE scheme.

3.3.3 Discussion
The underlying GSW-FHE has a variant from Ring Learning With Errors (RLWE)
problem and ID/attribute-based constructions. According to this, we discuss such
variants of our scheme.
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A RLWE-based Variant. The RLWE problem was first introduced by Lyuba-
shevsky, Peikert, and Regev [LPR10]. The paper [LPR10] showed that the prob-
lem can be reduced to the well-established shortest vector problem (SVP) on ideal
lattices.

Definition 3.3.2. For a security parameter λ, let f (x) := xd + 1 where d := d(λ)
is a power of 2. Let q := q(λ) ≥ 2 be an integer. Let R := Z[X]/( f (x)) and
Rq := R/qR. Let χ := χ(λ) be a distribution over R. The RLWEn,q,χ problem is
to distinguish the following two distributions: In the first distribution, (ai, bi) is
sampled from R2

q uniformly. In the second distribution, one first samples s from Rq

uniformly , and samples (ai, bi) by sampling ai
U←−Rq, ei

R←−χ and setting bi := ais+ei.
The RLWEn,q,χ assumption is that the RLWEn,q,χ problem is infeasible.

The RLWE variant of our scheme starts with the LPR encryption [LPR10],
specifically with a multibit variant of the LPR encryption. A public key of the
encryption is a tuple of RLWE instances for a common ring element a

U←−Rq:

a :=


a · s1 + e1

a · s2 + e2
...

a · sr + er

a


∈ R(r+1)

q ,

where for all i ∈ [r] si
R←−χ and ei

R←−χ. As shown in [LPR10], one can sample si

from the noise distribution χ. The corresponding secret key is a r × (r + 1) matrix
S over Rq:

S :=

Ir

−s1
...
−sr

 ∈ Rr×(r+1)
q ,

where Sa = e is a small vector in Rr
q. To encrypt (0, . . . , 0) ∈ {0, 1}r, one first

samples a random short element r
R←−χ and a short vector e′ R←−χ(r+1), and outputs

c := a·r+e′ ∈ R(r+1)
q . To encrypt (m1, . . . ,mr) ∈ {0, 1}r, one adds m1 ·⌊q/2⌋, . . . ,mr ·

⌊q/2⌋ ∈ Rq to the first r elements of c. The decryption computes

Sc = e · r + Se′ +


m1 · ⌊q/2⌋
...

mr · ⌊q/2⌋

 ∈ Rr
q,

and for each i ∈ [r] outputs mi = 0 or mi = 1 depending on whether or not the i-th
element of Sc is small.
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For an integer r > 0, the message space of our RLWE variant is {0, 1}r×r.
Let ℓ := ⌈log q⌉ and N := (r + 1) · ℓ. Let gT := (1, 2, . . . , 2ℓ−1) ∈ R1×ℓ

q and
G := gT ⊗ I(r+1) ∈ R(r+1)×N

q . We can define the G−1(·) function for polynomial-ring
elements as well as for integer matrices: There exists a deterministic polynomial-
time algorithm G−1(·) such that for any integer k > 0 and for any C ∈ R(r+1)×k

q ,
we have C = GG−1(C) ∈ R(r+1)×k

q . Similar to our LWE-based construction, we
publish as a part of the public key the secret key encryptions of partial plaintext
matrices. The partial plaintext matrices are masked by the LPR encryptions. Let
C′ ∈ R(r+1)×N

q be N LPR encryptions. For all i, j ∈ [r], the public key P(i, j) is

P(i, j) := C′ +
[

M(i, j)S
0

]
G ∈ R(r+1)×N

q .

To encrypt a plaintext matrix publicly, we randomize the corresponding public
keys by other N LPR encryptions. That is, an encryption of a message M ∈
{0, 1}r×r is

C := C′′ +
∑

i, j∈[r]:M[i, j]=1

P(i, j) ∈ R(r+1)×N
q .

The decryption, homomorphic addition, and homomorphic multiplication are the
same as them of the LWE based scheme. Since multiplying the secret key matrix
to the LPR encryptions leads a small error matrix in Rr×N

q , correctness of the de-
cryption holds as in the LWE case. Since the matrix C′′ masking the sum of P(i, j)

is indistinguishable from a (r+1)×N random matrix over Rq by the security of the
LPR encryption scheme, the ciphertext C is also indistinguishable from a random
in R(r+1)×N

q .
Our RLWE variant is more efficient than the LWE-based one, but is not as

efficient as the previous RLWE-based SIMD FHE schemes. This is because the
previous schemes use the dimension-reduction algorithm [BV11a, BV14], which
is much more efficient for RLWE-based FHE schemes than LWE-based ones.

ID/Attribute-based Constructions. For simplicity, we focus only on the ID-
based variant. The same argument described here can easily adopted to the attribute-
based case.

As the same reason that FHE schemes before GSW-FHE can not be trans-
formed into the ID-based ones, our scheme can not be ID-based. Recall that our
scheme publishes as the public key secret key encryptions of partial plaintexts.
Since they need to be encryptions under the secret key based on an ID, the public
key needs to be user-specific, and so is not ID-based.
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3.4 Optimizing Bootstrapping
We describe how to optimize the bootstrapping procedure of [AP14] by using
our scheme. In Section3.4.1, we present the optimized bootstrapping procedure
outlined in Section 3.1.3, whose correctness and security are discussed in Section
3.4.2.

3.4.1 Optimized Procedure
Let Q be the modulus of the ciphertext to be refreshed. Using the dimension-
modulus reduction technique [BV11a,BV14], we can publicly switch the modulus
and the dimension to the arbitrary and possibly smaller ones q, d = Õ(λ). Here, q
has the form q :=

∏t
i=1 ri, where ri are small and powers of distinct primes (and

hence pairwise coprime). The following lemma allows us to choose a sufficiently
large q so that the correctness of the dimension-modulus reduction holds by letting
it be the product of all maximal prime powers ri bounded by O(log λ), and then
there exists t = O(log λ/ log log λ).

Lemma 3.4.1 ( [AP14]). For all x ≥ 7, the product of all maximal prime powers
ri ≤ x is at least exp(3x/4).

By CRT, the additive group Z+q is isomorphic to the direct product Z+r1
×· · ·×Z+rt

.
For all i ∈ [t], x ∈ Z+ri

corresponds to a cyclic permutation that can be represented
by an indicator vector with 1 in the x-th position and 0 in the others. The reason is
that we can compute permutation matrices (whose concrete definition is described
in Section 3.3.2) for elements in Zri from their indicator vectors as described in
Section 3.1.3. We write ϕi : Zq → {0, 1}r, where r := maxi{ri}, for an embedding
from Zq to a group of cyclic permutations for the elements in Zri .

Our optimized bootstrapping procedure consists of two algorithms, BootKeyGen
and Bootstrap. The procedure can be used to refresh ciphertexts of all known stan-
dard LWE-based FHE. We achieve the input ciphertext c ∈ {0, 1}d for Bootstrap
from the dimension-modulus reduction and bit-decomposition of the ciphertext
to be refreshed, and let s ∈ Zd

q be a secret key that corresponds to c. This pre-
processing is the same as that in [AP14], so see for further details.

• BootKeyGen(sk, s): Given a secret key sk for our matrix GSW-FHE and
a secret key s ∈ Zd

q for a ciphertext to be refreshed, output a bootstrapping
key. For every i ∈ [t] and j ∈ [d], let πϕi(s j) be the permutation corresponding
to ϕi(s j), and compute

τi, j
R←−SecEncsk(diag(ϕi(s j))),

sski, j
R←−SwitchKeyGen(sk, πϕi(s j)),
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where for a vector x ∈ Zr, diag(x) ∈ Zr×r is the square integer matrix that
has x in its diagonal entries and 0 in the others. In addition, we generate
hints to check equality on packed indicator vectors. For every i ∈ [t] and
x ∈ Zq such that ⌊x⌉2 = 1 2, generate

sskϕi(x)
R←−SwitchKeyGen(sk, πϕi(x)),

where πϕi(x) is the cyclic permutation that maps the (x mod ri)-th row to
the first row in the matrix. To mask the first plaintext slot, generate an
encryption of (1, 0, . . . , 0):

P R←−SecEncsk(diag((1, 0, . . . , 0))).

Output the bootstrapping key

bk := {(τi, j, sski, j, P, sskϕi(x))}i∈[t], j∈[d],x∈Zq:⌊x⌉2=1.

• Bootstrapbk(c): Given a bootstrapping key bk and a ciphertext c ∈ Zd
q,

output the refreshed ciphertext C∗. The decryption of all FHE based on the
standard LWE computes ⌊⟨c, s⟩⌉2. The algorithm Bootstrap consists of two
phases that homomorphically evaluate the inner product and rounding.

Inner Product: For every i ∈ [t], homomorphically compute an en-
cryption of ϕi(⟨c, s⟩). Let h := min{ j ∈ [d] : c j = 1}. For i = 1, . . . , t,
set C∗i := τi,h, and iteratively compute

C∗i
R←−SlotSwitchsski, j(C

∗
i )

for j = h + 1, . . . , d such that c j = 1.

Rounding: For each x ∈ Zq such that ⌊x⌉2 = 1, homomorphically
check equality between x and ⟨c, s⟩, and sum their results. The re-
freshed ciphertext is computed as:

C∗ R←−
⊕

x∈Zq:⌊x⌉2=1

⊙
i∈[t]

(
SlotSwitchsskϕi(x)(C

∗
i )
)
⊙P

. (3.1)

The post-processing is almost the same as that in [AP14] except for the way to
extract a matrix ciphertext. When finishing the bootstrapping procedure, we have
a ciphertext C∗ that encrypts in the first slot the same plaintext as the ciphertext

2Obviously, our procedure can work on not only the rounding function ⌊·⌉2 but also some
arbitrary functions f : Zq → {0, 1}.
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c. A vector ciphertext like [BV11a, BGV12, Bra12] can be obtained to just take
the ℓ − 1-th column vector of C∗, and a matrix ciphertext like [GSW13] can be
obtained by removing from the second row to the r-th row and from the l + 1-th
column to rl-th column, and aggregating the remainders. We can utilize the key-
switching procedure [BV11a, BGV12] for switching from s1 back to the original
secret key s. This requires us to assume circular security.

Our bootstrapping procedure is more time- and space- efficient than that of
[AP14]. The procedure [AP14] encrypts every elements of the permutation ma-
trices corresponding to the secret key elements, and homomorphically evaluates
naive matrix multiplications to obtain encryptions of compositions of permuta-
tions. In our procedure, a permutation is encrypted in one ciphertext, and a com-
position is computed by two homomorphic multiplications. This makes our proce-
dure time-efficient by roughly a O(log2 λ) factor, and space-efficient by a O(log λ)
factor.

3.4.2 Correctness and Security
From the security of our scheme, it is easy to see that our bootstrapping procedure
can be secure by assuming the circular security and DLWE. Correctness holds as
the following lemma.

Lemma 3.4.2. Let sk be the secret key for our scheme. Let c and s be a ciphertext
and secret key described in our bootstrapping procedure. Then, for a bootstrap-
ping key bk

R←−BootKeyGen(sk, s), the refreshed ciphertext C∗ R←−Bootstrapbk(c) en-
crypts ⌊⟨s, c⟩⌉2 ∈ {0, 1} in the first slot.

Proof. From Lemma 3.3.3 and group homomorphism of ϕi, C∗i encrypts ϕi([⟨s, c⟩]q).
Since Zq is isomorphic to Zr1 × · · · ×Zrt by CRT,

⊙
i∈[t](SlotSwitchsskϕi(x)(C

∗
i ))⊙ P

encrypts 1 in the first slot if and only if x = ⟨s, c⟩ mod q. Finally, C∗ encrypts 1 if
and only if ⌊⟨s, c⟩⌉2 = 1. □

Here, we let s be the Gaussian parameter. Recall that n is the LWE dimen-
sion, r is the number of encrypted bits, ℓ = ⌈log Q⌉, N = (n + r) · ℓ, t =
O(log λ/ log log λ), d = Õ(λ) and q = Õ(λ). We estimate the noise growth by
our optimized bootstrapping procedure.

Lemma 3.4.3. For any ciphertext c ∈ {0, 1}d described in our bootstrapping
procedure, the noise in the refreshed ciphertext C∗ R←−Bootstrapbk(c) has inde-
pendent subgaussian entries with parameter O(s

√
nℓdtq), except with probability

2−Ω((n+r)ldt) over the random choice of bk and Bootstrap.

Proof. Since the parenthesized part before the additions in Eq. (3.1) can be
broken down into a sequence of O(dt) homomorphic multiplications, Corollary
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3.3.1 and Lemma 3.2.1 tell us that the term has subgaussian noise with parameter
O(s
√

Ndt), except with probability 2−Ω(Ndt). From the Pythagorean additivity of
subgaussian random variables and N = (n + r) · ℓ, the noise in C∗ are subgaussian
with parameter O(s

√
(n + r)ℓdtq), and so O(s

√
nℓdtq) by the fact n > r. □

From the above lemma, we can see that our procedure refreshes ciphertexts
with error growth by the O(

√
nldtq) factor. Our scheme can evaluate its aug-

mented decryption circuit by choosing a larger modulus than the final noise, and
thus be pure FHE by the Gentry’s bootstrapping theorem and the circular security
assumption.

Theorem 3.4.1. Our optimized bootstrapping scheme can be correct and secure
assuming

• the quantum worst-case hardness of approximating GapSVPÕ(n1.5λ) and SIVPÕ(n1.5λ),

• or the classical worst-case hardness of approximating GapSVPÕ(n2λ)

on any n dimensional lattice.

Proof. By Lemma 3.2.1, to rely on the quantum worst-case hardness, we choose
s = Θ(

√
n). From Lemma 3.4.3, for correctness we only have to select Q =

Ω̃(nλ log Q), which satisfies Q = Õ(nλ). Since the LWE inverse error rate is
1/α = Q/s = Õ(

√
nλ), the security of our bootstrapping scheme is reduced to

GapSVPÕ(n1.5λ) and SIVPÕ(n1.5λ).
In the case of reducing to the classical hardness of the lattice problem, since

1/α = Ω̃(λ
√

n log Q) and we must take Q ≈ 2n/2, the LWE inverse error rate
satisfies 1/α = Ω̃(λ · n). Therefore, the security of our optimized bootstrapping
scheme is reduced to the classical hardness of GapSVPÕ(n2λ). □

Since all known algorithms that approximate GapSVP and SIVP on any n
dimensional lattices to within a poly(n)-factor run in time 2Ω(n), the 2λ hardness
requires us to choose n = Θ(λ). This makes the problems to which the security
is reduced in the quantum case have the approximation factor Õ(n2.5), which is
smaller than Õ(n3), the one of [AP14]’s bootstrapping scheme. In the classical
case, the LWE inverse error rate is 1/α = Ω̃(n2) and hence our approximation
factor is Õ(n3). Furthermore, by selecting a larger dimension n = λ1/ϵ for ϵ > 0
(so at the cost of efficiency), the approximation factor can be Õ(n1.5+ϵ), which is
comparable to the one of [BV14] and so the best known factor of standard lattice-
based PKE. Consequently, our optimized bootstrapping scheme can be as secure
as any other standard lattice-based PKE without successive dimension-modulus
reduction, which is essential in all the known bootstrapping procedures [BV14,
AP14] provided recently.
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3.5 Conclusion of This Chapter
In this chapter, we showed the first construction of FHE that encrypts matrices and
supports homomorphic matrix operations. This is a natural extension of packed
FHE and supports more complicated homomorphic operations. We then showed
that our FHE can be used to optimize the bootstrapping procedure proposed by
Alperin-Sheriff and Peikert [AP14].

New SIMD FHE based on the LWE assumption. The proposed FHE is secure
under the LWE assumption, and the homomorphic SIMD operation algorithms
are very simple: they are just addition and multiplication of two ciphertext matri-
ces. The simplicity of the algorithms leads smaller complexity than the previous
SIMD FHE based on the same security assumption. In particular, our homomor-
phic SIMD multiplication requires Õ(n2.3727) operations while the previous SIMD
FHE requires Õ(n3) operations. The complexity of our FHE is estimated by the
best complexity of the multiplication algorithm between two square matrices. As
the study for the matrix multiplication goes forward, the time complexity of our
homomorphic evaluations will decrease.

Our FHE is an extension of [GSW13], and the construction of [GSW13] has
a great influence on the construction idea of some cryptosystems based on the
LWE such as fully homomorphic signatures [GVW15, FMNP16], attribute based
encryption [BGG+14, BV16, BCTW16], and multilinear maps [GGH15]. There-
fore, our construction idea may also provide a big impact on future cryptographic
constructions based on LWE.

Optimizing Bootstrapping of [AP14]. Using our scheme, we fully sequential-
ized and thus optimized the bootstrapping procedure of [AP14]. We recall the
result of the optimization described in the following theorem:

Theorem 3.5.1. Our optimized bootstrapping scheme can be secure assuming
the hardness of approximating the standard lattice problem to within the factor
Õ(n1.5λ) on any n dimensional lattices.

For 2λ hardness, we need to take n = Ω(λ). Asymptotically minimal selection
of n = Õ(λ) leads to the approximation factor Õ(n2.5) for the underlying worst-case
lattice assumption, which is smaller than Õ(n3), the factor of [AP14]. Using a kind
of dimension leveraging technique: selecting a larger dimension n = λ1/ϵ for ϵ ∈
(0, 1), we can also obtain the best known approximation factor, Õ(n1.5+ϵ), without
successive dimension-modulus reduction, which was essential for achieving the
best factor in the prior works on bootstrapping of standard lattice-based FHE.

Relation with the Replacement of the Random Oracle. The construction of
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our FHE is so similar to a recent multilinear maps construction of Gorbunov
et al [GGH15]. Multilinear maps [GGH13a, CLT13, GGH15] are very power-
ful cryptographic tools that allow us to obtain highly functional cryptographic
primitives such as indistinguishability obfuscation [GGH+13b]. An example ap-
plication of the indisitinguishability obfuscation is to replace the random oracle in
a cryptographic scheme to a concrete hash function [HSW13, FHPS13, HSW14].
From the next chapter, we use the indistinguishability obfuscation to show that
the random oracle of our cryptosystems can be directly replaced by a real hash
function derived from the indistinguishability obfuscation. This guarantees that
our cryptosystems in the following chapters can be at least implemented securely.
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Chapter 4

Tightly Secure Signatures from the
RSA Assumption

In this chapter, we construct a new RSA-based signature scheme that is tightly
secure in the random oracle model. The number of random oracles used in this
scheme is less than that of all previous schemes with the same security guarantee.
We then show that for any PPT adversary there exists a concrete hash function
from indistinguishability obfuscation that can replace the random oracle while
maintaining security. The same statement can be proven for the signatures of
Coron.

4.1 Efficient Digital Signatures

4.1.1 Background
The security of a cryptosystem is guaranteed by a certain computational hardness
assumption. To prove the security of the cryptosystem, we reduce breaking the
security to break the assumption (i.e., to solve the problem assumed to be hard
in the underlying security assumption). There is a gap, which is called reduction
efficiency, between the hardnesses of breaking a cryptosystem and solving a secu-
rity problem. The reduction efficiency is defined as the probability that breaking
security of a cryptosystem leads solving a problem on which the security of the
cryptosystem is based. We say that a reduction from the security of a cryptosystem
to an underlying problem is tight if its reduction efficiency is equal to 1 (i.e., if we
can break the cryptosystem, we can solve the underlying problem with probability
1). If a security reduction is tight, breaking the cryptosystem is as hard as solving
the underlying problem. Hence, if we can prove the security of a cryptosystem by
constructing a tight security reduction, we can see that the cryptosystem can be
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implemented with smaller parameter settings (which leads to smaller key size). In
this chapter, we particularly focus on tightly secure digital signatures based on the
RSA assumption in the random and standard models.

The random oracle model is an idealized paradigm in which hash functions
are viewed as an oracle that outputs a random value for every input query. Bellare
and Rogaway in [BR96] proposed full domain hash (FDH) signatures that are
implemented by the random oracle in the security proof. The reduction efficiency
of the FDH signatures was improved by Coron in [Cor02]. Bellare and Rogaway
[BR96] also proposed a Probabilistic Signature Scheme (PSS) whose security is
tightly reducible to the RSA assumption. Since the PSS is tightly secure only
for long random salts, Coron introduced a probabilistic full-domain hash (pFDH)
implemented by the random oracle to prove that the PSS also has a tight security
reduction for shorter random salts. However, the Coron’s signature scheme has a
complex construction since it uses the random oracle multiple times. The above
signatures are secure in the random oracle model, and their random oracles are
replaced by concrete hash functions when implementing their signatures in the
real world. A security proof for a cryptographic scheme in the random oracle
model does not mean that it is secure in the real world, but it provides some kind
of security guarantee, and it is still important in a practical sense to prove the
security in the random oracle model.

There are some impossibility results [CGH98, GK03, BBP04] that show that
the random oracle of their results cannot be replaced by any concrete hash func-
tion. They not only construct artificial (namely, unnatural) usages of the random
oracle, but also show that there exists an impossibility result in the Fiat-Shamir
heuristic, which is widely used in the real world. In such ways in using the ran-
dom oracle, it may be difficult to show practical importance of the security proofs
in the random oracle model. Therefore, a main issue to consider is how to use the
random oracle to indicate the practical importance. That is, we should tackle a
problem to construct a way to use the random oracle so that it does not lead to im-
possibility results like the above. In this line of research, recently, there have been
some recent studies [HSW13, FHPS13, HSW14] that investigate cases in which
the random oracle is directly replaced with a concrete hash function while main-
taining security. The goal of these studies is to obtain an understanding or findings
regarding the random oracle in the underlying cryptosystems. 1 In particular, it
is an important problem to see whether or not a cryptosystem from the random
oracle remains secure even if the random oracle is replaced by a concrete hash
function. So, we address the following problem:

1 A goal of this chapter is to show that the random oracle used in our constructions can be
replaced by a concrete hash function constructed from indistinguishability obfuscation. It differs
from the work by Sahai and Waters [SW14] that shows which cryptographic components can be
constructed from indistinguishability obfuscation.
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In a digital signature scheme tightly secure based on the RSA
assumption in the random oracle model, Can its random oracle be
replaced with a concrete hash function while maintaining the same

security?

4.1.2 Our Results
In this chapter, we first propose new digital signatures that are tightly secure based
on the RSA assumption in the random oracle model. Our signatures have a sim-
pler construction than the previous tightly secure RSA-based signatures [BR96,
Cor02], since the number of the random oracle used in our signatures is less than
the previous ones. While the Coron’s signatures [Cor02] has the security reduc-
tion whose efficiency depends on the number of adversarial queries to the signing
oracle, the efficiency of the security reduction for our signatures does not depend
on the power of the adversary. In other words, while the security of the Coron’s
signatures depends on the complexity of the adversary, the security of our sig-
natures does not. Additionally, we introduce a new proof technique, called α-β
hiding technique, which has not been used in security proofs of the previous cryp-
tosystems secure in the random oracle model.

Next, we answer the question mentioned in the above: we show that the ran-
dom oracle of our signatures can be directly replaced by a concrete hash function
from indistinguishability obfuscation while maintaining the same security 2. We
also show that the random oracle of the Coron’s signatures [Cor02] can be di-
rectly replaced by a concrete hash function. Therefore, we consider that these
results give some findings for the use of the random oracle in the Coron’s signa-
tures [Cor02].

4.1.3 Our Techniques
Tightly Secure Digital Signatures based on the RSA Assumption in the Ran-
dom Oracle Model. Let (N, e) be a public key and d be a secret key of RSA
encryption 3. Let h be a collision-resistant hash function, and H be a hash func-
tion implemented by the random oracle. Let v0 and v1 be two random integers

2 Indistinguishability obfuscator is thought to be constructed in the standard model (at least
there are no negative results to say that it cannot be constructed in the standard model), but it is
achieved under a very strong computational assumption, and so it is desirable to show that the
indistinguishability obfuscator can be constructed from the weaker assumption. This thesis proves
that the random oracle of our signatures is removable under the existence of indistinguishability
obfuscation.

3 For the mathematics of the RSA assumption, we refer the reader to Definition 4.2.7.
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chosen from Z∗N . For random r ∈ {0, 1}γ (γ is a polynomial for a security parame-
ter) and s ∈ Ze, a signature for plaintext m is a triple (σ, r, s) where σ is computed
as

σ := (v0vh(m)
1 H(r)s)d mod N.

To verify this signature, we check whether or not the following holds:

σe ≡ v0vh(m)
1 H(r)s (mod N).

To prove the security of the above signatures, we introduce a new proof tech-
nique, which is called α-β hiding technique, to simulate responses to oracle queries.
Suppose that the reduction algorithm to the RSA assumption receives an instance
(N, e, y) of the RSA problem. The reduction algorithm first computes v0 := yβ0 mod
N and v1 := yβ1 mod N for β0, β1

U←−{0, 1}3|N | (β0, β1 . 0 (mod e)), where v0 and
v1 are uniformly distributed over Z∗N . To simulate the random oracle, the reduc-
tion first chooses random αi

U←−{0, 1}3|N| (αi . 0 (mod e)), stores triple (ri, yαi mod
N, αi) for random oracle query ri ∈ {0, 1}γ, and defines the random oracle output
as H(ri) := yαi mod N, where H(ri) is also uniformly distributed over Z∗N as well
as v0 and v1. To simulate a response for signing oracle query m j, the reduction
chooses α j

U←−{0, 1}3|N| and computes s j := (−β0 − h(m j)β1)/α j mod e, where for
every s j β0 (and β1) is hidden by α j. From e | β0 + h(m j)β1 + s jα j, the reduction
can compute the corresponding signature

σ j := y(β0+h(m j)β1+s jα j)/e mod N.

The reduction chooses r j
U←−{0, 1}γ, stores (r j, yα j mod N, α j) to a list for the ran-

dom oracle，and defines H(r j) := yα j mod N. The simulated signature (σ j, r j, s j)
for m j satisfies

σe
j ≡ v0vh(m j)

1 H(r j)s j (mod N).

The reduction that simulates the random and signing oracles as above can
break the RSA assumption by using a successful forger. For forgery (m∗, σ∗, r∗, s∗)
and integer α∗ stored as (r∗, yα

∗
mod N, α∗) in the list for the random oracle, e ∤

β0+h(m∗)β1+α
∗s∗ holds with overwhelming probability. Then it holds that (σ∗)e ≡

yK0e+L0 (mod N) for some K0, L0 , 0 ∈ Z. Since this leads (σ∗y−K0)e ≡ yL0

(mod N) and we have gcd(e, L0) = 1, the reduction can efficiently compute x ∈ Z
such that xe ≡ y (mod N).

Replacing the Random Oracle with a Concrete Hash Function. We here
briefly show that the random oracle H of the above signatures can be directly
replaced by a concrete hash function constructed from indistinguishability obfus-
cation and punctured pseudorandom functions. 4

4 For indistinguishability obfuscation and punctured pseudorandom functions, we refer the
reader to Section 4.2.3.
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The reduction algorithm first chooses a key K for a punctured pseudorandom
function F : {0, 1}γ → {0, 1}3|N |, chooses y

U←−Z∗N , and defines a new pseudorandom
function F0 as

F0(K; r) := yF(K;r) mod N.

The reduction publishes as hash function H an obfuscation of the program that
outputs F0(K; r) for input r ∈ {0, 1}γ.

To prove the security, we use a sequence of games. In the following, we
let q be the number of adversarial signing queries. The first game is the EUF-
CMA game. In the second game, the challenger sets q punctures in the domain
of the punctured pseudorandom function. This change does not vary the input
and output of F0. In the third game, a challenger sets as the output of F0 almost
uniformly random values yα j mod N (α j

U←−{0, 1}3|N|, α j . 0 (mod e)). In the last
game, the challenger simulates the signing oracle by setting v0 := yβ0 mod N, v1 :=
yβ1 mod N (β0, β1

U←−{0, 1}3|N|, β0, β1 . 0 (mod e)), and computes s j := (−β0 −
β1h(m j))/α j mod e and σ j := y(β0+β1h(m j)+α j s j)/e mod N in responses of the signing
oracle queries. In this last game, the reduction algorithm can break the RSA
assumption as well as in the random oracle model by using a successful forger
against our signature scheme.

Replacing the Random Oracle of the Coron’s Signature [Cor02] In [Cor02],
Coron used a pFDH to construct tightly secure signatures under the RSA assump-
tion. The Coron’s scheme generates a signature for m as a triple (σ, r, s) where r
and s are random bit strings and σ is computed as

σ := H(m, r, s)d mod N.

We can also show that the pFDH H implemented by the random oracle can also
be replaced by a concrete hash function. In particular, the hash function H is con-
structed as follows: takes as input m, r, s, and outputs v0vh(m)

1 (F0(K; r))s mod N,
where v0, v1

U←−Z∗N are uniformly random elements in Z∗N , h is a collision-resistant
hash function, and F0 is a punctured pseudorandom function defined as F0(K; r) :=
yF(K;r) mod N for some punctured pseudorandom function F : {0, 1}γ → {0, 1}3|N |
and random integer y

U←−Z∗N . The security of this scheme can be proven as well as
the above case when instantiating the random oracle of our signatures.

4.1.4 Organization of This Chapter
In Section 4.2, we introduce mathematical preliminaries for this chapter. In Sec-
tion 4.3, we propose a new efficient digital signature scheme whose security is
tightly reducible to the RSA assumption in the random oracle model. In Section
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4.4, we prove that for any PPT adversary, there exists a concrete hash function
that is constructed from indistinguishability obfuscation, so that it can directly re-
place the random oracle of the scheme in Section 4.3. In Section 4.5, we adapt
the technique of Section 4.4 to replace the pFDH of the Coron’s signatures. In
Section 4.6, we summarize the results achieved in this chapter.

4.2 Preliminaries

4.2.1 Digital Signatures
We here introduce the definition of digital signatures and their security.

Definition 4.2.1 (Digital Signatures). A digital signature scheme is a triple of
three algorithms Σ := (Setup,Sign,Verify) that satisfy the following:

• Setup(1λ): takes as input a security parameter λ, and outputs a pair of
verification and signing keys (vk, sk).

• Signsk(m): takes as input a signing key sk and message m, and outputs a
signature σ for m.

• Verifyvk(m, σ): takes as input a verification key vk, message m, and signa-
ture σ, and outputs 1 if σ is a valid signature for m, and 0 otherwise.

A digital signature scheme Σ is correct if the following holds:

Pr

Verifyvk(m, σ) = 1 :
(vk, sk)

R←−Setup(1λ);

m
U←−M;σ

R←−Signsk(m)

 = 1,

whereM is the message space defined by vk.

To define the security of digital signatures, we consider the following experi-
ment (game) between a challenger and adversary. Let ExpEUF-CMA

Σ,F (λ) be an exper-
iment for a digital signature scheme Σ between a challenger and adversary F .

• Setup phase: The challenger receives a security parameter λ, generates a
pair of verification and signing keys (vk, sk)

R←−Setup(1λ), and sends vk to
the adversary.

• Query phase: The adversary can obtain a signature σ j for m j by sending a
signing query m j (1 ≤ j ≤ q) to the challenger.

• Guess phase: The adversary outputs a signature forgery (m∗, σ∗). The chal-
lenger outputs 1 if m∗ < {m j} j∈[q] and Verifyvk(m∗, σ∗) = 1, and 0 otherwise.
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The advantage of the adversary F , AdvEUF-CMA
Σ,F (·), is defined to be the proba-

bility that the above experiment outputs 1. That is,

AdvEUF-CMA
Σ,F (λ) := Pr[ExpEUF-CMA

Σ,F (λ)→ 1].

We use the advantage of F to define the security of the digital signatures:

Definition 4.2.2. For any PPT algorithm F , a digital signature scheme Σ is EUF-
CMA secure if the following holds:

AdvEUF-CMA
Σ,F (λ) = negl(λ).

4.2.2 Collision-Resistant Hash Function
In this section, we introduce the definition of collision-resistant hash functions.

Definition 4.2.3 (Hash Function Family). A function family {hi : Di → Ri}i∈I is
a hash function family if a tuple of PPT algorithms (Gen,Samp, hi) satisfies the
following:

• Gen(1λ): takes as input a security parameter λ, and outputs an index i ∈ I
such that |i| ≥ λ. The index i ∈ I determines a domain Di with probability
distribution and a range Ri. Then it holds that |Di| ≥ |Ri|.

• Samp(i): takes as input i ∈ I, and outputs a sample fromDi.

• hi(x): takes as input i ∈ I and x ∈ Di, and outputs hi(x) ∈ Ri.

Definition 4.2.4 (Collision-Resistant Hash Function). A hash function family {hi :
Di → Ri}i∈I is collision-resistant if for any PPT algorithmA it holds that

AdvCRHF
A (λ) := Pr

 (x, x∗) ∈ D2
i , x , x∗,

hi(x) = hi(x∗)

∣∣∣∣∣∣ i
R←−Gen(1λ),

(x, x∗)
R←−A(1λ, i)


= negl(λ).

4.2.3 Indistinguishability Obfuscation, Punctured Pseudoran-
dom Function

The concept of indistinguishability obfuscation was first introduced by Barak et
al. in [BGI+01]. Intuitively, an obfuscator is indistinguishability obfuscation if for
all inputs x and two circuits C1,C2 with the same size, the obfuscations of C1 and
C2 are computationally indistinguishable. Garg et al. [GGH+13b] showed that a
candidate of the indistinguishability obfuscator can be constructed in the standard
model. Formally, indistinguishability obfuscator is defined as follows.
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Definition 4.2.5 (Indistinguishability Obfuscator). A uniform PPT algorithm iO
is an indistinguishability obfuscator for a circuit class {Cλ}λ∈N if the following
holds:

• For all λ ∈ N, all C ∈ Cλ, all inputs x,

Pr[C′(x) = C(x) : C′
R←−iO(λ,C)] = 1.

• For any (not necessarily uniform) PPT adversary (Samp,D), there ex-
ists a negligible function α(·) such that the following holds: if Pr[C0(x) =
C1(x) ∀x : (C0,C1, τ)

R←−Samp(1λ)] ≥ 1 − α(λ), then we have

AdviO
Samp,D(λ):=

∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr

[ D(iO(λ,C0), τ)=1:
(C0,C1, τ)

R←−Samp(1λ)

]
− Pr

[ D(iO(λ,C1), τ)=1:
(C0,C1, τ)

R←−Samp(1λ)

]
∣∣∣∣∣∣∣∣∣∣∣∣∣

=negl(λ).

Puncturable pseudorandom functions are pseudorandom functions (PRFs) that
can be defined on all bit strings of a certain length, except for any polynomial-size
set of inputs. A PRF construction from the pseudorandom generator by Goldreich,
Goldwasser and Micali [GGM84] leads a puncturable pseudorandom function that
satisfies the following.

Definition 4.2.6 (Puncturable Pseudorandom Functions). A puncturable family of
PRFs F is given by a triple of PPT algorithms (KeyF ,PunctureF ,EvalF) and a
pair of computable functions (n(·),m(·)), that satisfy the following conditions:

• Functionality preserved under puncturing. For every PPT adversary
(A1,A2) such that A1 outputs a set S ⊆ {0, 1}n(λ) and all x ∈ {0, 1}n(λ) \ S ,
we have that:

Pr

 EvalF(K, x)
= EvalF(KS , x)

:
K

R←−KeyF(1λ);
KS = PunctureF(K, S )

 = 1.

• Pseudorandom at punctured points. For every PPT adversary (A1,A2)
such thatA1 outputs a set S ⊆ {0, 1}n(λ) and state τ, consider an experiment
where K

R←−KeyF(1λ) and KS = PunctureF(K, S ). Then we have

AdvpPRF
A1,A2

(λ):=

∣∣∣∣∣∣ Pr[A2(τ,KS , S ,EvalF(K, S ))=1]

− Pr[A2(τ,KS , S ,U({0, 1}m(λ)·|S |))=1]

∣∣∣∣∣∣
=negl(λ),

where S = {x1, . . . , xk} is the enumeration of the elements of S in lexico-
graphic order, EvalF(K, S ) denotes the concatenation of EvalF(K, x1), . . . ,EvalF(K, xk).

For the sake of ease, we write EvalF(K, x) by F(K; x)
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4.2.4 Hardness Assumptions
Here, we give the definition of the RSA assumption [RSA78].

Definition 4.2.7 (RSA [RSA78]). Let GenRSA be an algorithm that takes as
input security parameter λ and outputs (n, p, q, e), where n = pq, p and q are
primes, and e is a random integer such that gcd(e, ϕ(n)) = 1 5. The RSA problem
is to compute x ∈ Zn such that xe ≡ y (mod n), given (n, e, y) (y

U←−Z∗n). The
advantage of adversaryA for the RSA problem is defined as

AdvRSA
A (λ) := Pr

xe ≡ y (mod n) :
(n, p, q, e)

R←−GenRSA(1λ);

y
U←−Z∗n; x

R←−A(n, e, y)

 .
The RSA assumption holds if for any PPT adversaryA, it holds that AdvRSA

A (λ) =
negl(λ).

4.3 Digital Signature Scheme ΣROM in the Random
Oracle Model

In this chapter, we construct a digital signature scheme whose security is tightly
reducible to the RSA assumption. Our proposed scheme has a simpler construc-
tion than the previous schemes [BR96, Cor02]. In particular, our scheme can
generate signatures via only one random oracle, while the previous PSSs such
as [BR96, Cor02] use two random oracles to generate signatures. We show in
Section 4.3.1 how to construct our signature scheme whose security is proven in
Section 4.3.2.

4.3.1 Construction
Our proposed signature scheme consists of the following three PPT algorithms
ΣROM := (Setup,Sign,Verify):

• Setup(1λ): Generate an instance (N, P,Q, e)
R←−GenRSA(1λ), where e is a

prime number such that |e| = |N| and gcd(e, ϕ(N)) = 1. Compute an integer
d ∈ Z such that ed ≡ 1 (mod ϕ(N)). Let γ := γ(λ) be a polynomial in λ.
Let H : {0, 1}γ → Z∗N be a hash function modeled as the random oracle,
and h : {0, 1}∗ → Ze be a collision-resistant hash function parameterized by
security parameter λ. Choose two integers v0, v1

U←−Z∗N uniformly at random.
Output the verification key vk := (H, h, v0, v1,N, e) and signing key sk := d.

5 When we use GenRSA after Section 4.3, e is a prime number where |e| = |n|.
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• Signsk(m ∈ {0, 1}∗): Choose a random string r
U←−{0, 1}γ and integer s

U←−Ze,
and compute

σ := (v0vh(m)
1 H(r)s)d mod N.

Output (σ, r, s) as a signature for m.

• Verifyvk(m, (σ, r, s)): Output 1 if the following condition holds, and 0 other-
wise:

σe ≡ v0vh(m)
1 H(r)s (mod N).

The correctness of ΣROM can immediately be proven from the equation in
Verify.

Theorem 4.3.1 (Correctness). The signature scheme ΣROM is correct.

Proof. A signature of a message m is a triple (σ, r, s) for randomness r ∈ {0, 1}γ
and s ∈ Ze such that

σ := (v0vh(m)
1 H(r)s)d mod N,

where v0, v1 and N are the public key elements and d is the signing key. Therefore
we have

σe ≡ ((v0vh(m)
1 H(r)s)d)e

≡ v0vh(m)
1 H(r)s mod N (∵ e · d ≡ 1 mod ϕ(N)).

□

4.3.2 Security
In the following, we prove that our proposed signature scheme is EUF-CMA se-
cure under the RSA assumption in the random oracle model. We can also imme-
diately prove that our scheme is also sEUF-CMA secure.

Theorem 4.3.2. If the RSA assumption holds and h is a collision-resistant hash
function, then the proposed signature scheme ΣROM is EUF-CMA secure in the
random oracle model. In particular, for any PPT adversary F , there exists a PPT
algorithm B such that

AdvEUF-CMA
ΣROM ,F (λ) ≤ AdvRSA

B (λ) + AdvCRHF
F (λ) +

1
Θ(2λ)

+
1
2λ
.

We use the sequence of the following games to prove Theorem 4.3.2. For
a security parameter λ ∈ N, let AdvGamei

F (λ) be an advantage of F in Gamei

(i = 0, 1, 2), respectively.

• Game0: This is the same as the original EUF-CMA game, so we have
AdvEUF-CMA

ΣROM ,F (λ) = AdvGame0
F (λ).

48



• Game1: This is the same as Game0 except for how to compute the values
v0 and v1 in the verification key vk and how to reply random and signing
oracle queries.

The challenger of Game1 first chooses a random integer y
U←−Z∗N . Instead

of choosing v0 and v1 uniformly at random, the challenger computes v0 :=
yβ0 mod N, v1 := yβ1 mod N for uniformly random β0, β1

U←−{0, 1}3|N| (β0, β1 .
0 (mod e)).

When the adversaryF queries ri to the random oracle, the challenger returns
H(ri) computed as follows. Suppose that the challenger manages a list of
tuples (ri, ci, αi), which is called the H-List. The challenger returns ci to F
if the H-List already contains a tuple (ri, ci, αi) for query ri, and registers
(ri, ci := yαi mod N, αi) (for αi

U←−{0, 1}3|N | and αi . 0 (mod e)) to the H-List
and returns H(ri) := ci to F otherwise.

WhenF queries m j to the signing oracle, the challenger simulates the oracle
by computing a signature (σ j, r j, s j) as follows. The challenger first chooses
α j

U←−{0, 1}3|N | (α j . 0 (mod e)) uniformly at random, and then computes
s j ∈ Ze such that e | β0+h(m j)β1+ s jα j, that is s j := (−β0−h(m j)β1)/α j mod
e. The challenger computes σ j := yK j mod N for K j := (β0 + h(m j)β1 +

s jα j)/e, chooses a random string r j
U←−{0, 1}γ, and registers a tuple (r j, c j :=

yα j mod N, α j) to the H-List. The challenger returns (σ j, r j, s j) to F as a
signature for m j. Note that (σ j, r j, s j) is a valid signature for m j since σe

j ≡
yβ0+h(m j)β1+s jα j ≡ v0vh(m j)

1 H(r j)s j (mod N).

• Game2: This is the same as Game1 except for aborting the game when
F outputs a forgery (m∗, (σ∗, r∗, s∗)) such that m∗ < {m j} j∈[q] and h(m∗) ∈
{h(m j)} j∈[q].

Theorem 4.3.2 can be proven from the following Lemmas 4.3.1, 4.3.2, and
4.3.3.

Lemma 4.3.1.
|AdvGame0

F (λ) − AdvGame1
F (λ)| ≤ 1

2λ
.

Proof. The values v0 and v1 in Game1 are statistically indistinguishable from
those values in Game0. Let K, L(, 0) ∈ Z be integers such that 23|N| = Kϕ(N)+L.
The statistical distance between the distribution U({0, 1}3|N|) mod ϕ(N) obtained
by choosing an element from {0, 1}3|N | uniformly at random and reducing it mod-
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ulo ϕ(N), and the uniform distribution U(Zϕ(N)) over Zϕ(N) satisfies

∆(U({0, 1}3|N|) mod ϕ(N),U(Zϕ(N)))

=
1
2

L(
K + 1
23|N | −

1
ϕ(N)

) +
1
2

(ϕ(N) − L)(
1
ϕ(N)

− K
23|N| )

=
L(ϕ(N) − L)

23|N|ϕ(N)

Therefore, the distributions of v0 and v1 in Game0 and Game1 are statistically
indistinguishable. Similar to the above, we can show that in Game0 and Game1

the distributions of replies by F to random oracle queries are also statistically
indistinguishable.

Since the distribution of α j mod e is statistically indistinguishable from the
uniform distribution over Ze, the distributions of s j in Game0 and Game1 are also
statistically indistinguishable. Let K′, L′(, 0) ∈ Z be integers such that 23|N| =

K′e + L′. The statistical distance between the distribution U({0, 1}3|N|) mod e ob-
tained by choosing an element from {0, 1}3|N | uniformly at random and reducing it
modulo e, and the uniform distribution U(Ze) over Ze satisfies

∆(U({0, 1}3|N |) mod e,U(Ze))

=
1
2

L′(
K′ + 1
23|N | −

1
e

) +
1
2

(e − L′)(
1
e
− K′

23|N | )

=
L′(e − L′)

23|N|e
.

Suppose that F queries to the signing oracle at q times. The advantages of F
in Game0 and Game1 satisfy

|AdvGame0
F (λ) − AdvGame1

F (λ)| ≤ 2 · L(ϕ(N) − L)
23|N |ϕ(N)

+ q · L′(e − L′)
23|N |e

≤ 1
2λ
.

□

Lemma 4.3.2.

|AdvGame1
F (λ) − AdvGame2

F (λ)| ≤ AdvCRHF
F (λ).

Proof. Let F1 and F2 be the events where Game1 and Game2 output 1, respec-
tively. Let E2 be an event in which the challenger aborts in Game2. Since Game2

equals Game1 if the challenger does not abort in Game2, we have Pr[F2∧¬E2] =
Pr[F1 ∧ ¬E2]. From the difference lemma, we have |Pr[F1] − Pr[F2]| < Pr[E2],
and so

|AdvGame1
F (λ) − AdvGame2

F (λ)| ≤ AdvCRHF
F (λ).

□
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Lemma 4.3.3.
AdvGame2

F (λ) ≤ AdvRSA
B (λ) +

1
Θ(2λ)

.

Proof. We prove this lemma by constructing a PPT algorithm B that uses F to
solve the RSA problem when given the RSA instance (N, e, y).

Suppose that F finally outputs a forgery (m∗, (σ∗, r∗, s∗)) (m∗ < {m j} j∈[q]) in
Game2. We now consider the following (q + 1) × (q + 3) matrix A for tuples
(m j, (σ j, r j, s j)) (where j = 1, . . . , q, m j is a queried message, and (σ j, r j, s j) is a
reply from the signing oracle for m j) and the forgery (m∗, (σ∗, r∗, s∗)) of F :

A :=


1 h(m1) s1 0 · · · 0
1 h(m2) 0 s2 0 · · · 0

...
1 h(mq) 0 · · · 0 sq 0
1 h(m∗) 0 · · · 0 s∗


.

Then A satisfies the following equation:

A



β0

β1

α1
...
αq

α∗


≡


0
...
0

S := β0 + h(m∗)β1 + s∗α∗ mod e

 (mod e), (4.1)

where α∗ is obtained from (r∗, yα
∗

mod N, α∗) in the H-List. Because of gcd(e, ϕ(N)) =
1, the values in Ze are hidden from the view of F . We want to show that S :=
β0 + h(m∗)β1 + s∗α∗ mod e is distributed uniformly over Ze from the view of F .
To do so, we consider the following two cases:

1. When r∗ < {r j} j∈[q], S is (almost) uniformly distributed over Ze since rank(A) =
q + 1 and α∗ is (almost) uniformly distributed over Ze.

2. When r∗ ∈ {r j} j∈[q] (that is, r∗ = r j for some j ∈ [q]）, the equation (4.1)
leads to

1 h(m1) s1 0 · · · 0
1 h(m2) 0 s2 0 · · · 0

...
1 h(mi) 0 · · · 0 si 0 · · · 0

...
1 h(mq) 0 · · · 0 sq

1 h(m∗) 0 · · · 0 s∗ 0 · · · 0

︸                                                       ︷︷                                                       ︸
=:A′


β0

β1

α1
...
αq


≡


0
...
0
S

 (mod e).
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Let A∗ be the q × (q + 2) matrix obtained by extracting q rows from the
top of A′, and (β0, β1, α1, . . . , αq) is distributed uniformly over the kernel
Ker( fA∗) of the linear transformation fA∗(x) := A∗x mod e. Since Ker( fA∗)
is the dimension of 2, for vectors b1,b2 ∈ Zq+2

e and integers c1, c2 ∈ Ze,
we have (β0, β1, α1, . . . , αq) = c1 · b1 + c2 · b2 ∈ Zq+2

e , where c1 and c2

are distributed uniformly since (β0, β1, α1, . . . , αq) are (almost) uniformly
distributed over Ker( fA∗). Let a be the q+1-th column of A′. For any output
m∗, s∗ (m∗ < {m j} j∈[q]) of F , a is linearly independent of all column vectors
of A∗ because of h(m∗) < {h(m j)} j∈[q]. Since S = ⟨a, (β0, β1, α1, . . . , αq)⟩ =
c1 · ⟨a, b1⟩ + c2 · ⟨a,b2⟩ mod e, ⟨a,b1⟩ and ⟨a,b2⟩ are not equal to 0, and c1

and c2 are (almost) uniformly distributed over Ze, S is (almost) uniformly
distributed over Ze from the view of F .

For any forgery (m∗, (σ∗, r∗, s∗)) of F , the probability of e | β0+h(m∗)β1+s∗α∗ is at
most 1/e. If we have e ∤ β0 + h(m∗)β1 + s∗α∗, then there exist K0, L0 , 0 ∈ Z such
that β0+h(m∗)β1+s∗α∗ = K0e+L0. Since we have (σ∗)e ≡ v0vh(m∗)

1 H(r∗)s∗ ≡ yK0e+L0

(mod N), it holds that (σ∗y−K0)e ≡ yL0 (mod N). B can efficiently compute a, b ∈
Z such that ae+bL0 = 1 because of gcd(e, L0) = 1. Since we have (σ∗y−K0)beyae ≡
yae+bL0 ≡ y (mod N) (that is, ((σ∗y−K0)bya)e ≡ y (mod N)), x := (σ∗y−K0)bya

satisfies xe ≡ y (mod N). B outputs x as a solution to the given RSA problem.
Then the following equation holds:

AdvRSA
B (λ) ≥ AdvGame2

F (λ)
(
1 − 1

e

)
,

and so we can obtain

AdvGame2
F (λ) ≤ AdvRSA

B (λ) +
1
Θ(2λ)

.

□

4.4 Digital Signature Scheme ΣS M in the Standard
Model

In this chapter, we show that for any PPT adversary there exists a concrete hash
function that can replace the random oracle of the signature scheme ΣROM pro-
posed in Section 4.3. Such a hash function is built from indistinguishability ob-
fuscation [GGH+13b,GGH15]. The statement proven in this chapter gives a guar-
antee that the construction of ΣROM does not lead to the impossibility results such
as in [CGH98, GK03, BBP04]. The construction of ΣS M is given in Section 4.4.1,
and its security is proven in Section 4.4.2.
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Figure 4.1: Hash� �
Constants: RSA modulus N, key K of pseudorandom function F, and y ∈ Z∗N .
Input: r ∈ {0, 1}γ。

1. Output F0(K; r).� �
4.4.1 Construction
We show that there exists a concrete hash function that can replace the random
oracle of ΣROM while maintaining security. To do this, we construct a program
Hash as described in Figure 4.1, where if we let K

R←−KeyF(1λ) be a key for the
PRF F : {0, 1}γ → {0, 1}3|N |, and let y

U←−Z∗N , then the PRF F0 : {0, 1}γ → Z∗N is
defined as:

F0(K; r) := yF(K;r) mod N.

We set an obfuscation of the program Hash, H := iO(Hash), as the hash function
H in the standard model. To prove that the signature scheme with H instead
of the random oracle is EUF-CMA secure, we use obfuscations of the programs
described in Figure 4.2 and 4.3, where q is the number of signing queries made
by the adversary.

4.4.2 Security
In Theorem 4.3.2, we prove that the security of the proposed scheme ΣROM is
tightly reducible to the RSA assumption in the random oracle model. In the fol-
lowing theorem, we show that even if the random oracle of ΣROM is replaced by
a concrete hash function, the signature scheme remains secure. Particularly, we
show that for any PPT adversaryF , there exists a concrete hash function H (whose
construction depends on the runtime of F) such that it can replace the random or-
acle of ΣROM while maintaining the security. In the following, we call ΣS M the
signature scheme in which the random oracle of ΣROM is replaced by the hash
function H.

Theorem 4.4.1. If the RSA assumption holds, h is a collision-resistant hash func-
tion, iO is an indistinguishability obfuscator, and F0 is an puncturable pseudo-
random function, for any PPT algorithm F there exists a hash function H that
satisfies the following: for some PPT algorithms Samp,D,A1,A2 and B it holds
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� �
Constants: RSA modulus N, set S := {r j} j∈[q] of punctured points, punctured
key KS , random integer y ∈ Z∗N , and {c j := F0(K; r j)} j∈[q].
Input r ∈ {0, 1}γ.

1. If r = r j for some j ∈ [q], output c j,

2. else output F0(KS ; r).� �
Figure 4.2: Hash functionHash∗� �

Constants: RSA modulus N, set S := {r j} j∈[q] of punctured points, punctured
key KS , random integer y ∈ Z∗N , and {c j := yα j mod N} j∈[q].
Input: r ∈ {0, 1}γ.

1. If r = r j for some j ∈ [q], output c j,

2. else output F0(KS ; r).� �
Figure 4.3: Hash function Hash∗∗

that

AdvEUF-CMA
Σ2,F (λ) ≤ AdviO

Samp,D(λ)+AdvpPRF
A1,A2

(λ)+AdvRSA
B (λ)+AdvCRHF

F (λ)+
1
Θ(2λ)

+
1
2λ
,

where we have e = Θ(2λ).

We use the sequence of the following games to prove Theorem 4.4.1. For
security parameter λ ∈ N, let AdvGamei

F (λ) be the advantage of F in Gamei (i =
0, 1, 2, 3, 4).

• Game0: This is the same as the original EUF-CMA game, so we have
AdvEUF-CMA

Σ2,F (λ) = AdvGame0
A (λ).

• Game1: This is the same as Game0 except that the challenger generates an
obfuscated program of Hash∗ instead of Hash.

• Game2: This is the same as Game1 except that the challenger generates
an obfuscated program of Hash∗∗ instead of Hash∗. Here the challenger
chooses random integers α j

U←−{0, 1}3|N| ( j ∈ [q]) and sets {yα j mod N} j∈[q] as
constants of Hash∗∗.

54



• Game3: This is the same as Game2 except for the way to compute v0 and
v1 and to reply to signing queries. The challenger chooses a random integer
y

U←−Z∗N . Instead of choosing v0 and v1 uniformly at random, the challenger
chooses β0, β1

U←−{0, 1}3|N| (β0, β1 . 0 (mod e)) uniformly at random, and
sets v0 := yβ0 mod N, v1 := yβ1 mod N.

Let m1, . . . ,mq be messages queried by F . For the j-th query m j, the
challenger computes s j ∈ Ze such that e | β0 + β1h(m j) + s jα j, that is,
s j := (−β0 − β1h(m j))/α j mod e. Let K j := (β0 + β1h(m j) + s jα j)/e. The
challenger sets σ j := yK j mod N, and returns (σ j, r j, s j) (where r j is a punc-
tured point of F0) as a signature for m j. The triple (σ j, r j, s j) satisfies

σe
j ≡ v0vh(m j)

1 H(r j)s j (mod N),

and so it is a valid signature for m j.

• Game4: This is the same as Game3 except that the challenger aborts if the
forgery (m∗, (σ∗, r∗, s∗)) ofF satisfies m∗ < {m j} j∈[q] and h(m∗) ∈ {h(m j)} j∈[q].

To prove Theorem 4.4.1, we must prove the following four lemmas.

Lemma 4.4.1.

|AdvGame1
F (λ) − AdvGame0

F (λ)| = AdviO
Samp,D(λ).

Proof. To prove this lemma, we use F to construct an adversary (Samp,D) for
an indistinguishability obfuscator iO.

Samp(1λ) first generates (N, P,Q, e)
R←−GenRSA(1λ) and computes an integer

d ∈ Z such that ed ≡ 1 (mod ϕ(N)). It then builds the programs of Hash and
Hash∗, where the programs are padded so that both are the same size. Let h :
{0, 1}∗ → Ze be a collision-resistant hash function parameterized by λ. Samp(1λ)
chooses random integers v0, v1

U←−Z∗N , and outputs C0 := Hash, C1 := Hash∗, and
τ := (h, v0, v1,N, e, d).

By construction, C0 and C1 always behave identically for every input. With
suitable padding, both C0 and C1 are the same size.

The algorithm D takes as input τ and either the obfuscation H of C0 or C1. It
sets the verification key vk := (H, h, v0, v1,N, e), and invokes the adversary F by
giving vk to him. For a signing query m j ( j ∈ [q]) made by F , D uses sk := d
to generate a valid signature (σ j, r j, s j) for m j. F finally outputs (m∗, (σ∗, r∗, s∗)),
and wins if Verifyvk(m∗, (σ∗, r∗, s∗)) = 1. D outputs 1 if F wins, and 0 otherwise.

By the construction of D, it holds that Pr[D(H, τ) → 1] = AdvGame0
F (λ) if

H := iO(C0), and Pr[D(H, τ)→ 1] = AdvGame1
F (λ) if H := iO(C1). Therefore,

AdviO
Samp,D(λ) = |AdvGame1

F (λ) − AdvGame0
F (λ)|.

□
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Lemma 4.4.2.

|AdvGame1
F (λ) − AdvGame2

F (λ)| = AdvpPRF
A1,A2

(λ).

Proof. To prove this lemma, we use the forgerF to construct an adversary (A1,A2)
that breaks the pseudorandom property at punctured points of F0.

The algorithm A1 simply chooses r j
U←−{0, 1}γ ( j = 1, . . . , q) uniformly at ran-

dom, and outputs S := {r j} j∈[q].
The algorithmA2 takes as input a set of punctured points S , punctured key KS ,

and either {c j := F0(KS ; r j)} j∈[q] or {c j
U←−Z∗N} j∈[q]. It follows the algorithm Setup

of ΣS M to generate keys vk := (H, h, v0, v1,N, e) and sk := d, where the obfuscated
program H is obtained by using iO to obfuscate the program of the hash function
constructed from the input {c j} j∈[q]. A2 invokes F , which makes signing queries
m j ( j ∈ [q]). It uses sk to make a valid signature (σ j, r j, s j) for m j.

The forgerF finally outputs (m∗, σ∗, r∗, s∗), and wins if Verifyvk(m∗, σ∗, r∗, s∗) =
1. A2 outputs 1 if F wins, and 0 otherwise.

In the case where the adversary A2 is given {c j := F0(KS ; r j)} j∈[q], it holds
that Pr[A2(S ,KS ,EvalF0(K, S )) → 1] = AdvGame1

F (λ) since the hash function H is
the obfuscation of Hash∗, that is, H = iO(Hash∗). For α j

U←−{0, 1}3|N|, the distri-
bution of yα j mod N is statistically indistinguishable from uniform on Z∗N . In the
case that A2 is given {c j

U←−Z∗N} j∈[q], we have Pr[A2(S ,KS ,U({0, 1}q·|N|)) → 1] =
AdvGame2

F (λ) because of H = iO(Hash∗∗). Therefore, we have

AdvpPRF
A1,A2

(λ) = |AdvGame1
F (λ) − AdvGame2

F (λ)|.

□

Lemma 4.4.3.
|AdvGame2

F (λ) − AdvGame3
F (λ)| ≤ 1

2λ
.

Proof. We can prove this lemma in a way similar to Lemma 4.3.1. □

Lemma 4.4.4.

|AdvGame3
F (λ) − AdvGame4

F (λ)| ≤ AdvCRHF
F (λ).

Proof. We can prove this lemma in a way similar to Lemma 4.3.2. □

Lemma 4.4.5.
AdvGame4

F (λ) ≤ AdvRSA
B (λ) +

1
Θ(2λ)

.
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Proof. We use the adversary F in Game4 to construct a PPT algorithm B that
breaks the RSA assumption. B takes as input an instance of the RSA problem
(N, e, y), where e is a prime number such that gcd (ϕ(N), e) = 1 and y ∈ Z∗N .
F finally outputs the forgery (m∗, (σ∗, r∗, s∗)). B first computes α∗ := F(K; r∗).

Similar to the proof of Lemma 4.3.3, (β0 + h(m∗)β1 + s∗α∗) mod e is (almost)
uniformly distributed over Ze, so the probability of e | β0+h(m∗)β1+s∗α∗ is at most
1/e. The fact that e ∤ β0 + h(m∗)β1 + s∗α∗ leads to the fact that there exist K0, L0(,
0) ∈ Z such that β0 + h(m∗)β1 + s∗α∗ = K0e + L0. Since (σ∗)e ≡ v0vh(m∗)

1 H(r∗)s∗ ≡
yK0e+L0 (mod N), we have (σ∗y−K0)e ≡ yL0 (mod N). By gcd(e, L0) = 1, B can
efficiently compute a, b ∈ Z such that ae+bL0 = 1. This leads to (σ∗y−K0)beyae ≡ y
(mod N), and so we have ((σ∗y−K0)bya)e ≡ y (mod N). B can efficiently obtain a
solution to the given RSA problem x = (σ∗y−K0)bya that satisfies xe ≡ y (mod N).

From the above, the advantages of F and B satisfy

AdvRSA
B (λ) ≥ AdvGame4

F (λ)(1 − 1
e

),

and so we can obtain

AdvGame4
F (λ) ≤ AdvRSA

B (λ) +
1
Θ(2λ)

.

□

4.5 Instantiating pFDH with a Concrete Hash Func-
tion

In this chapter, we show that for any PPT adversary there exists a concrete hash
function that can directly replace the pFDH of [Cor02] (modeled as the random
oracle). We give the construction of the proposed signatures in Section 4.5.1. We
then present the construction of the concrete hash function and prove the security
in Section 4.5.2.

4.5.1 Construction
The proposed signature scheme ΣCoron := (Setup,Sign,Verify) consists of the
following three algorithms:

• Setup(1λ): Generate an RSA instance (N, P,Q, e)
R←−GenRSA(1λ), where e

is a prime number such that |e| = |N| and gcd(e, ϕ(N)) = 1. Compute an
integer d ∈ Z such that ed ≡ 1 (mod ϕ(N)). Let γ = γ(λ) be a polynomial
in λ. Generate a PRF key K

R←−KeyF(1λ) for F : {0, 1}γ → {0, 1}3|N|. Choose
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a random integer y
U←−Z∗N , and define the following pseudorandom function

F0 : {0, 1}γ → Z∗N:
F0(K; r) := yF(K;r) mod N.

Let h : {0, 1}∗ → Ze be a collision-resistant hash function parameterized
by λ. Choose random integers v0, v1

U←−Z∗N . Create an obfuscation H :=
iO(pFDH) of the full-domain hash pFDH of Figure 4.4. The obfuscated
program H maps elements in {0, 1}γ to elements in Z∗N . Output the verifica-
tion key vk := (H,N, e) and signing key sk := d.

• Signsk(m ∈ {0, 1}∗): Choose r
U←−{0, 1}γ and s

U←−Ze uniformly at random, and
compute

σ := (H(m, r, s))d mod N.

Output (σ, r, s) as a signature for m.

• Verifyvk(m, (σ, r, s)): Output 1 if the following holds, and 0 otherwise:

σe ≡ H(m, r, s) (mod N).

The correctness of ΣCoron can immediately be proven from the equation in
Verify.

Theorem 4.5.1 (Correctness). The above signature scheme ΣCoron is correct.

Proof. A signature of a message m is a triple (σ, r, s) for randomnesses r ∈ {0, 1}γ
and s ∈ Z such that

σ := (H(m, r, s))d mod N,

where d is the signing key. Therefore, we have

σe ≡ ((H(m, r, s))d)e

≡ H(m, r, s) mod N (∵ e · d ≡ 1 mod ϕ(N)).

□

4.5.2 Security
In this section, we show that the signature scheme ΣCoron described in Section
4.5.1 is unforgeable. To prove that, we use the three full-domain hashes of Figure
4.4, 4.5, and 4.6.
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� �
Constants: RSA modulus N, PRF key K, and random integers v0, v1, y ∈ Z∗N .
Inputs: m ∈ {0, 1}∗, r ∈ {0, 1}γ and s ∈ Ze.

1. Output v0vh(m)
1 (F0(K; r))s mod N.� �

Figure 4.4: pFDH pFDH� �
Constants: RSA modulus N, set of punctured points S := {r j} j∈[q], punctured
PRF key KS , random integers v0, v1, y ∈ Z∗N , and {c j := F0(K; r j)} j∈[q].
Inputs: m ∈ {0, 1}∗, r ∈ {0, 1}γ and s ∈ Ze.

1. If r = r j for some j ∈ [q], output v0vh(m)
1 (c j)s mod N and exit.

2. Output v0vh(m)
1 (F0(KS ; r))s mod N.� �

Figure 4.5: pFDH pFDH∗

Theorem 4.5.2. If the RSA assumption holds, h is a collision-resistant hash func-
tion, iO is an indistinguishability obfuscator, and F0 is a puncturable pseudoran-
dom function, for any PPT algorithm F there exists a hash function that satisfies
the following: for some PPT algorithms Samp,D,A1,A2 and B it holds that

AdvEUF-CMA
ΣCoron,F (λ) ≤ AdviO

Samp,D(λ)+AdvpPRF
A1,A2

(λ)+AdvRSA
B (λ)+AdvCRHF

F (λ)+
1
Θ(2λ)

+
1
2λ
,

where the public key e in the RSA assumption satisfies e = Θ(2λ).

We use a sequence of games to prove this theorem. The proof is almost the
same as in Section 4.4.2. For a security parameter λ, let AdvGamei

F (λ) be an advan-
tage of F in Gamei (i = 0, 1, 2, 3, 4).

• Game0: This is the same as the original EUF-CMA game. That is, we have
AdvEUF-CMA

ΣCoron,F (λ) = AdvGame0
F (λ).

• Game1: This is the same as Game0 except that the challenger creates an
obfuscation of pFDH∗ instead of pFDH.

• Game2: This is the same as Game1 except that the challenger creates an
obfuscation of pFDH∗∗ instead of pFDH∗, where the challenger chooses
α j

U←−{0, 1}3|N| uniformly at random and sets {yα j mod N} j∈[q] as constants of
pFDH∗∗.

59



� �
Constants: RSA modulus N, set of punctured points S := {r j} j∈[q], punctured
PRF key KS , random integers v0, v1, y ∈ Z∗N , and {c j := yα j mod N} j∈[q].
Inputs: m ∈ {0, 1}∗, r ∈ {0, 1}γ and s ∈ Ze.

1. If r = r j for some j ∈ [q], output v0vh(m)
1 (c j)s mod N and exit.

2. Output v0vh(m)
1 (F0(KS ; r))s mod N.� �

Figure 4.6: pFDH pFDH∗∗

• Game3: This is the same as Game2 except for the ways to compute v0 and
v1 in vk and to make replies to the signing queries. The challenger first
chooses a random integer y

U←−Z∗N . It then chooses β0, β1
U←−{0, 1}3|N| (β0, β1 .

0 (mod e)), and computes v0 := yβ0 mod N and v1 := yβ1 mod N.

Suppose that F makes signing queries m1, . . . ,mq. For the j-th signing
query m j, the challenger computes s j ∈ Ze such that e | β0 + β1h(m j) +
s jα j, that is, the challenger computes s j := (−β0 − βh(m j))/α j mod e. The
challenger computes σ j := yK j mod N for K j := (β0 + β1h(m j) + s jα j)/e,
and returns (σ j, r j, s j) to F where r j is a punctured point of F0.

• Game4: This is the same as Game3 except that the challenger aborts if the
forgery (m∗, (σ∗, r∗, s∗)) ofF satisfies m∗ < {m j} j∈[q] and h(m∗) ∈ {h(m j)} j∈[q].

To prove Theorem 4.5.2, we must prove the following four lemmas. They
can be proven in a way similar to Lemmas 4.4.1, 4.4.2, 4.4.3, 4.4.4, and 4.4.5,
respectively.

Lemma 4.5.1.
|AdvGame1

F (λ) − AdvGame0
F (λ)| = AdviO

D (λ).

Proof. To prove this lemma, we use F to construct an adversary (Samp,D) for
an indistinguishability obfuscator iO.

Samp(1λ) first generates (N, P,Q, e)
R←−GenRSA(1λ) and computes an integer

d ∈ Z such that ed ≡ 1 (mod ϕ(N)). It then builds the programs of pFDH and
pFDH∗, where the programs are padded so that both are the same size. Let h :
{0, 1}∗ → Ze be a collision-resistant hash function parameterized by λ. Samp(1λ)
chooses random integers v0, v1

U←−Z∗N , and outputs C0 := pFDH, C1 := pFDH∗, and
τ := (N, e, d).

By construction, C0 and C1 always behave identically on every input. With
suitable padding, both C0 and C1 are the same size.
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The algorithm D takes as input τ and either the obfuscation H of C0 or C1. It
sets the verification key vk := (H,N, e), and invokes the adversary F by giving vk
to him. For a signing query m j ( j ∈ [q]) made by F , D uses sk := d to generate
a valid signature (σ j, r j, s j) for m j. F finally outputs (m∗, (σ∗, r∗, s∗)), and wins if
Verifyvk(m∗, (σ∗, r∗, s∗)) = 1. D outputs 1 if F wins, and 0 otherwise.

By the construction of D, it holds that Pr[D(H, τ) → 1] = AdvGame0
F (λ) if

H := iO(C0), and Pr[D(H, τ)→ 1] = AdvGame1
F (λ) if H := iO(C1). Therefore,

AdviO
Samp,D(λ) = |AdvGame1

F (λ) − AdvGame0
F (λ)|.

□

Lemma 4.5.2.

|AdvGame2
F (λ) − AdvGame1

F (λ)| = AdvpPRF
A1,A2

(λ).

Proof. To prove this lemma, we use the forgerF to construct an adversary (A1,A2)
that breaks the pseudorandom property at punctured points of F0.

The algorithm A1 simply chooses r j
U←−{0, 1}γ ( j = 1, . . . , q) uniformly at ran-

dom, and outputs S := {r j} j∈[q].
The algorithmA2 takes as input a set of punctured points S , punctured key KS ,

and either {c j := F0(KS ; r j)} j∈[q] or {c j
U←−Z∗N} j∈[q]. It follows the algorithm Setup

of ΣCoron to generate keys vk := (H,N, e) and sk := d, where the obfuscated
program H is obtained by using iO to obfuscate the program of the hash function
constructed from the input {c j} j∈[q]. A2 invokes F , which makes signing queries
m j ( j ∈ [q]). It uses sk to make a valid signature (σ j, r j, s j) for m j.

The forgerF finally outputs (m∗, σ∗, r∗, s∗), and wins if Verifyvk(m∗, σ∗, r∗, s∗) =
1. A2 outputs 1 if F wins, and 0 otherwise.

In the case that the adversary A2 is given {c j := F0(KS ; r j)} j∈[q], it holds that
Pr[A2(S ,KS ,EvalF0(K, S )) → 1] = AdvGame1

F (λ) since the hash function H is the
obfuscation of pFDH∗, that is, H = iO(pFDH∗). For α j

U←−{0, 1}3|N|, the distribu-
tion of yα j mod N is statistically indistinguishable from uniform on Z∗N . In the
case that A2 is given {c j

U←−Z∗N} j∈[q], we have Pr[A2(S ,KS ,U({0, 1}q·|N|)) → 1] =
AdvGame2

F (λ) because of H = iO(pFDH∗∗). Therefore, we have

AdvpPRF
A1,A2

(λ) = |AdvGame1
F (λ) − AdvGame2

F (λ)|.

□

Lemma 4.5.3.
|AdvGame2

F (λ) − AdvGame3
F (λ)| ≤ 1

2λ
.
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Proof. We can prove this lemma in a way similar to Lemma 4.3.1. □

Lemma 4.5.4.

|AdvGame3
F (λ) − AdvGame4

F (λ)| ≤ AdvCRHF
F (λ).

Proof. We can prove this lemma in a way similar to Lemma 4.3.2. □

Lemma 4.5.5.
AdvGame4

F (λ) ≤ AdvRS A
B (λ) +

1
Θ(2λ)

.

Proof. We use the adversary F in Game4 to construct a PPT algorithm B that
breaks the RSA assumption. B takes as input an instance of the RSA problem
(N, e, y), where e is a prime number such that gcd (ϕ(N), e) = 1 and y ∈ Z∗N .
F finally outputs the forgery (m∗, (σ∗, r∗, s∗)). B first computes α∗ := F(K; r∗).

Similar to the proof of Lemma 4.3.3, (β0 + h(m∗)β1 + s∗α∗) mod e is (almost)
uniformly distributed over Ze, so the probability of e | β0+h(m∗)β1+s∗α∗ is at most
1/e. The fact that e ∤ β0 + h(m∗)β1 + s∗α∗ leads to the fact that there exist K0, L0(,
0) ∈ Z such that β0 + h(m∗)β1 + s∗α∗ = K0e + L0. Since (σ∗)e ≡ H(m∗, r∗, s∗) ≡
yK0e+L0 (mod N), we have (σ∗y−K0)e ≡ yL0 (mod N). By gcd(e, L0) = 1, B can
efficiently compute a, b ∈ Z such that ae + bL0 = 1. This leads (σ∗y−K0)beyae ≡ y
(mod N), and so we have ((σ∗y−K0)bya)e ≡ y (mod N). B can efficiently obtain a
solution to the given RSA problem x = (σ∗y−K0)bya that satisfies xe ≡ y (mod N).

From the above, the advantages of F and B satisfy

AdvRSA
B (λ) ≥ AdvGame4

F (λ)(1 − 1
e

),

and so we can obtain

AdvGame4
F (λ) ≤ AdvRSA

B (λ) +
1
Θ(2λ)

.

□

4.6 Conclusion of This Chapter
In this chapter, we proposed new digital signatures that are tightly secure based
on the RSA assumption in the random oracle model. The proposed signatures
have a simpler construction than the previous tightly secure RSA-based signa-
tures [BR96,Cor02], since fewer random oracles are used in our signatures. While
Coron’s signatures [Cor02] has the security reduction whose efficiency depends
on the number of adversarial queries to the signing oracle, the security reduction
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of our signatures does not. In other words, while the security of the Coron’s sig-
natures depends on the complexity of the adversary, the security of our signatures
is independent of the adversary. Additionally, we introduced a new proof tech-
nique called the α-β hiding technique, which is not used in the security proofs of
previous cryptosystems.

There are some impossibility results [CGH98, GK03, BBP04] to show that
the random oracle of their constructions cannot be replaced by any concrete hash
function. It is important to understand how we should use the random oracle so
that cryptographic constructions do not lead to such impossibility results. There
are some studies [HSW13, FHPS13, HSW14] that investigate the case where we
can directly replace the random oracle with a concrete hash function while main-
taining the same security. The goal of these studies is to obtain understandings
or findings regarding the random oracle in the underlying cryptosystems. In par-
ticular, it is an important problem to see whether or not a cryptosystem from the
random oracle remains secure even if the random oracle is replaced by a concrete
hash function.

We showed that the random oracle of our signatures can be directly replaced by
a concrete hash function from indistinguishability obfuscation while maintaining
the security. We also showed that the random oracle of the Coron’s signatures
[Cor02] can also be directly replaced by a concrete hash function. Therefore,
we consider that these results provide some findings about the use of the random
oracle in the Coron’s signatures [Cor02].
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Chapter 5

Efficient Blind Message Signatures
from the RSA Assumption

In this chapter, we introduce a new notion blind message signatures, which has
the following features. A signer S executes a blind signature protocol, P, with an
userU and S is divided into two parts, S0 and S1. S0 accepts a request from the
user U and knows the identity of U. S0 then runs the sub-protocol of P with U
which is P excepting the final round. S1 executes the final round of P, i.e., S1 just
sends a value toU.

We construct efficient blind message signatures from the RSA assumption in
the random oracle model. We then show that for any PPT adversary there exists
a concrete hash function from indistinguishability obfuscation that replaces the
random oracle with maintaining security. Based on our blind message signatures,
we can derive partially blind message signatures, and concurrently secure blind
message signatures by combining with the Pailler encryption.

5.1 Efficient Blind Message Signatures

5.1.1 Background
A blind signature protocol is a cryptographic protocol between two parties (user
and signer) first introduced by Chaum [Cha82]. In this protocol, the user requests
a signature for his message, and receives the signature from the signer, where
the signed message is hidden from the signer (blindness), and the number of sig-
natures generated by the user is not larger than the number of runs of the blind
signature protocol (unforgeablity). In particular, because of the blindness, blind
signatures have an important role in applications such as the electronic cash and
electronic voting.
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Chaum’s blind signatures [Cha82] based on the RSA signatures [RSA78] was
not provably secure. In [BNPS03], Bellare et al. showed that the Chaum’s blind
signature scheme is provably secure, but the underlying assumption is not stan-
dard.

Secure blind signatures from the standard assumptions in the random oracle
model were proposed in [PS96, Poi98, AO00, Abe01, AO01], the most efficient
blind signatures among these studies are the ones by Abe [Abe01].

In ordinary blind signatures, a signer cannot control attributes (e.g., the date of
issue or expiration) of the signatures. For instance, if the signer wants to generate
signatures that are valid during a certain period, the signer must change the public
key every term. A way to deal with this problem is to use the partially blind
signature scheme that was proposed by Abe and Fujisaki [AF96]. Partially blind
signatures are blind signatures in which a signer can explicitly contain common
public information. Since ordinary blind signatures are partially blind signatures
where the common information is the null string, the notion of partially blind
signatures can be seen as a generalization of blind signatures. Some partially
blind signatures under the standard assumptions were proposed in [AO00,Abe01,
Fis06, SC12, BPV12], and the most efficient ones are those by Abe [Abe01].

When we implement blind signatures in an application such as an electronic-
cash or electronic voting system, it is important to consider concurrent executions
of the blind signature protocol. Suppose that a signer is a server that concurrently
runs signature generation protocols with multiple users. A malicious signer may
break the blindness of the participant users (and know the secret messages of
the users), or malicious users may cooperate to extract information regarding the
secret key of the signing server. Concurrently-secure blind signatures under the
standard assumptions were proposed in [BFPV11, BPV12, SC12].

The above blind signatures from the standard assumptions are proved under
the discrete-log type assumptions. There are no known efficient blind signatures
that are secure based on the RSA assumption, which is the most widely used
assumption (so it can be thought of as the most reliable assumption), except for
the blind signatures obtained by applying the transformation of [Poi98] to the
Okamoto-Guillou-Quisquater blind signatures [PS96].

5.1.2 Our Results
As seen in the last section, various blind signature schemes were proposed until
now, but there are no known efficient constructions based on the RSA assumption.
Since the RSA assumption, which is thought as the most reliable assumption,
guarantees securities of various cryptosystems, constructing a cryptosystem under
the RSA assumption is a significantly important task in cryptography.

In this chapter, we introduce a new notion blind message signatures, which
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has the following features. A signer S executes a blind signature protocol, P,
with an user U and S is divided into two parts,S0 and S1. S0 accepts a request
from the userU and knows the identity ofU. S0 then runs the sub-protocol of P
withU (say P0) which is P excepting the final round. S1 executes the final round
of P (say P1), i.e., S1 just sends a value toU.

Here, unless S0 and S1 collaborate, the protocol satisfies the requirements of
blind signatures. Message m is hidden before useU releases the message m with
a signature σ even if S0 and S1 collude.

We now assumes that the link between the message m and the userU revealed
if S0 and S1 collude. Then we show an application of this concept, blind message
signature. First, we assume that S0 and S1 do not collude usually. For example, in
this application, S0 knows the identity of user, U, and receives a signing request
with some value B from U. S0 then runs sub-protocol P0. After completing P0

with U, S0 gives a string t to S1. Here, S0 keeps (U, t). S1, given t from S0,
executes P1 , i.e., computes Y and sends it to U (without knowing the identity of
U). Here, S1 keeps (t,Y). User U, given Y , computes signature σ for message
m. If U keeps message m in secret for a certain period, (for example, m is a
secret patent document), message m is kept secret even if S0 and S1 collude.
After a period, U releases m along with a signature σ. Since S0 and S1 do not
collude usually, the privacy of (m, σ) is preserved, i.e., it is a blind signature. If a
warrant of arrest is given to userU under suspicion of e.g., money laundering and
illegal dealing of drugs, the police orders S0 and S1 to provide the record on U.
Given (U, t) and (t, Y) from S0 and S1,, the police traces (m, σ) to be the signature
message ofU from information (U,Y).

Our blind message signatures are proven secure under the RSA assumption in
the random oracle model. Particularly, we present blind message signatures, par-
tially blind message signatures, and concurrently secure blind message signatures.

We first construct blind message signatures from the signatures described in
Chapter 4, so this blind message signature scheme is secure in the random ora-
cle model. There are known results [CGH98, GK03, BBP04] that show artificial
constructions that are secure in the random oracle model but there are no concrete
functions that can replace the random oracle while maintaining the scheme secure.
As well as the signatures of Chapter 4, the random oracle of our blind message
signatures can be replaced by a concrete hash function. We can easily construct a
partially blind message signatures from our blind message signatures, and make
our blind message signatures concurrently secure by using the Paillier encryption
in a similar way to [Oka06].
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5.1.3 Our Techniques
Blind Message Signatures BSROM based on the RSA Assumption. The scheme
BSROM is constructed from the digital signatures ΣROM described in Chapter 4.
Let n be a RSA modulus, (e, d) be integers such that ed ≡ 1 (mod ϕ(n)), h be a
collision-resistant hash function, and H be a random oracle. The verification key
is a tuple of (H, h, v0, v1, n, e) where v0, v1

U←−Z∗n are random integers, and d is the
signing key. A signature for m of [HAO16b] is a triple (σ, r, s) where r ∈ {0, 1}γ
(γ := γ(λ) for security parameter λ) and s ∈ Ze are randomly chosen, and σ is
computed as

σ := (v0vh(m)
1 H(r)s)d mod n.

To verify the signatures, check whether or not it holds that

σe ≡ v0vh(m)
1 H(r)s (mod n).

We construct the blind message signatures from the above signatures. The
user chooses a random integer R

U←−Z∗n, computes B := v0vh(m)
1 Re mod n, and sends

B to the signer. The user also proves that he knows (R, h(m)) for B by the wit-
ness indistinguishable proofs like [Oka92]. In particular, the user sends with B
a commitment x := vr1

1 re
2 mod n (r1

U←−Ze, r2
U←−Z∗n) of the witness indistinguishable

proof, and receives a challenge k
U←−Ze from the signer. The user sends a response

(y1 := r1 + kh(m) mod e, y2 := r2Rk mod n) to the signer. The signer checks
whether it holds that xBk ≡ vk

0vy1
1 ye

2 (mod n). If the signer accepts this witness
indistinguishable proof, the signer computes Y := (BH(r)s)d mod n for random
r

U←−{0, 1}γ and s
U←−Ze, and sends a tuple (Y, r, s) to the user. The user computes

σ := Y/R mod n and obtains a signature (σ, r, s) for m. Correctness of this scheme
is immediate from the underlying signatures.

We here consider only about the unforgeability of this scheme since blind-
ness of this scheme is immediate from the perfect witness indistinguishability
of [Oka92]. The unforgeability of BSROM is reduced to the EUF-CMA security
of the underlying signatures. The reduction F simulates the signature generation
protocol with the adversarial user U∗. The reduction first executes the signature
generation protocol as the signer, and obtains a witness (R, h(m)) for B by using
the witness extractor against the witness indistinguishable proof of [Oka92]. The
reduction obtains a signature (σ, r, s) by querying h(m) to the signing oracle , com-
putes Y := σR mod n, and sends (Y, r, s) toU∗. The protocol messages by F and
U∗ are equally distributed as the real ones, so F completely simulates the signa-
ture generation protocol withU∗. Let qS be a number of queries to the signing ora-
cle. The adversaryU∗ finally outputs signature forgeries {(m∗j, (σ∗j, r∗j , s∗j))} j∈[qS+1].
The reduction F outputs (m∗j, (σ

∗
j, r
∗
j , s
∗
j)) for j ∈ [qS + 1] such that h(m∗j) is not

queried to the signing oracle. Therefore, F can break the unforgeability of the

68



underlying signatures at least with probability that U∗ breaks the unforgeability
of our blind message signatures.

Partially Blind Message Signatures PBSROM based on the RSA Assumption.
We convert the blind message signature scheme BSROM to the partially blind mes-
sage signature scheme PBSROM. Let info be a common information between
the user and signer. The differences between PBSROM and BSROM are as fol-
lows. The partially blind message signature scheme PBSROM additionally out-
puts a random integer v2

U←−Z∗n. In the signature generation protocol, the user
sends B := v0vh(m)

1 vh(info)
2 Re mod n and proves that he knows (R, h(m), h(info)) for

B by using a witness indistinguishable proof. Particularly, the user sends x :=
vr1

1 vr2
2 re

3 mod n (r1, r2
U←−Ze, r3

U←−Z∗n) as a commitment of the witness indistinguish-
able proof, and receives a challenge k

U←−Ze from the signer. The user sends a
response (y1 := r1 + k · h(m) mod e, y2 := r2 + k · h(info) mod e, y3 := r3Rk mod n)
to a signer, and checks whether it holds that xBk ≡ vk

0vy1
1 vy2

2 ye
3 (mod n). The other

processes of PBSROM are the same as BSROM.
The blindness of this partially blind message signature scheme is also im-

mediate from the perfect witness indistinguishability of the internal witness in-
distinguishable proof system. The unforgeability of PBSROM is proven by re-
ducing it to the unforgeability of the above BSROM. When the reduction al-
gorithm F receives a public key of BSROM, (H, h, v0, v1, n, e), as its input, F
gives the adversary U∗ for PBSROM (H, h, v0, v1, v2, n, e) as a public key where
v2 := ve

1 mod n. To simulate the signature generation protocol of PBSROM with
U∗, the reduction F executes the signature generation protocol of BSROM with
the challenger. Here, F passes to U∗ the protocol messages from the chal-
lenger, but F modifies the messages from U∗ and sends them to the challenger.
In particular, from the response (y1, y2, y3) of U∗ for the challenge k, F com-
putes y′3 := vy2

1 y3 mod n and gives (y1, y′3) to the challenger. Since it holds that
vk

0vy1
1 (y′3)e ≡ xBk (mod n), the challenger accepts F whenever the response from

U∗ is valid. Therefore, the reduction can correctly simulate the signature genera-
tion protocol with U∗. If F runs the signature generation protocol qS times, U∗
finally outputs qS+1 forgeries {(m̂∗i , info∗i , (σ

∗
i , r
∗
i , s
∗
i ))}i∈[qS+1]. For every i ∈ [qS+1],

let m∗i := eh(info∗i ) + h(m̂∗i ). If there exists i, j ∈ [qS + 1] (i , j) such that
m∗i = m∗j, F computes d := (h(info∗i ) − h(info∗j))/(h(m̂∗j) − h(m̂∗i )), and uses d as
the secret key of BSROM to generate qS + 1 signatures. Otherwise, F outputs
{(m∗i , (σ∗i , r∗i , s∗i ))}i∈[qS+1] as forgeries. Hence, F can break the security of BSROM

at least with the probability thatU∗ breaks the security of PBSROM.

Concurrently Secure Blind Message Signatures CBSROM based on the RSA
Assumption. We use the Paillier encryption to make our blind message signatures
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concurrently secure in the CRS model in the same way as [Oka06]. In particular,
we change the witness indistinguishable proof of BSROM. In BSROM, a commit-
ment of a witness is computed as B := v0vh(m)

1 Re mod n, but in the concurrently
secure scheme CBSROM, we set g := ve

1 mod n and B := v0vh(m)
1 gR mod n for a

random integer R
U←−Ze. This allows us to encrypt R by the Paillier encryption, and

in the proof of unforgeability the reduction can obtain R by decrypting a Paillier
encryption with its secret key contained in the trapdoor information of the CRS.
Other processes of the reduction algorithm are the same as in [Oka06].

5.1.4 Organization of This Chapter
In Section 5.2, we introduce a definition of (partially) blind message signatures
. In Section 5.3, we construct the blind message signatures secure based on the
RSA assumption in the random oracle model. The blind message signatures are
constructed from the digital signatures proposed in [HAO16b]. We also show that
the random oracle of this blind message signatures can be replaced by a concrete
hash function constructed by using indistinguishability obfuscation. In Section
5.4, we convert the proposed blind message signatures to the partially blind ones,
and prove their security. In Section 5.5, we also convert in the same way as in
[Oka06] the blind message signatures described in 5.3 to concurrently secure blind
message signatures. In Section 5.6, we summarize the results described in this
chapter.

5.2 Preliminaries

5.2.1 Partially Blind Message Signatures
In this section, we introduce the definition of partially blind message signatures.
Suppose that a signer and user in advance agree on a common information when
issuing partially blind message signatures. When the information info is the null
string ⊥, then the scheme defined in the following is an ordinal blind message
signature scheme. Therefore, the definition of partially blind message signatures
includes the definition of ordinal blind message signatures.

Definition 5.2.1 (Partially Blind Message Signatures). Partially blind message
signature scheme PBS consists of four (interactive) algorithms (Turing machines)
(KeyGen,S,U,Verify).

• KeyGen is a PPT algorithm that takes as input security parameter λ, and
outputs a pair of public and secret keys (vk, sk).
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• (S,U) is a pair of probabilistic interactive Turing machines. Each of them
has a public information tape, private input tape, private random tape, pri-
vate work tape, private output tape, public output tape, and input/output
communication tape. Here, the random tape and input tape are read-only,
the output tape is write-only, the private work tape can be read-write. The
public input tape ofU contains vk generated by KeyGen(1λ) and info, and
the public input tape of S contains info. The private input tape of S contains
sk, and that of U contains message m. U and S engage in the signature
issuing protocol and stop in polynomial time in λ. When U and S stop,
the public output tape of S contains either completed or not-completed.
Similarly, the private output tape ofU contains either ⊥ or (m, σ).

• Verify is a PPT algorithm that takes as input vk and (info,m, σ), and outputs
either 0 or 1.

Definition 5.2.2 (Correctness). When S and U execute a signature issuing pro-
tocol for common input (vk, info), with the probability of at least 1 − 1/λc for
sufficiently large n and some constant c, S outputs completed and U outputs
(m, σ) such that Verify(vk, info,m, σ) = 1, where the probability is taken over the
randomness of KeyGen,S andU.

Partially Message Blindness. Without loss of generality, we assume that in the
signature issuing protocol, P, between S and U, the final round is from S to U.
Then, let P0 be the sub-protocol of P except the final round and P1 be the final
round. Let S be (S0,S1) such that S0 executes P0 with U, and S1 executes P1

withU, where S0 sends string t to S1 after executing P0 (i.e., S1, given t, sends a
value toU).

To define message blindness for a blind message signature scheme, we con-
sider the following experiment Expblind

S∗0,PBS(λ) between adversary S∗0, (honest) S1

and usersU0,U1.

1. The adversary S∗0(sk, info) outputs vk, (m0,m1).

2. Set up the input tapes ofU0 andU1 as follows:

• Choose b ∈ {0, 1} at random, and put mb and m1−b on the private input
tapes ofU0 andU1, respectively.

• Put (info, vk) on the public input tapes ofU0 andU1.

• Randomly choose the contents of the private random tapes of U0 and
U1.
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3. S∗0 engages in protocol P0 withU0 andU1, and S1 engages in protocol P1

withU0 andU1.

4. If U0 and U1 output valid signatures (info,mb, σb) and (info,m1−b, σ1−b),
give 1 to S∗0. Give ⊥ to S∗0 otherwise.

5. S∗0 outputs b′ ∈ {0, 1}.

6. Output 1 if b = b′, and 0 otherwise.

We define the advantage of the adversary S∗0 in the message blindness experiment
as follows:

Advblind
S∗0,PBS(λ) := 2 · Pr[Expblind

S∗0,PBS(λ)→ 1] − 1,

where the probability is taken over randomness of S∗0,S1,U0,U1.

Definition 5.2.3 (Partial Message Blindness). If it holds that AdvnblindS∗,PBS(λ) =
negl(λ) for any PPT algorithm S∗0, the partially blind message signature scheme
PBS is partially message blind. In addition, if it holds that Advblind

S∗0,PBS(λ) = 0 for
any algorithm S∗0, the partially blind message signature scheme PBS is perfect
message blind.

Unforgeability To define unforgeability of blind message signature, we consider
the following experiment Expun f orge

U∗,PBS(λ) between adversaryU∗ and a signer S.

1. (vk, sk) is generated by KeyGen(1λ), vk is put on the public input tapes of
U∗ and S, and sk is put on the private input tape of S.

2. For each engagement of the signature issuing protocol with S, U∗ outputs
common information info, which is put on the public input tape of S. Then,
U∗ engages in the signature issuing protocol with S in a concurrent and
interleaving way.

3. For each info, let ℓinfo be the number of executions of the signature issuing
protocol in which S outputs completed when info is given on the input tape.
(We define ℓinfo = 0 for info that does not appear in the input tape of S.) For
info = ⊥, we also define ℓ⊥ in the same way.

4. U∗ outputs ℓ signatures (info,m1, σ1), . . . , (info,mℓ, σℓ).

5. Output 1 if the following hold, and 0 otherwise.

• ℓ > ℓinfo.

• For any (i, j) (i , j, i, j ∈ {1, . . . , ℓ}), mi , m j.
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• For any i ∈ [ℓ], Verifyvk(info,mi, σi) = 1.

The advantage of the adversaryU∗ is defined as

Advun f orge
U∗,PBS(λ) := Pr[Expun f orge

U∗,PBS(λ)→ 1],

where the probability is taken over the randomness ofU∗,S and G.

Definition 5.2.4 (Unforgeability). For any PPT algorithm U∗, if it holds that
Advun f orge

U∗,PBS(λ) = negl(λ), then a partially blind message signature scheme PBS
is unforgeable.

5.2.2 DCR Assumption
We introduce the decisional composite residuosity (DCR) assumption. To do that,
we first define the notion of the n-th residue.

Definition 5.2.5 (n-th residue). An integer z ∈ Z is said to be a n-th residue
modulo n2 if there exists an integer r ∈ Z∗n2 such that z ≡ rn (mod n2).

The DCR assumption is the following computational hardness assumption.

Definition 5.2.6 (DCR assumption). Let nRes(n2) be the set of n-th residue mod-
ulo n2, and GenMod be an algorithm that takes security parameter λ and out-
puts (n, p, q) where n = pq and p, q are primes. Given n and z ∈ Z∗n2 where
(n, p, q)

R←−GenMod(1λ), the DCR problem is to distinguish whether z is a random
element of Z∗n2 or nRes(n2) ⊆ Z∗n2 . The advantage of adversary A for the DCR
problem is defined as follows.

AdvDCR
A (λ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr

A(n, z)← 1

∣∣∣∣∣∣∣ (n, p, q)
R←−GenMod(1λ);

z
U←−nRes(n2)


− Pr

A(n, z)← 1

∣∣∣∣∣∣∣ (n, p, q)
R←−GenMod(1λ);

z
U←−Zn2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The DCR assumption holds if for any PPT adversaryA, it holds that AdvDCR

A (λ) =
negl(λ).

5.3 RSA-based Blind Message Signatures in the Ran-
dom Oracle Model

In this chapter, we first build the four-move blind message signature scheme based
on the RSA assumption in the random oracle model. We then show that for any
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PPT adversary there exists a concrete hash function, which is constructed from
indistinguishability obfuscation, that can replace the random oracle as well as in
Section 4.4. One can find in Section 5.3.1 the construction in the random oracle
model, and Section 5.3.2 describes how to instantiate the random oracle.

5.3.1 The Blind Message Signature Scheme BSROM in the Ran-
dom Oracle Model

Construction. Our proposed blind message signature scheme BSROM = (KeyGen,U,S,Verify)
consists of four algorithms. The key generation and verification algorithms, KeyGen
and Verify, are the same as those in ΣROM except that KeyGen outputs a collision-
resistant hash function h : {0, 1}∗ → Ze as an additional verification key. We here
describe only the signature generation protocol.

1. U chooses a random integer R
U←−Z∗n and computes B as follows:

B := v0vh(m)
1 Re mod n.

U proves to S thatU knows (R, h(m)) for B using the witness indistinguish-
able proof as follows:

(a) U chooses random integer r1
U←−Ze and r2

U←−Z∗n, and computes

x := vr1
1 re

2 mod n.

U sends x to S.

(b) S chooses a random integer k
U←−Ze, and sends it to U.

(c) U computes
y1 := r1 + kh(m) mod e,

y2 := r2 · Rk mod n,

and sends (y1, y2) to S.

(d) S acceptsU if the following holds, and rejects it otherwise:

xBk ≡ vk
0vy1

1 ye
2 (mod n).

2. If S acceptsU, S chooses r
U←−{0, 1}γ and s

U←−Ze at random, computes Y :=
(B · H(r)s)d mod n, and sends (Y, r, s) toU.

3. U computes σ := Y/R mod n, and outputs (σ, r, s).
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From the correctness of ΣROM, it is immediate that BSROM also holds correct-
ness.

Security. In the following, we prove the security of BSROM.

Theorem 5.3.1. The proposed scheme BSROM is perfectly blind.

Proof. We show that the view of the adversary S∗0 is independent of b ∈ {0, 1} in
the experiment of message blindness Expblind

S∗0,BSROM
(λ).

B, x, y1, and y2 are independent of the message m since B := v0vh(m)
1 Re mod n,

x := vr1
1 re

2 mod n, y1 := r1+k·h(m) mod e, and y2 := r2Rk mod n for R
U←−Z∗n, r1

U←−Ze

and r2
U←−Z∗n. From the independence of B, we can see that Y := (B ·H(r)s)d mod n

is also independent of m, which leads us to the signature σ := Y/R mod n is also
independent of m.

From the above, the view of S∗0 in the signature generation protocol with either
U0 orU1 is independent of b in Expblind

S∗0,BSROM
(λ). Therefore, we have Advblind

S∗0,BS(λ) =
0 for any (not necessarily PPT) S∗0. □

To prove the unforgeability of BSROM, we introduce the definition of a syn-
chronized run of cryptographic protocols. Clearly the synchronized run is a gen-
eralization of the parallel and sequential runs.

Definition 5.3.1 (Synchronized run). Suppose a protocol between two parties,
Alice and Bob. In a round of the protocol, Alice and Bob exchange messages
a, b, c, . . . , d, where the first move is sent from Alice (i.e., Alice sends a and Bob
returns b etc.). We now consider q rounds of the protocol execution. Here a tuple
(ai, bi, ci, . . . , di) is the exchanged messages in the i-th round (i = 1, . . . , q). We
say that a protocol between Alice and Bob is executed in a synchronized run of
q rounds of the protocol, if the q rounds of the protocol consist of L sequential
intervals and each interval, or the j-th interval ( j = 1, . . . , L), consists of the
parallel run of q j (q j ∈ {1, . . . , q}) rounds of the protocol, q = q1 + q2 + · · · + qL.
Therefore, the first interval consists of: the first move from Alice is (a1, a2, . . . , aq1),
the second move from Bob is (b1, b2, . . . , bq1), and so on. After completing the first
interval, the second interval starts and consists of: the first move from Alice is
(aq1+1, aq1+2, . . . , aq1+q2), the second move from Bob is (bq1+1, bq1+2, . . . , bq1+q2), and
so on.

In the following, we prove the unforgeability of the proposed blind message
signature scheme BSROM in a synchronized run.

Theorem 5.3.2. If the signature scheme ΣROM is EUF-CMA secure in the random
oracle model, and h is a collision-resistant hash function, then proposed blind
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message signature BSROM is unforgeable against an L-interval synchronized run
of adversaries in the random oracle model. In particular, for any PPT adversary
U∗, there exists a PPT algorithm F such that

Advun f orge
U∗,BSROM

≤ 8(L + 1)
L

AdvEUF-CMA
F ,ΣROM

(λ) + AdvCRHF
U∗ (λ).

Proof. To prove this theorem, we give the algorithm F that uses the adversarial
forger U∗ for BSROM to forge signatures of ΣROM. Suppose that F is given vk′ =
(H, v0, v1, n, e) from the challenger of the EUF-CMA game for ΣROM and makes
signing queries qS times, thenU∗ and F run the signature generation protocol qS

times.
In the signature generation protocol with B, the reduction F can use the

knowledge extractor for the witness indistinguishable proof to compute the wit-
ness (R, ĥ := h(m)) (h is a collision) for B. In particular, F first obtains (B, x) by
invokingU∗ with inputs vk := (vk′, h) and a randomness. F then gives a random
challenge k

U←−Ze to U∗, which returns a response (y1, y2). F executes the signa-
ture generation protocol with U∗ up to the output of the commitment (B, x), and
gives a new challenge k′

U←−Ze toU∗, which returns a new response (y′1, y
′
2). Then,

it holds that

vk
0vy1

1 ye
2(B−1)k ≡ x ≡ vk′

0 vy′1
1 (y′2)e(B−1)k′ (mod n).

If we let ∆y1 := y1 − y′1，∆y2 := y2/y′2 mod n，∆k := k − k′, then we have

B∆k ≡ v∆k
0 v∆y1

1 (∆y2)e (mod n).

Here, we let z := 1/∆k mod e (i.e., z∆k = 1 + K · e for some K ∈ Z) and ĥ :=
z∆y1 mod e (i.e., z∆y1 = ĥ + K′ · e for some K′ ∈ Z). Then we have

B ≡ v0vĥ
1(vK

0 vK′
1 B−K∆y2)e (mod n).

Therefore, F can compute R := vK
0 vK′

1 B−K∆y2 mod n，ĥ := z∆y1 mod e to obtain
(R, ĥ) such that B ≡ v0vĥ

1Re (mod n).
Suppose that F and U∗ perform an L-interval synchronized run of the blind

message signature generation protocol, and the j-th interval consists of a parallel
run of q j rounds of the protocol, where qS = q1 + · · · + qL.
F works as follows in the synchronized run of the signature generation proto-

col withU∗.

1. The randomness of KeyGen, U∗, and F is determined at random, where
random qS challenges (k1, . . . , kqS ) of F are also determined.
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2. In the j-th interval of the synchronized run, F uses (kQ j+1, . . . , kQ j+q j) (Q j :=
q1+ · · ·+q j−1 and Q1 := 0) to run the signature generation protocol, and ob-
tains the responses (y1, y2)Q j+1, . . . , (y1, y2)Q j+q j ofU∗ for (kQ j+1, . . . , kQ j+q j).

3. F checks the validity of the responses from U∗. If they are valid, then F
rewinds the protocol to the beginning of the j-th interval (the point where
U∗ outputs the commitments (B, x)Q j+1, . . . , (B, x)Q j+q j of the witness indis-
tinguishable proof). Otherwise, F halts.

F sends random challenges (k′Q j+1, . . . , k
′
Q j+q j

) (k j , k′j,∀ j ∈ [Q j + 1,Q j +

q j]), and obtains the responses (y1, y2)′Q j+1, . . . , (y1, y2)′Q j+q j
. F checks their

validity. If they are valid, thenF computes the witnesses {(R̂i, ĥi)}i∈[Q j+1,Q j+q j].
Otherwise, F returns to the beginning of this step.

4. For every i ∈ [Q j + 1,Q j + q j], F makes queries ĥi to the signing oracle,
and obtains (σi, ri, si). F computes Yi := R̂iσi mod N, and gives (Yi, ri, si)
toU∗.

5. U∗ finally outputs qS+1 forgeries ((m∗1, σ
∗
1, r
∗
1, s
∗
1), . . . , (m∗qS+1, σ

∗
qS+1, r

∗
qS+1, s

∗
qS+1)).

U∗ outputs m∗i ,m
∗
j ∈ {0, 1}∗ such that h(m∗i ) = h(m∗j) for some i , j ∈ [qS+1]

with a probability of at most AdvCRHF
U∗ (λ).

6. F outputs (h(m∗j), σ
∗
j, r
∗
j , s
∗
j) for j ∈ [qS + 1] such that h(m∗j) < {hi}i∈[qS ].

We can estimate the probability that F can forge signatures of ΣROM similar
to [Oka06, Theorem 4]:

Advun f orge
U∗,BSROM

(λ) ≤ 8(L + 1)
L

· AdvEUF-CMA
F ,ΣROM

(λ) + AdvCRHF
U∗ (λ).

□

The following corollary can immediately be proven from Theorems 5.3.2 and
4.3.2.

Corollary 5.3.1. If the RSA assumption holds, and h is a collision-resistant hash
function, then the blind message signature scheme BSROM is unforgeable against
an L-interval synchronized run of adversaries in the random oracle model. In
particular, for any PPT adversaryU∗, there exists a PPT algorithm B such that

Advun f orge
U∗,BSROM

(λ) ≤ 8(L + 1)
L

(
AdvRSA

B (λ) +
1
Θ(2λ)

+
1
2λ

)
+ AdvCRHF

U∗ (λ),

where e = Θ(2λ).
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5.3.2 Instantiating the Random Oracle of BSROM

Construction. A concrete hash function that can replace the random oracle of
BSROM is constructed in the same way as in Section 4.4.

Security. The security of BSS M can be proven in the same way as in Theorems
5.3.1 and 5.3.2.

Theorem 5.3.3. The proposed blind message signature BSS M is perfectly message
blind.

Theorem 5.3.4. If the signature scheme BSS M is EUF-CMA secure in the stan-
dard model, and h is a collision-resistant hash function, then the proposed blind
message signature scheme BSS M is unforgeable against an L-interval synchro-
nized run of adversaries in the standard model. In particular, for any PPT adver-
saryU∗, there exists a PPT algorithm F such that

Advun f orge
U∗,BSS M

(λ) ≤ 8(L + 1)
L

· AdvEUF-CMA
F ,ΣS M

(λ) + AdvCRHF
U∗ (λ).

The following corollary can immediately be proven from Theorems 5.3.4 and
4.4.1.

Corollary 5.3.2. If the RSA assumption holds, h is a collision-resistant hash func-
tion, iO is an indistinguishability obfuscator, and F0 is a puncturable pseudoran-
dom function, then the proposed blind message signature scheme BSS M is un-
forgeable against an L-interval synchronized run of adversaries in the standard
model. In particular, for any PPT adversaryU∗, there exists a hash function that
satisfies the following: for some PPT algorithms Samp,D,A1,A2,B such that

Advun f orge
U∗,BSS M

(λ) ≤ 8(L + 1)
L

(
AdviO

Samp,D(λ) + AdvpPRF
A1,A2

(λ)

+ AdvRSA
B (λ) +

1
Θ(2λ)

+
1
2λ

)
+ AdvCRHF

U∗ (λ),

where e = Θ(2λ).

5.4 The Partially Blind Message Signature Scheme
PBSROM

In this chapter, we build a partially blind message signature scheme based on the
RSA assumption in the random oracle model. We can also modify the proposed
scheme to be secure in the standard model as in Section 5.3.2. We show in Sec-
tion 5.4.1 how to construct the partially blind message signature scheme whose
security is proven in Section 5.4.2.
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5.4.1 Construction
The proposed partially blind message signature scheme PBSROM = (KeyGen,U,S,Verify)
consists of the following four algorithms:

• KeyGen(1λ): Generate an RSA instance (n, p, q, e)
R←−GenRSA(1λ), where

e is a prime number such that |e| = |n| and gcd(e, ϕ(n)) = 1. Compute
an integer d ∈ Z such that ed ≡ 1 (mod ϕ(n)). Let H be a hash function
modeled as the random oracle, and h : {0, 1}∗ → Ze be a collision-resistant
hash function parameterized by λ. Let γ := γ(λ) be a polynomial in λ.
Choose random integers v0, v1, v2

U←−Z∗n. Output the verification key vk :=
(H, h, v0, v1, v2, n, e) and signing key sk := d.

• Signature generation protocol:

1. U chooses a random integer R
U←−Z∗n and computes B as follows:

B := v0vh(m)
1 vh(info)

2 Re mod n.

U proves to S thatU knows (R, h(m), h(info)) for B using the follow-
ing witness indistinguishable proof.

(a) U chooses random integers r1, r2
U←−Ze, and r3

U←−Z∗n, computes

x := vr1
1 vr2

2 re
3 mod n,

and sends x to S.
(b) S chooses a random integer k

U←−Ze, and sends it toU.
(c) U computes

y1 := r1 + k · h(m) mod e,
y2 := r2 + k · h(info) mod e,

y3 := r3Rk mod n,

and sends (y1, y2, y3) to S.
(d) S acceptsU if the following holds, and rejects it otherwise:

xBk ≡ vk
0vy1

1 vy2
2 ye

3 (mod n).

2. If S accepts U, then S chooses r
U←−{0, 1}γ and s

U←−Ze randomly, com-
putes Y := (B · H(r)s)d mod n, and sends (Y, r, s) toU.

3. U computes σ := Y/R mod n and outputs (σ, r, s).

• Verifyvk(m, info, (σ, r, s)): Output 1 if the following holds, and 0 otherwise:

σe ≡ v0vh(m)
1 vh(info)

2 H(r)s (mod n).
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5.4.2 Security
Theorem 5.4.1. The proposed partially blind message signature scheme PBSROM

is perfectly message blind.

Proof. This can be proven in the same way as in Theorem 5.3.1. □

Theorem 5.4.2. If the blind message signature scheme BSROM is unforgeable
against an L-interval synchronized run of adversaries in the random oracle model,
and h is a collision-resistant hash function, then the proposed partially blind mes-
sage signature scheme PBSROM is unforgeable against an L-interval synchronized
run of adversaries in the random oracle model. In particular, for any PPT algo-
rithmU∗, there exists a PPT algorithm F such that

Advun f orge
U∗,PBSROM

(λ) ≤ Advun f orge
F ,BSROM

(λ) + AdvCRHF
U∗ (λ).

Proof. To prove this theorem, we construct an adversary F for BSROM that uses an
adversaryU∗ that breaks unforgeability of PBSROM. Suppose that F is given the
verification key vk′ = (H, v0, v1, n, e) of BSROM, and U∗ and F run the signature
generation protocol at qS times.

The adversary F simulates the signature generation protocol of PBSROM with
U∗ qS times. To do this, F computes v2 := ve

1 mod n and invokes U∗ with input
vk := (H, h, v0, v1, v2, n, e) (h is a collision resistant hash function). In the sig-
nature generation protocol, U∗ outputs info and (B, x). F just sends (B, x) to S,
and receives a challenge k. F gives the challenge k to U∗, receives a response
(y1, y2, y3), computes y′3 := vy2

1 · y3 mod n, and gives (y1, y′3) to S. S always accepts
F since the following holds for some r1 ∈ Ze, r2 ∈ Z∗n:

vk
0vy1

1 (y′3)e ≡ vk
0vr1+k·h(m)

1 (vr2+k·h(info)
2 re

3Rek)

≡ vr1
1 vr2

2 re
3(v0vh(m)

1 vh(info)
2 )k

≡ xBk (mod n).

F just gives to U∗ (Y, r, s) received from S. U∗ finally outputs qS + 1 forgeries
{m̂∗i , info∗i , (σ

∗
i , r
∗
i , s
∗
i )}i∈[QS+1], where U∗ outputs m̂∗i , m̂

∗
j such that h(m̂∗i ) = h(m̂∗j)

for i , j ∈ [qS + 1] with a probability of at most AdvCRHF
U∗ (λ).

Let m∗i := e · h(info∗i ) + h(m̂∗i ) for every i ∈ [qS + 1]. If there exists a pair
i, j ∈ [qS + 1] (i , j) such that m∗i = m∗j, then F computes d := (h(info∗i ) −
h(info∗j))/(h(m̂∗j)−h(m̂∗i )), and uses d as a signing key for BSROM to generate qS +1
valid signatures. Otherwise (that is, if m∗i , m∗j for any pair i, j ∈ [qS + 1] (i , j)),
F outputs a forgery {m∗i , (σi, ri, si)}i∈[qS+1].

From the above, we can obtain the following inequation between the advan-
tages ofU∗ and F :

Advun f orge
U∗,PBSROM

(λ)
(
1 − AdvCRHF

U∗ (λ)
)
≤ Advun f orge

F ,ΣROM
(λ).
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Therefore, we have

Advun f orge
U∗,PBSROM

(λ) ≤ Advun f orge
F ,ΣROM

(λ) + AdvCRHF
U∗ (λ).

□

The following corollary can immediately be proven from Theorems 5.4.2 and
5.3.2.

Corollary 5.4.1. If the RSA assumption holds, and h is a collision-resistant hash
function, then the proposed blind message signature scheme PBSROM is unforge-
able against an L-interval synchronized run of adversaries in the random oracle
model. In particular, for any PPT algorithm U∗, there exists a PPT algorithm B
such that

Advun f orge
U∗,PBSROM

(λ) ≤ 8(L + 1)
L

(
AdvRSA

B (λ) +
1
Θ(2λ)

+
1
2λ

)
+ AdvCRHF

U∗ (λ),

where e = Θ(2λ).

5.5 Concurrently Secure Blind Message Signatures
CBSROM

In this chapter, we propose a concurrently secure blind message signature scheme
whose security is proven from the RSA and DCR assumptions in the CRS model.
We show in Section 5.5.1 the construction of CBSROM, and prove its security in
Section5.5.2.

5.5.1 Construction
• KeyGen(1λ): Generate an RSA instance (n, p, q, e)

R←−GenRSA(1λ), where e
is a prime number such that |e| = |n| and gcd(e, ϕ(n)) = 1. Compute an inte-
ger d ∈ Z such that ed ≡ 1 (mod ϕ(n)). Let H be a hash function modeled
as a random oracle, and h : {0, 1}∗ → Ze be a collision-resistant hash func-
tion parameterized by security parameter λ. Let γ := γ(λ) be a polynomial
in λ. Choose a random integers v0, v1

U←−Z∗n. Generate a secret and public key
for the Paillier encryption, (P,Q) and (N = PQ,G), and a public and secret
key for the trapdoor commitment Com of [Dam00] (pkcom, skcom), where
|N| := (4 + 2c0)|e| (0 < c0 < 1 is a constant.). Output a verification and
signing keys, vk := (H, h, v0, v1, n, e) and sk := d, and a CRS (N,G, pkcom).
Here, the trapdoor for CRS is ((P,Q), skcom).
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• Signature Generation Protocol:

1. U chooses random integers R
U←−Ze and U

U←−ZN2 , sets g := ve
1 mod n

and R̂ := gR mod n, and computes

B := v0vh(m)
1 R̂ mod n,

D := Gh(m)+R2K
UN mod N2,

where K := (2 + c0)|e|. U sends (B,D) to S. U proves that he knows
(R̂, h(m)) for B.

(a) U chooses r1, r2
U←−{0, 1}(2+c1)|e| (c1 is a constant 0 < c1 < c0 < 1),

X
U←−ZN2 , and a randomness r∗ for Com, computes

x := vr1gr2 mod n,

E := Gr1+r22K
XN mod N2,

C := Compkcom
(E, r∗),

and sends (x,C) to S.
(b) S sends k

U←−Ze toU.
(c) U computes the following for the challenge k from S:

y1 := r1 + k · h(m),
y2 := r2 + kR mod n,

F := XUk mod N2.

U sends (y1, y2, F, E, r∗) to S.
(d) S acceptsU if the following holds, and rejects it otherwise.

|y1|, |y2| ≤ (2 + c1) · |e|,
vk

0vy1
1 gy2 ≡ xBk (mod n),

c = Compkcom
(E, r∗),

Gy1+y2·2K · FN ≡ E · Dk (mod N2).

2. If S acceptsU, then S chooses r
U←−{0, 1}γ and s

U←−Ze, computes

Y := (B · H(r)s)d mod n,

and sends (Y, r, s) toU.

3. U computes σ := Y/R̂ mod n, and outputs (σ, r, s).
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5.5.2 Security
Theorem 5.5.1. If the DCR assumption holds, then the proposed blind message
signature scheme CBSROM is message blind against a concurrent run of adver-
saries.

Proof. Paillier shows in [Pai99] that the Paillier encryption is IND-CPA secure if
the DCR assumption holds. To prove this Theorem, we only have to show that
CBSROM is blind if the Paillier encryption is IND-CPA secure.

We use the adversary S∗0 that predicts b in Expblind
CBSROM ,S∗0

with noticeable prob-
ability ϵ to construct an algorithm B that breaks the IND-CPA security of the
Paillier encryption with noticeable advantage.

1. Given a public key (N,G) for the Paillier encryption, B generates a public
and secret key for Com, (pkcom, skcom), and gives to S∗0 ((N,G), pkcom) as the
CRS.

2. S∗0 gives to B the verification key vk = (H, h, v0, v1, n, e) and two messages
m0,m1 ∈ {0, 1}∗.

3. B chooses random integers R0,R1
U←−Ze, and sets M0 := h(m0) + R0 · 2K，

M1 := h(m1) + R1 · 2K .

4. When B gives (M0,M1) to the challenger in the IND-CPA game for the
Paillier encryption, the challenger chooses β

U←−{0, 1} and returns D := GMβ ·
AN

0 mod N2 to B.

5. B computes g := ve
1 mod n and R̂i := gRi mod n (i = 0, 1), chooses b

U←−{0, 1}
and A1

U←−ZN2 , and computes

B0 := v0vh(m0)
1 R̂0 mod n,D0 := D,

B1 := v0vh(m1)
1 R̂1 mod n,D1 := GM1 · AN

1 mod N2.

B then invokes the signature generation protocols by sending (Bb,Db) to S∗0
asU0 and (B1−b,D1−b) asU1.

6. B proves asUi (i = 0, 1) to S∗ that he knows (h(mi), R̂i).

7. The pair (B1,D1) sent by B as U1−b is computed as well as the real one
by U1−b. The computation for B0 by B as Ub is equal to the real one by
Ub, but the one for D0 is not. B chooses a random integer F0

U←−ZN2 af-
ter obtaining the challenge k from S∗, and computes an Paillier encryption
E0 := Gy1+y2·2K · FN

0 /D
k
0 mod N2 as accepted by S∗, where the pair (y1, y2) is

determined by the process regarding B0. B uses the trapdoor sk to open C
to (E0, r∗), sends (y1, y2, F0, E0, r∗) to S∗.
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8. All the processes after the above are the same as the real ones.

9. After the signature generation protocols for U0 and U1 finish, B checks
whether or not the obtained signatures are valid, and outputs ⊥ if one of the
two signatures is not valid. If B accepts both of the signatures, and then
gives 1 to S∗0. B obtains the output b′ from S∗0, and outputs β′ = 0 if b = b′,
and β′ = 1 otherwise.

If β = 0, then the distribution of the view of S∗0 regarding U0 and U1 in the
above protocol execution of B is the same as that for the blindness experiment for
CBSROM scheme. So, we have Pr[b = b′ | β = 0] = (ϵ + 1)/2.

If β = 1, the distribution of D0 and D1 are the same. The distributions of the
view of S∗0 regarding B0 and B1 in the signature generation protocol are statisti-
cally indistinguishable, and the distribution of the view of S∗0 on the fake protocol
regarding D0 and the real protocol regarding D1 are also statistically indistinguish-
able. Whether B gives S∗0 ⊥ or two valid signatures depends only on whether the
response (Y, r, s) of S∗0 satisfies Ye ≡ Bi · H(r)s (mod n), but does not depend on
the value of b since the distribution of B0 and B1 are equivalent. From the above,
we have | Pr[b , b′ | β = 1] − 1/2| < µ for negligible µ in λ.

So, we have

Pr[β = β′] = Pr[β = β′ = 0 ∨ β = β′ = 1]
= Pr[β′ = 0 | β = 0] · Pr[β = 0]
+ Pr[β′ = 1 | β = 1] · Pr[β = 1]

=
1
2

(Pr[b = b′ | β = 0] + Pr[b , b′ | β = 1])

>
1
2

(
1 + ϵ

2
+

1
2
− µ

)
=

1
2
+
ϵ

4
+
µ

2
.

Therefore, the probability that B breaks the IND-CPA security (namely the ad-
vantage of B in the IND-CPA game), 2 · Pr[β = β′] − 1, is ϵ/2 − µ, which is
non-negligible in λ. □

Theorem 5.5.2. If the underlying signature scheme ΣROM is EUF-CMA secure
and the trapdoor commitment Com satisfies the binding condition, then the pro-
posed signature scheme CBSROM is unforgeable against a concurrent run of ad-
versaries in the CRS model. In particular, for any PPT adversaryU∗, there exists
a PPT algorithm F such that

Advun f orge
U∗,CBSROM

(λ) ≤ 8(qS + 1)
qS

· AdvEUF-CMA
F ,ΣROM

(λ)

+ Advbinding
U∗,Com(λ) + AdvCRHF

U∗ (λ),
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where qS is the number of queries to the signing oracle by F (or the number
of rounds of the signature generation protocol by U∗), and Advbinding

U∗,Com(λ) is the
probability thatU∗ breaks the binding condition of Com.

Proof. We use the adversary U∗ that forges signatures of the blind message sig-
nature scheme CBSROM with non-negligible probability to construct an algorithm
that forges signatures of the signature scheme ΣROM. Let Advbinding

U∗,Com(λ) be the
probability thatU∗ breaks the binding condition of the underlying trapdoor com-
mitment Com. By the theorem statement, we can assume that Advbinding

U∗,Com(λ) =
negl(λ).

1. Given a verification key (H, v0, v1, n, e) of ΣROM, F chooses a secret and
public key for the Paillier encryption, (P,Q) and (N = PQ,G), and a secret
and public key for Com, (pkcom, skcom). Let h be a collision-resistant hash
function determined by security parameter λ. F givesU∗ (H, h, v0, v1, n, e)
as the verification key and (N,G, pkcom) as the CRS model.

2. F executes a signature generation protocol with U∗. Receiving the j-th
signature generation request, (B,D) and (x,C), F returns a random chal-
lenge k

U←−Ze to U∗. F receives a response (y1, y2, F, E, r∗) from U∗ for the
challenge k. F checks whether or not the following hold:

|yi| ≤ (2 + c1)|e| (i = 1, 2),
C = Compkcom

(E, r∗),

xBk ≡ vk
0vy1

1 gy2 (mod n),

Gy1+y22K
FN ≡ EDk (mod N2).

If they do not hold, F writes not-completed into his public output tape, and
halts.

3. If the above relations hold, F chooses random k′
U←−Ze, and uses the secret

key for the Paillier encryption, (P,Q), to decrypt EDk′ mod N2 and obtain ξ.
Here, ξ satisfies GξUN ≡ EDk′ (mod N)2 for some U ∈ ZN2 . If there exists
(y′1, y

′
2) such that ξ = y′1 + y′22K and |y′i | ≤ (2 + c1)|e| (i = 1, 2), F checks

whether or not xBk′ ≡ vk′
0 vy′1

1 gy′2 (mod n) holds. If it does not hold, return to
the beginning of this step. The number of iterations of this step is bounded
by a polynomial in λ. If it holds, the following equation also holds:

vk
0vy1

1 gy2(B−1)k ≡ x ≡ vk′
0 vy′1

1 gy′2(B−1)k′ (mod n).

Let ∆k := k − k′ and ∆y1 := y1 − y′1 and ∆y2 := y2 − y′2, then we have B∆k ≡
v∆k

0 v∆y1
1 g∆y2 (mod n). Hence if we let ∆y1 = Le+ ĥ (namely, ĥ := ∆y1 mod e

85



for some L, ĥ ∈ Z, we have

B ≡ v0vĥ
1(v∆k−1

0 vLe
1 g∆y2(B−1)∆k−1) (mod n).

F computes the pair (ĥ := ∆y1 mod e, R̂ := v∆k−1
0 vLe

1 g∆y2(B−1)∆k−1 mod n),
which satisfies B ≡ v0vĥ

1R̂ (mod n).

4. F queries ĥ to the signing oracle and obtains (σ, r, s), computes Y := σR̂ mod
n, and sends (Y, r, s) toU∗.

5. If the whole signing procedure of the qS rounds is completed successfully,
U∗ outputs qS + 1 forgeries {(m∗j, (σ∗j, r∗j , s∗j))} j∈[qS+1]. Here, the probability
that U∗ outputs m∗i ,m

∗
j ∈ {0, 1}∗ such that h(m∗i ) = h(m∗j) for some i , j ∈

[qS + 1] is at most AdvCRHF
U∗ (λ).

6. F outputs (h(m∗j), (σ
∗
j, r
∗
j , s
∗
j)) for j ∈ [qS + 1] such that h(m∗j) is not queried

to the signing oracle.

We can obtain the probability that F forges signatures of ΣROM in a similar way
to [Oka06, Theorem 8], and so have

Advun f orge
U∗,CBSROM

(λ) ≤ 8(qS + 1)
qS

· AdvEUF-CMA
F ,ΣROM

(λ)

+ Advbinding
U∗,Com(λ) + AdvCRHF

U∗ (λ).

□

Theorem 5.5.2 and Theorem 4.3.2 immediately lead to the following corollary.

Corollary 5.5.1. If the RSA assumption holds, and h is a collision-resistant hash
function, then the blind message signature scheme CBSROM is unforgeable against
a concurrent run of adversaries in the CRS model. In particular, for any PPT
adversaryU∗, there exists a PPT algorithm B such that

Advun f orge
U∗,CBSROM

(λ) ≤ 8(qS + 1)
qS

·
(
AdvRSA

B (λ) +
1
Θ(2λ)

+
1
2λ

)
+ Advbinding

U∗,Com(λ) + AdvCRHF
U∗ (λ),

where e = Θ(2λ).
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5.6 Conclusion of This Chapter
In this chapter, we proposed three types of four-move efficient blind message sig-
nature secure based on the RSA assumption, particularly blind message signa-
tures, partially blind message signatures, and concurrently secure blind message
signatures.

The proposed (partially) blind message signatures are the most efficient blind
message signatures secure under the RSA assumption in the random oracle model.
Previously, the most efficient blind signature scheme in the random oracle model
is the one proposed by Abe that is from the discrete log like assumptions, and
there are no known constructions that is secure under the RSA assumption and
its efficiency is comparable to the Abe’s blind signatures. Our proposed blind
message signatures are the first whose efficiency is comparable to the Abe’s blind
signatures. The blind signatures obtained by applying the transformation [Poi98]
to the Okamoto-Guillou-Quisquater blind signatures [PS96] is also secure under
the RSA assumption, but this protocol is a five-move protocol.

We first constructed blind message signatures from the signatures proposed
in [HAO16b], so this blind message signature protocol is secure in the random
oracle model. Since the existence of the random oracle is a significantly strong
assumption, there are known results that show artificial constructions secure in
the random oracle model but not in the case where the random oracle is replaced
with a concrete hash function. Similar to the signatures of [HAO16b], the random
oracle of our blind message signatures can also be replaced by a concrete hash
function depending on the power of the adversaries. We then showed that it is
easily to construct a partially blind message signatures from our blind message
signatures, and make our blind message signatures concurrently secure by using
the Paillier encryption as in [Oka06].
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Chapter 6

Conclusion

Cryptography focuses on securing communications in the presence of an adver-
sary. To communicate securely with each other, the data from a sender are re-
quired to be concealed from the adversary, and the receiver of the data must be
able to verify that the received data are not tampered with and certainly sent from
the sender. Two important objectives of cryptography are to construct cryptosys-
temes that hide the secret data and authenticate the received data.

The first objective is to construct a cryptosystem that hides secret information
from an adversary. Suppose that Alice wants to send her secret message to Bob
over an insecure communication channel. Then the adversary, Eve, may wiretap
the message and know what Alice told to him. Public key encryption (PKE) is a
way to deal with this problem. The advanced encryption method is a cryptosystem
that provides a certain functionality in addition to PKE. A typical example of this
method is FHE, which is a variant of PKE and allows us to evaluate any function
over encrypted data using only public information. The second objective is to
construct a way to authenticate data. We want to ensure that the received data
are from the sender, or the data are not tampered. Suppose that Bob receives
a message addressed from Alice. Then how does Bob ensure that the received
message is the same as the intended message from Alice? In particular, how does
he ensure that the received message is not tampered with by an adversary? Digital
Signatures are a way to achive this.

The importance of the above cryptosystems will grow in the future as more
everyday tasks, processes, and communications are computationalized. The main
goals in cryptography are to contrive efficient ways for achieving such important
cryptosystems, and provide a theoretical proof for ensuring their security. Con-
structing more efficient cryptosystems that implement important cryptographic
functions allows us to apply their functions in wider areas. To prove formally
the security of a cryptosystem, we construct a reduction (algorithm) that uses an
adversary against the cryptosystem to break the assumption (namely, to solve the
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problem assumed to be intractable in the assumption). In cryptography, the secu-
rity assumptions are classified into the following five types of assumptions: the
standard assumptions, the non-standard, falsifiable, non-interactive, and static-
size assumptions, the falsifiable and non-interactive, but dynamic-size (q-type)
assumptions, the falsifiable and interactive assumptions, and the unfalsifiable as-
sumptions. The most desirable assumptions are the standard assumptions.

To implant cryptography as a foundation block of information security that
supports our networked society, cryptography must provides important cryptosys-
tems that can be implemented efficiently with their security guaranteed theoret-
ically. For achieving cryptosystems that become one of such foundations, this
thesis proposed the efficient and theoretically secure schemes (under the standard
assumptions) to implement FHE and signatures (digital signatures and blind sig-
natures) that are now considered as the most important functions.

Chapter 3: Efficient FHE based on the LWE Assumption. FHE allows us
to evaluate any function over encrypted data by using only public information. A
natural example of its applications is searching on encrypted data. Since the break-
through work by Gentry [Gen09a, Gen09b], many different varieties of FHE have
been proposed [DGHV10, BV11a, BV11b, BGV12, Bra12, GSW13, CLT14]. To
date, the fastest (and simplest) FHE based on the standard assumption is the one
proposed by Gentry, Sahai, and Waters [GSW13] (hereafter, referred to as GSW-
FHE). However, it is required to take heavy cost for evaluating a large number of
ciphertexts. A way to deal with this issue is to pack multiple messages into one
ciphertext. Packing messages allows us to apply SIMD homomorphic operations
to all encrypted messages. In the case where a remote server stores encrypted data
and we want to retrieve certain data from that server, we first apply the equality
function to every encrypted data set. If the stored data have been packed into one
ciphertext, we can retrieve the desired data by only one homomorphic evaluation
of the equality function.

In Chapter 3, we proposed FHE with more efficient homomorphic operation
algorithms than the previous FHE based on the standard assumptions. In particu-
lar, we constructed an FHE scheme that encrypts matrices and supports homomor-
phic matrix addition and multiplication. Homomorphic operations of our FHE are
just the matrix multiplication between two square matrices, so its time complexity
is estimated based on the best complexity of the multiplication algorithm of two
square matrices. It is expected that the complexity of our FHE will decrease as
the studies for the matrix multiplication algorithm progress. Our FHE is a natural
extension of SIMD FHE and thus supports more complicated homomorphic oper-
ations. We optimized the bootstrapping procedure of Alperin-Sheriff and Peikert
(CRYPTO 2014) by applying the proposed FHE. Our optimization decreases the
lattice approximation factor from Õ(n3) to Õ(n2.5). By taking a lattice dimen-
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sion as a larger polynomial in a security parameter, we can also obtain the same
approximation factor as the best known one of standard lattice-based public-key
encryption without successive dimension-modulus reduction, which was essential
for achieving the best factor in prior studies on bootstrapping of standard lattice-
based FHE. Our construction is an extension of the GSW-FHE scheme [GSW13],
which has a great influence on the construction ideas of some cryptosystems based
on the LWE such as fully homomorphic signatures [GVW15, FMNP16], attribute
based encryption [BGG+14, BV16, BCTW16], and multilinear maps [GGH15].
Hence, the idea behind our FHE may also influence future cryptographic con-
structions based on the LWE assumption.

Chapter 4: Efficient Digital Signatures based on the RSA Assumption. There
is a gap, which is called reduction efficiency, between the hardnesses of breaking
a cryptosystem and solving a security problem. If a security reduction is tight,
breaking the cryptosystem is as hard as solving the underlying problem. Hence, if
we can prove the security of a cryptosystem with highly efficient security reduc-
tion, the cryptosystem can be implemented with smaller parameter settings (that
is, a smaller key size). We particularly focus on tightly secure digital signatures
in the random oracle model.

The random oracle model, which was first introduced by Bellare and Rogaway
in 1993 [BR93], is an idealized paradigm in which a hash function is viewed as
an oracle that outputs a random value for every input query. A security proof for a
cryptographic scheme in the random oracle model does not mean that it is secure
in the real world, but it provides some kind of security guarantee, and it is still
important in a practical sense to prove the security in the random oracle model.

In Chapter 4, we showed tightly secure efficient digital signatures based on
the RSA assumption, which is thought as the most reliable assumption. Our new
RSA-based signature scheme is proven secure in the random oracle model. The
number of random oracles used in this scheme is less than that of all previous
schemes with the same security guarantee, so our signatures are simpler than the
previous tightly secure signatures from the RSA assumption. We then showed that
for any PPT adversary there exists a concrete hash function from indistinguisha-
bility obfuscation that can replace the random oracle while maintaining security.
The same statement can be proven for the Coron’s signatures. To prove the secu-
rity of our signatures, we introduced a new proof technique called the α−β hiding
technique. This technique relies on the mathematics of the RSA, so we believe
that this technique will become a useful tool to prove security of other cryptosys-
tems based on the RSA assumption. Our proposed signatures are tightly secure
as well as the PSS [BR96] that is a foundation of PKCS #1 standard [RSA93],
and have simpler construction than the PSS since the number of random oracles
(implemented by a hash function) is optimal. The simplicity of the construction
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of our signature scheme also leads to lower implementation costs of the secure
digital signatures. Therefore, our signatures may be an effective alternative of the
PSS.

Chapter 5: Efficient Blind Message Signatures based on the RSA Assump-
tion. Blind signatures are a variant of digital signatures first introduced by Chaum
[Cha82]. They are a cryptographic protocol between two parties (user and signer)
in which the user requests a signature for his message and obtains a signature
from the signer, where the signed message is hidden from the signer (blindness),
and the number of signatures generated by the user is not larger than the number
of runs of the blind signature protocol (unforgeability). In particular, because of
the blindness, blind signatures have an important role in applications such as the
electronic cash and electronic voting.

The Chaum’s blind signatures [Cha82] from the RSA signatures [RSA78] was
not provable secure. In [BNPS03], Bellare et al. showed that the Chaum’s blind
signature scheme is provable secure, but the underlying assumption is not stan-
dard. Secure blind signatures from the standard assumptions in the random oracle
model were proposed in [PS96, Poi98, AO00, Abe01, AO01], the most efficient
blind signatures among these are the ones by Abe [Abe01].

In Chapter 5, we introduce a new notion blind message signatures, which has
the following features. A signer S executes a blind signature protocol, P, with
an user U and S is divided into two parts,S0 and S1. S0 accepts a request from
the userU and knows the identity ofU. S0 then runs the sub-protocol of P with
U (say P0) which is P excepting the final round. S1 executes the final round of
P (say P1), i.e., S1 just sends a value to U. Here, unless S0 and S1 collaborate,
the protocol satisfies the requirements of blind signatures. Message m is hidden
before useU releases the message m with signature σ even if S0 and S1 collude.

we constructed the first efficient blind message signatures from the RSA as-
sumption in the random oracle model. We also showed that for any PPT adver-
sary there exists a concrete hash function from indistinguishability obfuscation
that directly replaces the random oracle while maintaining the security. From our
blind message signatures, we can derive partially blind message signatures and
concurrently secure blind message signatures from the RSA assumption (the con-
currently secure variant requires an additional but also standard assumption). The
key generation and verification algorithms are the same as the signature scheme
proposed in Chapter 4. If the proposed digital signature is implemented into some
information systems instead of the PSS, we can use the signing and verification
key, and also sign and verify signatures without changing the algorithms.

Conclusion of This Thesis. All of the cryptosystems proposed in this thesis are
proven secure under the standard assumptions, and they are more efficient than
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the previous constructions under the same security assumptions. In addition, the
cryptographic functions implemented in our cryptosystems (encryption, advanced
encryption, and authentication) are considered as the central and important func-
tions in cryptography. We hope that this thesis will contribute to establishing a
foundation for information security.
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