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Chapter 1

Introduction

1.1 Cryptography

1.1.1 History

Cryptography has been used from the distant past. At least, ancient Egypt used cryptog-
raphy approximately 4000 years ago [1]. One of the historically most famous cryptosystem
is “Caesar cipher” which was developed by Gaius Iulius Caesar in the first century BC.
That is one kind of simple substitution cipher and its algorithm is very simple. That
shifts alphabet. In the early 20th century, it used code book and cipher text was made
by hands, or it was implemented by machines which can be used only for encryption and
decryption. “Enigma”, which was used by Germany, is the most famous such machine.
(Now, almost all cryptography is implemented by digital computers and digital signal pro-
cessors.) Except some cases, the encryption (or decryption) algorithm had to be secret.
The machines were not inexpensive and making use of them needed much cost. Thus,
cryptography was used for special cases such as military affairs and foreign diplomacy.
Another reason why it was not used by ordinal people is that they did not need it.

In 1970s, two revolutions in cryptography happened. One is that “Digital Encryption
Standard (DES)” which is one kind of “common key cryptography” was standardized and
the specification was published [2]. By the publishing, the security of DES can be tested
by many researchers all over the world. To withstand attacks by the researchers, DES had
ensured the security until when the attack which can break DES was developed in 1990s
[3]. Now, “Advanced Encryption Standard (AES)” is used as the successor of DES [4].
The specification of AES also has been published and any attack which can practically
break AES is not known. The other revolution is that Diffie and Hellman published a
new concept “public key cryptography” [5]. In common key cryptography, the encryption
algorithm can be published like DES but the key used in the encryption must be secret.
In public key cryptography, there are two kind of keys, secret-key and public-key, and the
encryption algorithm and the public-key can be published. Both revolutions accelerated
research and development of cryptography.

Now, by development of the Internet, ordinary people use the Internet, and send and
receive much data which is important for ordinary people such as his credit card number.
Then, now, almost all people unconsciously use cryptography. In addition, function of
cryptography became not being restricted to keeping a secret. As other functions, it is
now used for electronic signature and so on.
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1.1.2 What future cryptography needs

In the near future, “Internet of Things (IoT)” will be realized. Kevin Ashton is the first
person using the word “IoT” [6]. At that time, he used the word as merchandise manage-
ment system using RFID. Now, the meaning of the word was expanded. IoT is a concept
that every possible “Things” such as cars, home electric appliances, smartphones, build-
ings, infrastructure, wearable devices and so on will connect with the Internet. “Things”
will load sensor, gather information about situation and events around them and commu-
nicate the information to each other. At the same time, they automatically optimize their
own operation based on the information or are controlled by other machine or human.
IoT is expected to make our life convenient and efficient, and generate new sense of values.

Information security is to keep following three properties:

• Confidentiality

• Integrity

• Availability

In the society which IoT is realized, information security will be needed more than ever
before. Because “Things” around us gather information about our private, the amount of
information whose confidentiality must be kept increases. Because “Things” work based
on the information, if integrity and availability of the information are not kept, the society
gets flustered. In particular, for infrastructure, defect of integrity and availability cause
disaster.

In such situation, what property is needed for cryptography ? The author thinks that
the following properties are the answer:

• Rapidity

• Lightness

• Safety

The above properties are needed even today and the author think that the demand be-
comes stronger. Rapidity is needed because the amount of information whose confiden-
tiality must be kept increases. Lightness is needed because even small devices such as
wearable devices must use cryptography. Safety is needless to say.

1.1.3 Present cryptography

Roughly speaking, present cryptography can be devided to two types, public-key cryp-
tography including key-exchange and electronic signature and common-key cryptography.
Both of them are needed for information security.

In generally speaking, public-key cryptography often uses a finite field or a ring of
modulo N , where N is the product of very large prime numbers. (See Ref. [5, 7, 8, 9] as
examples.) Operations on such sets bring with residure. Residue takes more time than
multiplication and addition and so that is hindrance to making cryptography be faster.

Common-key cryptography often uses “S-box”, “linear feedback sift-register (LFSR)”
or both of them (See Ref. [10, 11, 12, 13, 14, 15] as examples.). DES and AES also use
S-box. S-box is a non-linear operation and it is usually implemented with a reference
table and so that is hindrance to making cryptography be light. LFSR is a generator
which generate a M-sequence. M-sequence has useful properties for cryptography such as
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long period. M-sequence is, however, predicable if a part of M-sequence is known because
LFSR is based on a simple linear operation. In practical situation, some LFSRs or other
parts is combined when common-key cipher is constructed. In some cases, period of such
combined system cannot be exactly estimated.

1.2 Permutation polynomials

A polynomial f(X) is called permutation polynomial over a finite ring R when f(X) is a
bijection over R. There are many studies about permutation polynomials, and permuta-
tion polynomials are applied for many field including cryptography. RSA cryptosystem,
which is one of the most famous public-key cryptography, is one of such applications [7].
Almost all studies, R is a finite field. (See Ref. [16, 17] as the survey.) Operations over
a finite field, however, take much time as previously mentioned. The author thinks that
we need to discuss another approach in order to develop better cipher.

1.2.1 Permutation polynomials over a ring of modulo 2w

Although almost all studies on permutation polynomials are over finite fields, we focus on
a ring of modulo 2w. The definition of a permutation polynomial over a ring of modulo
2w is as follows:

Definition 1.2.1. A finite degree polynomial f(X) with integer coefficients is called a
permutation polynomial over a ring of modulo 2w if

∀w ≥ 0, {f(X̄) mod 2w|X̄ ∈ Z/2wZ} = Z/2wZ.

Study about permutation polynomials over the ring is very important because they are
compatible with digital computers and digital signal processors. They can calculate values
of permutation polynomials over the ring faster than over a finite field because 2 power
residue operation is practically negligible. Then, they are in particular expected to be
useful for cryptography and pseudo random number generator. The compatibility is
also useful for light implementation of such applications either by software or hardware.
We, therefore, believe that we can construct cipher which can be used in IoT by the
polynomials.

Indeed, RC6 which is a common-key cipher uses permutation polynomial over a ring
of modulo 2w [18] and it was elected as a final candidate of AES. It means that usability
and safety of RC6 is appreciated to a certain extent by National Institute of Standard
and Technology (NIST) which is a agency of United States Federal Government. As
another example, Vector Stream Cipher (VSC) is also a common-key cipher which uses
permutation polynomial over a ring of modulo 2w [19]. VSC recorded more than 25Gbps
by hardware implementation. As far as the author knows, VSC was one of fastest common-
key cipher at the time when VSC was developed in 2004 and any attack which can
practically break VSC has not been known at the moment. These examples show the
usability of permutation polynomials over a ring of modulo 2w.

There is another reason why we focus on the polynomials. Because the value of permu-
tation polynomials over the ring can be fastly calculated, we need not to use a reference
table when the polynomials are used as a part of common-key cryptography. Thus, it can
be said that using the permutation polynomials contributes to light implementation.

In addition, because a ring of modulo 2w and permutation polynomials over the ring
have recursive structure, we can expect that the periodicity of orbits which the polynomi-
als draw over a ring is clearly. If the degrees of the polynomials are equal to or more than
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2, the polynomials have non-linearity. Then, ensuring of periodicity and non-linearity are
expected to stand side by side. Indeed, we discuss the periodicity of the polynomials and
the possibility of using them for common-key cipher in Chapters 4 and 5, and they are
affirmed.

Although permutation polynomials over a ring of modulo 2w have such usability and
the good exampls exist, they have not been studied very well. Except some applica-
tions (See Ref. [18, 20, 19] as examples) including linear congruential method, they have
not been used in the field of cryptography and pseudo random number generator. We,
therefore, research them in this thesis and pioneer a new field.

1.3 Outline of this thesis

This thesis is constructed as follows:
In Chapter 2, we discuss about a key-exchange protocol with permutation polynomials

over a ring of modulo 2w [20]. A key-exchange protocol with odd degree Chebyshev
polynomials over the ring was proposed as one of application of permutation polynomials
over the ring. We analyses the protocol and generalize the result for a key-exchange
protocol with more general permutation polynomials.

In Chapter 3, we deal with Vector Stream Cipher (VSC), which is cipher constructed
by permutation polynomials over a ring of modulo 2w [19]. The security of VSC has
been already investigated by several researchers, and some security problems against for
the theoretical attacks were reported though any practical attack breaking VSC has not
been reported so far. We propose some improvements in order to avoid such attacks and
develop new ciphers “ Vector Stream Cipher 2.0” and “ Vector Stream Cipher 2.1” which
have proven against distinguishing attack with linear masking.

In Chapter 4, we introduce a new class of permutation polynomials called “one-stroke
polynomials over a ring of modulo 2w”. In general, a map used in cipher and pseudo
random number generator should have long period for their security and randomness.
One-stroke polynomial over a ring of modulo 2w is a permutation polynomial which has
the maximum period over the ring. We derive a necessary and sufficient condition for
permutation polynomials to be one-stroke polynomials over a ring of modulo 2w. Such
condition for low degree polynomials was derived at more approximately half a century
ago [21], but condition for an arbitrary degree has not been derived until we derive in this
thesis. After that, we introduce some properties of one-stroke polynomials over a ring of
modulo 2w.

In Chapter 5, we propose some methods of combining one-stroke polynomials over a
ring of modulo 2w for pseudo random number generator and stream cipher. A system
using only one one-stroke polynomial over the ring is too simple, and so it should not be
used for pseudo random number generators and, in particular, for stream cipher. Another
reason why the system should not be used for stream cipher is that we need longer period
than 2w in many cases, where w is the length of the variable used in the system. Then, we
propose a method to make a more complex system which preserve the period of one-stroke
polynomials over a ring of modulo 2w and a method to make a system which has a longer
period than 2w.

Finally, we conclude this thesis.
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Chapter 2

Cryptanalysis of key-exchange with
permutation polynomials over a ring
of modulo 2w

One application of permutation polynomials over a ring of modulo 2w is a key-exchange
protocol with odd degree Chebyshev polynomials over the ring [20]. Odd degree Cheby-
shev polynomials are proven to be permutation polynomials over a ring of modulo 2w [20]
and they are commutative each other. Then, the protocol is constructed by replacing the
discrete logarithm problem of Diffie-Hellman key-exchange protocol [5] with the degree
decision problem of Chebyshev polynomials over the ring. Thus, the security is related to
difficulty of the degree decision problem over the ring. If the problem can efficiently be
solved, the protocol is not secure.

Although a key-exchange protocol with Chebyshev polynomials over the real-number
interval [−1, 1] was proposed earlier than that over a ring of modulo 2w [22], the degree de-
cision problem of Chebyshev polynomials over [−1, 1] was solved and so the key-exchange
protocol is regarded as being not secure [23]. However, we cannot directly adapt the
method to solve the problem over a ring of modulo 2w because residue operations do not
appear in the problem over [−1, 1]. It was also shown that the degree decision problem
over a ring of modulo 2w can efficiently be solved when the given argument of Chebyshev
polynomial is even [24], but the degree decision problem with odd argument has not been
solved.

It is conjectured that the difficulty of the problem over a ring of modulo 2w is related
to the periodicity of Chebyshev polynomial over the ring. Here, odd degree Chebyshev
polynomials have two kinds of periodicity. One is “ orbital period”, and the other is
“degree period”. Since odd degree Chebyshev polynomials are permutation polynomials
over a ring of modulo 2w, when an odd degree Chebyshev polynomial iterate affecting a
factor of the ring, we can observe an orbit on the ring. The “ orbital period ” is the period
of the orbit. The “degree period” is observed when changing the degree of Chebyshev
polynomials with fixed arguments of polynomials. Although there are studies about both
kinds of period [25, 26, 27], they have not been completely studied so far.

In this chapter, we clarify both kinds of the periodicity. After that, we show that
the degree decision problem over a ring of modulo 2w can efficiently be solved even if the
given argument of Chebyshev polynomial is odd, and so the key-exchange protocol is not
secure. It takes only O(w4) times to solve the problem. The fact does not mean, however,
that Chebyshev polynomials are not useful for all the fields in cryptography.

We solved the problem in 2015 [28], and Kawano and Yoshioka independently solved
the problem at almost the same time [29, 30]. The solving method proposed in this
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chapter is more general than them. Although the degree of the Chebyshev polynomial
used in the key-exchange protocol is restricted to odd number, our method proposed in
this chapter can solve the problem even if the solution is even.

In addition, we discuss the reason why the key-exchange protocol with Chebyshev
polynomials is not secure and generalize the discussion. We show that a key exchange
protocol with a set of permutation polynomials is not secure if the permutation polynomi-
als in the set satisfy some conditions which odd degree Chebyshev polynomials also satisfy.
If it takes O (g(w)) times to calculate the value of permutation polynomials for given ar-
gument and iteration number, it takes only O (w · g(w)) times to break the key-change
protocol with the polynomials.

2.1 Key-exchange

Let us consider the case that there are two persons, Alice and Bob, and Alice would like
to communicate a secret message to Bob. Assume that they can use a public channel
only. It means that their talk can be heard by anyone. In this case, they should use
cryptography. Alice encrypt the secret message with a key and send the cipher text. Bob
received the cipher text and decrypt it with the same key. (See Fig. 2.1.) Then, Bob get
the secret message and any other person cannot know because they do not know the key.
Cryptography like this protocol is called “common key cryptography”.

Alice

Message
(plaintext)

?

Encryption

with KEY
6

'
&

$
%

Ciphertext

Bob

Message
(plaintext)

6Decryption

with KEY
6

'
&

$
%

Ciphertext-

same key

Ciphertext is
sent on a public channel.

Figure 2.1: Common key cryptography

Although the above protocol is useful for general cases, there is a big issue. That is
“how to share the key between Alice and Bob”. Using a credible courier is one solution,
but they cannot do so because there is the assumption that they can use a public channel
only. The assumption is realistic in many cases.

“Key-exchange” is a concept which can solve the issue. By using it, Alice and Bob
can secretly share the key on a public channel. The first practical key-exchange protocol
was developed by Diffie and Hellman in 1976 [5]. It is believed that the security of the
protocol is based on discrete logarithm problem (DLP).

Definition 2.1.1. Discrete logarithm problem is as follows: find x such that

y = gx mod p

for given prime number p, its primitive rootg and y.

Some other protocols have been also developed. One of the most famous such protocols
uses elliptic curve [9].
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2.1.1 Diffie-Hellman key-exchange

For the later section, let us introduce the key-exchange protocol developed by Diffie-
Hellman. That is as follows:

1. Alice and Bob agree a sufficient large prime number p and its primitive root g on a
public channel.

2. Alice determine a secret sufficient large number NA and calculate MA := gNA

mod p. Similarly, Bob determine a secret sufficient large number NB and calcu-
late MB := gNB mod p.

3. Alice send MA to Bob on a public channel and Bob send MB to Alice.

4. Alice calculate MBA := MNA
B mod p and Bob calculate MAB := MNB

A mod p.

At the step 4,

MBA =MNA
B mod p

=(gNB mod p)NA mod p

=(gNA mod p)NB mod p

=MNB
A mod p

=MAB.

Thus, Alice and Bob share the number K := MBA(= MAB).

Alice

(p, g)

Determine NA

MA = gNA mod p

MBA = MB
NA mod p

6

� -Agree (p, g)

-MA

� MB

same value

Bob

(p, g)

Determine NB

MB = gNB mod p

MAB = MA
NB mod p

6

Figure 2.2: Diffie-Hellman key-exchange

It is believe that it is too difficult for any other person to calculate the value of K only
with the knowledge of p, g, MA and MB. That is based on the following conjectures:

• To calculate the value of NA or NB is the most effective approach to calculate the
value of K.

• DLP is computationally difficult.

Although these conjectures are not proven, many researchers believe them.
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2.2 Key-exchange with Chebyshev polynomials over

a ring of modulo 2w

In general, a residue operation takes much time, and so Diffie-Hellman key-exchange
protocol also takes much time. Faster protocol, therefore, should be developed and per-
mutation polynomials over a ring of modulo 2w are perhaps useful for the purpose. One of
such protocol is a key-exchange with odd degree Chebyshev polynomials. In this section,
we introduce the protocol.

2.2.1 Chebyshev polynomials

Before explaining the protocol, we introduce Chebyshev polynomials.

Definition 2.2.1. Assume that p is an integer. A Chebyshev polynomial of p degree
Tp(X) is defined as a polynomial satisfying

∀θ ∈ R, Tp(cos θ) = cos pθ.

For example,

T1(X) = X,

T2(X) = 2X2 − 1,

T3(X) = 4X3 − 3X,

T4(X) = 8X4 − 8X2 + 1,

T5(X) = 16X5 − 20X3 + 5X.

By the definition, there are some simple properties. It is clear that arbitrary Chebyshev
polynomials are commutative such that

∀p, q ∈ Z, Tp ◦ Tq(X) = Tq ◦ Tp(X) = Tpq(X).

It is also clear that the following relation is satisfied.

∀p, q ∈ Z, 2Tpq(X) = Tp+q(X) + Tp−q(X).

It is known that arbitrary odd degree Chebyshev polynomials are permutation polynomials
over a ring of modulo 2w, it means that they are bijection over the ring. The above simple
properties are preserved even if the domain and range are restricted to the ring.

It takes only O(w3) times to calculate the value of Chebyshev polynomial over a ring
of modulo 2w for a given argument and degree.

2.2.2 Key-exchange with Chebyshev polynomials

Based on the properties of Chebyshev polynomials, the key-exchange protocol with odd
degree Chebyshev polynomials was proposed. The protocol replaced DLP of Diffie-
Hellman key-exchange protocol with the following degree decision problem (DDP) over a
ring of modulo 2w.

Definition 2.2.2. A degree decision problem over a ring of modulo 2w is as follows: find
p ∈ Z/2wZ satisfying

Ȳ ≡ Tp(X̄) mod 2w,

with given X̄, Ȳ ∈ Z/2wZ.
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Then, the key-exchange protocol is as follows:

1. Alice and Bob agree a sufficient large number w and X̄ on a public channel.

2. Alice determine a secret sufficient large number NA and calculate MA := TNA
(X̄)

mod 2w. Similarly, Bob determine a secret sufficient large number NB and calculate
MB := TNB

(X̄) mod 2w.

3. Alice send MA to Bob on a public channel and Bob send MB to Alice.

4. Alice calculate MBA := TNA
(MB) mod 2w and Bob calculate MAB := TNA

(MA)
mod 2w.

At the step 4,

MBA =TNA
(MB) mod 2w

=TNA

(
TNB

(X̄) mod 2w
)

mod 2w

=TNB

(
TNA

(X̄) mod 2w
)

mod 2w

=TNB
(MA) mod 2w

=MAB.

Thus, Alice and Bob can share the K := MBA(= MAB).

Alice

(X̄, w)

Determine NA

MA = TNA
(X̄) mod 2w

MBA = TNA
(MB) mod 2w

6

� -Agree (X̄, w)

-MA

� MB

same value

Bob

(X̄, w)

Determine NB

MB = TNB
(X̄) mod 2w

MAB = TNB
(MA) mod 2w

6

Figure 2.3: Key-exchange with Chebyshev polynomials

Since the calculation the value of Chebyshev polynomial for a given argument on a
ring of 2w takes only O(w3) times, the protocol also takes only O(w3) times. We think
that the security of this protocol depends on the difficulty of DDP by the analogy of Diffie-
Hellman key-exchange. At least, if the DDP can be perfectly solved, the key-exchange is
not secure.

2.3 Cryptanalysis of key-exchange with odd degree

Chebyshev polynomials over a ring of modulo 2w

In this section, we show a method to perfectly solve DDP. It means that, unfortunately, the
key-exchange protocol is not secure. The difficulty of DDP strictly relates to periodicities,
orbital period and degree period. Then, we firstly investigate the both of them.
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2.3.1 Orbital period of odd degree Chebyshev polynomials over
a ring of modulo 2w

We prove a theorem about orbital period. Firstly, we prove some lemmas which are
needed for proving the theorem.

Lemma 2.3.1. Assume that X1 = (2A1− 1) · 2k1 ± 1 and X2 = (2A2− 1) · 2k2 , where A1,
A2, k1, k2 ∈ N and k1 ≥ 2. For r ≥ 2,

T2r(X1) ≡ 1 mod 2k1+r+2, (2.1)

T2r(X2) ≡ 1 mod 2k2+r+2. (2.2)

Proof. In the case r = 2,

T22(X1)

=8X4
1 − 8X2

1 + 1

=8{(2A1 − 1) · 2k1 ± 1}4 − 8{(2A1 − 1) · 2k1 ± 1}2 + 1

≡1 mod 2k1+2+2,

T22(X2)

=8{(2A2 − 1) · 2k2}4 − 8{(2A2 − 1) · 2k2}2 + 1

≡1 mod 2k2+2+2.

Then, (2.1) and (2.2) are true.
Assume that (2.1) and (2.2) are true with r = r0. We will consider the case r = r0+1.

T2r0+1(X1)

=2T2r0 (X1)T2r0 (X1)− T0(X1)

≡2{T2r0 (X1)}2 − 1 mod 2k1+r0+3

≡2{T2r0 (X1) mod 2k1+r0+3}2 − 1 mod 2k1+r0+3

≡1 mod 2k1+r0+3,

T2r0+1(X2)

=2T2r0 (X2)T2r0 (X2)− T0(X2)

≡2{T2r0 (X2)}2 − 1 mod 2k2+r0+3

≡2{T2r0 (X2) mod 2k2+r0+3}2 − 1 mod 2k2+r0+3

≡1 mod 2k2+r0+3.

Then, (2.1) and (2.2) are true with r = r0 + 1.
From the above, the lemma is true.

Lemma 2.3.2. Assume that X1 = (2A1− 1) · 2k1 ± 1 and X2 = (2A2− 1) · 2k2 , where A1,
A2, k1, k2 ∈ N and k1 ≥ 2. For r ≥ 2,

T2r±1(X1) ≡ X1 + 2k1+r+1 mod 2k1+r+2, (2.3)

T2r±1(X2) ≡ X2 + 2k2+r mod 2k2+r+1. (2.4)

Proof. In the case r = 2,

T22+1(X) = 16X5 − 20X3 + 5X,

T22−1(X) = 4X3 − 3X.

12



Then, (2.3) and (2.4) are true.
Assume that (2.3) and (2.4) are true with r = r0. We will consider the case r = r0+1.

By Lemma 2.3.1,

T2r0+1±1(X1)

=2T2r0±1(X1)T2r0 (X1)−X1

≡2{T2r0±1(X1) mod 2k1+r0+3}{T2r0 (X1) mod 2k1+r0+3} −X1 mod 2k1+r0+3

≡X1 + 2k1+r0+2 mod 2k1+r0+3,

T2r0+1±1(X2)

=2T2r0±1(X2)T2r0 (X2)−X2

≡2{T2r0±1(X2) mod 2k2+r0+2}{T2r0 (X2) mod 2k2+r0+2} −X2 mod 2k2+r0+2

≡X2 + 2k2+r0+1 mod 2k2+r0+2.

Then, (2.3) and (2.4) are true with r = r0 + 1. From the above, the lemma is true.

Lemma 2.3.3. Assume that X1 = (2A1− 1) · 2k1 ± 1 and X2 = (2A2− 1) · 2k2 , where A1,
A2, k1, k2 ∈ N and k1 ≥ 2. For r ≥ 2,

T3·2r±1(X1) ≡ X1 + 2k1+r+1 mod 2k1+r+2, (2.5)

T3·2r±1(X2) ≡ X2 + 2k2+r mod 2k2+r+1. (2.6)

Proof. The following calculations prove the lemma.

T3·2r±1(X1)

=2T2r+1±1(X1)T2r(X1)− T2r±1(X1)

≡2{T2r+1±1(X1) mod 2k1+r+2}{T2r(X1) mod 2k1+r+2}
− {T2r±1(X1) mod 2k1+r+2} mod 2k1+r+2

≡X1 + 2k1+r+1 mod 2k1+r+2,

T3·2r±1(X2)

=2T2r+1±1(X2)T2r(X2)− T2r±1(X2)

≡2{T2r+1±1(X2) mod 2k2+r+1}{T2r(X2) mod 2k2+r+1}
− {T2r±1(X2) mod 2k2+r+1} mod 2k2+r+1

≡X2 + 2k2+r mod 2k2+r+1.

Lemma 2.3.4. Assume that X1 = (2A1− 1) · 2k1 ± 1 and X2 = (2A2− 1) · 2k2 , where A1,
A2, k1, k2, B ∈ N and k1 ≥ 2. For r ≥ 2,

T(2B−1)·2r±1(X1) ≡ X1 + 2k1+r+1 mod 2k1+r+2, (2.7)

T(2B−1)·2r±1(X2) ≡ X2 + 2k2+r mod 2k2+r+1, (2.8)

where B is a natural number.

Proof. It has been shown that (2.7) and (2.8) are true in the cases of B = 1 and 2.
We consider the case B ≥ 3. Assume that (2.7) and (2.8) are true at B = B0 and at
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B = B0 + 1.

T(2B0+3)·2r±1(X1)

≡2T(2B0+1)·2r±1(X1)T2r+1(X1)− T(2B0−1)·2r±1(X1) mod 2k1+r+2

≡2{X1 + 2k1+r+2} × 1− {X1 + 2k1+r+2}
≡X1 + 2k1+r+2,

T(2B0+3)·2r±1(X2)

≡2T(2B0+1)·2r±1(X2)T2r+1(X2)− T(2B0−1)·2r±1(X2) mod 2k2+r+1

≡2{X2 + 2k2+r+1} × 1− {X2 + 2k2+r+1}
≡X2 + 2k2+r+1.

Then, (2.7) and (2.8) are true at B = B0 + 2. From the above, the lemma is true.

Lemma 2.3.5. Assume that p, m and X0 are natural numbers satisfying

Tp(X0) ≡ X0 + 2m mod 2m+1.

If m ≤ w,

{T i
p(X0) mod 2w|i = 0, 1, 2, · · · , 2w−m − 1}

={X0 + k · 2m mod 2w|k = 0, 1, 2, · · · , 2w−m − 1}.

Proof of Lemma 2.3.5 is shown in Ref. [26].

Theorem 2.3.6. The orbital periods are distributed according to Table 2.1.

Table 2.1: Orbital periods of odd degree Chebyshev polynomials. Here, A, B, r, k1, k2
∈ N, 2 ≤ r ≤ w − 1, 2 ≤ k1 ≤ w − 1 and k2 ≤ w − 1.

Initial Point Degree Orbital Period
arbitrary 1, 2w − 1 1

(2A− 1) · 2k1 ± 1 (2B − 1) · 2r ± 1 max(2w−k1−r−1, 1)
(2A− 1) · 2k2 (2B − 1) · 2r ± 1 max(2w−k2−r, 1)
0, 1, 2w − 1 arbitrary 1

Proof. By Lemmas 2.3.4 and 2.3.5, it is clear that the second and third lines of Table
2.1 are true.

Since T1(X) = X and T2w−1 ≡ (X) mod 2w, the first line of Table 2.1 is true.
Assume that X1 = 1. We can express X1 ≡ (2A1 − 1) · 2w + 1 mod 2w. Then, by

Lemma 2.3.4,

T(2B−1)·2r±1(X1) ≡ X1 + 2w+r+1 mod 2w+r+2

≡ X1 mod 2w.

Similarly, we can get T(2B−1)·2r±1(0) ≡ 0 mod 2w and T(2B−1)·2r±1(2
w − 1) ≡ 2w − 1

mod 2w. Then, the fourth line of Table 2.1 is true.
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Example 2.3.1. Let us consider the orbital period with the initial point X0 = 5 and the
degree p = 3 over a ring of modulo 27. Since 5 = 22 + 1 and 3 = 22 − 1, the second line
of Table 2.1 is applied. The orbital period is calculated as

max(27−2−2−1, 1) = 4.

Indeed,

T3(5) ≡ 101 mod 27,

T3(101) ≡ 69 mod 27,

T3(69) ≡ 37 mod 27,

T3(37) ≡ 5 mod 27.

Then, the orbital period is surely 4.

2.3.2 Degree period of Chebyshev polynomials

We prove a theorem about periodicity of degree. Firstly, we introduce the following some
basic lemmas.

Lemma 2.3.7.

∀p ∈ N, Tp

(
α+ α−1

2

)
=

αp + α−p

2
.

Lemma 2.3.8. Assume that s and t are natural numbers. Then,

a ≡ b mod 2s ⇒ a2
t ≡ b2

t

mod 2s+t.

Proofs of the above two lemmas are shown in Ref. [25].

Lemma 2.3.9. Assume that X1 = (2A − 1) · 2k1 ± 1 and α = X1 +
√
X2

1 − 1, where A
and k1 are natural numbers and 2 ≤ k1 ≤ w − 4. Then,

α2w−k1−1
+ α−2w−k1−1

2
≡ 1 mod 2w, (2.9)

α+ α−1

2
· α

2w−k1−1 − α−2w−k1−1

2
≡ 0 mod 2w. (2.10)

Proof. Since k1 ≥ 2,

α2 = 2X2
1 − 1 + 2X1

√
X2

1 − 1

≡ 1 + 2X1

√
X2

1 − 1 mod 2k1+2.

Assume that ∃t0 ∈ N, α2t0 ≡ 1 + 2t0X1

√
X2 − 1. By Lemma 2.3.8,

α2t0+1 ≡ {1 + 2t0X1

√
X2

1 − 1}2 mod 2k1+t0+2

≡ 1 + 2t0+1X1

√
X2 − 1 mod 2k1+t0+2.

Then, ∀t ∈ N, α2t ≡ 1 + 2tX1

√
X2 − 1, and so

α2w−k1−1 ≡ 1 + 2w−k1−1X
√
X2 − 1 mod 2w.
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By the same reason,

α−2w−k1−1 ≡ 1− 2w−k1−1X
√
X2 − 1 mod 2w.

Form the above,

α2w−k1−1
+ α−2w−k1−1

2
≡ 1 mod 2w,

α+ α−1

2
· α

2w−k1−1 − α−2w−k1−1

2

≡
√

X2
1 − 1 · 2w−k1−1X1

√
X2 − 1 mod 2w

≡0 mod 2w.

Lemma 2.3.10. Assume that X2 = (2A− 1) · 2k2 and α = X2 +
√
X2

2 − 1, where A and
k2 are natural numbers satisfying k2 ≤ w − 3. Then,

α2w−k2 + α−2w−k2

2
≡ 1 mod 2w, (2.11)

α2w−k2 − α−2w−k2

2
≡ 0 mod 2w. (2.12)

Proof. Since X2 = (2A− 1) · 2k2 and k2 is natural number,

α4 ≡ 1 mod 2k2+2.

Assume that ∃t0 ∈ N, α2t0 ≡ 1 mod 2k2+t0 . Then,

α2t0+1 ≡ 12 mod 2k2+t0+1.

Therefore, α2w−k2 ≡ 1 mod 2w and α−2w−k2 ≡ 1 mod 2w. From the above,

α2w−k2 + α−2w−k2

2
≡ 1 mod 2w, (2.13)

α2w−k2 − α−2w−k2

2
≡ 0 mod 2w. (2.14)

Lemma 2.3.11. Assume that p is an odd number and X1 = (2A− 1) · 2k1 ± 1, where A
and k1 are natural numbers satisfying k1 ≤ w − 4. Then,

Tp+2w−k1−1(X1) ≡ Tp(X1) mod 2w.

Proof. Assume that α = X +
√
X2 − 1. Then, by Lemmas 2.3.7 and 2.3.9,

Tp+2w−k1−1(X1)

=
αp+2w−k1−1

+ α−p−2w−k1−1

2

=
αp + α−p

2
· α

2w−k1−1
+ α2w−k1−1

2
+

αp − α−p

2
· α

2w−k1−1 − α2w−k1−1

2
≡Tp(X1) mod 2w.
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Lemma 2.3.12. Assume that p is an odd number and X2 = (2A− 1) · 2k2 , where A and
k2 are natural numbers satisfying k2 ≤ w − 3. Then,

Tp+2w−k2 (X2) ≡ Tp(X2) mod 2w.

Proof. Assume that α = X +
√
X2 − 1. Then, by Lemmas 2.3.7 and 2.3.10,

Tp+2w−k2 (X2)

=
αp+2w−k2 + α−p−2w−k2

2

=
αp + α−p

2
· α

2w−k2 + α2w−k2

2
+

αp − α−p

2
· α

2w−k2 − α2w−k2

2
≡Tp(X2) mod 2w.

Theorem 2.3.13. The degree periods of odd degree Chebyshev polynomials are dis-
tributed according to Table 2.2.

Table 2.2: Periods of degree. Here, A, k1, k2 ∈ N, 2 ≤ k1 ≤ w − 4 and k2 ≤ w − 3.

X Periodicity of Degree
(2A− 1) · 2k1 ± 1 Tp+2w−k1−1(X) ≡ Tp(X) mod 2w

Tp+2w−k1−2(X) ̸≡ Tp(X) mod 2w

(2A− 1) · 2k2 Tp+2w−k2 (X) ≡ Tp(X) mod 2w

Tp+2w−k2−1(X) ̸≡ Tp(X) mod 2w

otherwise Tp+2(X) ≡ Tp(X) mod 2w

Proof. It has already been shown that Tp+2w−k1−1(X) ≡ Tp(X) mod 2w for X = (2A −
1) · 2k1 ± 1 and Tp+2w−k2 (X) ≡ Tp(X) mod 2w for X = (2A− 1) · 2k2 . First, we consider
the case p ≡ ±1 mod 2w . Assume that X1 = (2A− 1) · 2k1 ± 1. By Theorem 2.3.6, the
orbital period of T±1+2w−k1−2 with the initial value X1 is 2. Then,

T±1+2w−k1−2(X1) ̸≡ X1 mod 2w.

On the other hand, T±1(X1) ≡ X1 mod 2w. Then,

Tp+2w−k1−2(X1) ̸≡ Tp(X1) mod 2w.

Next, assume that p = (2B−1) ·2r±1, where B and r are natural numbers satisfying
2 ≤ r ≤ w − 1.

We consider the case r ≥ w−k1−1. By Theorem 2.3.6, the orbital period of Tp with the
initial valueX1 is 1. On the other hand, since ∃B′ ∈ N, p+2w−k1−1 = (2B′−1)·2w−k1−2±1,
the orbital period of Tp+2w−k1−2 with the initial value X1 is 2. Then,

Tp+2w−k1−2(X1) ̸≡ Tp(X1) mod 2w.

We consider the case r = w − k1 − 2. The orbital period of Tp with the initial value
X1 is 2. On the other hand, since ∃B′, r′ ∈ N, p + 2w−k1−1 = (2B′ − 1) · 2w−k1−2+r′ ± 1,
the orbital period of Tp+2w−k1−2 with the initial value X1 is 1. Then,

Tp+2w−k1−2(X1) ̸≡ Tp(X1) mod 2w.
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We consider the case 2 ≤ r ≤ w−k1−3. Since the orbital period of Tp with the initial
value X1 is 2w−k1−r−1,

∀i, j ∈ Z/2w−k1−r−1Z, i ̸= j ⇒ T i
p(X1) ̸≡ T j

p (X1) mod 2w.

By the definition of Chebyshev polynomials, ∀i ∈ N, T i
p(X1) = Tpi(X1). If i is an odd

number, ∃Bi ∈ N, pi = (2Bi − 1) · 2r ± 1. Then, if i and j are odd numbers and satisfy
i < j ≤ 2w−k1−r−2,

T(2Bi−1)·2r±1(X1) ̸≡ T(2Bj−1)·2r±1(X1) mod 2w.

{2(B + 2w−k1−r−2)− 1} · 2r ± 1 = p+ 2w+k1−1.

By Lemma 2.3.11,
Tp+2w−k1−1(X1) ≡ Tp(X1) mod 2w.

Then,
Tp+2w−k1−2(X1) ̸≡ Tp(X1) mod 2w.

From the above, for an arbitrary odd number p,

Tp+2w−k1−2(X1) ̸≡ Tp(X1) mod 2w.

By the same way, for an arbitrary odd number p,

Tp+2w−k1−2((2A− 1) · 2k2) ̸≡ Tp((2A− 1) · 2k2) mod 2w.

Assume that X0 cannot be written as (2A − 1) · 2k1 nor (2A − 1) · 2k2 . By Theorem
2.3.6, the orbital period of Tp with the initial value X0 is 1 where p is an arbitrary odd
number. Then,

Tp+2(X0) ≡ Tp(X0) mod 2w.

From the above, the theorem is true.

Example 2.3.2. Let us consider the degree period with X0 = 5 over a ring of modulo
26. Since 5 = 22 + 1, Theorem 2.3.13 states that

Tp(X0) ≡ Tp+26−2−1(X0) mod 26,

Tp(X0) ̸≡ Tp+26−2−2(X0) mod 26

for an arbitrary odd number p. Indeed,

T3(5) ≡ 37 mod 26,

T5(5) ≡ 37 mod 26,

T7(5) ≡ 5 mod 26,

T9(5) ≡ 5 mod 26,

T11(5) ≡ 37 mod 26,

T13(5) ≡ 37 mod 26,

T15(5) ≡ 5 mod 26,

T17(5) ≡ 5 mod 26.

Then, the statement is surely true.
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2.3.3 Method of solving degree decision problem

In this section, we show a method to solve a degree decision problem by using Lemma
2.3.4, Theorem 2.3.6 and Theorem 2.3.13.

Remark. Degree decision problem over a ring of modulo 2w is as follows: find p ∈ Z/2wZ
satisfying

Ȳ ≡ Tp(X̄) mod 2w

with given X̄ and Ȳ .

Assume that p = p(l) · 2l where p(l) is an odd number and l is a non-negative natural
number and X̄l = T2l(X) mod 2w. Then,

Tp(X̄) = Tp(l)·2l(X̄)

= Tp(l)

(
T2l(X̄)

)
= Tp(l)(X̄l).

Then, it is enough to solve the following reduced degree decision problem for l = 0, 1, · · · , w−
1.

Definition 2.3.1. Reduced degree decision problem is as follows: find an odd number
p(l) satisfying

Ȳ ≡ Tp(l)(X̄l) mod 2w, (2.15)

where X̄l ≡ T2l(X̄).

We show a method to solve the problem with a fixed l. There are three cases.

Case 1: X̄l can be expressed as the following form

X̄l = (2A− 1) · 2k ± 1,

where A and k are natural numbers satisfying 2 ≤ k ≤ w− 4. In this case, the algorithm
to solve the problem is as follows:

1. If Ȳ ≡ X̄l mod 2w, output p(l) = 1 and finish this algorithm.

2. Find a natural number r ≥ 2 satisfying

Ȳ ≡ X̄l + 2k+r+1 mod 2k+r+2.

If r satisfying the condition does not exist, finish this algorithm since any odd
number p(l) does not satisfy (2.15).

3. Set q ← 2r + 1 and m← k + r + 3.

4. If Y ̸≡ Tq(X̄) mod 2m, q ← q + 2m−k−2.

5. If m ≥ w, output p(l) = q and finish this algorithm. Else, m ← m + 1 and return
step 4.
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The operation of step 1 is obviously proper.
By the Lemma 2.3.4, if we cannot find r at the step 2, there are the three possible

cases: Ȳ ≡ T1(X̄l) mod 2w, Ȳ ≡ T2w−1(X̄l) mod 2w and Ȳ ̸≡ Tp(X̄) mod 2w for an
arbitrary odd number p. By the theorem 2.3.6, T1(X̄l) ≡ T2w−1(X̄l) ≡ X̄l mod 2w. Since
the possibility of Ȳ ≡ X̄l mod 2w is removed at the step 1, Ȳ ̸≡ Tp(X̄) mod 2w for an
arbitrary odd number p if we cannot find r. Therefore, the operation of the step 2 is
proper.

By the theorem 2.3.13, if Ȳ ≡ Tq(X̄l) mod 2m−1 and Ȳ ̸≡ Tq(X̄l) mod 2m, Ȳ ̸≡
Tq+2m−k−2(X̄l) mod 2m. Then, the operations of the steps 3-5 are proper.

From the above, this algorithm is proper.
Since it takes O(w3) times to calculate the value of Tq(X̄) mod 2w, this algorithm

requires O(w4) times if there exists an odd number p(l) satisfying (2.15) and O(w) times
if there does not exist.

Case 2: X̄l can be expressed as the following form

X̄l = (2A− 1) · 2k,

where A and k are natural numbers satisfying k ≤ w − 3. In this case, the algorithm to
solve the problem is as follows:

1. If Ȳ ≡ X̄l mod 2w, output p(l) = 1 and finish this algorithm.

2. Find a natural number r ≥ 2 satisfying

Ȳ ≡ X̄l + 2k+r mod 2k+r+1.

If r satisfying the condition does not exist, finish this algorithm since any odd
number p(l) does not satisfy (2.15).

3. Set q ← 2r ± 1 and s← k + r + 2.

4. If Y ̸≡ Tq(X̄) mod 2m, q ← q + 2m−k−1.

5. If m ≥ w, output p(l) = q and finish this algorithm. Else, m ← m + 1 and return
4).

By the same way as the case 1, it is shown that this algorithm is proper. This algorithm
also requires O(w4) times if there exists an odd number p(l) satisfying (2.15) and O(w)
times if there does not exist.

Case 3: otherwise. By the theorem 2.3.13, Tp(l)(X) mod 2w is constant for any p(l).
Then, if Ȳ ≡ X̄l, an arbitrary odd number p(l) satisfies (2.15). Else, any odd number p(l)
does not satisfy (2.15).

From the above, the original degree decision problem whose domain of searching degree
is not restrict odd numbers can be efficiently solved. Since it takes only O(w3) times to
calculate the value of X̄l for each l, the method to solve the problem takes only O(w4)
times if there exists a solution p and O(w3) times if there does not exist.

Example 2.3.3. Let us find p satisfying

865 = Tp(7) mod 211.
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In this example,

w =11,

Ȳ =865 = 27 · 25 + 1.

First, we consider the case l = 0.

X̄0 ≡ 7 = 23 − 1.

This corresponds to the case 1. At the step 2 of the algorithm, we cannot find r satisfying
the condition. Then, any odd number p(0) is not satisfy (2.15).

Next, we consider the case l = 1.

X̄1 = T2(7) mod 211 = 97 = 3 · 25 + 1.

This corresponds to the case 1. At the step 2 of the algorithm, r = 2 is chosen. At the
step 3 we set q ← 5 = 22 + 1 and m← 10 = 5 + 2 + 3.

T5(97) ̸≡ 865 mod 210.

Then, q ← q + 23 = 13 and m← m+ 1.

T13(97) ≡ 865 mod 211.

Since m = 11 ≥ w, finish this algorithm.
From the above, p = 13 · 21 = 26 is a solution of the problem.

2.4 Generalization

In this section, we discuss generalization of the former sections. We consider a broader
class of set of permutation polynomials than the set of odd degree Chebyshev polynomials.

There are two direct and essential reasons why the degree decision problem of Cheby-
shev polynomials over a ring of modulo 2w is efficiently solved. One reason is that the
periodicity of degree is completely made clear. The other reason is that Chebyshev poly-
nomials over the ring have some recursive properties. In general, such recursive properties
are common of permutation polynomials over the ring. There are also two reasons why we
could make the periodicity of degree clear. One reason is that the orbital period is made
clear, and the other reason is that the relation between the orbital period and the degree
period is known to be the established. In connection with the later reason, the arbitrary
odd degree Chebyshev polynomials over the ring can be expressed as an iteration of third
degree Chebyshev polynomials over the ring.

Based on the above, we consider the following set of permutation polynomials: assume
that

{P1(X), P2(X), · · · , Pn(X)}

is a set of permutation polynomials over a ring of modulo 2w, that the value Pi(X̄)
mod 2w can be efficiently calculated for given i and X̄, that there exists a permutation
polynomial f(X) which satisfies that

∀i, ∃j s.t. ∀X̄, Pi(X̄) ≡ f j(X̄) mod 2w,

and so the polynomials Pi(X) are commutative each other and that f(X) satisfies at least
one of the following conditions.
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• The values of f j(X̄) mod 2w can be directly and efficiently calculated for given j
and X̄.

• We can efficiently find i which satisfies Pi(X) ≡ f j(X) mod 2w for given j.

In the case of odd degree Chebyshev polynomials, f(X) is T3(X) and the both conditions
are satisfied. In the case that the later condition is satisfied, we can calculated F j(X̄)
mod 2w by finding i and calculating Pi(X̄) mod 2w even if we cannot directly calculate
the value.

In this situation, we can construct a key-exchange protocol with the set of polynomials.
That replace Chebyshev polynomials at the key-exchange protocol with the polynomials
in the set. The key-exchange protocol, however, is not secure. It means that the following
iteration number decision problem (INDP) can efficiently be solved.

Definition 2.4.1. Iteration number decision problem is as follows: find an integer j
satisfying

Ȳ ≡ f j(X̄) mod 2w,

where Ȳ and X̄ are given integers.

Theorem 2.4.1. INDP can efficiently be solved.

We show an algorithm to solve the problem. First, we introduce some lemmas.

Lemma 2.4.2. Assume that Ȳ , X̄ and j are integers, m is a non-negative integer and
they satisfy

Ȳ ≡ f j(X̄) mod 2m.

Then, there is a non-negative integer l ≤ m such that

Ȳ ≡ f j+2l(X̄) mod 2m.

Proof. It is clear that the lemma is true in the case m = 0. We consider the case m = 1.
Since F (X) is a permutation polynomials over a ring of modulo 2w,

f(0) ≡ 0 mod 2 and f(1) ≡ 1 mod 2

or

f(0) ≡ 1 mod 2 and f(1) ≡ 0 mod 2

is practical. Then,

f j+2(X̄) ≡ f j(X̄) mod 2 ≡ Ȳ mod 2.

Assume that m′ is a non-negative smaller integer than m. We consider the case that

there exists a non-negative number l′ ≤ m′ such that Ȳ ≡ f j+2l
′
(X̄) mod 2m

′
. In this

case,

Ȳ ≡ f j+2l
′

(X̄) + c2m
′

mod 2m
′+1,
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where c ∈ {0, 1}.

f j+2l
′+1

(X̄) ≡ f 2l
′ (

F j+2l
′

(X̄)
)

mod 2m
′+1

≡ f 2l
′ (

F j(X̄) + c2m
′
)

mod 2m
′+1

≡ f 2l
′ (
F j(X̄)

)
+ c2m

′
mod 2m

′+1

≡ Ȳ mod 2m
′+1.

From the above, the lemma is true.

Lemma 2.4.3. Assume that Ȳ , X̄, j and j′ are integers, m is a non-negative integer and
they satisfy

Ȳ ≡ f j(X̄) mod 2m,

Ȳ ≡ f j′(X̄) mod 2m+1,

and l is the minimum non-negative integer satisfying

Ȳ ≡ f j+2l(X̄) mod 2m.

Then,

j′ ≡ j mod 2l.

Proof. Assume that j′ = j + a2l + b where a is an integer and b is a non-negative integer
satisfying b < 2l. Then,

f j′(X̄) =f j+a2l+b(X̄)

≡f j+b(X̄) mod 2m.

Since 2l is the minimum natural number satisfying f j(X̄) ≡ f j+2l(X̄) mod 2m, b = 0.
Then, the lemma is true.

Lemma 2.4.4. Assume that Ȳ , X̄ and j are integers, m is a non-negative integer and
they satisfy

Ȳ ≡ f j(X̄) + 2m mod 2m+1,

and l is the minimum non-negative integer satisfying

Ȳ ≡ f j+2l(X̄) mod 2m.

If there exists an integer j′ such that Ȳ ≡ f j′(X̄) mod 2m+1,

Ȳ ≡ f j+2l(X̄) mod 2m+1.

Proof. Assume that

Ȳ ≡ f j+2l(X̄) + 2m mod 2m+1.
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For an arbitrary integer a,

fa2l(Ȳ ) ≡ fa2l
(
f j+2l(X̄) + 2m

)
mod 2m+1

≡ fa2l
(
f j+2l(X̄)

)
+ 2m mod 2m+1

≡ f (a+1)2l
(
f j(X̄)

)
+ 2m mod 2m+1

≡ f (a+1)2l
(
f j(X̄) + 2m

)
mod 2m+1

≡ f (a+1)2l
(
Ȳ
)

mod 2m+1.

Then,

f j+a2l(X̄) ≡ fa2l(Ȳ + 2m) mod 2m+1

≡ fa2l(Ȳ ) + 2m mod 2m+1

≡ f2l(Ȳ ) + 2m mod 2m+1

≡ f2l
(
f j(X̄) + 2m

)
+ 2m mod 2m+1

≡ f2l
(
f j(X̄)

)
mod 2m+1

≡ f j+2l(X̄) mod 2m+1

≡ Ȳ + 2m mod 2m+1.

By Lemma 2.4.3, if there exists an integer j′ such that Ȳ ≡ f j′(X̄) mod 2m+1, there
exists an integer b such that

Ȳ ≡ f j+b2l(X̄) mod 2w.

From the above, this lemma is true.

By using the above lemmas, the problem can be solved. We propose the following
algorithm to solve INDP:

1. Set j ← 0 and l← 0.

2. If Ȳ ≡ f j(X̄) mod 2w, output j and finish this algorithm. Else, find mj such that

Ȳ ≡ f j(X̄) + 2mj mod 2mj+1.

3. If Ȳ ≡ f j+2l(X̄) mod 2mj+1, j ← j + 2l and return to 2).

4. If l = w − 1, finish this algorithm. (In this case, any integer j dose not satisfy
Ȳ ≡ f j(X̄) mod 2w.) Else, l← l + 1 and return to 3).

If it takes O (g(w)) times to calculate f j(X̄) mod 2w for given X̄ and j, this algorithm
requires only O (w · g(w)) times at the worst case. Then, Theorem 2.4.1 is proven.

2.5 Summary

We completely clarified the orbital periods and degree periods of odd degree Chebyshev
polynomials over a ring of modulo 2w. Both of them show a recursive property, and
it is shown here that we can efficiently solve a degree decision problem by using the
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property. The proven fact here shows that the proposed key-exchange protocol with
Chebyshev polynomials is not secure. It is also shown that a key-exchange protocol
with more generalized permutation polynomials including Chebyshev polynomials is not
secure. However, it does not mean that permutation polynomials over a ring of modulo
2w including Chebyshev polynomials will not be applied to other fields such as common
key cipher. The characteristics shown in here would provide useful clues for investigating
further applications based on Chebyshev polynomials and other permutation polynomials
over a ring of modulo 2w.
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Chapter 3

Improving security of Vector Stream
Cipher

Vector Stream Cipher (VSC) is a stream cipher which was developed by Umeno, Kim and
Hasegawa at Communication Research Laboratory (now called the National Institute of
Information and Communications Technology) in 2004 [19]. Although, roughly speaking,
stream cipher is usually constructed by operations over GF(2) including shift-register (see
Ref. [12, 13, 14, 15] as examples), VSC is constructed by permutation polynomials over
a ring of modulo 2w. There are few applications of permutation polynomials over a ring
of modulo 2w, in particular, practical applications are very rare. VSC is one of such
applications. Because permutation polynomials over a ring of modulo 2w compatible with
digital computers and digital signal processors, VSC is very fast. In particular, it has
recorded 25Gbps by hardware implementation. The compatibility is also useful for light
implementation either by software or hardware.

On the other hand, the security of VSC has been investigated by several researchers [31,
32, 33, 34], and some security problems against for the theoretical attacks were reported
though any practical attack breaking VSC has not been reported so far. (In this thesis,
“theoretical attack” means an attack, which currently needs too much computation and
so cannot practically break cipher with today’s computers. Thus, a cipher which is proven
to be immune against theoretical attacks can be said to have a certain provable security,
while the success of a theoretical attack leads to a potential risk to be attacked with
future’s computers. On the other hand, “practical attack” means an attack which can
practically break cipher with today’s computers.) In this chapter, we improve VSC in
order to avoid them and design two new cipher systems, which we call “Vector Stream
Cipher 2.0” and “Vector Stream Cipher 2.1”, respectively.

Our purpose of this chapter is not only to develop new cipher but also to explore possi-
bility of the permutation polynomials over a ring of modulo 2w in the field of cryptography,
in particular, stream cipher.

3.1 Pseudo random number generator and Stream

cipher

A method which can generate a sequence of truly random numbers is not known, and
I think that such method will not be developed, at least in near future. Sequences of
random numbers, however, is needed in many field such that

• Monte Carlo simulation
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• inspection of products

• system identification

• communication systems

• cryptography

• steganography

and so on. Therefore, methods generating a sequence of numbers which has similar
property of truly random sequence approximately are used. Demanded precision of the
approximation depends on applications. Such methods are classified into two types. One is
“physical random number generator” and the other is “pseudo random number generator”.
Both of them are practically used.

3.1.1 Pseudo random number generator

Pseudo random number generator (PRNG) is an algorithm for generating a sequence of
numbers whose properties approximate the properties of sequences of random numbers.
The algorithm is completely deterministic and depends only on seed, which is a param-
eter or an initial value of the algorithm. In comparison with physical random number
generator, PRNG has the following properties:

• It can easily be implemented at low cost.

• Estimation of the precision is easy.

In addition, PRNG has a reproducibility. It means that we can get perfectly same sequence
if we use the same seed. The property is useful for some applications including stream
cipher.

Seed (= initial value, parameter)

?
input

PRNG (= algorithm)

?
output

100101011010· · · : pseudo random number

Figure 3.1: Pseudo random number generator

3.1.2 Stream cipher

Common key cipher is classified into two cipher. One is “Block cipher” and the other is
“Stream cipher”. Stream cipher uses PRNG and the seed of the PRNG corresponds to the
key. In general, stream cipher is faster than block cipher and it can be implemented more
lightly than block cipher. Then, stream cipher gets attention since 2000 approximately.
In general, the encryption is as follows:

1. Generate a sequence by using PRNG. (The “seed” = key)
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2. Execute the exclusive-OR with the sequence and plaintext. (The result is the ci-
phertext.)

In practical situations, the step 1 and 2 are executed in parallel. In decryption, the roles
of plaintext and ciphertext are exchanged.

Seed ( = “Key”)�PRNG

?

100101011010· · · : pseudo random number

⊕
111001100101· · · : plaintext

⇓
011100111111· · · : ciphertext

Figure 3.2: Stream cipher

There are many types of stream cipher, but almost stream cipher uses operations over
GF(2) including sift-register. VSC does not use the operations, so it is a rare type. It is
classified into “chaotic cipher”.

3.2 Vector Stream Cipher

In this section, we introduce Vector Stream Cipher 128 (VSC128) which is one kind of
original VSC. VSC128 requires a 128-bit secret key and a 128-bit initial vector. The
encryption algorithm is as follows:

1. Assume that A, B, C, D, X, Y , Z and W are 32-bit integer variables. Assign a
secret key to A, B, C and D, and an initial vector to X, Y , Z and W .

2. Repeat the following operation 8 times. (We call the operation “round” of VSC128.)

(a) Assume that a, b, c, d, x, y, z and w are 32-bit integer variables. Calculate the
values of a, b, c, d, x, y, z and w as follows:

a = A− (A mod 4) + 1 mod 232,

b = B − (B mod 4) + 1 mod 232,

c = C − (C mod 4) + 1 mod 232,

d = D − (D mod 4) + 1 mod 232,

x = X − (X mod 4) + 1 mod 232,

y = Y − (Y mod 4) + 1 mod 232,

z = Z − (Z mod 4) + 1 mod 232,

w = W − (W mod 4) + 1 mod 232.

(b) Assume that A′, B′, C ′, D′, X ′, Y ′, Z ′ and W ′ are 32-bit integer variables.
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Calculate the values of A′, B′, C ′, D′, X ′, Y ′, Z ′ and W ′ as follows:

A′ = A(2A+ y) mod 232,

B′ = B(2B + x) mod 232,

C ′ = C(2C + z) mod 232,

D′ = D(2D + w) mod 232,

X ′ = X(2X + c) mod 232,

Y ′ = Y (2Y + d) mod 232,

Z ′ = Z(2Z + a) mod 232,

W ′ = W (2W + b) mod 232.

(c) Regard (A′, B′, C ′, D′, X ′, Y ′, Z ′,W ′) as a 256-bit sequence, and perform 5-bit
left rotational shift. After that, copy the sequence to (A,B,C,D,X, Y, Z,W ).
Writing mathematically,

A = (A′ << 5)⊕ (B′ >> 27) mod 232,

B = (B′ << 5)⊕ (C ′ >> 27) mod 232,

C = (C ′ << 5)⊕ (D′ >> 27) mod 232,

D = (D′ << 5)⊕ (X ′ >> 27) mod 232,

X = (X ′ << 5)⊕ (Y ′ >> 27) mod 232,

Y = (Y ′ << 5)⊕ (Z ′ >> 27) mod 232,

Z = (Z ′ << 5)⊕ (W ′ >> 27) mod 232,

W = (W ′ << 5)⊕ (A′ >> 27) mod 232.

Here, “<<” means simple bit shift.

3. Assume that D1, D2, D3 and D4 are 32-bit plaintexts and E1, E2, E3 and E4 are
the corresponding ciphertexts respectively. Then, calculate the values of E1, E2,
E3 and E4 as follows.

E1 = D1⊕X,

E2 = D2⊕ Y,

E3 = D3⊕ Z,

E4 = D4⊕W.

4. Repeat steps 2 and 3 until all the given plaintexts are encrypted.

3.3 Attacks for VSC128

In this section, we introduce some theoretical attacks for VSC128 or weakness points of
VSC128.

3.3.1 Distinguishing attack with linear masking

Key-averaged linear probability (LP ) of a function fK is defined as

LP (ΓX̄ ,ΓȲ ) :=

(
2
#{
(
X̄,K

)
|X̄ · ΓX̄ = fK(X̄) · ΓȲ }

22n
− 1

)2

,
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where ΓX̄ , ΓȲ , X̄ and K are integers which are expressed as n-bit integers. The K
corresponds to a key. The ΓX̄ and ΓȲ are called “Linear-Mask”. The operation “·” means
the inner product over GF(2).

Assume gK1,K2 := fK1 ◦ fK2 . Key-averaged linear characteristic probability with con-
sidering multi pass (LCPM) of gK1,K2 is defined as

LCPM(ΓX̄ ,ΓZ̄) :=
∑
ΓȲ

LP (ΓX̄ ,ΓȲ )LP (ΓȲ ,ΓZ̄).

The fundamental function of VSC128 with a key K is described as

fK(X̄) = X̄(2X̄ +K − (K mod 4) + 1) mod 232,

where X̄ and K are expressed as 32-bit integers. The value of LP of the fundamental
function was studied [32]. The value is

LP (ΓX̄ ,ΓȲ )

=


1 for (ΓX̄ ,ΓȲ ) = (1, 1), (2, 3) or (3, 2)

2−2maxbit(ΓX̄)+4 for maxbit(ΓX̄) = maxbit(ΓȲ ) > 3 and [ΓX̄ ]maxbit(ΓX̄)−1 = [ΓȲ ]maxbit(ΓȲ )−1

0 otherwise

,

where [α]i means the i-th least bit of α and maxbit(α) := max{i|[α]i = 1}. It was also
studied that the maximum value of LCPM with 8 rounds is 2−115 [33]. Because a secret
key of VSC128 is 128-bit, a distinguishing attack is realized.

3.3.2 Chosen initial vector attack

It is reported that the output sequence (key-stream) of VSC128 have a statistical deviation
if the initial vector is chosen among specific vectors, and so the distinguishing attack is
realized if an attacker can chose an initial vector intentionally [34]. More concretely, the
distinguishing attack is practical if there are 232 initial vectors whose 96 bits from the
least significant bit are 0.

3.3.3 Collision of key stream

The round of VSC128 is not bijection. For example, assume that A, B, C, D, X, Y , Z
and W are odd numbers and Ã := A⊕0x80000000, · · · , W̃ := W⊕0x80000000. Then,
the values of (A, · · · ,W ) and (Ã, · · · , W̃ ) after the round are equal. The fact means that
effective key length of VSC128 is smaller than 128-bit.

3.4 Improving security of VSC128

In this section, we propose improvement of VSC128 to avoid such attacks. We call the
this improved VSC128 “Vector Stream Cipher 2.0 (VSC 2.0)”.

3.4.1 Increasing the repetition number of rounds

Since the maximum LCPM becomes smaller when repetition number of rounds increases,
we try to calculate the maximum LCPM with more rounds than 8.
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Assume LPround means LCPM of the round, and ΓWi = 1 << (i − 1) and ΓZj =
1 << (j − 1) are Linear-Masks which mask W and Z respectively on the round, where i
and j are natural numbers which are smaller than 32. LPround is calculated as follows:

LPround(ΓW1,Γ) =

{
1 for Γ = ΓW6

0 otherwise
.

LPround(ΓW2,Γ) =

{
1 for Γ = ΓW7 ⊕ ΓW6

0 otherwise
.

For 3 ≤ i ≤ 27,

LPround(ΓWi ⊕ αi−2,Γ) =

{
2−2i+4 forΓ = ΓWi+5 ⊕ (βi−2 << 5)

0 otherwise

where αi−2 and βi−2 are arbitrary (i− 2)bit integers. For i = 28 and 29,

LPround(ΓWi ⊕ αi−2,Γ) =

{
2−2i+4 for Γ = ΓZi−27

0 otherwise
.

For i = 30, 31 and 32,

LPround(ΓWi ⊕ αi−2,Γ) =

{
1 for Γ = ΓZi−27 ⊕ βi−29

0 otherwise
.

LPround(ΓZi, ·) is the same as the above.
Assume LCPMk means LCPM with k rounds.

LCPM9(ΓW3,ΓZ16) =
∑

α1,α4,α6,α11,α16,α21

[LPround(ΓW3,ΓW8 ⊕ (α1 << 5))

LPround(ΓW8 ⊕ (α1 << 5),ΓW13 ⊕ (α6 << 5))

LPround(ΓW13 ⊕ (α6 << 5),ΓW18 ⊕ (α11 << 5))

LPround(ΓW18 ⊕ (α11 << 5),ΓW23 ⊕ (α16 << 5))

LPround(ΓW23 ⊕ (α16 << 5),ΓW28 ⊕ (α21 << 5))

LPround(ΓW28 ⊕ (α21 << 5),ΓZ1)

LPround(ΓZ1,ΓZ6)

LPround(ΓZ6,ΓZ11 ⊕ (α4 << 5))

LPround(ΓZ11 ⊕ (α4 << 5),ΓZ16)]

= 2−129.

For more detail, see the Table 3.1.
We repeat similar calculation, and get that 2−129 is the largest value of LCPM9. It

means that the linear attack needs more work than searching all over the key space and so
is not practical. Then, we change the repetition number of rounds at step 2 of VSC128’s
algorithm from 8 to 9 in the specification of VSC 2.0.
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Table 3.1: The values of LPround.

ΓX̄ ΓȲ LPround(ΓX̄ ,ΓȲ )

ΓW3 ΓW8 ⊕ (α1 << 5) 2−2

ΓW8 ⊕ (α1 << 5) ΓW13 ⊕ (α6 << 5) 2−12

ΓW13 ⊕ (α6 << 5) ΓW18 ⊕ (α11 << 5) 2−22

ΓW18 ⊕ (α11 << 5) ΓW23 ⊕ (α16 << 5) 2−32

ΓW23 ⊕ (α16 << 5) ΓW28 ⊕ (α21 << 5) 2−42

ΓW28 ⊕ (α21 << 5) ΓZ1 2−52

ΓZ1 ΓZ6 1
ΓZ6 ΓZ11 ⊕ (α4 << 5) 2−8

ΓZ11 ⊕ (α4 << 5) ΓZ16 2−18

3.4.2 Preprocessing

If we replace an initial vector with its hash value when the initial vector is given, we can
avoid chosen initial vector attack because an attacker cannot calculate an inverse of a
hash value effectively. Because the attack needs 232 initial vectors whose 96 bit from the
least significant bit of are 0, an attacker who will perform the attack is needed to calculate
the hash function 296 × 232 = 2128 times.

Although there are many hash functions in the world, we design a new hash function
with the round because we should keep the program small. The algorithm of the new
hash function is as follows.

1. Set A=0xfedcba98, B=0x01234567, C=0x89abcdef and D=0x76543210.

2. Assign a given initial vector to X, Y , Z and W .

3. Perform the round 30 times.

4. Output X, Y , Z and W .

Because any person who does not know the given initial vector cannot know the values
of A, B, C and D at step 4 of the above algorithm, it is difficult for him to calculate the
value of the given initial vector even if he knows the output. Then, we expect that the
algorithm can be regarded as a hash function. We, therefore, add the operation replacing
a given initial vector with its hash value with the algorithm to VSC128.

If the values of A, B, C and D at step 1 are all “0”, the preprocessing is weak for
a preimage attack. The value of D must not be odd number and the reason is shown
in the next section. Then, we choose A =0xfedcba98, B =0x01234567, C =0x89abcdef
and D =0x76543210. The reputation number at step 3 is chosen to be safe enough. We
confirm experimentally it at section 3.6.

3.4.3 Avoiding collision

Firstly, we prove the following theorem.

Theorem 3.4.1. Consider a map g : (Z/2nZ)m → (Z/2nZ)m, which is described as

g(A0, A1, · · · , Am−1) = (A′
0, A

′
1, · · · , A′

m−1),

A′
i = Ai

(
2Ai + a

(
A(i+1 mod m)

))
mod 2n (∀i ∈ Z/mZ),
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where A1, · · · , Am and A′
1, · · · , A′

m are elements of Z/2nZ and a(Ai) = Ai−(Ai mod 4)+1
(∀i ∈ Z/mZ). Assume On a subset of Z/2nZ, which is constructed of odd numbers in
Z/2nZ. Then, if we restrict the domain of g to (Z/2nZ)m except (On)

m, g becomes a
bijective map on (Z/2nZ)m\(On)

m.

Proof. Since g(X) ∈ (Z/2nZ)m\(On)
m for all X ∈ (Z/2nZ)m\(On)

m obviously, g can be
regarded as a map from (Z/2nZ)m\(On)

m to (Z/2nZ)m\(On)
m. Then, we prove injectivity.

Assume (A0, A1, · · · , Am−1) and (Ã0, Ã1, · · · , ˜Am−1) elements of (Z/2nZ)m\(On)
m sat-

isfying
(A0, A1, · · · , Am−1) ̸= (Ã0, Ã1, · · · , ˜Am−1). There are integers 0 ≤ si ≤ n and 2 ≤ ti ≤ n
(i ∈ Z/mZ) such that

(s0, s1, · · · , sm−1, t0, t1, · · · , tm−1) ̸= (n, n, · · · , n),
si ≤ ti (∀i ∈ Z/mZ),
Ãi = Ai + (2pi − 1)2si mod 2n (∀i ∈ Z/mZ),
a(Ãi) = a(Ai) + (2qi − 1)2ti mod 2n (∀i ∈ Z/mZ),

where pi and qi are natural numbers.
Assume that

(A′
0, A

′
1, · · · , A′

m−1) = g(A0, A1, · · · , Am−1),

(Ã0
′
, Ã1

′
, · · · , ˜Am−1

′
) = g(Ã0, Ã1, · · · , ˜Am−1).

To simplify notation, we define new notations Am, Ãm, tm and qm as A0, Ã0, t0 and q0
respectively. Then,

Ãi
′
= Ãi{2Ãi + a( ˜Ai+1)} mod 2n

= {Ai + (2pi − 1)2si}{2Ai + (2pi − 1)2si+1 + a(Ai+1) + (2qi+1 − 1)2ti+1} mod 2n

= [Ai{2Ai + a(Ai+1)}+ A1(2pi − 1)2si+2 + Ai(2qi+1 − 1)2ti+1 + (2pi − 1)222si+1

+ a(Ai+1)(2qi+1 − 1)2si + (2pi − 1)(2qi+1 − 1)2si+ti+1 ] mod 2n

= A′
i + (2ri − 1)2si + A1(2qi+1 − 1)2ti+1 mod 2n.

Here, ri (i = 0, 1, · · · ,m) are natural numbers. There are two cases.

Case 1: There are i, j ∈ Z/mZ such that si ̸= tj. In this case, there is k ∈ Z/mZ such
that sk < tk+1 ≤ n, because sl ≤ tl (

∀l ∈ Z/mZ). Then,

[(2rk − 1) · 2sk + Ak(2qk+1 − 1)2tk+1 mod 2n]i = 0 (i = 1, 2, · · · , sk),
[(2rk − 1) · 2sk + Ak(2qk+1 − 1)2tk+1 mod 2n]sk+1 = 1.

Then, the (sk + 1)-th least bit of Ãk
′
is different from that of A′

k.

Case 2: s0 = s1 = · · · = sm−1 = t0 = t1 = · · · = tm−1 < n. In this case, there are
k ∈ Z/mZ and B ∈ Z/2n−1Z such that Ak = 2B. Then,

(2rk − 1)2sk + Ak(2qk+1 − 1)2tk+1 mod 2n

=(2rk − 1)2sk + 2B(2qk+1 − 1)2sk mod 2n

=[2{rk +B(2qk+1 − 1)} − 1]2sk mod 2n.

Since sk < n, Ãk
′ ̸= A′

k.

Therefore, (Ã0
′
, Ã1

′
, · · · , ˜Am−1

′
) ̸= (A′

0, A
′
1, · · · , A′

m−1).
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Using the theorem, the round becomes a bijection if we restrict the domain to the
case that at least one of A, B, C, D, X, Y , Z or W is even. Then, we introduce a new
rule, “ Keep the value of D is even”. To keep the new rule, we add to the algorithm two
modifications as follows.

• Change the length of secret key from 128-bit to 127-bit, and assign secret key to A,
B, C and significant 31-bit of D at step 1 of the VSC128’s algorithm. Set the least
bit of D ‘0’ simultaneously.

• At step 2(b) of the algorithm, if D is even, D′ is also even. Then, change the step
2(c) as follows, and we can keep D even after performing the round. The mechanism
is shown in Fig. 3.3.

A = (A′ << 5)⊕ (B′ >> 27) mod 232,

B = (B′ << 5)⊕ (C ′ >> 27) mod 232,

C = (C ′ << 5)⊕ (D′ >> 27) mod 232,

D = (D′ << 5)⊕ ((X ′ >> 27) << 1) mod 232,

X = (X ′ << 5)⊕ (Y ′ >> 27) mod 232,

Y = (Y ′ << 5)⊕ (Z ′ >> 27) mod 232,

Z = (Z ′ << 5)⊕ (W ′ >> 27) mod 232,

W = (W ′ << 5)⊕ (A′ >> 27) mod 232.
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Figure 3.3: The new operation to keep D even

3.4.4 Algorithm of VSC 2.0

The algorithm of VSC 2.0 which is based on the above is as follows:
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1. Assume that A, B, C, D, X, Y , Z and W are 32-bit integer variables. Set
A=0xfedcba98, B=0x01234567, C=0x89abcdef and D=0x76543210 and assign an
initial vector to X, Y , Z and W .

2. Repeat the following operation 30 times. (The operation is the “round” of VSC
2.0.)

(a) Assume that a, b, c, d, x, y, z and w are 32-bit integer variables. Calculate the
values of a, b, c, d, x, y, z and w as follows:

a = A− (A mod 4) + 1 mod 232,

b = B − (B mod 4) + 1 mod 232,

c = C − (C mod 4) + 1 mod 232,

d = D − (D mod 4) + 1 mod 232,

x = X − (X mod 4) + 1 mod 232,

y = Y − (Y mod 4) + 1 mod 232,

z = Z − (Z mod 4) + 1 mod 232,

w = W − (W mod 4) + 1 mod 232.

(b) Assume that A′, B′, C ′, D′, X ′, Y ′, Z ′ and W ′ are 32-bit integer variables.

Calculate the values of A′, B′, C ′, D′, X ′, Y ′, Z ′ and W ′ as follows:

A′ = A(2A+ y) mod 232,

B′ = B(2B + x) mod 232,

C ′ = C(2C + z) mod 232,

D′ = D(2D + w) mod 232,

X ′ = X(2X + c) mod 232,

Y ′ = Y (2Y + d) mod 232,

Z ′ = Z(2Z + a) mod 232,

W ′ = W (2W + b) mod 232.

(c) Regard (A′, B′, C ′, D′, X ′, Y ′, Z ′,W ′) as a 256-bit sequence, and perform 5-bit
left rotational shift. After that, copy the sequence to (A,B,C,D,X, Y, Z,W ).
After that, 1-bit left rotational shift for low-ranking 6-bit of D. Writing math-
ematically,

A = (A′ << 5)⊕ (B′ >> 27) mod 232,

B = (B′ << 5)⊕ (C ′ >> 27) mod 232,

C = (C ′ << 5)⊕ (D′ >> 27) mod 232,

D = (D′ << 5)⊕ ((X ′ >> 27) << 1)) mod 232,

X = (X ′ << 5)⊕ (Y ′ >> 27) mod 232,

Y = (Y ′ << 5)⊕ (Z ′ >> 27) mod 232,

Z = (Z ′ << 5)⊕ (W ′ >> 27) mod 232,

W = (W ′ << 5)⊕ (A′ >> 27) mod 232.

3. Assign a secret key to A, B, C and D except the least significant bit of D. Set the
least significant bit of D to 0.
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4. Perform the round 9 times.

5. Assume that D1, D2, D3 and D4 are 32-bit plaintexts and E1, E2, E3 and E4 are
the corresponding ciphertexts respectively. Then, calculate the values of E1, E2,
E3 and E4 as follows:

E1 = D1⊕X,

E2 = D2⊕ Y,

E3 = D3⊕ Z,

E4 = D4⊕W.

6. Repeat steps 4 and 5 until all the given plaintexts are encrypted.

3.5 Further improvements of VSC 2.0

Although the security of VSC 2.0 is better than the original VSC, something to be con-
sidered for optimization of cipher design is left. In particular, we think that the following
two things should be considered for further improvements.

• The key length of VSC 2.0 is 127bit. Thus, the key space is the half of the original
VSC128.

• The step 2(c) of VSC 2.0 algorithm is slower than that of VSC128.

Both of them are caused by what makes the round a bijection. To improve them, we
introduce the following theorem.

Theorem 3.5.1. Assume that g : (Z/2nZ)m → (Z/2nZ)m is described as

g(A0, A1, · · · , Am−1) = (A′
0, A

′
1, · · · , A′

m−1),

A′
i = Ai

(
2Ai + 4A(i+1 mod m) + 1

)
mod 2n (∀i ∈ Z/mZ).

Here, A1, · · · , Am and A′
1, · · · , A′

m are elements of Z/2nZ. Then, g is a bijection.

Proof. It is enough to prove injectivity.
Assume that (A0, A1, · · · , Am−1) and (Ã0, Ã1, · · · , ˜Am−1) are elements of (Z/2nZ)m

satisfying
(A0, A1, · · · , Am−1) ̸= (Ã0, Ã1, · · · , ˜Am−1).

There are non-negative numbers si (i ∈ Z/mZ) satisfying

si ≤ n (∀i ∈ Z/mZ),
(s0, s1, · · · , sm−1) ̸= (n, n, · · · , n),
Ãi = Ai + (2pi − 1)2si mod 2n (∀i ∈ Z/mZ),

where pi are natural numbers. Assume that

(A′
0, A

′
1, · · · , A′

m−1) =g(A0, A1, · · · , A,−1),

(Ã0
′
, Ã1

′
, · · · , Ã′

m−1) =g(Ã0, Ã1, · · · , Ãm−1).
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Then, there exists k ∈ Z/mZ such that sk ≤ si (
∀i ∈ Z/mZ). Obviously, sk < n. To

simplify notation, we define new symbols Am, Ãm, sm and pm as A0, Ã0, s0 and p0,
respectively. Then,

Ãk
′

= Ãk{2Ãk + 4Ãk+1 + 1} mod 2n

= {Ak + (2pk − 1)2sk}{2Ak + (2pk − 1) · 2sk+1 + 4Ak+1 + (2pk+1 − 1) · 2sk+1+2 + 1} mod 2n

= A′
k + (2pk − 1) · 2sk + r · 2sk+1 + r′ · 2sk+1+2 mod 2n.

Here, r and r′ are natural numbers. Since sk ≤ sk+1 and sk < n, Ãk
′ ̸= A′

k. From the
above, g is a bijection.

3.5.1 Algorithm of VSC 2.1

By using Theorem 3.5.1, we can further improve VSC 2.0. We propose a new cipher
“Vector Stream Cipher 2.1 (VSC 2.1)”. The algorithm proposed here as VSC 2.1 is as
follows:

1. Assume that A, B, C, D, X, Y , Z and W are 32-bit integer variables. Set
A=0xfedcba98, B=0x01234567, C=0x89abcdef and D=0x76543210 and assign an
initial vector to X, Y , Z and W .

2. Repeat the following operation 30 times. (The operation is the “round” of VSC
2.1.)

(a) Assume that a, b, c, d, x, y, z and w are 32-bit integer variables. Calculate the
values of a, b, c, d, x, y, z and w as follows:

a = 4A+ 1 mod 232,

b = 4B + 1 mod 232,

c = 4C + 1 mod 232,

d = 4D + 1 mod 232,

x = 4X + 1 mod 232,

y = 4Y + 1 mod 232,

z = 4Z + 1 mod 232,

w = 4W + 1 mod 232.

(b) Assume that A′, B′, C ′, D′, X ′, Y ′, Z ′ and W ′ are 32-bit integer variables.

Calculate the values of A′, B′, C ′, D′, X ′, Y ′, Z ′ and W ′ as follows:

A′ = A(2A+ y) mod 232,

B′ = B(2B + x) mod 232,

C ′ = C(2C + z) mod 232,

D′ = D(2D + w) mod 232,

X ′ = X(2X + c) mod 232,

Y ′ = Y (2Y + d) mod 232,

Z ′ = Z(2Z + a) mod 232,

W ′ = W (2W + b) mod 232.
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(c) Regard (A′, B′, C ′, D′, X ′, Y ′, Z ′,W ′) as a 256-bit sequence, and perform 5-bit
left rotational shift. After that, copy the sequence to (A,B,C,D,X, Y, Z,W ).
Writing mathematically,

A = (A′ << 5)⊕ (B′ >> 27) mod 232,

B = (B′ << 5)⊕ (C ′ >> 27) mod 232,

C = (C ′ << 5)⊕ (D′ >> 27) mod 232,

D = (D′ << 5)⊕ (X ′ >> 27)) mod 232,

X = (X ′ << 5)⊕ (Y ′ >> 27) mod 232,

Y = (Y ′ << 5)⊕ (Z ′ >> 27) mod 232,

Z = (Z ′ << 5)⊕ (W ′ >> 27) mod 232,

W = (W ′ << 5)⊕ (A′ >> 27) mod 232.

3. Assign a secret key to A, B, C and D.

4. Perform the round 9 times.

5. Assume that D1, D2, D3 and D4 are 32-bit plaintexts and E1, E2, E3 and E4 are
the corresponding ciphertexts respectively. Then, calculate the values of E1, E2,
E3 and E4 as follows:

E1 = D1⊕X,

E2 = D2⊕ Y,

E3 = D3⊕ Z,

E4 = D4⊕W.

6. Repeat steps 4 and 5 until all the given plaintexts are encrypted.

By Theorem 3.5.1, the round of VSC 2.1 is bijection. The maximum LCPM9 of VSC 2.1
is the same as that of VSC 2.0. The key length of VSC 2.1 is 128bit, it is longer than
that of VSC 2.0. VSC 2.1 is expected to be faster than VSC 2.0 because step 2(c) is more
simple than that of VSC 2.0.

3.6 Experiments

In this section, we perform some experiments for VSC 2.0 and VSC 2.1.

3.6.1 Speed

We measure the speeds of performing VSC128, VSC 2.0, VSC 2.1 and AES-128. The
environment in which we measure is shown in Table 3.2. As results, we got Table 3.3.
VSC2.1 is slightly slower than the original VSC128, but faster than VSC 2.0.

3.6.2 Property of the preprocessing

We investigate properties of the preprocessing of VSC 2.0 and VSC 2.1. Step 2 of VSC
2.0 algorithm and that of VSC 2.1 algorithm are preprocessing, respectively. The detail
of the experiment is as follows:
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Table 3.2: Environment on which we measure speed

CPU 1.3 GHz Intel Core i5
Memory 4 GB 1600 MHz DDR3

OS OS X 10.9.5（13F34）
Compiler gcc 4.2.1

Optimization option -Ofast

Table 3.3: Encryption speeds

Algorithm Speed(Mbps)

VSC128 1202.254889
VSC 2.0 1039.222464
VSC 2.1 1113.193866

AES-128 ECB 366.901621

1. Select an input randomly. (We call the input I1.)

2. Select a bit of I1 and reverse the bit. (We call the value I2.)

3. Apply the preprocessing to I1 and I2. (We call the outputs I ′1 and I ′2 respectively.)

4. Measure the Hamming distance between I ′1 and I ′2.

5. Repeat step 1-4 1000000 times. Calculate the average of the Hamming distance
which are measure at step 3.

As a result, we got Table 3.4. Since the output length of the both preprocessing are
128bit, the result shows that the preprocessing have a good property.

Table 3.4: Hamming distance

Algorithm Average Hamming distance

VSC 2.0 64.000107
VSC 2.1 63.995965

3.6.3 Randomness of key stream

We performed randomness test described by NIST SP800-22 [35] for key streams generated
by VSC128, VSC 2.0 and VSC 2.1. The test was performed for 11 sets. Each set is
constructed of 1000 sequences. (Exceptionally, the sets 10 and 11 are constructed of 255
sequences respectively. A sequence of the set 10 is generated with an initial condition
(key and initial vector) whose one bit is “1” and the others are “0”. VSC 2.0 requires the
least bit of D is “0”. Then, the set 10 is constructed of only 255 sequences. A sequence
of the set 11 is generated with an initial condition whose two bits are “0” and the others
are “1”. One of the two is the least bit of D. Then, set 11 is also constructed of only
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255 sequences. ) Each sequence is constructed of 1000000bits, which are generated by
VSC128, VSC 2.0 or VSC 2.1 with a secret key and an initial vector. The secret key
and the initial vector are chosen randomly, but random pattern is dependent on a set.
Table 3.5 shows the result. The randomness test is constructed of 188 test items. Even
if sequences are exactly random, there are cases that the sequence does not pass all test
items. Therefore, the result show that there are no problem about randomness of the key
stream of VSC128, VSC 2.0 and VSC 2.1.

Table 3.5: Results of randomness tests

Numbers of test items which the set passed
Set No. VSC128 VSC 2.0 VSC 2.1

1 188 188 187
2 188 187 188
3 188 186 188
4 187 188 188
5 187 188 188
6 188 187 188
7 188 187 188
8 188 188 187
9 188 188 188
10 188 188 188
11 188 188 188

In addition, we performed statistical test proposed in Appendix A for VSC128, VSC
2.0 and VSC 2.1. We performed the test for 100 sets per one generator. Each set consists
1000 sequences and each sequence consists 1000000 bits. As the results, all sets passed
the test. These results also show that there are no problem about randomness of the key
stream of VSC128, VSC 2.0 and VSC 2.1.

3.7 Summary

The original VSC was developed based on the chaos theory. Some theoretical attacks for
VSC have been reported so far. Here, we proposed VSC 2.0 which are based on VSC,
and it dramatically improves the security of VSC. As a main result, the securities of VSC
2.0 for the linear attack are provable. VSC 2.0 are very fast because of the simplicity of
the algorithm, although it is little bit slower than the original VSC. VSC 2.0 can be also
used as a pseudo random numbers generator. We think that chaos encryption algorithm
based on the chaos theory is of important class of encryption algorithm. VSC 2.0 are
rare chaotic encryption algorithm with provable security. We should proceed further in
investigating proven security properties such as the distribution of periods of key stream
for the chaotic encryption algorithm VSC 2.0. We also proposed further improving of
VSC as a certain optimization of cipher design. Our proposed VSC 2.1 is faster than
VSC 2.0. We think that VSC 2.1 is more secure than VSC 2.0 because of the following
two reasons. First is that the key length of VSC 2.1 is longer than that of VSC 2.0.
Second is that any theoretical attacks which were reported as workable attacks for the
original VSC128 are not workable for VSC 2.1. In particular, VSC 2.1 has the provable
security for the distinguishing attack with linear masking. Thus, VSC 2.1 is a precious
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example of secure chaotic cipher which is using permutation polynomials over a ring of
modulo 2w, and suggests that the permutation polynomials and chaos theory are useful
for cryptography.
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Chapter 4

One-stroke polynomials over a ring
of modulo 2w

There are two important studies about permutation polynomials over a ring of modulo
2w. One is about periods of the polynomials. For cryptography and PRNG, such periods
are expected to be longer. Then, a necessary and sufficient condition to maximize the
periods of the permutation polynomials should be explored. When the period of the
permutation polynomial over the ring is maximized, there exists only one orbit passed
by the polynomial over the ring and the orbit passes all the elements of the ring. Since
a map which draws such only one orbit is called “one-stroke map” [36], we call such
permutation polynomials over the ring “one-stroke polynomials over a ring of modulo 2w”
in this thesis. The necessary and sufficient condition that specifies one-stroke polynomials
with the assumption that the degree of the permutation polynomials are restricted to 1 or
2 is known [37, 21]. One-stroke polynomials whose degrees are 1 or 2 are used in a linear
congruential method and a quadratic congruential method, which are pseudo random
number generators. A sufficient condition without any assumption has also been known
[37], but a necessary and sufficient condition without the assumption has not been known
as far as the authors know.

The other is more fundamental. In order to study about permutation polynomials over
a ring of modulo 2w, we should know which polynomials are permutation polynomials over
the ring. The necessary and sufficient condition that specifies permutation polynomials
have been already studied [38].

Based on the above, we study about the one-stroke polynomials over a ring of modulo
2w whose degrees are arbitrary.

4.1 Permutation polynomials over a ring of modulo

2w

In this section, we introduce some properties of permutation polynomials over a ring of
modulo 2w. The necessary and sufficient condition that specifies permutation polynomials
over the ring is given by the following theorem [38]:

Theorem 4.1.1. [Rivest, 2001] A polynomial f(X) =
∑N

i=0 aiX
i, where the coefficients

are integers, is a permutation polynomial over a ring of modulo 2w if and only if

a1 ≡ 1 mod 2, (4.1)

(a2 + a4 + a6 + · · · ) ≡ 0 mod 2, (4.2)

(a3 + a5 + a7 + · · · ) ≡ 0 mod 2. (4.3)
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The following lemma is used in order to prove Theorem 4.1.1. We also use the lemma
in the next section.

Lemma 4.1.2. Let f(X) is a polynomial with integer coefficients. Then, f(X) is a
permutation polynomial over a ring of modulo 2w if and only if

∀X̄, ∀w ≥ 1, f(X̄ + 2w−1) ≡ f(X̄) + 2w−1 mod 2w.

The following lemma is also used in the next section.

Lemma 4.1.3. Let f(X) is a permutation polynomial over a ring of modulo 2w. Then,
f j(X) is also a permutation polynomial over the ring for arbitrary integer j, where
f j(X) := f ◦ f j−1(X) and f1(X) := f(X).

4.2 One-stroke polynomial over a ring of modulo 2w

In this section, we derive a necessary and sufficient condition that coefficients of one-
stroke polynomials over a ring of modulo 2w satisfy. Firstly, we exactly define one-stroke
polynomials over a ring of modulo 2w.

Definition 4.2.1. Let f(X) is a permutation polynomial over a ring of modulo 2w. If
f(X) satisfy

∀w ≥ 1, ∀X̄, {f i(X̄) mod 2w|i ∈ Z/2wZ} = Z/2wZ,

f(X) is called a one-stroke polynomial over a ring of modulo 2w.

Example 4.2.1. We consider polynomials F (X) = 4X3 + X + 1 and G(X) = 6X3 +
2X2 +X + 1. Both of them are permutation polynomials over a ring of modulo 2w. Fig.
4.1 and 4.2 show orbits on a ring of modulo 2w passed by F (X) and G(X), respectively.
In Fig. 4.1, each orbit passes all elements of the ring where the orbit is passed on. It
means that F (X) is a one-stroke polynomial over a ring of modulo 2w. On the other
hand, G(X) is not a one-stroke polynomial over a ring of modulo 2w because there is not
an orbit which passes all elements of Z/23Z.

2
6

3
6

0 - 1 - 6 - 7 - 4 - 5 - 10

?
11

?
8�9�14�15�12�13�

(c)

3
6

0 - 1

?
2�

(a)
3
6

0 - 1 - 6 - 7

?
4�5�2�

(b)

Figure 4.1: Orbits passed by F (X). (a) Orbit on Z/22Z. (b) Orbit on Z/23Z. (c) Orbit
on Z/24Z.

Next, we introduce some lemmas. By the definition, the following two lemmas are
obviously true.
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Figure 4.2: Orbits passed by G(X). (a) Orbit on Z/22Z. (b) Orbit on Z/23Z.

Lemma 4.2.1. Let f(X) is a permutation polynomial over a ring of modulo 2w. Then,
f(X) is a one-stroke polynomial over the ring if and only if

f i(0) ≡ 0 mod 2w ⇔ i ≡ 0 mod 2w.

Lemma 4.2.2. Let f(X) is a permutation polynomial over a ring of modulo 2w. Then,
f(X) is a one-stroke polynomial over the ring if and only if

f2w(0) ≡ 0 mod 2w,

f2w−1

(0) ̸≡ 0 mod 2w.

Lemma 4.2.3. Let f(X) is a permutation polynomial over a ring of modulo 2w. Then,
f(X) is a one-stroke polynomial over the ring if and only if

∀w ≥ 1, f 2w−1

(0) ≡ 2w−1 mod 2w. (4.4)

Proof. Assume that f(X) is a one-stroke polynomial over the ring. By the definition,

∀w ≥ 1, ∃i ≤ 2w, s.t. f i(0) ≡ 2w−1 mod 2w.

Then, by Lemma 4.1.2 and 4.1.3,

f 2i(0) ≡ f i(2w−1) mod 2w ≡ 0 mod 2w.

By Lemma 4.2.1, 2i = 2w. Then, i = 2w−1.
Conversely, assume that (4.4) is true. Then, by Lemma 4.1.2 and 4.1.3,

f 2w(0) ≡ f 2w−1

(2w−1) mod 2w ≡ 0 mod 2w.

By Lemma 4.2.2, f(X) is a one-stroke polynomial over the ring.

Corollary 4.2.4. Let f(X) is a permutation polynomial over a ring of modulo 2w. Then,
f(X) is a one-stroke polynomial over the ring if and only if

∀X̄, ∀w ≥ 1, f 2w−1

(X̄) ≡ X̄ + 2w−1 mod 2w.

Lemma 4.2.5. Assume that f(X) is a permutation polynomial over a ring of modulo 2w

and f(X) satisfy f2(0) ≡ 2 mod 4 and f 4(0) ≡ 4 mod 8. Then,

∀w ≥ 2, f 2w−1

(0) ≡ 2w−1 mod 2w.
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Proof. Assume that f2(X) =
∑

biX
i and f 4(X) =

∑
ciX

i, where all bi and ci are
integers. By the assumption of the lemma, b0 ≡ 2 mod 4 and c0 ≡ 4 mod 8. Since f(X)
is a permutation polynomial over the ring, by Lemma 4.1.3, f2(X) is also permutation
polynomial over the ring. Then, by the Theorem 4.1.1, b1 ≡ 1 mod 2. Since f 4(X) =
f 2 ◦ f2(X),

c1 =b21 + 2b2b1b0 + 3b3b1b
2
0 + 4b4b1b

3
0 + · · ·

≡b21 mod 4 (∵ b0 ≡ 2 mod 4)

≡1 mod 4 (∵ b1 ≡ 1 mod 2).

Assume that there exists an integer w̄ ≥ 3 such that f 2w̄−1
(0) ≡ 2w̄−1 mod 2w̄ and the

first degree’s coefficient of the f 2w̄−1
(X) is 1 under modulo 4. We express f 2w̄−1

(X) and
f 2w̄(X) as f 2w̄−1

(X) =
∑

diX
i and f2w̄(X) =

∑
eiX

i, where all di and ei are integers.
By the assumption, d1 ≡ 1 mod 4 and d0 ≡ 2w̄−1 mod 2w̄.

e1 =d21 + 2d2d1d0 + 3d3d1d
2
0 + 4d4d1d

3
0 + · · ·

≡d21 mod 4 (∵ d0 ≡ 2w̄−1 mod 2w̄)

≡1 mod 4 (∵ d1 ≡ 1 mod 2),

e0 =d0 + d1d0 + d2d
2
0 + d3d

3
0 + · · ·

≡d0 + d0d1 mod 2w̄+1 (∵ d0 ≡ 2w̄−1 mod 2w̄)

≡2w̄ mod 2w̄+1 (∵ d1 ≡ 1 mod 4).

Then, f 2w̄(0) ≡ 2w̄ mod 2w̄+1 and the first degree’s coefficient of f 2w̄(X) is 1 under
modulo 4.

From the above, the lemma is true.

Finally, we introduce a necessary and sufficient condition that specifies one-stroke
polynomials over a ring of modulo 2w.

Theorem 4.2.6. Let f(X) =
∑N

i=0 aiX
i is a polynomial, where all ai are integers. Then,

f(X) is a one-stroke polynomial over a ring of modulo 2w if and only if

a0 ≡1 mod 2,

a1 ≡1 mod 2,

(a2 + a4 + a6 + · · · ) ≡0 mod 2,

(a3 + a5 + a7 + · · · ) ≡2a2 mod 4,

(a1 + a2 + a3 + · · · ) ≡1 mod 4.

Proof. If f(X) is a one-stroke polynomial over the ring, f(X) is a permutation polynomial
over the ring. Then, by Theorem 4.1.1, Lemmas 4.2.3 and 4.2.5, f(X) is a one-stroke
polynomial over the ring if and only if (4.1), (4.2), (4.3) and

f(0) ≡ 1 mod 2, f 2(0) ≡ 2 mod 4, f 4(0) ≡ 4 mod 8.

Since f(0) = a0,

f(0) ≡ 1 mod 2⇔ a0 ≡ 1 mod 2.

Since f 2(0) = a0 + a1a0 + a2a
2
0 + · · ·+ aNa

N
0 , if a0 ≡ 1 mod 2, (4.1) and (4.3),

f 2(0) ≡a0(1 + a1 + a3 + a5 + · · · ) + (a2 + a4 + a6 + · · · ) mod 4

≡1 + a1 + a2 + a3 + · · ·+ aN mod 4.
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Then,

f 2(0) ≡ 2 mod 4, a0 ≡ 1 mod 2, (4.1) and (4.3)

⇔ (a1 + a2 + a3 + · · · ) ≡ 1 mod 4, a0 ≡ 1 mod 2, (4.1) and (4.3).

We express f 2(X) as f 2(X) =
∑

biX
i, where all bi are integers. If f(X) is a permu-

tation polynomial over the ring, f2(X) is also a permutation polynomial over the ring
by Lemma 4.1.3, and so b1 ≡ 1 mod 2 by Theorem 4.1.1. If b0 ≡ 2 mod 4 and b1 ≡ 1
mod 2,

f4(0) =b0 + b1b0 + b2b
2
0 + b3b

3
0 + · · ·

≡2(1 + b1 + 2b2) mod 8.

If a0 ≡ 1 mod 2, (4.1), (4.2) and (4.3),

b2 =a2a1 +
N∑
i=2

ai

{
i(i− 1)

2
a21a

i−2
0 + ia2a

i−1
0

}

≡a2 +
N∑
i=2

ai

{
i(i− 1)

2
+ ia2

}
mod 2

≡a2 +
N∑
i=2

ai

{
i(i− 1)

2

}
mod 2 (∵ (4.3))

≡a2 + (a3 + a7 + a11 + · · · ) + (a2 + a6 + a10 + · · · ) mod 2

≡(a3 + a7 + a11 + · · · ) + (a6 + a10 + a14 · · · ) mod 2,

b1 =a21 + 2a2a1a0 + 3a3a1a
2
0 + · · ·+NaNa1a

N
0

≡1 + a1(3a3 + 5a5 + 7a7 + · · · ) + a1a0(2a2 + 4a4 + 6a6 · · · ) mod 4

≡1 + a1(3a3 + a5 + 3a7 + · · · ) + a1a0(2a2 + 2a6 + 2a10 · · · ) mod 4

≡1 + 2a1(a3 + a7 + a11 · · · ) + a1(a3 + a5 + a7 + · · · ) + 2(a2 + a6 + a10 · · · ) mod 4

≡1 + 2a2 + 2(a3 + a7 + a11 + · · · ) + (a3 + a5 + a7 + · · · ) + 2(a6 + a10 + a14 · · · ) mod 4.

Then,

f 4(0) ≡ 4 + 2{2a2 + (a3 + a5 + a7 + · · · )} mod 8.

Therefore,

f 4(0) ≡ 4 mod 8, b0 ≡ 2 mod 4, (4.1), (4.2) and (4.3)

⇔(a3 + a5 + a7 + · · · ) ≡ 2a2 mod 4, b0 ≡ 2 mod 4, (4.1), (4.2) and (4.3).

From the above, the theorem is true.

Example 4.2.2. Let f(X) = 4X3 +X + 1 and g(X) = 2X3 +X + 1. The both of them
are permutation polynomials over a ring of modulo 2w. Theorem 4.2.6 states that f(X)
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is a one-stroke polynomial over the ring and g(X) is not. Indeed,

f(0) ≡ 1 mod 8,

f(1) ≡ 6 mod 8,

f(6) ≡ 7 mod 8,

f(7) ≡ 4 mod 8,

f(4) ≡ 5 mod 8,

f(5) ≡ 2 mod 8,

f(2) ≡ 3 mod 8,

f(3) ≡ 0 mod 8.

Then, the period of the orbit which f(X) draws over Z/2wZ is maximum. On the other
hand,

g(0) ≡ 1 mod 8,

g(1) ≡ 4 mod 8,

g(4) ≡ 5 mod 8,

g(5) ≡ 0 mod 8.

Then, g(X) is not a one-stroke polynomial over the ring. The results are consistent with
Theorem 4.2.6.

4.3 Some properties of one-stroke polynomials over

a ring of modulo 2w

In this section, we introduce some properties of one-stroke polynomials over a ring of
modulo 2w.

4.3.1 Commutativity

We show a theorem about commutativity of one-stroke polynomials.

Theorem 4.3.1. Assume that f(X) is a one-stroke polynomial over a ring of modulo 2w

and g(X) is a permutation polynomial over the ring. If there exist w̄ ≥ 1 such that

∀X̄ ∈ Z/2w̄Z, f ◦ g(X̄) ≡ g ◦ f(X̄) mod 2w̄,

then, there is exists j ≤ 2w̄ such that

∀X, g(X) ≡ f j(X) mod 2w̄.

Proof. Assume that X̄ is a fixed value in Z/2w̄Z. Since f(X) is a one-stroke polynomial,

∃j ≤ 2w̄ s.t. g(X̄) ≡ f j(X̄) mod 2w̄.

If f i ◦ g(X̄) ≡ g ◦ f i(X̄) mod 2w̄,

f i+1 ◦ g(X̄) =f ◦
(
f i ◦ g(X̄)

)
=f ◦

(
g ◦ f i(X̄)

)
=f ◦ g

(
f i(X̄)

)
=g ◦ f

(
f i(X̄)

)
≡g ◦ f i+1(X̄) mod 2w̄.
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Then,

g
(
f i(X̄)

)
≡f i ◦ g(X̄) mod 2w̄

≡f j
(
f i(X̄)

)
mod 2w̄.

Then, since i is arbitrary and f(X) is a one-stroke polynomial,

∀X, g(X) ≡ f j(X) mod 2w̄.

The theorem is about one-stroke polynomials over a ring of modulo 2w, but it can be
easily more generalized. It is, however, not the theme of this thesis.

4.3.2 Calculation methods

Under the assumption that the degree of one-stroke polynomial f(X) is lower than w, we
show that following values can be calculated with polynomial order times of w.

(A) X̄ satisfying Ȳ ≡ f(X̄) mod 2w for given Ȳ .

(B) j satisfying Ȳ ≡ f j(X̄) mod 2w for given X̄ and Ȳ .

(C) Ȳ satisfying Ȳ ≡ f j(X̄) mod 2w for given X̄ and j.

In chapter 2, similar problem for permutation polynomials over the ring is discussed.
Here, we use not only properties of permutation polynomials over the ring but also those
of one-stroke polynomials over the ring.

Method to calculate (A).

The following algorithm can calculate (A).

1 Set X ′ ← 0 and m← 1.

2 If Ȳ ̸≡ f(X ′) mod 2m, X ′ ← 2m−1.

3 If m = w, output X ′ and finish this algorithm. Else, m← m+ 1 and return to (ii).

In the step 2, if Ȳ ≡ f(X ′)+2m−1 mod 2m, Ȳ ≡ f(X ′+2m−1) mod 2m by Lemma 4.1.2.
Therefore, this algorithm can calculate (A).

Since the degree of f(X) is lower than w, it requires O(w) multiplications and O(w)
additions on Z/2wZ to calculate the value of f(X) mod 2w for given X. Thus, the
calculation requires O(w3) times. Since the calculation is used O(w) times in the above
algorithm, the above algorithm requires O(w4) times.

Method to calculate (B).

In order to calculate (B), we introduce polynomials h2i(X) (i = 0, 1, 2, · · · , w−1) described
as

h2i(X) :=
(
f 2i(X) mod 2w

)
mod X⌈w

i
⌉.
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The polynomials h2i(X) have the following properties. If X̄ ≡ 0 mod 2i,

h2i(X̄) ≡ f 2i(X̄) mod 2w.

If X̄ ≡ 0 mod 2i+1,

h2i(X̄) ≡ 2i mod 2i+1,

and if X̄ ≡ 2i mod 2i+1,

h2i(X̄) ≡ 0 mod 2i+1.

If we know h2i(X), we can calculate h2i+1(X) as h2i+1(X) = h2i ◦ h2i(X) mod X⌈ w
i+1

⌉.
Because the degrees of h2i(X) and h2i+1(X) are lower than ⌈w

i
⌉, the calculation requires

O(⌈w
i
⌉3) multiplications andO(⌈w

i
⌉3) additions. Then, the calculation requiresO(w2⌈w

i
⌉3)

times.
By the estimation, it takes O(w5) times to calculate the list

{h20(X), h21(X), h22(X), · · · , h2w−1(X)}.
We show a method to calculate (B) by using h2i(X). If we find j′ and j′′ such that

0 ≡ f j′(Ȳ ) mod 2w and 0 ≡ f j′′(X̄) mod 2w,

we can calculate as j ≡ j′′ − j′ mod 2w. We, therefore, assume that Ȳ equals to 0
without loss of generality. Assume that j =

∑w−1
i=0 ϵ(i)2i where ϵ(i) ∈ {0, 1}. Then,

f j(X̄) ≡ f ϵ(w−1)2w−1 ◦f ϵ(w−2)2w−2 ◦· · ·◦f ϵ(0)20(X̄) mod 2w. By Lemma 4.2.1, if f j(X) ≡ 0
mod 2w, then f ϵ(m)2m ◦f ϵ(m−1)2m−1 ◦ · · · ◦f ϵ(0)20(X̄) ≡ 0 mod 2m+1 for arbitrary m. Thus,
by the properties of h2i(X),

f j(X̄) ≡ h
ϵ(w−1)

2w−1 ◦ hϵ(w−2)

2w−2 ◦ · · ·hϵ(0)

20 mod 2w.

From the above, the following algorithm outputs j satisfying f j(X̄) ≡ 0 mod 2w.

1 Set i← 0, j ← 0 and X ′ = X̄.

2 If X ′ ≡ 2i mod 2i+1, X ′ ← h2i(X
′) mod 2w and j ← j + 2i.

3 If i = w − 1, output j and finish this algorithm. Else, i← i+ 1 and return to step
2.

It takes O(w2⌈w
i
⌉) times to calculate the value of h2i(X̄) for given X̄. Then, this algorithm

requires O(w3 logw) times, but calculating (B) requires O(w5) because we must calculate
the list {h20(X), h21(X), h22(X), · · · , h2w−1(X)}.

Method to calculate (C).

By using the above algorithm, we can find j′ such that f j′(X̄) ≡ 0 mod 2w, and so it
is enough to show an algorithm to calculate fk(0) mod 2w for given k. Assume that
k =

∑w−1
i=0 ϵ(i)2i where ϵ(i) ∈ {0, 1}. Then, fk(0) ≡ f ϵ(0)20 ◦ f ϵ(1)21 ◦ · · · ◦ f ϵ(w−1)2w−1

(0)

mod 2w. By Lemma 4.2.1, f ϵ(m)2m ◦ f ϵ(m+1)2m+1 ◦ · · · ◦ f ϵ(w−1)2w−1
(0) ≡ 0 mod 2m+1 for

arbitrary m. Thus, by the properties of h2i(X),

fk(0) ≡ h
ϵ(0)

20 ◦ h
ϵ(1)

21 ◦ · · ·h
ϵ(w−1)

2w−1 mod 2w.

Then, the following algorithm outputs fk(0) mod 2w.
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1 Set i← w − 1, X ′ = 0.

2 If (i+ 1)-th least significant bit of k is 1, X ′ ← h2i(X
′) mod 2w.

3 If i = 0, output X ′ and finish this algorithm. Else, i← i− 1 and return to step 2.

This algorithm also requires O(w3 logw) times, but calculating (C) requires O(w5) by the
same reason why the method to calculate (B) requires O(w5) times.

4.4 Summary

We derived the necessary and sufficient condition to specify one-stroke polynomials over
a ring of modulo 2w. The condition enables us to construct many long sequences with
maximum periods such that the distribution of points of the sequences are uniform over
the ring. In addition, one-stroke polynomials have some interesting properties. One-stroke
polynomials will be applied for many fields, including cryptography and PRNG.
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Chapter 5

Methods of combining one-stroke
polynomials over a ring of modulo 2w

for pseudo random number
generator and stream cipher

In the former chapter, we introduced the new class of permutation polynomials “one-
stroke polynomials over a ring of modulo 2w”. They should not, however, be applied for
stream cipher and PRNG as they are. A system using only one one-stroke polynomial
over the ring is too simple, and so there are many cases that a sequence made by one-
stroke polynomial does not have good randomness and that inner state of the PRNG can
be calculated [39, 40, 41]. We, therefore, discuss how to apply the polynomials to stream
cipher and PRNG, in this chapter. Some one-stroke polynomials over the ring should be
used. Then, we propose a method of combining one-stroke polynomials over the ring.
Orbits made by the polynomials have long periods, and the property is useful for the
applications. We should propose a method which can utilize the property. In the method,
the period is preserved.

In addition, we propose a combining method made a period longer than that of the
original one-stroke polynomials. The reason why we propose the method is that we need a
longer period than 2w in many cases, where w is the length of the variable used in Stream
cipher and PRNG. By the method, we can construct a PRNG which has arbitrary period.

The rapidity of computation is also useful for the applications. Then, the methods
proposed in this chapter can be performed by parallel computing.

5.1 Reproduct property

Lemma 4.2.3 states that an orbit made by a one-stroke polynomial over a ring of modulo
2w has a recursive property. The property essentially relates to the periodicity. Then, we
introduce some lemmas relating to the property for later sections.

Lemma 5.1.1. Assume that f(X) is a one-stroke polynomial over a ring of modulo 2w.
Then,

∀X̄, f(X̄ + 1) ≡ f(X̄) + 1 mod 4.
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Proof. Assume that f(X) =
∑n

i=0 aiX
i. If X̄ = 4k where k is an integer,

f(X̄) =
n∑

i=0

ai(4k)
i

≡a0 mod 4.

If X̄ = 4k + 1 where k is an integer,

f(X̄) =
n∑

i=0

ai(4k + 1)i

≡
n∑

i=0

ai mod 4

≡a0 + 1 mod 4 (∵ Theorem 4.2.6).

If X̄ = 4k + 2 where k is an integer,

f(X̄) =
n∑

i=0

ai(4k + 2)i

≡a0 + 2a1 mod 4

≡a0 + 2 mod 4 (∵ Theorem 4.2.6).

If X̄ = 4k + 3 where k is an integer,

f(X̄) =
n∑

i=0

ai(4k + 3)i

≡
∑
i: odd

3ai +
∑
i: even

ai mod 4

≡a0 +
n∑

i=1

ai + 2a1 + 2(a3 + a5 + a7 + · · · ) mod 4

≡a0 + 3 mod 4 (∵ Theorem 4.2.6).

Then, the lemma is true.

Lemma 5.1.2. Assume that f(X) is a one-stroke polynomial over a ring of modulo 2w.
Then, there exists C ∈ {0, 1} depending on f(X) such that

∀X̄, f(X̄ + 2) ≡ f(X̄) + 2 + 4C mod 8.

Proof. Assume that f(X) =
∑n

i=0 aiX
i. Then,

f(X̄ + 2) ≡
n∑

i=0

aiX̄
i + 2

n∑
i=1

iaiX̄
i−1 + 4

n∑
i=2

i(i− 1)

2
aiX̄

i−2 mod 8.

Then,

f(X̄odd + 2) ≡f(X̄odd) + 2
n∑

i=1

iai + 4
n∑

i=2

i(i− 1)

2
ai mod 8,

f(X̄even + 2) ≡f(X̄even) + 2a1 + 4a2 mod 8,
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where X̄odd and X̄even are arbitrary odd number and even number, respectively. By
Theorem 4.2.6,

2
n∑

i=0

iai

≡2a1 + 2(a3 + a5 + a7 + · · · ) + 4(a3 + a7 + a11 + · · · )
+ 2m+1(a2 + a6 + a10 + · · · ) mod 8

≡2a1 + 2m+1a2 + 4(a3 + a7 + a11 + · · · ) + 2m+1(a2 + a6 + a10 + · · · ) mod 8,

4
n∑

i=2

i(i− 1)

2
ai

≡4(a2 + a3 + a6 + a7 + a10 + a11 + · · · ) mod 8.

Then, 2
∑n

i=1 iai + 4
∑n

i=2
i(i−1)

2
ai ≡ 2ma1 + 4a2 mod 8.

Since a1 is odd, 2a1 + 4a2 ≡ 2 mod 4.
From the above, the lemma is true.

Lemma 5.1.3. Assume that f(X) is a one-stroke polynomial over a ring of modulo 2w.
Then, there exists C ′, C ′′ ∈ {0, 1} depending on f(X) such that

∀X̄odd: odd number, f(X̄odd + 2m) ≡f(X̄odd) + 2m + C ′2m+1 mod 2m+2,

∀X̄even: even number, f(X̄even + 2m) ≡f(X̄even) + 2m + C ′′2m+1 mod 2m+2,

for arbitrary integer m ≥ 2.

Proof. Assume that f(X) =
∑n

i=0 aiX
i. Then,

f(X̄odd + 2m) ≡f(X̄odd) + 2m
n∑

i=1

iai mod 2m+2,

f(X̄even + 2m) ≡f(X̄even) + 2ma1 mod 2m+2.

By Theorem 4.2.6,

2m
n∑

i=0

iai

≡2ma1 + 2m(a3 + a5 + a7 + · · · ) + 2m+1(a3 + a7 + a11 + · · · )
+ 2m+1(a2 + a6 + a10 + · · · ) mod 2m+2

≡2ma1 + 2m+1a2 + 2m+1(a3 + a7 + a11 + · · · ) + 2m+1(a2 + a6 + a10 + · · · ) mod 2m+2

≡2m mod 2m+1,

2ma1

≡2m mod 2m+1.

Then, the lemma is true.

5.2 Method of combining one-stroke polynomials over

a ring of modulo 2w with preserving the period-

icity

In this section, we propose a method of combining some one-stroke polynomials over a
ring of modulo 2w. The purpose is to make a PRNG which can generate a sequence with
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good randomness. The reason why we use one-stroke polynomials is that an orbit made
by a one-stroke polynomial is long and that such a long periodicity is in general needed
to PRNG. Then, we discuss a combining method which can preserve the long period.

5.2.1 Proposed Method

Firstly, we introduce a concept which generalize the reproduct property of an orbit made
by one-stroke polynomials over a ring of modulo 2w.

Definition 5.2.1. If a sequence {xn ∈ Z/2wZ}n∈Z satisfy

∀n, ∀m < w, xn+2m+a ≡ xn + 2m mod 2m+1,

∀n, xn+2w+a ≡ xn mod 2w,

then, we say that the sequence has (a, w)-reproduct property.

Of course, an orbit made by a one-stroke polynomial over Z/2w̄Z is a sequence which has
(0, w̄)-reproduct property. We should utilize (a, w)-reproduct property for PRNG. We
expect that the following proposition will be useful.

Lemma 5.2.1. Assume that {xn ∈ Z/2w−1Z}n∈Z is a sequence which has (0, w)-reproduct
property, and that {yn ∈ Z/2wZ}n∈Z is a sequence satisfying

∀n, yn+1 = f(yn) + 4Axn mod 2w,

where f(X) is a one-stroke polynomial over a ring of modulo 2w and A is an integer.
Then, {yn ∈ Z/2wZ}n∈Z has (0, w)-reproduct property.

Proof. By Corollary 4.2.4, for all n,

yn+1 ≡f(yn) + 4Axn mod 2

≡f(yn) mod 2

≡yn + 1 mod 2.

Assume that yn+1 ≡ yn + 1 + 2dn mod 4, where dn ∈ {0, 1}. Then, by Lemma 4.1.2
and 5.1.1,

yn+2 ≡f(yn+1) + 4Axn mod 4

≡f(yn + 1 + 2dn) mod 4

≡f(yn) + 1 + 2dn mod 4

≡yn+1 + 1 + 2dn mod 4

≡yn + 2 mod 4.

Assume that yn+2 ≡ yn + 2 + 4dn mod 8, where dn ∈ {0, 1}. Then, by Lemma 4.1.2
and 5.1.2,

yn+3 ≡f(yn+2) + 4Axn mod 8

≡f(yn + 2 + 4dn) mod 8

≡f(yn) + 2 + 4(dn + C) + 4Axn mod 8

≡yn+1 + 2 + 4(dn + C) mod 8,

yn+4 ≡yn+2 + 2 + 4(dn + C + C) mod 8

≡yn+2 + 2 + 4dn mod 8,

≡yn + 4 mod 8,

54



where C ∈ {0, 1}.
Assume that there is a natural number m ≥ 2 satisfying

∀n, yn+2m ≡ yn + 2m + 2m+1dn mod 2m+2,

where dn ∈ {0, 1}. Then, by Lemma 4.1.2 and 5.1.3,

yn+2m+1 =f(yn+2m) + 4Axn+2m mod 2w

≡f(yn + 2m + 2m+1dn) + 4A(xn + 2m) mod 2m+2

≡f(yn) + 2m + 2m+1(dn + Cn) + 4Axn mod 2m+2

≡yn+1 + 2m + 2m+1(dn + Cn) mod 2m+2,

where C∈{0, 1} and it depends on which yn is odd or even. Repeating similar calculations,

yn+2m+1 =yn+2m+2m

≡yn+2m + 2m + 2m+1(dn +
2m−1∑
i=0

Cn+i) mod 2m+2

≡yn + 2m + 2m+1 + 2m+1

2m−1∑
i=0

Cn+i mod 2m+2.

Since yn+2 ≡ yn mod 2 for all n,

2m−1∑
i=0

Cn+i ≡ 0 mod 2.

Then,

yn+2m+1 ≡yn + 2m + 2m+1 mod 2m+2.

From the above the lemma is true.

Based on Lemma 5.2.1, we consider the following combined system:

x
(1)
n+1 =f1(x

(1)
n ) +

K∑
k=0

C1,kx
(k)
n mod 2w,

x
(2)
n+1 =f2(x

(2)
n ) +

K∑
k=0

C2,kx
(k)
n mod 2w,

...

x
(K)
n+1 =fK(x

(K)
n ) +

K∑
k=0

CK,kx
(k)
n mod 2w,

where fi(X) (i = 1, 2, · · · , K) are one-stroke polynomials over a ring of modulo 2w and
Ci,k ((i = 1, 2, · · · , K), (k = 1, 2, · · · , K)) are integers satisfying Ci,k ≡ 0 mod 4. The
system is more complex than a simple system without combination. Then, we can expect
that the sequences {x(i)

n ∈ Z/2wZ}n∈Z (i = 1, 2, · · · , K) have good randomnesses.

A point which we should pay attention to is the periods of the sequences {x(i)
n ∈

Z/2wZ}n∈Z (i = 1, 2, · · · , K). By Lemma 5.2.1, we can prove that the sequences {x(i)
n ∈

Z/2wZ}n∈Z (i = 1, 2, · · · , K) satisfy (0, w)-reproduct condition and that periods of the
sequences are 2w. The period without combination is preserved.
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Theorem 5.2.2. The sequences {x(i)
n ∈ Z/2wZ}n∈Z (i = 1, 2, · · · , K) satisfy (0, w)-

reproduct condition.

Proof. It is clear that

∀i, ∀n, x
(i)
n+1 ≡ x(i)

n + 1 mod 2.

Assume that there exists an non-negative numberm ≤ w−1 such that {x(i)
n mod 2m}n∈Z (i =

1, 2, · · · , K) have (0,m)-reproduct property. Then, by Lemma 5.2.1, {x(i)
n mod 2m+1}n∈Z (i =

1, 2, · · · , K) have (0,m+1)-reproduct property. From the above, the theorem is true.

If we choose the coefficients Ci,k as the form 2e(i,k) where e(i, k) are non-negative
integer, the combination does not increase the number of multiplications because Ci,k ×
x
(i)
n can be calculated by bit-sift. Moreover, In particular hardware implementation, the

proposed method can be performed by parallel computation, in particular on hardware.
These mean that the proposed method can be fast.

In addition, the additions on the proposed method can be replaced with exclusive OR.
The replaced method keeps the periodicity and rapidity.

5.2.2 Generalization of the proposed method

The proposed method in the former section can be more generalized. Assume that fi(X) =∑N
j=0 ai,jX

j (i = 1, 2, · · · , K) are one-stroke polynomials over a ring of modulo 2w, and

that sequences {x(i)
n ∈ Z/2wZ}n∈Z (i = 1, 2, · · · , K) satisfy

x
(1)
n+1 =

N∑
j=0

{
a1,j +

K∑
k=1

L∑
l=1

C1,j,k,l(x
(k)
n )l

}
(x(1)

n )j mod 2w

x
(2)
n+1 =

N∑
j=0

{
a2,j +

K∑
k=1

L∑
l=1

C2,j,k,l(x
(k)
n )l

}
(x(2)

n )j mod 2w

...

x
(K)
n+1 =

N∑
j=0

{
aK,j +

K∑
k=1

L∑
l=1

CK,j,k,l(x
(k)
n )l

}
(x(K)

n )j mod 2w

where Ci,j,kl satisfy the following conditions:

• For arbitrary (i, j, k, l) except j = 0, Ci,j,k,l ≡ 0 mod 4.

• For arbitrary (i, k, l), Ci,0,k,l ≡ 0 mod 2.

• For arbitrary i,
∑K

k=1

∑L
l=1 Ci,0,k,l ≡ 0 mod 4.

• For arbitrary i,
∑K

k=1

∑
l:odd number larger than 1 Ci,0,k,l ≡ 0 mod 4.

This system is further more complex than the system in the former section, and so the
sequences made by this system are expected to have better randomness.

Theorem 5.2.3. The sequences {x(i)
n ∈ Z/2wZ}n∈Z (i = 1, 2, · · · , K) described the above

satisfy (0, w)-reproduct condition.
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Proof. Since fi(X) (i = 1, 2, · · · , K) are one-stroke polynomial over a ring of modulo 2w,
by Corollary 4.2.4,

∀i, ∀n, x
(i)
n+1 ≡ x(i)

n + 1 mod 2.

Assume that, for all n and i,

x
(i)
n+1 ≡ x(i)

n + 1 + 2d(i)n mod 4,

where dn ∈ {0, 1}. Then, by Lemma 4.1.2 and 5.1.1,

x
(i)
n+1 ≡fi(x(i)

n ) +
K∑
k=1

L∑
l=1

Ci,0,k,l(x
(k)
n )l mod 4

≡fi(x(i)
n ) +

K∑
k=1

L∑
l=1

Ci,0,k,lx
(k)
n mod 4,

x
(i)
n+2 ≡fi(x

(i)
n+1) +

K∑
k=1

L∑
l=1

Ci,0,k,l(x
(k)
n+1)

l mod 4

≡fi(x(i)
n + 1 + 2d(i)n ) +

K∑
k=1

L∑
l=1

Ci,0,k,l(x
(k)
n + 1) mod 4

≡fi(x(i)
n ) + 1 + 2d(i)n +

K∑
k=1

L∑
l=1

Ci,0,k,l(x
(k)
n + 1) mod 4

≡x(i)
n+1 + 1 + 2d(i)n +

K∑
k=1

L∑
l=1

Ci,0,k,l mod 4

≡x(i)
n + 2 mod 4.

Assume that, for all n and i,

x
(i)
n+1 ≡ x(i)

n + 2 + 4d(i)n mod 8,
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where dn ∈ {0, 1}. Then, by Lemma 4.1.2 and 5.1.2,

x
(i)
n+3

≡
N∑
j=0

{
ai,j +

K∑
k=1

L∑
l=1

Ci,j,k,l(x
(k)
n+2)

l

}
(x

(i)
n+2)

j mod 8

≡
N∑
j=0

{
ai,j +

K∑
k=1

L∑
l=1

Ci,j,k,l(x
(k)
n + 2 + 4d(i)n )l

}
(x

(i)
n+2)

j mod 8

≡
N∑
j=0

{
ai,j +

K∑
k=1

L∑
l=1

Ci,j,k,l(x
(k)
n )l

}
(x

(i)
n+2)

j + 2
K∑
k=1

L∑
l=1

Ci,0,k,ll(x
(k)
n )l−1 mod 8

≡
N∑
j=0

{
ai,j +

K∑
k=1

L∑
l=1

Ci,j,k,l(x
(k)
n )l

}
(x(i)

n + 2 + 4d(i)n )j

+ 2
K∑
k=1

L∑
l=1

Ci,0,k,ll(x
(k)
n )l−1 mod 8

≡fi(x(i)
n + 2 + 4d(i)n ) +

N∑
j=0

K∑
k=1

L∑
l=1

Ci,j,k,l(x
(k)
n )l(x(i)

n )j

+ 2
K∑
k=1

L∑
l=1

Ci,0,k,l(x
(k)
n )l + 2

K∑
k=1

L∑
l=1

Ci,0,k,ll(x
(k)
n )l−1 mod 8

≡fi(x(i)
n ) + 2 + 4(d(i)n +Di) +

N∑
j=0

K∑
k=1

L∑
l=1

Ci,j,k,l(x
(k)
n )l(x(i)

n )j

+ 2
K∑
k=1

L∑
l=1

Ci,0,k,l(x
(k)
n )l + 2

K∑
k=1

L∑
l=1

Ci,0,k,ll(x
(k)
n )l−1 mod 8

≡x(i)
n+1 + 2 + 4(d(i)n +Di)

+ 2
K∑
k=1

L∑
l=1

Ci,0,k,l(x
(k)
n )l + 2

K∑
k=1

L∑
l=1

Ci,0,k,ll(x
(k)
n )l−1 mod 8,

where Di ∈ {0, 1}. In the same way,

x
(i)
n+4

≡x(i)
n+2 + 2 + 4(d(i)n +Di +Di)

+ 2
K∑
k=1

L∑
l=1

Ci,0,k,l(x
(k)
n )l + 2

K∑
k=1

L∑
l=1

Ci,0,k,ll(x
(k)
n )l−1

+ 2
K∑
k=1

L∑
l=1

Ci,0,k,l(x
(k)
n+1)

l + 2
K∑
k=1

L∑
l=1

Ci,0,k,ll(x
(k)
n+1)

l−1 mod 8

≡x(i)
n+2 + 2 + 4d(i)n mod 8

≡x(i)
n + 4 mod 8.

Assume that there exists a natural number 2 ≤ m ≤ w−1 such that {x(i)
n mod 2m}n∈Z (i =

1, 2, · · · , K) have (0,m)-reproduct property. Then, for all n and i, there exist d
(i)
n ∈ {0, 1}
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such that

x
(i)
n+2m ≡ x(i)

n + 2m + 2m+1d(i)n mod 2m+2.

Then, by Lemma 4.1.2 and 5.1.3,

x
(i)
n+2m+1

≡
N∑
j=0

{
ai,j +

K∑
k=1

L∑
l=1

Ci,j,k,l(x
(k)
n+2m)

l

}
(x

(i)
n+2m)

j mod 2m+2

≡
N∑
j=0

{
ai,j +

K∑
k=1

L∑
l=1

Ci,j,k,l(x
(k)
n + 2m + 2m+1d(k)n )l

}
(x

(i)
n+2m)

j mod 2m+2

≡
N∑
j=0

{
ai,j +

K∑
k=1

L∑
l=1

Ci,j,k,l(x
(k)
n )l

}
(x

(i)
n+2m)

j +
K∑
k=1

L∑
l=1

Ci,0,k,ll(x
(k)
n )l−12m mod 2m+2

≡
N∑
j=0

{
ai,j +

K∑
k=1

L∑
l=1

Ci,j,k,l(x
(k)
n )l

}
(x(i)

n + 2m + 2m+1d(i)n )j

+ 2m
K∑
k=1

L∑
l=1

Ci,0,k,ll(x
(k)
n )l−1 mod 2m+2

≡fi(x(i)
n + 2m + 2m+1d(m+1,i)

n ) +
N∑
j=0

K∑
k=1

L∑
l=1

Ci,j,k,l(x
(k)
n )l(x(i)

n )j

+ 2m
K∑
k=1

L∑
l=1

Ci,0,k,l(x
(k)
n )l + 2m

K∑
k=1

L∑
l=1

Ci,0,k,ll(x
(k)
n )l−1 mod 2m+2

≡fi(x(i)
n ) + 2m + 2m+1(d(i)n +Di,n) +

N∑
j=0

K∑
k=1

L∑
l=1

Ci,j,k,l(x
(k)
n )l(x(i)

n )j

+ 2m
K∑
k=1

L∑
l=1

Ci,0,k,l(x
(k)
n )l + 2m

K∑
k=1

L∑
l=1

Ci,0,k,ll(x
(k)
n )l−1 mod 2m+2

≡x(i)
n+1 + 2m + 2m+1(d(i)n +Di,n)

+ 2m
K∑
k=1

L∑
l=1

Ci,0,k,l(x
(k)
n )l + 2m

K∑
k=1

L∑
l=1

Ci,0,k,ll(x
(k)
n )l−1 mod 2m+2,

where Di,n ∈ {0, 1} and it depends on which x
(i)
n is odd or even. In the same way,

x
(i)

n+2m+1

≡x(i)
n+2m + 2m + 2m+1

(
d(i)n +

2m−1∑
s=0

Di,n+s

)

+ 2m
2m−1∑
s=0

K∑
k=1

L∑
l=1

Ci,0,k,l(x
(k)
n+s)

l + 2m
2m−1∑
s=0

K∑
k=1

L∑
l=1

Ci,0,k,ll(x
(k)
n+s)

l−1 mod 2m+2

≡x(i)
n+2m + 2m + 2m+1d(i)n mod 2m+2

≡xn + 2m+1 mod 2m+2.

From the above, the theorem is true.
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5.2.3 Experiment

As an example of the method proposed in the former section, we consider the following
system:

x
(1)
n+1 =2(x(1)

n )2 + (4x(3)
n + 3)x(1)

n + (4x(2)
n + 1) mod 264,

x
(2)
n+1 =2(x(2)

n )2 + (4x(4)
n + 3)x(2)

n + (4x(3)
n + 1) mod 264,

x
(3)
n+1 =2(x(3)

n )2 + (4x(5)
n + 3)x(3)

n + (4x(4)
n + 1) mod 264,

x
(4)
n+1 =2(x(4)

n )2 + (4x(6)
n + 3)x(4)

n + (4x(5)
n + 1) mod 264,

x
(5)
n+1 =2(x(5)

n )2 + (4x(7)
n + 3)x(5)

n + (4x(6)
n + 1) mod 264,

x
(6)
n+1 =2(x(6)

n )2 + (4x(8)
n + 3)x(6)

n + (4x(7)
n + 1) mod 264,

x
(7)
n+1 =2(x(7)

n )2 + (4x(1)
n + 3)x(7)

n + (4x(8)
n + 1) mod 264,

x
(8)
n+1 =2(x(8)

n )2 + (4x(2)
n + 3)x(8)

n + (4x(1)
n + 1) mod 264.

Assume that this system outputs a following 32-bit number for each n,

((x(1)
n ⊕ x(2)

n ⊕ x(3)
n ⊕ x(4)

n ) >> 32)

⊕((x(5)
n ⊕ x(6)

n ⊕ x(7)
n ⊕ x(8)

n ) >> 48)⊕ (((x(5)
n ⊕ x(6)

n ⊕ x(7)
n ⊕ x(8)

n ) >> 16)&0xffff0000.

Then, we can regard the system as PRNG, and it can be also used as stream cipher.

Randomness test

We performed randomness test described by NIST SP800-22 for sequences generated by
the system. The detail is as follows:

• We performed the test for 100 sets.

• Each set consists of 1000 sequences.

• Each sequence consists of 1000000 bit.

• Initial state of the system was randomly decided for each set.

As the result, we got Table 5.1.

Table 5.1: Results of randomness test

Numbers of test items which a set passed Numbers of set
188 71
187 22
186 6
185 1

In addition, we performed statistical test proposed in Appendix A for 100 sets. As
the results, all sets passed the test.

These results show that the test did not find a problem about randomness. Main
purpose to propose the new methods is to make PRNGs whose sequences have a good
randomness. Thus, we can say that the experiment was successful.
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Encryption Speed

We measured the encryption speed of the system when we use it as stream cipher without
key-expansion. The environment in which we measured is shown in Table 5.2. In this
experiment, we did not use parallel parallel computing.

As a result, the system recorded 4936.824780Mbps. If calculated in cycle/Byte, it is
2.11cycle/Byte. Fastest stream cipher is K-Cipher2, as far as I know, and the maximum
speed of K-Cipher2 have been reported as 2.88cycle/Byte [14]. Investigation of the secu-
rity of our method is not enough, and so we cannot state that our method is the fastest
stream cipher. The result, however, shows possibility of one-stroke polynomials over a
ring of modulo 2w in the field of stream cipher.

Table 5.2: Environment on which we measure speed

CPU 1.3 GHz Intel Core i5
Memory 4 GB 1600 MHz DDR3

OS OS X 10.9.5（13F34）
Compiler gcc 4.2.1

Optimization option -Ofast

5.3 Method of combining one-stroke polynomials over

a ring of modulo 2w with extending the period

Although a period of an orbit made by one-stroke polynomials over a ring of modulo 2w is
long, it is limited to 2w. For example, if we use 64-bit processor, the period equals to 264

or is shorter. If we need a sequence with longer period, multiple-precision calculation is a
solution. Multiple-precision calculation, however, causes speed reduction. One reason is
that multiplication ofm-bit numbers needs O(m2) times. Another reason is that multiple-
precision calculation needs more memory assesses.

Then, in this section, we propose another method of combining some one-stroke poly-
nomials over a ring of modulo 2w. The purpose is to get a longer period without speed
reduction.

Firstly, we prove the following Theorem 5.3.2.

Lemma 5.3.1. Assume that a sequence {xn ∈ Z/2wZ}n∈Z has a (a, w)-reproduct prop-
erty. Then,for arbitrary n,

2w+a−1−1∑
i=0

[xn+i]w ⊕ [xn+i−1]w ≡ 1 mod 2,

where [x]m means the m-th least significant bit of a variable x.

Proof. For arbitrary n and m (m > n),

[xm−1]w ≡ [xn−1]w +
m−n−1∑

i=0

[xn+i]w ⊕ [xn+i−1]w mod 2.
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Since {xn}n∈Z has a (a, w)-reproduct property,

[xn+2w+a−1−1]w = [xn−1]w ⊕ 1.

Assume that m = n+ 2w+a−1. Then,

2w+a−1−1∑
i=0

[xn+i]w ⊕ [xn+i−1]w ≡ 1 mod 2.

Theorem 5.3.2. Assume that a sequence {xn ∈ Z/2wZ}n∈Z has a (a, w)-reproduct
property, f(X) is a one-stroke polynomial over a ring of modulo 2w,a sequence {yn ∈
Z/2wZ}n∈Z satisfy

yn+1 = f(yn) + [xn]w ⊕ [xn−1]w mod 2w
′
.

Then, {yn ∈ Z/2wZ}n∈Z has (w + a− 1, w′)-reproduct property.

Proof. By Corollary 4.2.4, for arbitrary n,

yn+1 = yn + 1 + [xn]w ⊕ [xn−1]w mod 2.

Then, by Lemma 5.3.1,

yn+2w+a−1 ≡yn + 2w+a−1 +
2w+a−1∑
i=0

[xn+i]w ⊕ [xn+i−1]w mod 2

≡yn + 1 mod 2.

Assume that {yn mod 2}n∈Z has a (w+ a− 1, 1)-reproduct property. Then, for all n,
there exist dn ∈ {0, 1} such that

yn+2w+a+m−1 ≡ yn + 1 + 2dn mod 4.

Then, by Lemma 4.1.2 and 5.1.1,

yn+2w+a−1+1 ≡f(yn+2w+a−1) + [xn+2w+a−1 ]w ⊕ [xn+2w+a−1−1]w mod 4

≡f(yn + 1 + 2dn) + [xn+2w+a−1 ]w ⊕ [xn+2w+a−1−1]w mod 4

≡f(yn) + 1 + 2dn + [xn]w ⊕ [xn−1]w mod 4

≡yn+1 + 1 + 2dn mod 4.

Then,

yn+2w+a =yn+2w+a−1+2w+a−1

≡yn+2w+a−1 + 1 + 2dn mod 4

≡yn + 2 mod 4.

Assume that, for all n, there exist dn ∈ {0, 1} such that

yn+2w+a ≡ yn + 2 + 4dn mod 8.
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Then, by Lemma 4.1.2 and 5.1.2,

yn+2w+a+1 ≡f(yn+2w+a) + [xn+2w+a ]w ⊕ [xn+2w+a−1]w mod 8

≡f(yn + 2 + 4dn) + [xn+2w+a ]w ⊕ [xn+2w+a−1]w mod 8

≡f(yn) + 2 + 4(d(m+1)
n + C) + [xn]w ⊕ [xn−1]w mod 8

≡yn+1 + 2 + 4(dn + C) mod 8,

where C ∈ {0, 1}. In the same way,

yn+2w+a+1 ≡yn+2w+a + 2 + 4(dn + 2w+aC) mod 8

≡yn + 4 mod 8.

Assume that there exists a natural number 2 ≤ m ≤ w−1 such that {yn mod 2m+1}n∈Z
has a (w + a − 1,m + 1)-reproduct property. Then, for all n, there exist d∈n{0, 1} such
that

yn+2w+a+m−1 ≡ yn + 2m + 2m+1dn mod 2m+2.

Then, by Lemma 4.1.2 and 5.1.3,

yn+2w+a+m−1+1 ≡f(yn+2w+a+m−1) + [xn+2w+a+m−1 ]w ⊕ [xn+2w+a+m−1−1]w mod 2m+2

≡f(yn + 2m + 2m+1dn) + [xn+2w+a+m−1 ]w ⊕ [xn+2w+a+m−1−1]w mod 2m+2

≡f(yn) + 2m + 2m+1(dn + Cn) + [xn]w ⊕ [xn−1]w mod 2m+2

≡yn+1 + 2m + 2m+1(dn + Cn) mod 2m+2,

where Cn ∈ {0, 1} and it depends on which yn is odd or even.. In the same way,

yn+2w+a+m =≡yn+2w+a+m−1 + 2m + 2m+1

(
dn +

2w+a+m−1∑
s=0

Cn+s

)
mod 2m+2

≡yn + 2m+1 mod 2m+2.

From the above, the theorem is true.

Based on Theorem 5.3.2, we consider the following system:

x
(1)
n+1 =f1(x

(1)
n ) mod 2w1 ,

x
(2)
n+1 =f2(x

(2)
n ) + [x(1)

n ]w1 ⊕ [x
(1)
n−1]w1 mod 2w2 ,

x
(3)
n+1 =f2(x

(3)
n ) + [x(2)

n ]w2 ⊕ [x
(2)
n−1]w2 mod 2w3 ,

...

x
(K)
n+1 =fK(x

(K)
n ) + [x(K−1)

n ]wK−1
⊕ [x

(K−1)
n−1 ]wK−1

mod 2wK ,

where fi(X) (i = 1, 2, · · · , K) are one-stroke polynomials over a ring of modulo 2w. Then,

the sequence {x(K)
n ∈ Z/2wZ}n∈Z has a (w1 + w2 + · · ·+ wK−1 − (K − 1), wK)-reproduct

property, and the period is 2w1+w2+···+wK−(K−1). If it takes O (gi(wi)) times to calculate the
value of f(X̄) mod 2wi for a given X̄, it takes only O (g1(w1) + g2(w2) + · · ·+ gK(wK))
times to push the system forward 1 step. If we use parallel computing, it takes only
O (max{g1(w1), g2(w2), · · · , gK(wK)}).
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5.4 Summary

In this chapter, we proposed two combining methods. One is a method of making a PRNG
which can generate a sequence with good randomness. The other is a method of making
a PRNG which can generate a sequence with a longer period. Both methods take a little
time only. As applications, we can use both methods at the same time. Then, I believe
that one-stroke polynomials will be practically used in cryptography in the near future.
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Chapter 6

Conclusion

We discussed permutation polynomials over a ring of modulo 2w and their applications
to cryptography. In this chapter, we summarize the possibility of the polynomials and
discuss the future works.

6.1 Key-exchange and public-key cryptography

In Chapter 2, we analyzed key-exchange protocol using odd degree Chebyshev polynomials
over a ring of modulo 2w. We proved that the key-exchange protocol is not secure, which
means that there is an algorithm which can break the protocol with polynomial order
times. We generalized the result and proved that an iteration number decision problem can
be solved with polynomial order times for more general permutation polynomials over the
ring which satisfy some conditions. In Chapter 4, we introduced one-stroke polynomials
over a ring of modulo 2w and showed an algorithm which can solve an iteration number
decision problem with O(w5) times for arbitrary one-stroke polynomial over a ring of
modulo 2w. These results suggest that it is unfortunately difficult to construct a key-
exchange protocol using permutation polynomials over a ring of modulo 2w. This means
that it is also difficult to construct a public-key cryptography using the polynomials. I
think that we need a breakthrough if we construct a new key-exchange protocol and a
public-key cryptography using permutation polynomials over a ring of modulo 2w, and it
is a future work.

6.2 Stream cipher and pseudo random number gen-

erator

On the other hand, we got an opposite result in the fields of stream cipher and pseudo
random number generators. In Chapter 3, we improved Vector Stream Cipher consisted of
permutation polynomials over a ring of modulo 232, and proposed Vector Stream Cipher
2.0 and 2.1. Both of them are fast, light and more secure than the original VSC.

In Chapter 4, we introduce a new class of permutation polynomials called “one-stroke
polynomials over a ring of modulo 2w”. They have the orbit of the maximum periods.
Then, they are expected to be useful for stream cipher and pseudo random number gen-
erators because long periodicity is important for such applications. Indeed, we show the
possibility of one-stroke polynomials in Chapter 5. In Chapter 5, we discuss how to use
one-stroke polynomials for such applications. We proposed a method of combining many
one-stroke polynomials and making a system more complex. We showed that system us-
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ing such method. We also proposed a method of combining one-stroke polynomials and
making a system which has a longer period. Using the methods, non-linearity and ensur-
ing of the periodicity can stand by stand. Compared with linear feedback shift register,
that is an advantage of one-stroke polynomials.

These results suggest usefulness of permutation polynomials over a ring of modulo 2w

for stream cipher and pseudo random number generators.

6.3 Future work and possibility of permutation poly-

nomials over a ring of modulo 2w

There are some what we have to do before using permutation polynomials over a ring
of modulo 2w for cryptography, in particular, stream cipher. Futher estimation of secu-
rity is needed. In practical, we are needed to repeat designing cipher with permutation
polynomials, estimating the security and redesigning cipher.

There are three points of view:

• As standard indicators, “linear characteristic probability” and “linear complexity”
are often used for estimating security of stream cipher. We have to design cipher
which has sufficiently large these values. In addition, in order to calculate the
values of the indicators for stream cipher using permutation polynomials, we have
to develop a new methodology.

• We should show that stream cipher using permutation polynomials have registance
to known attacks, such as Time-Memory Trade off Attack, Coorelation Attack and
Guess-and-Determine Attacks.

• We have to investigate weak points indigenous to permutation polynomials and
make the countermeasure.

The author conjectures that the first point will be solved soon because permutation poly-
nomials have non-linearity. Although the second and third points are more difficult than
the first point, the author conjectures that they can also be solved. We showed that we
can construct a very first system using permutation polynomials over a ring of modulo 2w

in Chapter 5. Then, if we need more security, we can increase number of used permutation
polynomials because there is a margin.

From the above, practical cipher using permutation polynomials over a ring of modulo
2w will be developed. Since it will be a very first and light cipher, it may be used for IoT
if it is verified that the security is superior.

66



Acknowledgement

The author expresses his gratitude to Professor Ken Umeno for his guidance and for
helpful comments on this study. The author is also grateful to Professor Toshinobu
Kaneko, Associate Professor Akihiro Yamaguchi and Dr. Hidetoshi Okutomi for their
helpful comments.

The author would like to thank Dr. Shin-itiro Goto and Mr. Hirofumi Tsuda for
discussion and advice. The author would like to thank Assosiate professor Daisaburo
Yoshioka, Associate professor Fumiyoshi Kuwashima, Associate professor Akito Igarashi,
Assistant professor Akihiro Sato, Dr. Shun Ogawa and Mr. Ken-ichi Okubo for discussion.

67



Appendix A

Randomness test based on variance
of power spectrum –an alternative
approach different from DFT test–

NIST SP 800-22 [35] is one of the most famous randomness test suite in the world.
Randomness test is useful for many fields and that is, in particular, indispensable for
estimation of security of cryptography. The first version of NIST SP 800-22 was published
in 2000. Now, revision 1a which is the resent version of NIST SP 800-22 have been
published.

A.1 DFT test and history of its improvements

Discrete Fourier Transform Test (DFTT) is a test included in NIST SP800-22. DFTT is
a hypothesis test and the null hypothesis is “Given sequences are independent and truly
random sequences”. The algorithm of DFTT is as follows:

1 Receive M sequences X1, X2, · · · , XM as the input. Here, each Xi is a n-bit se-
quence, and each bit is 0 or 1.

2 Convert each bit x to 2x− 1. (Then, each bit become 1 or -1.)

3 For each Xi, calculate p-value pi.

4 Perform a hypothesis test for {p1, p2, · · · , pM} under the null hypothesis “p1, p2, · · · , pM
are independent and the distribution is uniform on the interval [0, 1] ” (Second-level-
test).

The null hypothesis of DFTT is reject if and only if the null hypothesis of step 4 is reject.
It means that if the null hypothesis of DFTT is true, p1, p2, · · · , pM must be independent
and the distribution is uniform on the interval [0, 1]. The independency of p1, p2, · · · , pM is
clearly true if X1, X2, · · · , XM are independent. Then, the most important point of DFTT
is calculation of p-value at step 3. If Xi is a truly random sequence, the corresponding
p-value pi must be follow uniform distribution on [0, 1].

The algorithm of calculating p-value in the first version is as follows:

1 For given n-bit sequence X, perform discrete Fourier Transform and get the Fourier
spectrum series |S0(X)|, |S1(X)|, · · · , |Sn

2
−1(X)|.

2 Count N1 which is the number of |Si(X)| <
√
3n.
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3 Calculate d as follows:

d =
N1 − 0.95n

2√
(0.95)(0.05)n

2

.

4 Calculate p-value p as follows:

p = erfc

(
|d|√
2

)
.

This algorithm is based on the following conjecture: for sufficient large n, if X is truly ran-
dom sequence, 2

n
|S1(X)|2, · · · , 2

n
|Sn

2
−1(X)|2 independently follow　 χ2

2-distribution and
N1 follows B(n2 , 0.95) where B is the binomial distribution. If the conjecture is true, d and
p approximately follow the normal distribution and uniform distribution on [0, 1] respec-
tively. The conjecture is, however, probably not true because even sequences generated
by Mersenne twister which can be regarded as theoretically good generator do not pass
the DFTT. There are following two problems:

• For an arbitrary fixed j < n except j = 0, it is true that 2
n
|Sj(X)|2 follows χ2-

distribution if X is truly random sequence and n is sufficient large. However,
|S0(X)|, |S1(X)|, · · · , |Sn

2
−1(X)| are not probably independent because they share

the same argument X.

• The threshold
√
3n is an approximate value, but the precision is not good.

In 2003, Kim et al. pointed out the above problems [43]. Hamano also pointed out them
[44]. Kim et al. proposed the following improvement:

• Change the calculation of d as follows:

d =
N1 − 0.95n

2√
(0.95)(0.05)n

4

.

• Set the threshold as
√
−n log(0.05).

The first improving point is based on fitting using pseudo random sequences. The second
point has a theoretical basis if the first point is proper. DFTT in the resent version of
NIST SP 800-22 adopted the improvement.

Pareschi et al. did more precise fitting using pseudo random sequences generated by
BBS [45] and propose further improvement [46]. That is to change the calculation of d as
follows:

d =
N1 − 0.95n

2√
(0.95)(0.05) n

3.8

.

Although DFTT has been improved, we think that the following problems are left:

• The purpose of randomness test is to estimate randomness of given sequences. Then,
fitting using pseudo random sequences is inconsistent even if it is theoretically en-
sured that PRNG generating the sequences is superior.

• Even if the PRNG is perfectly superior, fitting is merely numerical.

• There is no basis that the calculation of d is written as the form

d =
N1 − 0.95n

2√
(0.95)(0.05)n

a

,

where a is a parameter.

Okada et al. proposed an approach to solve the problems [47]. We, however, think
that the approach made another problem. That is to break independency of p-values.
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A.2 Variance of power spectrum

The reason why the problems are left is that it is too difficult to derive the reference
distribution of N1. The purpose of DFTT is to investigate whether the fluctuation of
Fourier spectrum is suitable or not. Then, we should introduce another indicator which
reflects the fluctuation and whose reference distribution can analytically be derived.

Firstly, we consider the variance of Fourier spectrum as the indicator. It is, however,
difficult to derive the reference distribution of the variance because the definition of Fourier
spectrum is

|Sj(X)| :=

√√√√(n−1∑
k=0

xk cos

(
2πkj

n

))2

+

(
n−1∑
k=0

xk sin

(
2πkj

n

))2

,

where xk is k-th bit of X and the square root makes it difficult.
Then, we consider the variance of power spectrum as the indicator. The definition is

as follows:

Vn(X) :=
1

n

n−1∑
j=0

{
1

n
|Sj(X)|2 − 1

n

n−1∑
r=0

(
1

n
|Sr(X)|2

)}2

.

Of course, power spectrum is not Fourier spectrum, but the variance of power spectrum
probably reflects fluctuation of Fourier spectrum.
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A.2.1 Distribution of Vn(X)

In order to derive the distribution of Vn(X), let us calculate the average and variance of
Vn(X). Firstly, we deform Vn(X).

Vn(X) :=
1

n

n−1∑
j=0

{
1

n
|Sj(X)|2 − 1

n

n−1∑
r=0

(
1

n
|Sr(X)|2

)}2

=
1

n3

n−1∑
j=0

|Sj(X)|4 − 1 (∵ Parseval’s theorem)

=
1

n3

n−1∑
j=0

{(n−1∑
k=0

xk cos

(
2πkj

n

))2

+

(
n−1∑
k=0

xk sin

(
2πkj

n

))2 }2

− 1

=
1

n3

n−1∑
j=0

n−1∑
a=0

n−1∑
b=0

n−1∑
c=0

n−1∑
d=0

xaxbxcxd

{
cos

(
2πaj

n

)
cos

(
2πbj

n

)
cos

(
2πcj

n

)
cos

(
2πdj

n

)
+ sin

(
2πaj

n

)
sin

(
2πbj

n

)
sin

(
2πcj

n

)
sin

(
2πdj

n

)
+ cos

(
2πaj

n

)
cos

(
2πbj

n

)
sin

(
2πcj

n

)
sin

(
2πdj

n

)}
− 1

=
1

4n3

n−1∑
j=0

n−1∑
a=0

n−1∑
b=0

n−1∑
c=0

n−1∑
d=0

xaxbxcxd

{
cos

(
2π(a+ b+ c− d)j

n

)
+ cos

(
2π(a+ b− c+ d)j

n

)
− cos

(
2π(a− b+ c+ d)j

n

)
− cos

(
2π(a− b− c− d)j

n

)
+ 2 cos

(
2π(a− b+ c− d)j

n

)
+ 2 cos

(
2π(a− b− c+ d)j

n

)}
− 1.

We introduce a new notation:

δx :=

{
1 (x = 0,±n)
0 (otherwise)

.

Then,

Vn =
1

4n2

n−1∑
a=0

n−1∑
b=0

n−1∑
c=0

n−1∑
d=0

xaxbxcxd

{
δa+b+c−d + δa+b−c+d − δa−b+c+d

− δa−b−c−d + 2δa−b+c−d + 2δa−b−c+d

}
− 1

=
1

n2

n−1∑
a=0

n−1∑
b=0

n−1∑
c=0

n−1∑
d=0

xaxbxcxdδa−b+c−d − 1. (A.1)

Let us calculate the average of Vn(X). Since each xi takes 1 or -1 with the same
probability, terms in (A.1) except terms hold xaxbxcxd = 1 vanish when we take the
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Table A.1: Combinatorial number satisfying (a, b, c, d) ∈ B1, (a
′, b′, c′, d′) ∈ R(a, b, c, d)

a− b+ c− d a′ − b′ + c′ − d′ Combinatorial number

0 0 8
3
n3 +O(n2)

0 n O(n2)
0 −n O(n2)
n 0 O(n2)
n n 4

3
n3 +O(n2)

n −n 4
3
n3 +O(n2)

-n 0 O(n2)
-n n 4

3
n3 +O(n2)

-n −n 4
3
n3 +O(n2)

average. Then,

E[Vn] =
1

n2

{ ∑
a=b=c=d

δa−b+c−d +
∑

a=b̸=c=d

δa−b+c−d

∑
a=c ̸=b=d

δa−b+c−d +
∑

a=d ̸=b=c

δa−b+c−d

}
− 1

=

{
1 (n: even)

1− 1
2n

(n: odd)
−→ 1 (n→∞).

Next, let us calculate the variance of Vn(X). We introduce new notations:

B1 :=
{
(a, b, c, d) ∈ {0, 1, · · · , n− 1}4|a, b, c, d take different values each other

}
,

B2 :=
{
(e, f, g) ∈ {0, 1, · · · , n− 1}3|e, f, g take different values each other

}
.

Then,

E
[
(Vn(X)− E[Vn(X)])2

]
=E
[{ ∑

(a,b,c,d)∈B1

xaxbxcxdδa−b+c−d +
∑

(e,f,g)∈B1

xfxgδ2e−f−g

}2]
=

1

n4

{
E[(

∑
(a,b,c,d)∈B1

xaxbxcxdδa−b+c−d)
2]

+ E[(
∑

(a,b,c,d)∈B1

xaxbxcxdδa−b+c−d)(
∑

(e,f,g)∈B2

xfxgδ2e−f−g)] + E[(
∑

(e,f,g)∈B2

xfxgδ2e−f−g)
2]
}
.

Let us consider the first term.

E[(
∑

(a,b,c,d)∈B1

xaxbxcxdδa−b+c−d)
2]

=E[
∑

(a,b,c,d)∈B1

∑
(a′,b′,c′,d′)∈B1

xaxbxcxdxa′xb′xc′xd′δa−b+c−dδa′−b′+c′−d′ ]

=E[
∑

(a,b,c,d)∈B1

∑
(a′,b′,c′,d′)∈R(a,b,c,d)

δa−b+c−dδa′−b′+c′−d′ ],

where R(a, b, c, d) = {permutation of a, b, c, d}. By Table. A.1,

E[(
∑

(a,b,c,d)∈B1

xaxbxcxdδa−b+c−d)
2] = 8n3 +O(n2).
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By the same way, the second term equals to 0 and the third term is O(n2). Then,

E
[
(Vn(X)− E[Vn(X)])2

]
=

8

n
+O

(
1

n2

)
−→ 0 (n→∞).

A.2.2 Scaling

The variance of Vn(X) vanishes as n → ∞, and so we cannot, unfortunately, use Vn(X)
as a new indicator. Then, we consider the following scaled variance of power spectrum as
the indicator:

Ṽn(X) :=

√
n

8
{Vn(X)− E[Vn(X)]}

=
1

(2n)
3
2

{ ∑
(a,b,c,d)∈B1

xaxbxcxdδa−b+c−d +
∑

(e,f,g)∈B2

xfxgδ2e−f−g

}
.

In order to derive the distribution of Ṽn(X), let us calculate the moment.

E[(Ṽn)
m] =

1

(2n)
3
2
m

m∑
l=0

mClE
[{ ∑

(a,b,c,d)∈B1

xaxbxcxdδa−b+c−d

}m−l

×
{ ∑

(e,f,g)∈B2

xfxgδ2e−f−g

}l]
=

1

(2n)
3
2
m
E
[{ ∑

(a,b,c,d)∈B1

xaxbxcxdδa−b+c−d

}m]
+ (Lower order terms),

E
[{ ∑

(a,b,c,d)∈B1

xaxbxcxdδa−b+c−d

}m]
=

∑
(a(1),b(1),c(1),d(1))∈B1

· · ·
∑

(a(m),b(m),c(m),d(m))∈B1

E
[
{xa(1)xb(1)xc(1)xd(1)} · · · {xa(m)xb(m)xc(m)xd(m)}

]
× δa(1)−b(1)+c(1)−d(1) · · · δa(m)−b(m)+c(m)−d(m).

Then, we should count number of {a(1), b, (1), c(1), d(1)}, · · · ,
{a(m), b(m), c(m), d(m)} satisfying

E
[
{xa(1)xb(1)xc(1)xd(1)} · · · {xa(m)xb(m)xc(m)xd(m)}

]
= 1,

δa(1)−b(1)+c(1)−d(1) · · · δa(m)−b(m)+c(m)−d(m) = 1.

In order to count the number, we consider the following model:

• Basically, each variable can freely take n values. (In other words, each variable has
one degree of freedom.)

• Each variable has a hand.

• Variables which have a same argument are included in a same set. (See Fig. A.1.)

• Each hand must be connected with another hand by final time.

• Each hand must not be connected with two or more other hands.

• Hands of variables included in a same set must not be connected each other.
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{a(i), b(i), c(i), d(i)}

Figure A.1: Model of set of variables

{a(i), b(i), c(i), d(i)}

{a(j), b(j), c(j), d(j)}
@

@
@

Figure A.2: An example connecting a set with another set by one-connection

• There are the following constraint conditions:

– Each set has one constraint condition. If values of three variables in a set are
fixed, the other variable in the set is automatically determined.

– If a hand of variable A is connected with another hand of variable B, the value
of A must equal to the value of B.

As example, variables in Fig. A.1 have 3(=4-1) degree of freedom. We consider the case
that add a set {a(j), b(j), c(j), d(j)} to Fig. A.1 and connect a(i)’s hand with b(j)’s hand.
(See Fig. A.2.) In this case, the value of b(j) must equal to a(i). Then, degree of freedom
increases and the amount of the change is +2(=4-1-1). Hands which are not connected
with other hands (we call “open hands”) also increase and the amount of the change is
+2.

We consider a general case. Table A.2 shows the relation between number of anew
connecting hands, amount of change of degree of freedom and open hands. In initial
states, there is a set and variables included in the set have 3 degree of freedom. Fig. A.1
is an example of initial state. Since we must not leave hands which are not connected
with other hands, connecting a set with another set like Fig. A.3 maximizes degree of
freedom per one variable.

Table A.2: Relation between number of connected hands and change of degree of freedom
and open hands

Number of connected hands Degree of freedom Open hands

1 +2 +2
2 +1 ±0
3 ±0 -2
4 ±0 -4
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{a(i), b(i), c(i), d(i)}

{a(j), b(j), c(j), d(j)}
@

@
@

�
�
�

Figure A.3: An example of optimum connection

From the above, when m is even,

E[(Ṽn)
m] =

1

(2n)
3
2
m
E
[{ ∑

(a,b,c,d)∈B1

xaxbxcxdδa−b+c−d

}m]
+ (Lower order terms)

=
1

(2n)
3
2
m
E
[{ ∑

(a,b,c,d)∈B1

xaxbxcxdδa−b+c−d

}2]m
2

× (The combinatorial total number to make m/2 pairs of sets by m sets)

+ (Lower order terms)

=(m− 1)!! + (Lower order terms) −→ (m− 1)!! (n→∞).

Here, x!! := x × (x − 2) × (x − 4) × · · · × 3 × 1. When m is odd, since we cannot make
m/2 pairs of sets by m sets,

E[(Ṽn)
m] = 0 + (Lower order terms) −→ 0 (n→∞).

Summarizing the above,

lim
n→∞

E[(Ṽn)
m] =

{
(m− 1)!! (m: even)

0 (m: odd)
.

Then, the moments of Ṽn(X) converge to those of the standard normal distribution. It
means that distribution of Ṽn(X) “converges” to the standard normal distribution.

A.2.3 Numerical simulation

We made cumulative distributions of Ṽn(X) by M n-bit sequences generated by Mersenne
twister and compared them and the standard normal distribution. Fig. A.4 shows the re-
sults. Roughly speaking, the cumulative distribution of Ṽn(X) correspond to the standard
normal distribution when n ≥ 104.

A.3 Proposal method

Based on the former section, we propose a new method using Ṽn(X). The proposal method
replaces p-value calculation of DFTT with the follows:

1 For given n-bit sequence X, perform discrete Fourier Transform and get the Fourier
spectrum series |S0(X)|, |S1(X)|, · · · , |Sn

2
−1(X)|.

2 Calculate Ṽn(X) as follows:

Ṽn(X)← 1√
2n5

n
2
−1∑

j=0

|Sj(X)|4 −
√

n

2
.
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Figure A.4: Comparison cumulative distributions of Ṽn(X) with the standard normal
distribution
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3 Calculate p-value p as follows:

p = erfc

(
|Ṽn(X)|√

2

)
.

At the step 2, we use symmetry of Fourier spectrum series and deformed Ṽn(X) in order
to reduce calculation.

The proposal method needs approximately n multiplications more than calculation of
p-value of DFTT.

Discrete Fourier Transform, however, needs O(n log n) and so the proposal method
needs O(n log n) times. That is same as DFTT.

A.4 Evaluation of detection power of test

In order to evaluate detection power of test, we performed some experiments for the
proposal method, the present DFTT (proposed by Kim et al.) and Pareschi et al.’s
method.

Before explaining the experiments, we explain the second-level-test. When we consider
the case that M n-bit sequences are tested, we get M p-values p1, p2, · · · , pM . The second-
level-test test is hypothesis test and the null hypothesis is that “p1, p2, · · · , pM must be
independent and the distribution is uniform on the interval [0, 1]”. For the M p-values,
we perform the following two tests:

• Success rate
Count r which is the number of pi > 0.01. Under the null hypothesis, r follows
B(0.99,M). Then, if |r − 0.99M | < 3× (the standard deviation), we make the null
hypothesis pass. Else, we reject the null hypothesis.

• Uniformity
Under the null hypothesis, we perform χ2-test for {p1, p2, · · · , pM} and get new one
p-value p̄. If p̄ > 0.0001, we make the null hypothesis pass. Else, we reject the null
hypothesis.

A.4.1 Experiment 1

We explain the first experiment. We generated sequences with Mersenne twister. After
that, for each sequence, we did the following replacement:

xi =1 (i ≡ T mod 2T ),

xi =− 1 (i ≡ 0 mod 2T ),

where T is a parameter. Clearly, the sequences do not have good randomness. For each
fixed T , we performed test 100 times. One test was performed for 1000 sequences and
each sequence is 1000000-bit. For fair evaluation, sequences used by evaluation of the
proposal method, the present DFTT and Pareschi et al.’s method were same.

As the result, we got Fig. A.5. The proposal method could detect non-negligible
deviations for large T as compared with the present DFTT and Pareschi et al.’s method.
It shows that detection power of the proposal method is better than those of the others.
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Figure A.5: Result of Experiment 1
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Table A.3: Number of detection by the proposal method

Success rate Uniformity Total

VSC128 0 0 0
VSC 2.0 0 0 0
VSC 2.1 0 0 0
VSC-I 0 0 0
MT 0 0 0

AES-128 CTR 0 0 0
LCG 82 82 82
QCG-I 95 98 99
QCG-II 100 100 100
CCG 100 100 100
XORG 21 1 21

Table A.4: Number of detection by the present DFTT

Success rate Uniformity Total

VSC128 5 0 5
VSC 2.0 1 0 1
VSC 2.1 3 0 3
VSC-I 2 0 2
MT 2 0 2

AES-128 CTR 3 0 3
LCG 82 82 82
QCG-I 2 0 2
QCG-II 100 100 100
CCG 100 100 100
XORG 8 0 8

A.4.2 Experiment 2

We performed the proposal method, the present DFTT and Pareschi et al.’s method
for sequences generated by some existing pseudo random number generators (including
stream ciphers and block cipher). We used VSC128 [19], VSC 2.0 [48], VSC 2.1 [49],
VSC-I which is described as an example in Ref. [50], Mersenne twister, AES, LCG [35],
QCG-I [35], QCG-II [35], CCG [35] and XORG [35] as the generators. For one generator,
100 test were performed. One test was performed for 1000 sequences and each sequence
is 1000000-bit. For fair evaluation, sequences used by evaluation of the proposal method,
the present DFTT, Pareschi et al.’s method were same.

As the results, we got Table A.3, A.4 and A.5. Although there are cases that the
present DFTT detects non-negligible deviations compared with our method and Pareschi
et al.’s method, we think that they are Type-1 error because Pareschi et al.’s method is
numerically optimized method of the present DFTT. The results of QCG-I and XORG
shows that detection power of the proposal method is better than those of the others.
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Table A.5: Number of detection by Pareschi et al.’s method

Success rate Uniformity Total

VSC128 0 0 0
VSC 2.0 0 0 0
VSC 2.1 0 0 0
VSC-I 0 0 0
MT 0 0 0

AES-128 CTR 0 0 0
LCG 82 82 82
QCG-I 0 0 0
QCG-II 99 100 100
CCG 100 100 100
XORG 2 0 2

A.5 Summary

We reviewed the problems of DFTT and proposed a new method. The proposal method
uses the fact that the moments of scaled variance of power spectrum converge to those
of the standard normal distribution. The proposal method needs O(n log n) times, that
is same as the present DFTT. Some experiments showed that the proposal method has
better detection power than the present DFTT.

As a future work, we have to investigate detail of convergence of the distribution. As
another future work, we have to investigate independency between the proposal method
and the other tests included in NIST SP800-22 because randomness of given sequences
should be judged by all results of tests included in NIST SP800-22.
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