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Preface

The GI/G/1-type Markov chain is a mathematical model for the analysis of various semi-Markovian
queueing models. The GI/G/1-type Markov chain is a bivariate Markov chain consisting of two variables:
the level and phase. The former represents the additive component such as the number of queuing systems
while the latter corresponds to the background component such as system status. Several important classes
of structured Markov chains, such as quasi-birth-and-death processes (QBDs), GI/M/1-type and M/G/1-type
Markov chains are included in GI/G/1-type Markov chains. Although the stationary distributions of GI/G/1-
type Markov chains can be obtained by matrix analytical methods, they cannot be expressed in analytical
forms. Thus, it is difficult to compute the stationary distributions of the GI/G/1-type Markov chains in
general. Therefore, the asymptotic analysis of the GI/G/1-type Markov chains has recently received consid-
erable attention, for example, the tail asymptotic analysis and the heavy-traffic analysis. Such asymptotic
analysis are useful not only for the computation and approximation of the stationary distributions but also
for the sensitivity analysis of system parameters of queueing models.

The tail asymptotics of GI/G/1-type Markov chains can be divided into two cases: light-tailed asymp-
totics and subexponential asymptotics. The former has been studied by many researchers. However, most
of the previous studies consider only the case where the tail decay rate is determined by a certain parameter
associated with the transition block matrices in the non-boundary levels. In addition, these studies neglect
those cases where the decay rate depends on other parameters, such as the convergence radius of the generat-
ing function of the transition block matrices in the boundary level. Contrary to the light-tailed asymptotics,
less work has been done on the subexponential tail asymptotics. Most recently, Masuyama [42], Kim and
Kim [29] presented a weaker sufficient condition for the asymptotic formula than those presented in the
literature [7, 40, 63] although their results are limited to the M/G/1-type one. On the other hand, few re-
searchers studied the heavy-traffic asymptotics of the GI/G/1- or M/G/1-type Markov chain. Asmussen [5]
presented the heavy-traffic asymptotic formula for the GI/G/1-type Markov chain, in which the stationary
distribution of the properly scaled level variable is geometric and independent of the phase variable.

In this thesis, we study the asymptotic analysis of the stationary probability vector of the GI/G/1-type
Markov chain. Chapters 2 and 3 study the light-tailed asymptotics and the subexponential tail asymptotics,
respectively. We extend the results for the M/G/1-type Markov chain in the previous studies to the GI/G/1-
type Markov chain. We also derive new asymptotic formulae for the cases that have not been considered
in the literature. In Chapter 4, we derive heavy-traffic limit formulae of the stationary distribution relaxing
Asmussen [5]’s sufficient condition. We also derive a heavy-traffic asymptotic formula for the moment of the
stationary distribution. To the best of our knowledge, this is the first report on the heavy-traffic asymptotics
of the moments.
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The main contribution of this thesis is a comprehensive asymptotic analysis of the stationary distribution
of the GI/G/1-type Markov chain including new cases that have not been studied in the literature. Although
there still remain several research topics in this area, the author hopes this thesis will help in further studies.

Tatsuaki Kimura
February 2017
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Chapter 1

Introduction

This chapter provides materials to be required in the following chapters and a brief survey of previous
works. Throughout this thesis, we denote matrices and vectors by bold capital letters and bold small letters,
respectively, and the empty sum is defined as zero.

1.1 Definition of GI/G/1-type Markov chains

In this section, we describe the GI/G/1-type Markov chain and provide some necessary definitions and
assumptions for the subsequent chapters.

Let N = {1, 2, 3, . . . }, Z+ = {0, 1, 2, . . . } and Z = {0,±1,±2, . . . }. Let {(Xn, Sn);n ∈ Z+} denote
a discrete-time Markov chain with state space S := ({0}×M0) ∪ (N×M) such that

P(Xn+1 = ℓ, Sn+1 = j | Xn = k, Sn = i)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ai,j(ℓ− k), k ∈ N, ℓ ≥ −k + 1, i ∈ M, j ∈ M,

Bi,j(−k), k ∈ N, ℓ = −k, i ∈ M, j ∈ M0,

Bi,j(0), k = 0, ℓ = 0, i ∈ M0, j ∈ M0,

Bi,j(ℓ), k = 0, ℓ ∈ N, i ∈ M0, j ∈ M,

(1.1)

where M0 = {1, 2, . . . ,M0} ⊂ N and M = {1, 2, . . . ,M} ⊂ N. We call {(Xn, Sn);n ∈ Z+} the
GI/G/1-type Markov chain. We also call Xn and Sn level variable and phase variable, respectively.

Let T denote the transition probability matrix of the GI/G/1-type Markov chain {(Xn, Sn)} with the
transition law (1.1). We then define the block matrices of T :

A(k) = (Ai,j(k))(i,j)∈M2 , k ∈ Z,

B(0) = (Bi,j(0))(i,j)∈M2
0
,

B(k) = (Bi,j(k))(i,j)∈M0×M, B(−k) = (Bi,j(−k))(i,j)∈M×M0
, k ∈ N.

Let L(0) = {(0, i); i ∈ M0} ⊂ S and L(k) = {(k, i); i ∈ M} ⊂ S for k ∈ N. We call L(k) (k ∈ Z+) level

1



2 Chapter 1. Introduction

k. Using the block matrices A(k)’s and B(k)’s, we can express T as follows:

T =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

L(0) L(1) L(2) L(3) · · ·
L(0) B(0) B(1) B(2) B(3) · · ·
L(1) B(−1) A(0) A(1) A(2) · · ·
L(2) B(−2) A(−1) A(0) A(1) · · ·
L(3) B(−3) A(−2) A(−1) A(0) · · ·

...
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (1.2)

where
∞∑

ℓ=0

B(ℓ)e = e, (1.3)

B(−k)e+
∞∑

ℓ=−k+1

A(ℓ)e = e, k ∈ N. (1.4)

Note here that e denotes a column vector of ones with an appropriate order according to the context.
For later use, let π > 0 denote a left eigenvector of A such that πA = sp(A)π and πe = 1 (see

Theorem 8.4.4 in [26]). Let σ denote

σ = −π
∑

k∈Z
kA(k)e. (1.5)

If A is stochastic, then π is the unique invariant probability vector of A and −σ is the conditional mean
drift of the level process {Xn;n ∈ Z+} with Xn ≥ 1.

We now make the following assumption.

Assumption 1.1 (a) T is irreducible and stochastic;

(b) A :=
∑

k∈ZA(k) is irreducible; and

(c) T is positive recurrent.

Under Assumption 1.1, T has the unique and positive stationary probability vector [8, Chapter XI,
Proposition 3.1]. We define x = (xi(k))(k,i)∈S > 0 as the stationary probability vector of T and then
partition it level-wise, i.e., x = (x(0),x(1),x(2), . . . ), where x(ℓ) = (xi(k))(k,i)∈L(ℓ) for ℓ ∈ Z+. Fur-
thermore, for k = 0, 1, . . . , let x(k) =

∑∞
ℓ=k+1 x(ℓ), which is a positive vector. We call x(k)’s stationary

tail probability vectors of T hereafter.

Remark 1.1 Note that A is not stochastic in general. In fact, it follows from (1.2) that A is strictly sub-
stochastic, i.e., (Ae ≤ e, ̸= e) if and only if

lim
k→∞

B(−k) ̸= O,

where O denotes a matrix of zeros with an appropriate dimension. Furthermore, if A is irreducible, then
sp(A) < 1 if and only if A is strictly substochastic.

2



1.2. GI/G/1 paradigm 3

1.2 GI/G/1 paradigm

In this section, we describe the GI/G/1 paradigm introduced by Grassmann and Heyman [25]. By
considering the censored Markov chain of the original GI/G/1-type Markov chain {(Xn, Sn)}, we introduce
R- and G- matrices and related results, which play a key role throughout this thesis.

For later use, we explain conventions used throughout this thesis. For any matrix X , let [X]i,j denote
the (i, j)th element of X and |X| denote a matrix such that [|X|]i,j = |[X]i,j |. For any square matrix Y , let
adj(Y ) denote the adjugate matrix of Y and δ(Y ) denote a maximum-modulus eigenvalue of Y such that
its argument arg δ(Y ) is nonnegative and its real part Re δ(Y ) is not less than those of the other eigenvalues
of maximum modulus. Note here that if Y is nonsingular then Y −1 = adj(Y )/ det(Y ). Note also that
if Y is nonnegative then δ(Y ) = sp(Y ) (see, e.g., [26, Theorem 8.3.1]) and that if Y is nonnegative
and irreducible then δ(Y ) is the Perron-Frobenius eigenvalue of Y (see, e.g., [10, Theorem 1.4.4]). Let
I denote the identity matrix with an appropriate dimension. For any matrix sequence {M(k); k ∈ Z+},
let M(k) =

∑∞
ℓ=k+1M(ℓ) for k ∈ Z+. Let {M ∗ N(k);∈ Z+} denote the convolution of two matrix

sequences {M(k); k ∈ Z+} and {N(k); k ∈ Z+}, i.e.,

M ∗N(k) =
k∑

ℓ=0

M(k − ℓ)N(ℓ) =
k∑

ℓ=0

M(ℓ)N(k − ℓ), k ∈ Z+,

where the product of M(k1) and N(k2) is well-defined for any (k1, k2) ∈ Z2
+. In addition, for any square

matrix sequence {H(k); k ∈ Z+}, let {H∗n(k)} denote the n-fold convolution of {H(k)} with itself, i.e.,
H∗1(k) = H(k) (k ∈ Z+) and for n = 2, 3, . . . ,

H∗n(k) = H ∗H∗(n−1)(k), k ∈ Z+.

For convenience, H∗0(0) = I and H∗0(k) = O for all k ∈ N. The above conventions for matrices are
used for vectors and scalars in an appropriate manner. Finally, the superscript “⊤” represents the transpose
operator for vectors and matrices.

For any fixed k ∈ Z+, we partition T at level k, as follows:

T =

(
∪k
ℓ=0L(ℓ) ∪∞

ℓ=k+1L(ℓ)
∪k
ℓ=0L(ℓ) T!k U [k]

∪∞
ℓ=k+1L(ℓ) D[k] T>k

)
,

where T!k (resp. T>k) is the transient transition probability matrix of an absorbing Markov chain restricted
to the levels 0, 1, . . . , k (resp. k + 1, k + 2, . . . ). We then define T [k] (k ∈ Z+) as

T [k] = T!k +U [k](I − T>k)−1D[k]. (1.6)

Note here that T [k] is the transition probability matrix of the censored Markov chain obtained by observing
{(Xn, Sn)} only when it is in levels 0 through k. Note also that T [k] is an irreducible stochastic ma-
trix because the original transition probability matrix T is irreducible and recurrent (see Assumption 1.1).
Therefore, T [k] has an unique invariant measure up to scalar multiples and

(x(0),x(1), . . . ,x(k))T [k] = (x(0),x(1), . . . ,x(k)). (1.7)

3



4 Chapter 1. Introduction

Let T [k]
ν,η (ν, η ∈ {0, 1, . . . , k}) denote a submatrix of T [k], whose (i, j)th element represents the prob-

ability that the censored Markov chain moves from state (ν, i) ∈ S to (η, j) ∈ S in one step. The structure
(1.2) of T implies that T [k]

k−ℓ,k and T [k]
k,k−ℓ are independent of k if ℓ ∈ {0, 1, . . . , k − 1} and k ∈ N. Thus,

for simplicity, we define Φ(ℓ) (ℓ ∈ Z) as

Φ(ℓ) = T [k]
k−ℓ,k, ℓ ∈ {0, 1, . . . , k − 1}, k ∈ N,

Φ(−ℓ) = T [k]
k,k−ℓ, ℓ ∈ {0, 1, . . . , k − 1}, k ∈ N. (1.8)

Note here that for any fixed ν ∈ N, [Φ(0)]i,j represents the probability of hitting state (ν, j) for the first
time before entering the levels 0, 1, . . . , ν − 1, given that it starts with state (ν, i), i.e.,

[Φ(0)]i,j = P(ST↓ν = j | X0 = ν, S0 = i),

where T↓ℓ = inf{n ∈ N;Xn = ℓ < Xm (m = 1, 2, . . . , n − 1)}. Thus
∑∞

n=0(Φ(0))n = (I − Φ(0))−1

exists because T [k] is irreducible. The following result characterizes the matrices {Φ(k)}.

Proposition 1.1 (Theorem 1 in [25]) {Φ(k); k ∈ Z} is the minimal nonnegative solution of the following
equations.

Φ(k) = A(k) +
∞∑

m=1

Φ(k +m)(I −Φ(0))−1Φ(−m), k ∈ Z+,

Φ(−k) = A(−k) +
∞∑

m=1

Φ(m)(I −Φ(0))−1Φ(−k −m), k ∈ Z+.

Remark 1.2 The proof of Theorem 1 in [25] is based on induction and probabilistic interpretation, which
are valid without the recurrence of T .

Let G and G(k) (k ∈ N) denote

G =
∞∑

k=1

G(k), G(k) = (I −Φ(0))−1Φ(−k), k ∈ N, (1.9)

respectively. Note that for any fixed ν ∈ N, [G(k)]i,j represents the probability of hitting state (ν, j) when
the Markov chain {(Xn, Sn)} enters the levels 0, 1, . . . , ν + k − 1 for the first time, given that it starts with
state (ν + k, i), i.e.,

[G(k)]i,j = P(XT<k+ν = ν, ST<k+ν = j | X0 = k + ν, S0 = i), k ∈ N,

where T<ℓ = inf{n ∈ N;Xn < ℓ ≤ Xm (m = 1, 2, . . . , n − 1)}. For convenience, let G(0) = O.
Furthermore, let L(k) (k ∈ Z+) denote

L(k) =
∞∑

n=0

G∗n(k), k ∈ Z+, (1.10)

where L(0) = I . Note that [L(k)]i,j represents the probability that, for any fixed n ≥ k + 1, the first
passage time to +n−k

m=0L(m) ends with state (n− k, j) starting with state (n, i), i.e.,

[L(k)]i,j = P(ST↓ν = j | X0 = k + ν, S0 = i).

4



1.2. GI/G/1 paradigm 5

It follows from (1.10) that

L̂(z) :=
∞∑

k=0

z−kL(k) = (I − Ĝ(z))−1, |z| ≥ 1, (1.11)

where Ĝ(z) =
∑∞

k=0 z
−kG(k).

We now define R0(k) and R(k) (k ∈ Z+) denote M0 × M and M × M matrices, respectively, such
that

R(k) = Φ(k)(I −Φ(0))−1, (1.12)

R0(k) = T [k]
0,k(I −Φ(0))−1, (1.13)

For convenience, let R(0) = O and R0(0) = O. In addition, R∗0(0) = I and R∗0(k) = O for all k ∈ N.
For any fixed n ∈ N, [R(k)]i,j represents the expected number of visits to state (n+k, j) starting with state
(n, i) and until entering to +n+k−1

m=0 L(m). We also define R0(k) (k ∈ N) as an M0 × M matrix such that
[R0(k)]i,j represents the expected number of visits to state (k, j) starting with state (0, i) and until entering
to +k−1

m=0L(m). Formally, for k ∈ N,

[R0(k)]i,j = E

⎡

⎣
T<k∑

n=1

11(Xn = k, Sn = j)

∣∣∣∣∣∣
X0 = 0, S0 = i

⎤

⎦ ,

[R(k)]i,j = E

⎡

⎣
T<k+ν∑

n=1

11(Xn = k + ν, Sn = j)

∣∣∣∣∣∣
X0 = ν ∈ N, S0 = i

⎤

⎦ ,

where 11(χ) denotes the indicator function of an event χ. It follows from the definitions of R0(k), R(k),
L(k) and Φ(0) that

R0(k) =

[
B(k) +

∞∑

m=1

B(k +m)L(m)

]
(I −Φ(0))−1, k ∈ N, (1.14)

R(k) =

[
A(k) +

∞∑

m=1

A(k +m)L(m)

]
(I −Φ(0))−1, k ∈ N, (1.15)

which hold without the recurrence of T . We now define R̂0(z), R̂(z) and B̂(z) as

R̂0(z) =
∞∑

k=1

zkR0(k), R̂(z) =
∞∑

k=1

zkR(k), B̂(z) =
∞∑

k=1

zkB(k),

respectively. Propositions 1.2 and 1.3 below show the connection between the generating functions B̂(z)

and R̂0(z), and that between Â(z), R̂(z) and Ĝ(z), which play an important role in this thesis.

Proposition 1.2 (Theorem 1 and Lemma 3 in [41]) Let rR0 , rR, rG, rA+ , rA− and rB denote the con-
vergence radii of R̂0(z), R̂(z), Ĝ(1/z) =

∑∞
k=1 z

kG(k),
∑∞

k=1 z
kA(k),

∑∞
k=1 z

kA(−k) and B̂(z),
respectively. It then holds that rR0 = rB ≥ 1, rR = rA+ ≥ 1 and rG = rA− ≥ 1.

5



6 Chapter 1. Introduction

Proposition 1.3 (Zhao et al. [68], Theorem 14) If Assumption 1.1 (a) and (b) hold, then

I − Â(z) = (I − R̂(z))(I −Φ(0))(I − Ĝ(z)), |z| ∈ IA, (1.16)

where IA = {z ≥ 0;
∑

k∈Z z
kA(k) is finite} ⊇ (rA− , rA+). Equation (1.16) is called the RG-factorization

of Â(z).

Remark 1.3 Propositions 1.2 and 1.3 do not necessarily require Assumption 1.1 (c).

The following proposition characterizes R and G when A is strictly substochastic.

Proposition 1.4 Let R =
∑∞

k=1R(k). If A is irreducible and strictly substochastic, then (i) sp(G) < 1;
(ii) sp(R) < 1; and (iii) sp(

∑∞
ℓ=0Φ(−ℓ)) < 1, where sp( · ) denotes the spectral radius of a matrix in

parentheses.

Proof. Equation (1.16) yields

det(I −A) = det(I −R) det(I −Φ(0)) det(I −G).

It thus follows from sp(A) < 1 that

det(I −G) ̸= 0, det(I −R) ̸= 0. (1.17)

Note here that by definition,

N∑

k=1

∑

j∈M
[G(k)]i,j = P(T<N < ∞ | X0 = N,S0 = i), for all N ∈ N,

which shows that Ge ≤ e and thus sp(G) ≤ 1 (see Theorem 8.1.22 in [26]). Furthermore, sp(R) ≤ 1 due
to the duality of the R- and G-matrices (see [67]). Therefore, it follows from Theorem 8.3.1 in [26] and
(1.17) that (i) sp(G) < 1 and (ii) sp(R) < 1.

Finally, we prove (iii). From (1.8), we have

Φ(−k) ≥ O, 0 ≤
k−1∑

ℓ=0

Φ(−ℓ)e ≤ e, for all k ∈ N,

which implies that sp(
∑∞

ℓ=0Φ(−ℓ)) ≤ 1 (see Theorem 8.1.22 in [26]). Thus it suffices to prove that
∑∞

ℓ=0Φ(−ℓ) does not have the eigenvalue one. Indeed, (1.9) yields

(I −Φ(0))(I −G) = I −
∞∑

ℓ=0

Φ(−ℓ).

Therefore we have det(I −
∑∞

ℓ=0Φ(−ℓ)) ̸= 0 because I −Φ(0) is nonsingular and sp(G) < 1. ✷
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1.3. Matrix-product form of stationary distribution 7

1.3 Matrix-product form of stationary distribution

This section discusses the stationary distribution {x(k)} under Assumption 1.1. It follows from (1.7)
that

x(k) =

[
x(0)T [k]

0,k +
k−1∑

ℓ=1

x(ℓ)Φ(k − ℓ)

]
(I −Φ(0))−1, k ∈ N, (1.18)

In terms of R(k) and R0(k), we can rewrite (1.18) as

x(k) = x(0)R0(k) +
k∑

ℓ=1

x(ℓ)R(k − ℓ), k ∈ N, (1.19)

where we use R(0) = O. It then follows from (1.19) that

x(k) = x(0)R0 ∗ F (k), k ∈ N, (1.20)

where F (k) (k ∈ Z+) is given by

F (k) =
∞∑

n=0

R∗n(k). (1.21)

Thus, x(k) is given by

x(k) = x(0)R0 ∗ F (k), k ∈ Z+. (1.22)

It follows from Theorem 23 of [68] that if T is positive recurrent then δ(R̂(1)) < 1 and thus (see [26,
Theorem 8.1.18])

|δ(R̂(z))| ≤ δ(|R̂(z)|) ≤ δ(R̂(|z|)) ≤ δ(R̂(1)) < 1, |z| ≤ 1. (1.23)

This implies that I − R̂(z) is nonsingular for |z| ≤ 1. Therefore, from (1.21), we obtain

F̂ (z) :=
∞∑

k=0

zkF (k) = (I −R(z))−1, |z| ≤ 1. (1.24)

Furthermore, let x̂(z) =
∑∞

k=1 z
kx(k). Combining (1.24) and (1.20) yields

x̂(z) = x(0)R̂0(z)(I − R̂(z))−1, |z| ≤ 1. (1.25)

Letting z = 1 in (1.25), we have

x(0) = x(0)R0(I −R)−1, (1.26)

where R = R̂(1) and R0 = R̂0(1).
We now define κ = (κi)i∈M0 > 0 as the (unique) stationary probability vector of the irreducible

stochastic matrix T [0]. We then have

x(0) =
1∑

i∈M0
κiE[τ0 | X0 = 0, S0 = i]

· κ, (1.27)

where τ0 = inf{n ∈ N;Xn = 0}.

7



8 Chapter 1. Introduction

1.4 Period of MAdP associated with GI/G/1-type Markov chain

In this section, we consider a MAdP {(X̆n, S̆n);n ∈ Z+} with state space Z×M and kernel {A(k); k ∈
Z}. Let τ denote the period of the MAdP {(X̆n, S̆n)} (see Definition B.1 in Appendix B). The period of
MAdP has strong relationship with the asymptotics of {x(k)} in many cases. Thus, we provide several
important results related to the period of MAdP as preliminaries in this section. More detailed explanation
and the proofs of the results are summarized in Appendix B.

For simplicity, we write (k1, j1) → (k2, j2) when there exists a path from state (k1, j1) to state (k2, j2)

with some positive probability. In this section, we set the following condition:

Condition 1.1

(a) A is irreducible (Assumption 1.1 (b)); and

(b) for each i ∈ M there exists some ki ∈ Z\{0} such that (0, i) → (ki, i), or equivalently,
∑∞

n=1A
∗n
i,i (ki) >

0, where {A∗n(k) := (A∗n
i,j(k))i,j∈M; k ∈ Z} denotes the n-fold convolution of {A(k); k ∈ Z}, i.e.,

A∗1(k) = A(k) and A∗n(k) =
∑

ℓ∈ZA
∗(n−1)(k − ℓ)A(ℓ) for n ≥ 2.

Under Condition 1.1, the period of MAdP τ is well-defined (see Definition B.1), and τ is the largest positive
integer such that

[A(k)]i,j > 0 only if k ≡ p(j)− p(i) (mod τ), (1.28)

where p is some function from M to {0, 1, . . . , τ − 1} (see Lemma B.2).

Example 1.1 We suppose

A(0) = O, A(1) =

⎛

⎜⎜⎜⎜⎜⎝

0 0
1

6

0 0
1

6
1

6

1

6
0

⎞

⎟⎟⎟⎟⎟⎠
,

A(−2) =

⎛

⎜⎜⎜⎜⎜⎝

1

3

1

3
0

1

3

1

3
0

0 0
1

3

⎞

⎟⎟⎟⎟⎟⎠
, A(−1) =

⎛

⎜⎜⎜⎜⎜⎝

0 0
1

6

0 0
1

6
1

6

1

6
0

⎞

⎟⎟⎟⎟⎟⎠
.

Let p(0) = p(1) = 1 and p(2) = 0. It then follows that

[A(k)]i,j > 0 only if k ≡ p(j)− p(i) (mod 2),

and thus the period of MAdP with kernel {A(k)} is equal to two.

Let µ(z) and v(z) denote left- and right-eigenvectors of Â(z) corresponding to an eigenvalue δ(Â(z)),
which are normalized such that

µ(z)∆M (z/|z|)e = 1, µ(z)v(z) = 1, (1.29)

where ∆M (z) denotes an M ×M diagonal matrix whose ith (i ∈ M) diagonal element is equal to z−p(i).
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1.4. Period of MAdP associated with GI/G/1-type Markov chain 9

Remark 1.4 For z ∈ IA \ {0}, Â(z) is a nonnegative irreducible matrix and thus δ(Â(z)) is the Perron-
Frobenius eigenvalue with the left and right eigenvectors µ(z) > 0 and v(z) > 0. The positivity of µ(z)
and v(z) follows from the Perron-Frobenius theorem (see, e.g., [10, Theorem 1.4.4]) and the normalizing
condition (1.29). Furthermore, if δ(A) = δ(Â(1)) = 1, i.e., A is stochastic, then µ(1) = π and v(1) = e.

Propositions 1.5 and 1.6 below are the fundamental results on the connection between the period τ of
MAdP {(X̆n, S̆n);n ∈ Z+} and the maximum-modulus eigenvalues of the generating function of the kernel
{A(k); k ∈ Z}. These results are used to prove Lemma 1.4, presented in the next section.

Proposition 1.5 Let ωx = exp(2π
√
−1/x) for x ≥ 1. If Condition 1.1 is satisfied, then the following hold

for all y ∈ IA and ν = 0, 1, . . . , τ − 1.

(i) δ(Â(yων
τ )) = δ(Â(y)), both of which are simple eigenvalues.

(ii) µ(yων
τ ) = µ(y)∆M (ων

τ )
−1 and v(yων

τ ) = ∆M (ων
τ )v(y).

Proposition 1.6 Suppose that Condition 1.1 is satisfied and δ(Â(y)) = 1 for some y ∈ IA. Let ω denote an
arbitrary complex number such that |ω| = 1. Under these conditions, δ(Â(yω)) = 1 if and only if ωτ = 1.
Therefore,

τ = max{n ∈ N; δ(Â(yωn)) = 1}.

Furthermore, if δ(Â(yω)) = 1, the eigenvalue is simple.

Finally, we present a lemma, which provides a sufficient condition under which Condition 1.1 (b) holds.
It also implies that the period τ is well-defined under Assumption 1.1 and A is stochastic.

Lemma 1.1 Suppose that Assumption 1.1 holds. If A is stochastic, then Condition 1.1 (b) holds.

Proof. We prove this lemma by contradiction. To this end, we assume that the negation of Condition 1.1 (b),
i.e., there exists some i0 ∈ M such that

(0, i0) → (k, i0) only if k = 0. (1.30)

Since A is an irreducible stochastic matrix,

∞∑

n=1

∑

k∈Z
A∗n(k) =

∞∑

n=1

An > O,

which diverges to infinity. Therefore, for each pair of phases i, j ∈ M, there exists some ki,j ∈ Z such that
(0, i) → (ki,j , j). Using this fact, we have the following path.

(0, i0) → (ki0,j , j) → (ki0,j + kj,i0 , i0) for all j ∈ M. (1.31)

Combining (1.30) and (1.31) leads to

ki0,j = −kj,i0 for all j ∈ M. (1.32)

9



10 Chapter 1. Introduction

Furthermore, it follows from (1.30) and (1.32) that, for each j ∈ M, ki0,j and thus kj,i0 must be uniquely
determined. Indeed, suppose that there exist some j0 ∈ M and integer k′i0,j0 ̸= ki0,j0 such that (0, i0) →
(k′i0,j0 , j0). We then have

(0, i0) → (k′i0,j0 , j0) → (k′i0,j0 + kj0,i0 , i0).

Note here that (1.32) yields k′i0,j0 + kj0,i0 = k′i0,j0 − ki0,j0 ̸= 0, which is the contradiction to (1.30).
The above argument shows that, for each j ∈ M,

(0, i0) → (k, j) only if k = ki0,j ,

which implies there exists some K ∈ N such that

∞∑

n=1

[A∗n(k)e]i0 = 0 for all |k| ≥ K, (1.33)

where [ · ]i denotes the ith element of the vector in square brackets.
We now note that B(k)e+

∑∞
ℓ=k+1A(ℓ)e = e for all k ≤ −1. Thus, since A is stochastic,

B(k)e = e−
∞∑

ℓ=k+1

A(ℓ)e =
k∑

ℓ=−∞
A(ℓ)e for all k ≤ −1. (1.34)

From (1.33) and (1.34), we have

[B(k)e]i0 = 0 for all k ≤ −K. (1.35)

Equations (1.33) and (1.35) imply that level zero is not reachable from states {(k, i0); k ≥ K}. Note here
that the Markov chain {(Xn, Jn);n ∈ Z+} with transition probability matrix T follows the same law as
the MAdP {(X̆n, S̆n);n ∈ Z+} while the former Markov chain is away from level zero. Thus, (1.33) and
(1.35) are inconsistent with the irreducibility of T . Consequently, there exists no integer i0 ∈ M such that
(1.30) holds (i.e., Condition 1.1 (b) is true). ✷

1.5 Roots of fundamental equation of MAdP

In this section, we study the characteristics of the solutions to the following equation:

ϕ(z) := δ(Â(z))− 1 = 0, rA− < |z| < rA+ , (1.36)

which is called the fundamental equation of MAdP hereafter. Roots of the fundamental equation of MAdP
are strongly related to not only the recurrence of T but also the structures of R- and G-matrices, which
also have impacts on the tail asymptotics of {x(k)}. In this section, we discuss roots of the fundamental
equation of MAdP and provide some related results. The proofs of the results in this section are omitted in
this version of the thesis.

Since δ(Â(z)) is the Perron-Frobenius eigenvalue of Â(z), δ(Â(z)) and thus ϕ(z) are differentiable
and convex for z ∈ (rA− , rA+) (see Andrew et al. [3, Theorem 2.1] and the theorem of Kingman [35]).
Therefore, we obtain the following result.

10



1.5. Roots of fundamental equation of MAdP 11

Lemma 1.2 If Assumption 1.1 (a) and (b) are satisfied, then the following hold:

(i) The fundamental equation (1.36) has at most two roots θ+ ∈ [1, rA+) and θ− ∈ (rA− , 1] such that

d

dz
δ(Â(z))

∣∣∣∣
z=θ+

≥ 0,
d

dz
δ(Â(z))

∣∣∣∣
z=θ−

≤ 0. (1.37)

(ii) Suppose that the roots θ+ and θ− exist. If θ+ ̸= θ−, then they are simple roots.

(iii) The root θ+ exists if and only if limy↑rA+
δ(Â(y)) > 1.

(iv) The root θ− exists if and only if limy↓rA−
δ(Â(y)) > 1.

Remark 1.5 A typical sufficient condition for the two roots is that Â(z) is meromorphic (see Gail et al.
[22, Lemma 2]).

We now present a result on the connection between the recurrence of T and the location of the roots θ+
and θ−. It should be noted that if the root θ+ (resp. θ−) is simple then either of the following is true: the
root θ− (resp. θ+) does not exist; or the root θ− (resp. θ+) exists and the two roots are different.

Lemma 1.3 Under Assumption 1.1 (a) and (b), the following are true:

(i) If ϕ(1) < 1, then T is positive recurrent.

(ii) The root θ+ = 1 is simple if and only if T is transient.

(iii) If θ− = 1, then T is recurrent.

(iv) If the root θ− = 1 is simple and
∑∞

k=1 kB(k)e is finite, then T is positive recurrent.

(v) If θ− = θ+ = 1, then T is null recurrent.

d

dz
δ(Â(z))

∣∣∣∣
z=1

= πÂ′(1)e = −σ, (1.38)

Remark 1.6 The condition ‘ϕ(1) < 1’ in Lemma 1.3 (i) includes the following four subcases: (A) both θ+
and θ− exist satisfying θ− < 1 < θ+; (B) θ+ > 1 exists and θ− does not exist; (C) θ− < 1 exists and θ+
does not exist; and (D) neither θ− nor θ+ exists. A is strictly substochastic in all the subcases.

Remark 1.7 Lemma 1.3 implies that if T is positive recurrent, i.e., Assumption 1.1 (c) holds, then θ+ does
not exist or θ+ > 1.

Let λ(A)
i (z) (i = 1, 2, . . . ,M ) denote the eigenvalues of Â(z) such that δ(Â(z)) = λ(A)

1 (z) and

|δ(Â(z))| = |λ(A)
1 (z)| ≥ |λ(A)

2 (z)| ≥ |λ(A)
3 (z)| ≥ · · · ≥ |λ(A)

M (z)|. (1.39)

11
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We then have

det(I − Â(z)) = {1− δ(Â(z))}
M∏

i=2

(1− λ(A)
i (z)). (1.40)

Thus, the roots θ+ and θ− (if any) of the fundamental equation (1.36) are those of the following equation:

det(I − Â(z)) = 0, rA− < |z| < rA+ . (1.41)

The following lemma is used to prove several asymptotic formulae for {x(k)} presented in Sections 2.3
and 3.2. To shorten the statements of this lemma and the subsequent results, we denote by ε0 a special
symbol representing a sufficiently small positive number, which may take different values in different places
hereafter. In addition, let C denote the set of complex numbers.

Lemma 1.4 Suppose that Assumption 1.1 (a) and (b) and Condition 1.1 are satisfied. If there exists the root
θ+ ∈ [1, rA+) (resp. θ− ∈ (rA− , 1]) of the fundamental equation (1.36), then

(i) the equation (1.41) has exactly τ roots {θ+ων
τ ; ν = 0, 1, . . . , τ − 1} (resp. {θ−ων

τ ; ν = 0, 1, . . . , τ −
1}) in the domain {z ∈ C; 1 ≤ |z| < θ+ + ε0} (resp. {z ∈ C; θ− − ε0 < |z| ≤ 1}); and

(ii) the τ roots are all simple.

Next we show the connection between the root θ+ and R-matrix, and that between the root θ− and
G-matrix, which are summarized in Lemmas 1.5 and 1.6 below.

Lemma 1.5 Suppose that Assumption 1.1 (a) and (b) are satisfied. If the root θ− ∈ (rA− , 1] of the funda-
mental equation (1.36) exists, then the following hold:

(i) the matrix G := Ĝ(1) has an exactly one irreducible class, denoted by MG
• ⊆ M. Thus, G is

irreducible or, after an appropriate permutation of rows and columns, G takes the following form:

G =

(MG
• MG

T

MG
• G• O

MG
T G◦ GT

)
, MG

T := M \MG
• , (1.42)

where G• is irreducible (and possibly equal to G), GT is strictly lower triangular (if it is not null,
i.e., G• ̸= G) and G◦ does not have, in general, a special structure.

Furthermore, let ψ(z) denote

ψ(z) = µ(z)(I − R̂(z))(I −Φ(0)). (1.43)

If θ− is simple, then the statements (ii)–(iv) below are true.

(ii) sp(R) = δ(R) < θ−1
− .

(iii) The vectorψ(θ−) is a left-eigenvector of Ĝ(θ−) corresponding to the simple eigenvalue δ(Ĝ(θ−)) =

1.

12



1.5. Roots of fundamental equation of MAdP 13

(iv) The vector ψ(θ−) satisfies

[ψ(θ−)]i > 0, i ∈ MG
• ,

[ψ(θ−)]i = 0, i ∈ MG
T = M \MG

• .

In addition, if Condition 1.1 is satisfied, then the statements (v) and (vi) below hold.

(v) For ν = 0, 1, . . . , τ − 1,

ψ(θ−) = µ(θ−)∆M (ων
τ )

−1(I − R̂(θ−ω
ν
τ ))(I −Φ(0))∆M (ων

τ ). (1.44)

(vi) ωτ = 1 if and only if δ(Ĝ(θ−ω)) = 1, which is a simple eigenvalue.

Lemma 1.6 Suppose that Assumption 1.1 (a) and (b) are satisfied. If the root θ+ ∈ [1, rA+) of the funda-
mental equation (1.36) exists, then the following hold:

(i) the matrix R has an exactly one irreducible class MR
• ⊆ M. Thus, R is irreducible or, by permutation

of rows and columns, R takes the following form:

R =

(MR
• MR

T

MR
• R• R◦

MR
T O RT

)
, MR

T := M\MR
• ,

where R• is irreducible (and possibly equal to R), RT is strictly upper triangular (if it is not null,
i.e., R• ̸= R) and R◦ does not have, in general, a special structure.

Furthermore, let r(z) denote

r(z) = (I −Φ(0))(I − Ĝ(z))v(z). (1.45)

If the root θ+ is simple, then the statements (ii)–(iv) below are true.

(ii) sp(G) = δ(G) < θ+.

(iii) The vector r(θ+) is a right-eigenvector of R̂(θ+) corresponding to the simple eigenvalue δ(R̂(θ+)) =

1.

(iv) The vector r(θ+) satisfies

[r(θ+)]i > 0, i ∈ MR
• ,

[r(θ+)]i = 0, i ∈ MR
T = M \MR

• .

In addition, if Condition 1.1 is satisfied, then the statements (v) and (vi) below hold.

(v) For ν = 0, 1, . . . , τ − 1,

r(θ+) = ∆M (ων
τ )

−1(I −Φ(0))(I − Ĝ(θ+ω
ν
τ ))∆M (ων

τ )v(θ+). (1.46)

13
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(vi) ωτ = 1 if and only if δ(R̂(θ+ω)) = 1, which is a simple eigenvalue.

Proof. The proof of this lemma is omitted in this version of the thesis. ✷

Using Lemmas 1.5 and 1.6, we can prove Lemmas 1.7 and 1.8 below.

Lemma 1.7 Suppose that Assumption 1.1 (a) and (b) hold. If there exist the roots θ+ ∈ [1, rA+) and
θ− ∈ (rA− , 1] of the fundamental equation (1.36), then MR

• ∩MG
• ̸= ∅.

Lemma 1.8 Suppose that Assumption 1.1 (a) and (b) hold. Under these conditions, the following are true:

(i) If the root θ+ ∈ [1, rA+) exists, then θ+ is equal to a root of the equation δ(R̂(z)))− 1 = 0.

(ii) If the root θ− ∈ (rA− , 1] exists, then θ− is equal to a root of the equation δ(Ĝ(z)))− 1 = 0.

Remark 1.8 The statement of Lemma 1.8 is different from the statement (iii)’s of Lemmas 1.5 and 1.6
because the former includes the case in which the root θ+ or θ− is not simple.

1.6 Sufficient conditions for positive recurrence

In this section, we provide two sets of sufficient conditions for the positive recurrence of T . As men-
tioned in Remark 1.1, A is not always stochastic. Therefore, we consider both cases where A is stochastic
and A is strictly substochastic in this thesis. The following propositions show the sufficient conditions for
the positive recurrence of T corresponding to each case.

Proposition 1.7 (Proposition 3.1 in Chapter XI of [8]) Under the assumption that T and A are irreducible
and stochastic, T is positive recurrent if and only if σ > 0 and

∑∞
k=1 kB(k)e < ∞.

Proposition 1.8 Suppose T is irreducible and stochastic. If A is irreducible and strictly substochastic, then
T is positive recurrent.

Proof. Proposition 1.4 implies that limk→∞Rk = O and (I −G)−1 exists. Furthermore, from (1.14), we
have

R0 :=
∞∑

k=1

R0(k)

=

[ ∞∑

k=1

B(k) +
∞∑

m=1

( ∞∑

k=1

B(k +m)

)
L(m)

]
(I −Φ(0))−1

≤
∞∑

k=1

B(k)

[
I +

∞∑

m=1

L(m)

]
(I −Φ(0))−1

=
∞∑

k=1

B(k)(I −G)−1(I −Φ(0))−1 < ∞,

where the last equality follows from (1.11). As a result, it follows from Theorem 3.4 in [66] that T is
positive recurrent. ✷
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1.7 Asymptotic analysis of GI/G/1-type Markov chains

In this section, we give a brief survey of previous studies on the asymptotic analysis of GI/G/1-type
Markov chains. Various semi-Markovian queueing models are, by the embedded Markov chain method,
reduced to GI/G/1-type Markov chains including quasi-birth-and-death processes (QBDs), GI/M/-type and
M/G/1-type Markov chains [25, 37, 50]. It is not, in general, easy to compute the stationary distributions
of GI/G/1-type Markov chains due to lack of the skip-free property [37, 50]. Therefore, the asymptotic
analysis of the GI/G/1-type Markov chains has recently received considerable attention.

There are many studies on the tail asymptotics of the stationary vectors of the GI/G/1-type Markov
chains including M/G/1-type ones. The tail asymptotics can be divided into two cases: the light-tailed
asymptotics and subexponential-tail asymptotics. For the light-tailed asymptotics, Abate et al. [1] first pre-
sented a necessary condition so that the stationary vector of the M/G/1-type Markov chain has a geometric
decay rate by making use of the Tauberian theorem. Falkenberg [19], Gail et al. [23] and Møller [49] showed
similar sufficient conditions. By using the Markov renewal theory, Takine [63] considered a more general
case, in which the periodicity appears in the geometric decay of {x(k)}. Kimura et al. [30] showed that this
period of the asymptotic formula is equal to a divisor of the period of an MAdP with kernel {A(k); k ∈ Z}.
As for the GI/G/1-type Markov chain, Li and Zhao [41] and Tai [61] considered the case in which the
MAdP with kernel {A(k)} is aperiodic. In addition, Li et al. [39], Miyazawa [46], Miyazawa and Zhao
[48], Miyazawa [47], Ozawa [51] considered the case where the phase space is infinite. However, most of
the studies above only focused on the typical case where the transition block matrices in the non-boundary
levels have a dominant impact on the decay rate of the stationary tail probability vectors and their decay is
aperiodic. Thus, there have been a few studies on other cases in which the decay rate is determined by the
convergence radius of the generating functions B̂(z) or

∑∞
k=1 z

kA(k).

Contrary to the light-tailed asymptotics, much less work has been done on the subexponential tail asymp-
totics of the stationary distribution of the GI/G/1- or M/G/1-type Markov chain. Asmussen and Møller [7]
studied the subexponential tail asymptotics of the M/G/1-type Markov chain and derived an asymptotic for-
mula assuming the subexponentiality of level increments {A(k); k = 1, 2, . . . } and {B(k); k = 1, 2, . . . }
and several additional conditions. Li and Zhao [40] provided a subexponential asymptotic formula for the
GI/G/1-type Markov chain, however, some of their results are incorrect because they include “the inverse of
a singular matrix”. Takine [63] studied the subexponential tail asymptotics of the M/G/1-type Markov chain
without the condition assumed in [7]. However, Masuyama [42] pointed out that Takine’s proof needs an
additional condition that the G-matrix is aperiodic. Furthermore, Masuyama [42] presented a weaker suffi-
cient condition for the asymptotic formula than those presented in the literature [7, 40, 63]. Recently, Kim
and Kim [29] improved Masuyama [42]’s sufficient condition in the case where the G-matrix is periodic.

In addition to the tail asymptotics, few researchers studied the heavy-traffic asymptotics of the GI/G/1-
or M/G/1-type Markov chain. Asmussen [5] considered the heavy-traffic asymptotics of the GI/G/1-type
Markov chain and proved that the diffusion-scaled level process converges weakly to a reflected Brown-
ian motion as the mean drift in level −σ goes to zero. As a corollary, Asmussen [5] also presented the
asymptotic formula, in which the stationary distribution of the properly scaled level variable is geometric
and independent of the phase variable. Falin [18] proved the heavy-traffic limit for the M/G/1-type Markov
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16 Chapter 1. Introduction

chain under weaker conditions for the matrices {A(k); k = 1, 2, . . . } and {B(k); k = 1, 2, . . . } than in
[5]. However, they assumed several additional constraints, such as A(k) = B(k) for all k ≥ 1. As far as
we know, there are no studies on the heavy-traffic limits of the moments of the stationary distribution of the
GI/G/1-type Markov chain.

1.8 Overview of thesis

In this thesis, we study the asymptotic analysis of the stationary probability vector of the GI/G/1-type
Markov chain.

In Chapter 2, we study the light-tailed asymptotics. We consider three cases: (i) the tail decay rate is
determined by the root θ+ of the fundamental equation of MAdP (see Section 1.5) associated with the tran-
sition block matrices {A(k)}; (ii) by the convergence radius rB of the generating function of the transition
block matrices {B(k); k = 1, 2, . . . }; and (iii) by the convergence radius rA+ of

∑∞
k=1 z

kA(k). Most of
the previous studies [19, 23, 49, 63, 30] focused on the case (i) although they limited to the M/G/1-type one.
Thus, we extend the existing asymptotic formula for the M/G/1-type Markov chain to the GI/G/1-type one.
Contrary, there are a few studies for the case (ii). In this case, we present general asymptotic formulae that
include, as special cases, the existing results in the literature [40, 30] by using completely different approach
to them. In case (iii), we derive new asymptotic formulae. To the best of our knowledge, such formulae
have not been reported in the literature.

Chapter 3 considers the subexponential asymptotics of the tail stationary distributions of the GI/G/1-type
Markov chain in two cases: (i) A is stochastic; and (ii) A is strictly substochastic. For case (i), Masuyama
[42], Kim and Kim [29] recently derived the subexponential asymptotic formula for the M/G/1-type Markov
chain under weaker conditions than those of earlier studies [7, 40, 63]. Thus, we extend these results to the
GI/G/1-type Markov chain. As for case (ii), the subexponential asymptotics has not been studied as far as
we know. We also study the locally subexponential asymptotics of the stationary distributions in both cases
(i) and (ii).

In Chapter 4, we consider the heavy-traffic limits of the stationary distribution and their moments of
the GI/G/1-type Markov chain. Asmussen [5] first studied the heavy traffic asymptotics for the GI/G/1-type
Markov chain and showed that the stationary distribution of the properly scaled level variable is geometric
and independent of the phase variable in the heavy-traffic limit. We prove such heavy-traffic asymptotic
formula of the stationary distribution of the GI/G/1-type Markov chain under a weaker condition than As-
mussen’s, by a characteristic function approach. Using a similar approach, we also present a heavy-traffic
asymptotic formula for the moments of the stationary distribution, which is not reported in the literature.

Chapter 5 concludes this thesis and provides several suggestions for future research.
The results discussed in Chapter 2 is mainly based on [34], Chapter 3 on [32] and Chapter 4 on [31]

including new topics that will be submitted soon. Furthermore, important results for the tail asymptotics
presented in Appendix A is based on [30].
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Chapter 2

Light-Tailed Asymptotics

2.1 Introduction

In this chapter, we study the light-tailed asymptotics of the stationary distribution of the GI/G/1-type
Markov chain. To proceed, we first make the following assumption for rA+ and rB throughout this chapter.

Assumption 2.1 (a) rA+ > 1, and (b) rB > 1.

Under Assumptions 1.1 and 2.1, the sequences {x(k)} and {x(k)} are light-tailed (see Li and Zhao [41,
Theorem 2]). Furthermore, it follows that {x(k)} is light-tailed if and only if the convergence radius of the
generating function x̂(z) is greater than one, or equivalently,

r :=

[
lim sup
k→∞

{x(k)e}1/k
]−1

> 1. (2.1)

Note also that (2.1) is equivalent to

r =

[
lim sup
k→∞

{x(k)e}1/k
]−1

> 1, (2.2)

because

x̂(z) :=
∞∑

k=0

zkx(k) =
x̂(1)− x̂(z)

1− z
, z ∈ C, |z| < r. (2.3)

In what follows, we overview the previous studies on the light-tailed asymptotics for {x(k)} and/or
{x(k)}. Most of the previous studies assume that {A(k)} has a dominant impact on the decay rate 1/r of
{x(k)} and thus {x(k)}. More specifically, those studies assume that r is equal to the real and minimum-
modulus root θ+ of the equation det(I − Â(z)) = 0 with rA− < |z| < rA+ , which is equal to a root of the
fundamental equation of the MAdP with kernel {A(k)} (for details, see section 1.5).

Several researchers considered the M/G/1-type Markov chain, which is a special case of the GI/G/1-
type Markov chain. Using the Tauberian theorem, Abate et al. [1] presented a necessary condition for the
existence of a positive vector d such that

lim
k→∞

θkx(k) = d. (2.4)

17



18 Chapter 2. Light-Tailed Asymptotics

Conversely, Falkenberg [19], Gail et al. [23] and Møller [49] showed (almost the same) sufficient conditions
under which

lim
k→∞

θkx(k) = (θ − 1)−1d. (2.5)

Note here that (2.4) implies (2.5), whereas the converse is not true. Takine [63] considered a more general
case and proved that there exists some positive integer h such that

lim
n→∞

θnh+ℓx(nh+ ℓ) = dℓ, for ℓ = 0, 1, . . . , h− 1, (2.6)

where dℓ’s (ℓ = 0, 1, . . . , h − 1) are some positive vectors such that at least two of them are different if
h ≥ 2. Equation (2.6) shows that the periodicity appears in the geometric decay of {x(k)} in general.
The largest number h satisfying (2.6) is called the period of the geometric decay of {x(k)}. Making use
of the Markov renewal theory, Takine [63] also derived two expressions of dℓ (ℓ = 0, 1, . . . , h − 1): one
is for a special case of h = 1; and the other a general case (i.e., h ≥ 1) (see Theorems 2 and 3 therein).
However, the expression of dl in the general case is somewhat complicated and thus it is difficult to confirm
that the general formula (2.6) with h = 1 is equivalent to the special one (2.5) for h = 1. Kimura et al.
[30] presented another expression of dℓ (ℓ = 0, 1, . . . , h − 1) in the general case by locating maximum-
order minimum-modulus poles (called dominant poles hereafter) of the generating function of {x(k)}. This
alternative expression is readily reduced to the one for the special case of h = 1. Kimura et al. [30] also
showed that h in (2.6) is equal to a divisor of the period τ of an MAdP with kernel {A(k); k ∈ Z}.

As for the GI/G/1-type Markov chain, Li and Zhao [41] and Tai [61] considered the case in which the
MAdP with kernel {A(k)} is aperiodic, i.e., τ = 1. Li and Zhao [41] presented an asymptotic formula
like (2.4). Tai [61] provided sufficient conditions under which {x(k)} is asymptotically geometric and is
light-tailed but not exactly geometric. He also discussed the decay rate 1/r of {x(k)}.

It should be noted that the decay rate 1/r can be determined by either the convergence radius rA+ of
∑∞

k=1 z
kA(k) or that rB of B̂(z); more specifically, r = rA+ or r = rB . However, there have been a few

studies on such cases. Kimura et al. [30] and Li and Zhao [41] discussed the case in which r = rB and
z = rB is a pole of B̂(z). To the best of our knowledge, there have been no studies on the case of r = rA+ .

In this chapter, we study the light-tailed asymptotics of {x(k)} in three cases: (i) r = θ; (ii) r = rB;
and (iii) r = rA+ . We first consider the case (i). Applying the techniques in Kimura et al. [30], we derive a
geometric asymptotic formula for {x(k)} and then show that the period h of the geometric decay is equal
to a divisor of the period τ of the MAdP with kernel {A(k)}. These results are the generalizations of the
corresponding ones in Kimura et al. [30]. We next divide the case (ii) into two subcases: (ii.a) r = rB < θ;
and (ii.b) r = rB = θ and then present the following formulae:

Case (ii.a): x(k) = r−k
B kφc0(k) + o(r−k

B kφ)e⊤, φ ∈ R := (−∞,∞), (2.7)

Case (ii.b): x(k) =

⎧
⎪⎨

⎪⎩

r−k
B kφ+1c1(k) + o(r−k

B kφ+1)e⊤, φ > −1,

r−k
B c2(k) + o(r−k

B )e⊤, φ < −1,

r−k
B (c1(k) + c2(k)) + o(r−k

B )e⊤, φ = −1,

(2.8)

where ci (i = 0, 1, 2) is some vector-valued function on Z+ such that lim supk→∞ ci(k) ≥ 0, ̸= 0; and
f(x) = o(g(x)) represents limx→∞ |f(x)/g(x)| = 0. Note here that φ can take all values in R. Actually,
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2.2. Asymptotic analysis of {F (k)} and {L(k)} 19

Kimura et al. [30] and Li and Zhao [41] obtained similar formulae to (2.7) and (2.8), though φ is restricted
to positive integers. Therefore, our results are more general than the corresponding ones in Kimura et al.
[30] and Li and Zhao [41]. Finally for the case (iii), we prove that

lim
k→∞

x(k)

r−k
A+

P(Y > k)
= c ≥ 0, ̸= 0,

assuming that there exists some subexponential random variable Y such that

lim
k→∞

A(k)

r−k
A+

P(Y > k)
= CA ≥ O, ̸= O.

As far as we know, any asymptotic formula for the case (iii) has not been reported in the literature. We
assume that the phase space is finite to study how the tail of the level increment impacts on that of the
stationary distribution. The infiniteness of the phase space makes the situation much more complicated
(see [39, 46, 48, 47, 51]), which is beyond the scope of this thesis.

The reminder of this chapter is organized as follows. In Section 2.2, we first study the asymptotics of
{F (k)} and {L(k)}. These results are required for deriving the asymptotic formulae of {x(k)}, which are
presented in Section 2.3. The proofs of the results in this chapter are omitted in this version of the thesis due
to copyright reasons.

2.2 Asymptotic analysis of {F (k)} and {L(k)}

In this section, we study the asymptotics of {F (k)} and {L(k)}, which depend on the existence of the
root θ+ ∈ [1, rA+) and θ− ∈ (rA− , 1] of the fundamental equation (1.36).

2.2.1 Case where θ+ and θ− exist

We first consider the cases where the roots θ+ and θ− exist. We begin with the following additional
lemmas.

For simplicity, in what follows, we write f(x) = O(g(x)) to represent lim supx→∞ |f(x)|/|g(x)| < ∞.

Lemma 2.1 Suppose that Assumption 1.1 together with Condition 1.1 is satisfied. If there exists a root θ ∈
{θ−, θ+} (θ+ ∈ [1, rA+), θ− ∈ (rA− , 1]) of the fundamental equation (1.36), then, for ν = 0, 1, . . . , τ − 1,

adj(I − Â(θων
τ )) =

M∏

m=2

(1− λ(A)
m (θων

τ ))v(θω
ν
τ )µ(θω

ν
τ ) ̸= O. (2.9)

Lemma 2.2 Suppose that Assumption 1.1 together with Condition 1.1 is satisfied. If there exists a root θ ∈
{θ−, θ+} (θ+ ∈ [1, rA+), θ− ∈ (rA− , 1]) of the fundamental equation (1.36), then, for ν = 0, 1, . . . , τ − 1,

lim
z→θων

τ

(
1− z

θων
τ

)(
I − Â(z)

)−1
=

∆M (ων
τ )v(θ)µ(θ)∆M (ων

τ )
−1

θ(d/dy)δ(Â)|y=θ

. (2.10)

Using the above lemmas, we now provide asymptotic formulae for {F (k)} and {L(k)}.
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20 Chapter 2. Light-Tailed Asymptotics

Lemma 2.3 Suppose that Assumption 1.1 together with Condition 1.1 is satisfied. If there exists the root
θ+ ∈ [1, rA+) of the fundamental equation (1.36), then

F (k) = θ−k
+

[
F̃ k−⌊k/τ⌋τ +O((1 + ε0)

−k)ee⊤
]
, (2.11)

where F̃ ℓ (ℓ = 0, 1, . . . , τ − 1) is given by

[F̃ ℓ]i,j =

⎧
⎪⎨

⎪⎩

τ [r(θ+)]i[µ(θ+)]j

θ+(d/dy)δ(Â(y)) |y=θ+

> 0, if i ∈ MR
• , p(i) ≡ p(j)− ℓ (mod τ),

0, otherwise.
(2.12)

Lemma 2.4 Suppose that Assumption 1.1 together with Condition 1.1 is satisfied. If there exists the root
θ− ∈ (rA− , 1] of the fundamental equation (1.36), then

L(k) = θk−

[
L̃k−⌊k/τ⌋τ +O((1 + ε0)

−k)ee⊤
]
, (2.13)

where L̃ℓ (ℓ = 0, 1, . . . , τ − 1) is given by

[L̃ℓ]i,j =

⎧
⎪⎨

⎪⎩

− τ [v(θ−)]i[ψ(θ−)]j

θ−(d/dy)δ(Â(y)) |y=θ−

> 0, if j ∈ MG
• , p(j) ≡ p(i)− ℓ (mod τ),

0, otherwise.
(2.14)

2.2.2 Case where θ+ or θ− does not exist

Next we consider the case where θ+ (resp. θ−) does not exist, i.e., limy→rA+
δ(Â(y)) < 1 (resp.

limy→rA−
δ(Â(rA−)) < 1). To state the asymptotic formulae for {F (k)} and {L(k)}, we use the subexpo-

nential class (of probability distributions) and its related classes in this section. The definitions and related
results are summarized in Chapter C.

We now make a condition on the right tail of {A(k); k ∈ Z}, i.e., the tail of {A(k); k ∈ N}.

Condition 2.1 There exists some random variable Y in Z+ with finite positive mean such that

lim
k→∞

A(k)

r−k
A+

P(Y > k)
= CA ≥ O, ̸= O. (2.15)

Remark 2.1 Condition 2.1 implies that Â(rA+) =
∑∞

k=−∞(rA+)
kA(k) is finite.

Under Condition 2.1, we obtain asymptotic formulae for {F (k)} and {F (k)}.

Lemma 2.5 Suppose that Assumption 1.1 and Condition 2.1 are satisfied. If Y ∈ S∗ and δ(Â(rA+)) < 1,
then

lim
k→∞

F (k)

r−k
A+

P(Y > k)
= CF , (2.16)

lim
k→∞

F (k)

r−k
A+

P(Y > k)
=

(
1− 1

rA+

)
CF , (2.17)

where CF is given by

CF = (I − R̂(rA+))
−1CA(I − Â(rA+))

−1, (2.18)

which has no zero-columns and -rows.
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2.3. Asymptotic analysis of {x(k)} 21

To show similar formulae for {L(k)} and {L(k)}, we make a condition on the left tail of {A(k); k ∈
Z}, i.e., the tail of {A(−k); k ∈ N}.

Condition 2.2 There exists some random variable Y in Z+ with finite positive mean such that

lim
k→∞

A(−k)

rkA−
P(Y > k)

= CA− ≥ O, ̸= O. (2.19)

Remark 2.2 Condition 2.2 implies that Â(rA−) =
∑∞

k=−∞(rA−)
kA(k) is finite.

Lemma 2.6 Suppose that Assumption 1.1 together with Condition 2.2 is satisfied. If Y ∈ S∗ and δ(Â(rA−)) <

1, then

lim
k→∞

L(k)

rkA−
P(Y > k)

= CL, (2.20)

lim
k→∞

L(k)

rkA−
P(Y > k)

= (1− rA−)CL, (2.21)

where CL is given by

CL = (I − Â(rA−))
−1CA−(I − Ĝ(rA−))

−1, (2.22)

which has no zero-columns and -rows.

2.3 Asymptotic analysis of {x(k)}

In this subsection, we present several asymptotic formulae for {x(k)}. As shown in (2.3), x̂(z) =
∑∞

k=0 z
kx(k) is expressed in terms of x̂(z). Substituting (1.25) into (2.3), we have

x̂(z) =
x̂(1)

1− z
− x(0)R̂0(z)

1− z
(I − R̂(z))−1, |z| < r, (2.23)

where x̂(z) is holomorphic for all |z| < r due to (2.2). Combining (2.23) with Proposition 1.3, we obtain

x̂(z) =
x̂(1)

1− z
− x(0)R̂0(z)(I −Φ(0))(I − Ĝ(z))

1− z

adj(I − Â(z))

det(I − Â(z))
. (2.24)

The matrix-valued function

R̂0(z)(I −Φ(0))(I − Ĝ(z))adj(I − Â(z))

in the right hand side of (2.24) is holomorphic for rA− < |z| < min(rA+ , rB) (which follows from Proposi-
tion 1.2 and Assumption 2.1). It should be noted that z = θ+ (if any) is one of the roots of det(I−Â(z)) = 0

and thus can be a dominant singularity of x̂(z). As a result, (2.24) implies that if x(k) has a certain geo-
metric decay rate θ such that 1 < θ < min(rB, rA+), then the root θ+ of the fundamental equation (1.36)
exists and θ is equal to θ+. Equation (2.24) also implies that there are three possibilities: r = θ+; r = rB;
or r = rA+ . In what follows, we discuss the three cases individually.

21



22 Chapter 2. Light-Tailed Asymptotics

2.3.1 Case where r = θ+

We first consider the case where r = θ+, which includes subcases r = θ+ < rB; and r = θ+ = rB .
However, the latter case is discussed in Section 2.3.2, which covers the case where r = rB .

Theorem 2.1 (r = θ+ < rB) Suppose that Assumptions 1.1 and 2.1 together with Condition 1.1 are satis-
fied; and that the root θ+ ∈ (1, rA+) of the fundamental equation (1.36) exists. If θ+ < rB , then

lim
n→∞

θnτ+ℓ
+ x(nτ + ℓ) =

τ−1∑

ν=0

1

(ων
τ )

ℓ
c(ων

τ )µ(θ+)∆M (ων
τ )

−1 > 0, ℓ = 0, 1, . . . , τ − 1, (2.25)

where

c(ων
τ ) =

x(0)R̂0(θ+ων
τ )(I −Φ(0))(I − Ĝ(θ+ων

τ ))∆M (ων
τ )v(θ+)

θ+(θ+ων
τ − 1) · (d/dy)δ(Â(y))|y=θ+

. (2.26)

Theorem 2.1 is a generalization of Theorem 5 of Li and Zhao [41], where τ = 1 is assumed. In
addition, Theorem 2.1 includes Theorem 3.1 of Kimura et al. [30] as a special case where the Markov chain
{(Xn, Sn)} is assumed to be of M/G/1 type. To verify this, we suppose that the Markov chain {(Xn, Sn)}
is of M/G/1 type. We then have Ĝ(z) = G/z and L(k) = Gk for k ∈ N, where G is the G-matrix of the
M/G/1-type Markov chain. We also define Φ0(k) =

∑∞
m=k B(m)Gm−k for k ∈ N. It follows from (1.14)

that

R̂0(z)(I −Φ(0))(I −G/z) = B̂(z)−Φ0(1)G, (2.27)

which is equivalent to the second equation of Proposition 2.2 of Kimura et al. [30]. Applying (2.27) to
(2.26), we obtain

c(ων
τ ) =

x(0)(B̂(θ+ων
τ )−Φ0(1)G)∆M (ων

τ )v(θ+)

θ+(θ+ων
τ − 1) · (d/dy)δ(Â(y))|y=θ+

=
x(0)[B̂(θ+ων

τ )−Φ0(1)(I −Φ(0))−1A(−1)]∆M (ων
τ )v(θ+)

θ+(θ+ων
τ − 1) · (d/dy)δ(Â(y))|y=θ+

=
[x(0)B̂(θ+ων

τ )− x(1)A(−1)]∆M (ων
τ )v(θ+)

θ+(θ+ων
τ − 1) · (d/dy)δ(Â(y))|y=θ+

, (2.28)

where we use G = (I −Φ(0))−1A(−1) and x(1) = x(0)Φ0(1)(I −Φ(0))−1 in the last two equalities.
Substituting (2.28) into the right hand side of (2.25) yields

τ−1∑

ν=0

1

(ων
τ )

l

[x(0)B̂(θ+ων
τ )− x(1)A(−1)]∆M (ων

τ )v(θ+)

θ+(θ+ων
τ − 1) · (d/dy)δ(Â(y))|y=θ+

· µ(θ+)∆M (ων
τ )

−1,

which is equivalent to cl in Theorem 3.1 of Kimura et al. [30].

2.3.2 Case where r = rB

We move on to the second case, which is divided into two subcases. One is where the root θ+ of the
fundamental equation (1.36) may not exist; and the other is where the root θ+ exists and equals to rB . In
both subcases, the asymptotics of {B(k)} has a dominant impact on that of {x(k)}. To proceed further, we
specify the tail asymptotics of {B(k)}.
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2.3. Asymptotic analysis of {x(k)} 23

Condition 2.3 There exists some φ ∈ R such that

[B(k)]i,j = r−k
B kφ[B̆(k)]i,j + o(r−k

B kφ), (i, j) ∈ M0 ×M, (2.29)

where {B̆(k); k ∈ Z+} is a bounded sequence of nonnegative matrices such that

lim sup
k→∞

B̆(k) ≥ O, ̸= O. (2.30)

Remark 2.3 Kimura et al. [30] studied a special case where B̂(z) is meromorphic for |z| < rB + ε0, i.e.,
φ ∈ N and, for some m,N ∈ N,

B̆(k) =
1

(m− 1)!

N−1∑

n=0

1

ζkn

1

rBζn − 1
lim

z→rBζn

(
1− z

rBζn

)m

B̂(z),

where ζn’s (n = 0, 1, . . . , N − 1) are complex numbers such that |ζn| = 1 and 0 = arg(ζ0) < arg(ζ1) <

· · · < arg(ζN−1) < 2π (see Assumption 3.2 therein). In other words, {rBζn} are the poles of order m of
B̂(z) on the circle {z; |z| = rB}. Li and Zhao [40] considered a similar case.

We now define β(k; y) (k ∈ Z+, y > 1) as

β(k; y) = x(0)
k∑

ℓ=0

[
B̆(k − ℓ) +

∞∑

m=1

y−mB̆(k − ℓ+m)L(m)

]

× (I −Φ(0))−1yℓF (ℓ). (2.31)

We then present the theorem on the first subcase, i.e., where the existence of θ+ is not necessarily assumed.

Theorem 2.2 (r = rB) Suppose that Assumptions 1.1 and 2.1 together with Condition 2.3 are satisfied; and
that rB < rA+ and δ(Â(rB)) < 1. Under these conditions, the following asymptotic formula holds:

x(k) = r−k
B kφβ(k; rB) + o(r−k

B kφ)e⊤, (2.32)

where, {β(k; rB); k ∈ Z+} is a bounded sequence of nonnegative vectors. In addition, suppose that either
of the conditions (a), (b) and (c) below holds.

(a) Condition 1.1 is satisfied and the roots θ+ ∈ (1, rA+) and θ− ∈ (rA− , 1] of the fundamental equation
(1.36) exist;

(b) Condition 2.1 is satisfied, Y ∈ S∗ and δ(Â(rA+)) < 1; or

(c) Condition 2.2 is satisfied, Y ∈ S∗ and δ(Â(rA−)) < 1.

It then holds that

(i) lim supk→∞ β(k; rB) > 0; and

(ii) if lim infk→∞ B̆(k) ≥ O and lim infk→∞ B̆(k) ̸= O, then lim infk→∞ β(k; rB) > 0.
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Corollary 2.1 Suppose that Assumptions 1.1 and 2.1 together with Condition 2.3 are satisfied; and that
rB < rA+ and δ(Â(rB)) < 1. Furthermore, if

B̆(∞) := lim
k→∞

B̆(k) ≥ O, ̸= O, (2.33)

then

lim
k→∞

x(k)

r−k
B kφ

= x(0)B̆(∞)(I − Â(rB))
−1. (2.34)

Remark 2.4 We provide an example of a queueing model corresponding to the case where r = rB as
follows. We consider a MAP/GI/1 queueing model with exceptional service, which represents the service
for customers arriving to the queue when the server is vacant, i.e., the system is empty. For instance, the
exceptional service time can be considered as the original service time including warming-up time, which is
required for restarting the stopped server. We assume that the original service time and exceptional service
time follow i.i.d. distributions. The queue length distribution at departure of this queueing model results
in the stationary distribution of a certain M/G/1-type Markov chain. Furthermore, since the exceptional
service time is longer than the original one, the impact of the jump size from the boundary level of the
corresponding M/G/1-type Markov chain is larger than those from the non-boundary levels. In other words,
{B(k); k = 0, 1, . . . } of the transition matrix of the Markov chain have dominant impact on the stationary
distribution. As a result, rB < min(θ+, rA+), and thus the decay rate r of the stationary distribution can
be equal to rB .

The following theorem is concerned with the second subcase, i.e., where θ+ = rB .

Theorem 2.3 (r = rB = θ+) Suppose that Assumptions 1.1 and 2.1 together with Conditions 1.1 and 2.3
are satisfied. Suppose that the root θ+ ∈ (1, rA+) of the fundamental equation (1.36) exists and θ+ = rB .
Let ξ(k; rB) = k−1β(k; rB) ≥ 0 for k ∈ N. Under these conditions, the following hold:

(i) the asymptotics of {x(k)} is given by

x(k) = r−k
B x(0)R0F̃ k−⌊k/τ⌋τ + o(r−k

B )e⊤, φ < −1, (2.35)

x(k) = r−k
B

[
x(0)R0F̃ k−⌊k/τ⌋τ + ξ(k; rB)

]
+ o(r−k

B )e⊤, φ = −1, (2.36)

x(k) = r−k
B kφ+1ξ(k; rB) + o(r−k

B kφ+1)e⊤, φ > −1; and (2.37)

(ii) for all k ∈ N,

x(0)R0F̃ k−⌊k/τ⌋τ > 0,

where F̃ ℓ (ℓ = 0, . . . , τ − 1) is a nonnegative and nonzero matrix such that

F̃ ℓ =
τ−1∑

ν=0

(I −Φ(0))(I − Ĝ(rBων
τ ))

(rBων
τ − 1)(ων

τ )
ℓ

· ∆M (ων
τ )v(rB)µ(rB)∆M (ων

τ )
−1

rB(d/dy)δ(Â(y)) |y=rB

. (2.38)
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2.3. Asymptotic analysis of {x(k)} 25

In addition, suppose that

lim inf
k→∞

B̆(k) ≥ O, ̸= O, (2.39)

and either of the conditions (a) and (b) below holds.

(a) the root θ− ∈ (rA− , 1] of the fundamental equation (1.36) exists; or

(b) Condition 2.2 is satisfied, Y ∈ S∗ and δ(Â(rA−)) < 1.

It then holds that

(iii) lim supk→∞ ξ(k; rB) ≥ lim infk→∞ ξ(k; rB) > 0.

Corollary 2.2 Suppose that Assumptions 1.1 and 2.1 together with Conditions 1.1 and 2.3 are satisfied.
Suppose that the root θ+ ∈ (1, rA+) of the fundamental equation (1.36) exists and θ+ = rB . Furthermore,
if (2.33) holds, then, for ℓ = 0, 1, . . . , τ − 1,

lim
n→∞

x(nτ + ℓ)

r−nτ−ℓ
B

= x(0)R0F̃ ℓ, φ < −1, (2.40)

lim
n→∞

x(nτ + ℓ)

r−nτ−ℓ
B

= x(0)R0F̃ ℓ + ξ(∞; rB), φ = −1, (2.41)

lim
k→∞

x(k)

r−k
B kφ+1

= ξ(∞; rB), φ > −1, (2.42)

where

ξ(∞, rB) =
x(0)B̆(∞)v(rB)µ(rB)

rB(d/dy)δ(Â(y)) |y=rB

> 0. (2.43)

2.3.3 Case where r = rA+

Finally, we consider two subcases: r = rA+ < rB and r = rA+ = rB . It is assumed in both subcases
that δ(Â(rA+)) < 1 and thus the root θ+ does not exist (see Lemma 1.2).

The following theorem provides the asymptotic formula for the first subcase.

Theorem 2.4 (r = rA+ < rB) Suppose that Assumptions 1.1 and 2.1 together with Condition 2.1 are satis-
fied. If Y ∈ S∗, δ(Â(rA+)) < 1 and rA+ < rB , then

lim
k→∞

x(k)

r−k
A+

P(Y > k)
= x(0)R̂0(rA+)CF ≥ 0, ̸= 0, (2.44)

where CF is given in (2.18).

The asymptotic formula for the second subcase is proved under the following condition.

Condition 2.4 There exists some random variable Y in Z+ with finite positive mean such that

lim
k→∞

A(k)

r−k
A+

P(Y > k)
= CA ≥ O, lim

k→∞

B(k)

r−k
A+

P(Y > k)
= CB ≥ O,

where CA ̸= O or CB ̸= O.
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Theorem 2.5 (r = rA+ = rB) Suppose that Assumptions 1.1 and 2.1 together with Condition 2.4 are sat-
isfied. If Y ∈ S∗, δ(Â(rA+)) < 1 and rA+ = rB , then

lim
k→∞

x(k)

r−k
A+

P(Y > k)
= x(0)

[
CB(I − Â(rA+))

−1 + R̂0(rA+)CF

]
≥ 0, ̸= 0. (2.45)
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Chapter 3

Heavy-Tailed Asymptotics

3.1 Introduction

This chapter studies the subexponential asymptotics of the stationary distribution of the GI/G/1-type
Markov chain. We briefly review the literature related to the subexponential asymptotics. For this purpose,
let Y denote a random variable in Z+, and for a while, assume that

lim
k→∞

∑∞
ℓ=k+1A(ℓ)

P(Y > k)
= C1 ≥ O, lim

k→∞

∑∞
ℓ=k+1B(ℓ)

P(Y > k)
= C2 ≥ O,

with C1 ̸= O or C2 ̸= O. Asmussen and Møller [7] consider two cases: (a) Y is regularly varying; and (b)
Y belongs to both the subexponential class S (see Definition C.2) and the maximum domain of attraction
of the Gumbel distribution (see, e.g., [17, Section 3.3]). For the two cases, they show that under some
additional conditions,

lim
k→∞

x(k)

P(Ye > k)
= c1 > 0, Ye ∈ S, (3.1)

where Ye denotes the discrete equilibrium random variable of Y , distributed with P(Ye = k) = P(Y >

k)/E[Y ] (k ∈ Z+). Note here that Y ∈ S does not necessarily imply Ye ∈ S and vice versa (see [60,
Remark 3.5]).

Li and Zhao [40] show the subexponential tail asymptotics (3.1) under the condition that C2 = O and
Y belongs to a subclass S∗ of S (see Definition C.3). Note here that Y ∈ S∗ implies Y ∈ S and Ye ∈ S
(see Proposition C.2). Although Li and Zhao [40] derive some other asymptotic formulae for {x(k)}, those
formulae are incorrect due to “the inverse of a singular matrix” (detailed explanation can be found in [42]).

Takine [63] proves that the subexponential tail asymptotics (3.1) holds for an M/G/1-type Markov chain,
assuming that Ye ∈ S but not necessarily Y ∈ S . Thus Takine’s result shows that Y ∈ S is not a necessary
condition for the subexponential decay of {x(k)}. However, Masuyama [42] points out that Takine’s proof
needs an additional condition that the G-matrix is aperiodic. Furthermore, Masuyama [42] presents a weaker
sufficient condition for (3.1) than those presented in the literature [7, 40, 63], though his result is limited to
the M/G/1-type Markov chain. Recently, Kim and Kim [29] improve Masuyama [42]’s sufficient condition
in the case where the G-matrix is periodic.

In this chapter, we study the subexponential decay of the tail probabilities {x(k)} in two cases: (i) A
is stochastic (i.e., Ae = e); and (ii) A is strictly substochastic (i.e., Ae ≤ e, ̸= e). For the case (i), we
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28 Chapter 3. Heavy-Tailed Asymptotics

generalize Masuyama [42]’s and Kim and Kim [29]’s results to the GI/G/1-type Markov chain. The obtained
sufficient condition for the subexponential tail asymptotics (3.1) is weaker than those presented in Asmussen
and Møller [7] and Li and Zhao [40]. As for the case (ii), we present a subexponential asymptotic formula
such that

lim
k→∞

x(k)

P(Y > k)
= c2 > 0, Y ∈ S.

It should be noted that the embedded queue length process of a BMAP/GI/1 queue with disasters falls into
the case (ii) (see, e.g., [58]). As far as we know, the subexponential asymptotics in the case (ii) has not been
studied in the literature. Therefore, this is the first report on the subexponential asymptotics in the case (ii).

We also study the locally subexponential asymptotics of the stationary probabilities {x(k)}. In the case
(i) (i.e., A is stochastic), we prove the following formula under some technical conditions:

lim
k→∞

x(k)

P(Ye = k)
= c3 > 0, Y ∈ S∗.

Furthermore, in the case (ii) (i.e., A is strictly substochastic), we assume that Y is locally subexponential
with span one (i.e., Y ∈ Sloc(1); see Definition C.5). We then show that

lim
k→∞

x(k)

P(Y = k)
= c4 > 0, Y ∈ Sloc(1),

with some technical conditions. For the reader’s convenience, Appendix C.3 presents simple examples of
the case where the stationary distribution is locally subexponential.

The rest of this chapter is divided into two sections. In Sections 3.2 and 3.3, we study the subexponential
tail asymptotics and locally subexponential asymptotics, respectively, of the stationary distribution.

3.2 Ordinal subexponential asymptotics

This section studies the subexponential decay of the tail probabilities {x(k)}, under the following as-
sumption.

Assumption 3.1 Either of (I) and (II) is satisfied:

(I) Assumption 1.1 holds, A is stochastic, and
∑

k∈Z |k|A(k) < ∞; or

(II) Assumption 1.1 holds and A is strictly substochastic.

Assumption 3.1 (I) and (II) are considered in subsections 3.2.1 and 3.2.2, respectively.

3.2.1 Case of stochastic A

Lemma 3.1 Under Assumption 3.1 (I),

σ = π(I −R)(I −Φ(0))
∞∑

k=1

kG(k)e ∈ (0,∞), (3.2)

where σ is defined in (1.5).
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Proof. We have 0 < σ < ∞ due to (1.5), Proposition 1.7 and the third condition of Assumption 3.1 (I).
Furthermore, since σ = −π(d/dz)Â(z)|z=1e and (d/dz)Ĝ(z)|z=1 = −

∑∞
k=1 kG(k), we obtain (3.2) by

differentiating (1.16) with respect to z, pre-multiplying by π, post-multiplying by e and letting z = 1. ✷

Since A is stochastic, the root of the fundamental equation θ− is equal to 1 (see (1.36) and Lemma 1.3).
In addition, Lemma 1.1 implies that if Assumption 3.1 (I) holds, the condition of Lemma 2.4 is satisfied.
Thus, substituting θ− = 1 into (2.13) and using (1.43), (d/dz)δ(Â(z))|z=1 = πÂ′(1)e = −σ, v(1) = e,
and µ(1) = π yield

lim
n→∞

[L(nτ + l)]i,j =

⎧
⎨

⎩

τ [ψ]j
σ

, if j ∈ MG
• , p(j) ≡ p(i)− l (mod τ),

0, otherwise,
(3.3)

where

ψ = ψ(1) = π(I −R)(I −Φ(0)). (3.4)

For ℓ = 0, 1, . . . , τ − 1, let M(ℓ) = {j ∈ MG
• ; p(j) = ℓ} and |M(ℓ)| denote the cardinality of M(ℓ).

Furthermore, let ψ(ℓ) denote a subvector of ψ corresponding to M(ℓ), and e(ℓ) denote an |M(ℓ)| × 1 vector
of ones. Using these notations, (3.3) can be rewritten as

lim
n→∞

L(nτ + ℓ) = τEHℓ, (3.5)

where

E =

⎛

⎜⎜⎜⎜⎜⎜⎝

M(0) e(0) 0 · · · 0 0

M(1) 0 e(1) · · · 0 0
...

...
...

. . .
...

...
M(τ−2) 0 0 · · · e(τ−2) 0

M(τ−1) 0 0 · · · 0 e(τ−1)

⎞

⎟⎟⎟⎟⎟⎟⎠
, (3.6)

and

σHℓ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M(0) M(1) · · · M(τ−ℓ−1) M(τ−ℓ) M(τ−ℓ+1) · · · M(τ−1)

0 0 · · · 0 ψ(τ−ℓ) 0 · · · 0

0 0 · · · 0 0 ψ(τ−l+1) · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · ψ(τ−1)

ψ(0) 0 · · · 0 0 0 · · · 0

0 ψ(1) · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · ψ(τ−ℓ−1) 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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30 Chapter 3. Heavy-Tailed Asymptotics

Remark 3.1 Suppose the Markov chain {(Xn, Sn)} is of M/G/1-type. It then follows that L(n) = Gn for
n = 1, 2, . . . . Furthermore, it is easy to see that ψ/σ is a stationary probability vector of G and therefore
[ψ]j = 0 for all j ∈ MT (see Lemma 1.5). We now define ψ(ℓ)

• (ℓ = 0, 1, . . . , τ − 1) as a subvector of ψ
corresponding to M(ℓ)

• := {j ∈ M• ∩M(ℓ)}. As a result, (3.5) yields

lim
n→∞

1

τ
Gnτ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M(0)
• M(1)

• · · · M(τ−1)
• MT

M(0)
• eψ(0)

• /σ O · · · O O

M(1)
• O eψ(1)

• /σ · · · O O
...

...
...

. . .
...

...
M(τ−1)

• O O · · · eψ(τ−1)
• /σ O

M(0)
T eψ(0)

• /σ O · · · O O

M(1)
T O eψ(1)

• /σ · · · O O
...

...
...

. . .
...

...
M(τ−1)

T O O · · · eψ(τ−1)
• /σ O

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.7)

where M(ℓ)
T = M(ℓ) \M(ℓ)

• (ℓ = 0, 1, . . . , τ − 1). Note here that ψ(ℓ)
• e = σ/τ for all ℓ = 0, 1, . . . , τ − 1

because (1/τ)Gnτe = e/τ for all n = 1, 2, . . . . As a result, the limit (3.7) is consistent with the equation
(14) in [42], where

∑τ
ν=1 fν = e and each element of fν (ν = 1, 2, . . . , τ ) is equal to one or zero.

Lemma 3.2 If Assumption 3.1 (I) holds, then

lim
n→∞

τ−1∑

ℓ=0

L(nτ + ℓ) =
τ

σ
eψ. (3.8)

Proof. We obtain (3.8) by combining (3.5) and

σ
τ−1∑

ℓ=0

Hℓ = eψ. (3.9)

✷

We now make the following assumption.

Assumption 3.2 There exists some random variable Y in Z+ with positive finite mean such that

lim
k→∞

A(k)e

P(Y > k)
=

cA
E[Y ]

, lim
k→∞

B(k)e

P(Y > k)
=

cB
E[Y ]

, (3.10)

where cA and cB are nonnegative M × 1 and M0 × 1 vectors, respectively, satisfying cA ̸= 0 or cB ̸= 0.

Lemma 3.3 Suppose Assumptions 3.1 (I) and 3.2 hold. If Ye is long-tailed (i.e., Ye ∈ L; see Definition C.1),
then

lim
k→∞

∞∑

m=1

A(k +m)L(m)

P(Ye > k)
=

cAπ(I −R)(I −Φ(0))

σ
, (3.11)

lim
k→∞

∞∑

m=1

B(k +m)L(m)

P(Ye > k)
=

cBπ(I −R)(I −Φ(0))

σ
. (3.12)
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3.2. Ordinal subexponential asymptotics 31

Proof. Equations (3.8) and (3.10) show that for any ε > 0 there exists some m∗ := m∗(ε) ∈ N such that
for all m ≥ m∗ and ℓ = 0, 1, . . . , τ − 1,

e(τψ − εe⊤) ≤
τ−1∑

ℓ=0

L(⌊m/τ⌋τ + l) ≤ e(τψ + εe⊤), (3.13)

1

E[Y ]
(cA − εe) ≤ A(⌊m/τ⌋τ + ℓ)e

P(Y > m)
≤ 1

E[Y ]
(cA + εe). (3.14)

Furthermore, since Ye ∈ L and L(m) ≤ ee⊤ for all m = 1, 2, . . . , we have

lim sup
k→∞

m∗−1∑

m=1

A(k +m)L(m)

P(Ye > k)
≤

m∗−1∑

m=1

lim sup
k→∞

A(k +m)ee⊤

P(Y > k +m)
lim sup
k→∞

P(Y > k +m)

P(Ye > k +m)

× lim sup
k→∞

P(Ye > k +m)

P(Ye > k)

= O, (3.15)

where the last equality follows from (3.10) and the fact that Ye ∈ L has a heavier tail than Y (see Corollary
3.3 in [60]).

On the other hand,
∞∑

m=m∗

A(k +m)L(m)

P(Ye > k)
≤

∞∑

m′=⌊m∗/τ⌋

τ−1∑

ℓ=0

A(k +m′τ + ℓ)L(m′τ + ℓ)

P(Ye > k)

≤
∞∑

m′=⌊m∗/τ⌋

A(k +m′τ)

P(Ye > k)

τ−1∑

ℓ=0

L(m′τ + ℓ)

≤
∞∑

m′=⌊m∗/τ⌋

A(k +m′τ)e

P(Ye > k)

( τ
σ
ψ + εe⊤

)
, (3.16)

where the second inequality holds because {A(k); k ∈ Z+} is nonincreasing, and where the last inequality
is due to (3.13). Note here that (3.10) implies for all sufficiently large k,

∞∑

m′=⌊m∗/τ⌋

A(k +m′τ)e

P(Ye > k)
≤ (cA + εe) · 1

E[Y ]

∞∑

m′=⌊m∗/τ⌋

P(Y > k +m′τ)

P(Ye > k)
,

from which and Proposition C.1 it follows that

lim sup
k→∞

∞∑

m′=⌊m∗/τ⌋

A(k +m′τ)e

P(Ye > k)
≤ cA + εe

τ
. (3.17)

Combining (3.16) and (3.17) and letting ε ↓ 0 yield

lim sup
k→∞

∞∑

m=m∗

A(k +m)L(m)

P(Ye > k)
≤ cAψ

σ
. (3.18)

As a result, from (3.15) and (3.18), we have

lim sup
k→∞

∞∑

m=1

A(k +m)L(m)

P(Ye > k)
≤ cAψ

σ
. (3.19)
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Next we consider the lower limit. It follows from (3.13) and (3.14) that
∞∑

m=1

A(k +m)L(m)

P(Ye > k)
≥

∞∑

m=m∗

A(k +m)L(m)

P(Ye > k)

≥
∞∑

m′=⌊m∗/τ⌋+1

τ−1∑

ℓ=0

A(k +m′τ + ℓ)L(m′τ + ℓ)

P(Ye > k)

≥
∞∑

m′=⌊m∗/τ⌋+1

A(k +m′τ + τ)

P(Ye > k)

τ−1∑

ℓ=0

L(m′τ + ℓ)

≥
∞∑

m′=⌊m∗/τ⌋+2

A(k +m′τ)e

P(Ye > k)

( τ
σ
ψ − εe⊤

)
, (3.20)

where the third inequality requires the fact that {A(k)} is nonincreasing. Furthermore, the following can be
shown in a very similar way to (3.17):

lim inf
k→∞

∞∑

m′=⌊m∗/τ⌋+2

A(k +m′τ)e

P(Ye > k)
≥ cA − εe

τ
.

Combining this with (3.20) and letting ε ↓ 0 yield

lim inf
k→∞

∞∑

m=1

A(k +m)L(m)

P(Ye > k)
≥ cAψ

σ
. (3.21)

Finally, (3.11) follows from (3.19), (3.21) and (3.4). Equation (3.12) can be proved in the same way, and
thus the proof is omitted.

✷

Lemma 3.4 Suppose Assumptions 3.1 (I) and 3.2 hold. If Ye ∈ L, then

lim
k→∞

R(k)

P(Ye > k)
=

cAπ(I −R)

σ
, (3.22)

lim
k→∞

R0(k)

P(Ye > k)
=

cBπ(I −R)

σ
. (3.23)

Proof. It follows from (1.15) that

R(k) =

[
A(k) +

∞∑

m=1

A(k +m)L(m)

]
(I −Φ(0))−1. (3.24)

Note that Corollary 3.3 in [60] and (3.10) yield

lim sup
k→∞

A(k)

P(Ye > k)
≤ lim sup

k→∞

A(k)eet

P(Y > k)
lim sup
k→∞

P(Y > k)

P(Ye > k)
= O.

Thus from (3.24), we have

lim
k→∞

R(k)

P(Ye > k)
= lim

k→∞

∞∑

m=1

A(k +m)L(m)

P(Ye > k)
(I −Φ(0))−1. (3.25)

Substituting (3.11) into (3.25), we obtain (3.22). Similarly, we can prove (3.23). ✷

The following theorem presents a subexponential asymptotic formula for {x(k)}.
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Theorem 3.1 Suppose Assumptions 3.1 (I) and 3.2 hold. If Ye ∈ S , then

lim
k→∞

x(k)

P(Ye > k)
=

x(0)cB + x(0)cA
σ

· π (3.26)

Proof. It follows from (1.21) that
∞∑

k=0

F (k) = (I −R)−1. (3.27)

Thus using (3.27) and Lemma 6 in [28], we have

lim
k→∞

F (k)

P(Ye > k)
= lim

k→∞

∞∑

n=0

R∗n(k)

P(Ye > k)

= (I −R)−1 lim
k→∞

R(k)

P(Ye > k)
(I −R)−1.

Substituting (3.22) into the above equation yields

lim
k→∞

F (k)

P(Ye > k)
=

(I −R)−1cAπ

σ
. (3.28)

Finally, applying Proposition C.3 to (1.22) and using (3.23) and (3.28) lead to

lim
k→∞

x(k)

P(Ye > k)
=

x(0)

σ

[
cBπ +R0(I −R)−1cAπ

]
,

from which and (1.26) we have (3.26). ✷

Remark 3.2 Theorem 3.1 is a generalization of Theorem 1 in [29] to the GI/G/1-type Markov chain. In
fact, the latter extends the corollary of Theorem 3.1 in [42] (Corollary 3.1 therein) to the case where the
G-matrix is periodic.

3.2.2 Case of strictly substochastic A

In this subsection, we make the following assumption in addition to Assumption 3.1 (II):

Assumption 3.3 There exists some random variable Y in Z+ such that

lim
k→∞

A(k)

P(Y > k)
= CA, lim

k→∞

B(k)

P(Y > k)
= CB, (3.29)

where CA and CB are nonnegative M × M and M0 × M matrices, respectively, satisfying CA ̸= O or
CB ̸= O.

Lemma 3.5 Suppose Assumptions 3.1 (II) and 3.3 hold. If Y ∈ L, then

lim
k→∞

R(k)

P(Y > k)
= CA

(
I −

∞∑

ℓ=0

Φ(−ℓ)
)−1

, (3.30)

lim
k→∞

R0(k)

P(Y > k)
= CB

(
I −

∞∑

ℓ=0

Φ(−ℓ)
)−1

. (3.31)
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Proof. From (1.15) and (3.29), we have

lim
k→∞

R(k)

P(Y > k)
=

[
CA + lim

k→∞

∞∑

m=1

A(k +m)

P(Y > k)
L(m)

]
(I −Φ(0))−1. (3.32)

Note here that under Assumption 3.1 (II), sp(G) < 1 (see Proposition 1.4) and thus (1.11) yields

∞∑

m=1

L(m) = (I −G)−1G < ∞, (3.33)

from which and (3.29) it follows that for k = 0, 1, . . . ,

∞∑

m=1

A(k +m)

P(Y > k)
L(m) ≤ sup

k∈Z+

A(k)

P(Y > k)

∞∑

m=1

L(m) < ∞.

Therefore applying the dominated convergence theorem to (3.32) and using (3.29) and Y ∈ L, we obtain

lim
k→∞

R(k)

P(Y > k)

=

[
CA +

∞∑

m=1

lim
k→∞

A(k +m)

P(Y > k +m)

P(Y > k +m)

P(Y > k)
L(m)

]
(I −Φ(0))−1

= CA
[
I + (I −G)−1G

]
(I −Φ(0))−1

= CA(I −G)−1(I −Φ(0))−1. (3.34)

From (1.9), we have

(I −G)−1 =

[
I − (I −Φ(0))−1

∞∑

ℓ=1

Φ(−ℓ)
]−1

=

(
I −

∞∑

ℓ=0

Φ(−ℓ)
)−1

(I −Φ(0)). (3.35)

Finally, substituting (3.35) into (3.34) yields (3.30). Equation (3.31) can be proved in the same way. ✷

Theorem 3.2 Suppose Assumptions 3.1 (II) and 3.3 hold. If Y ∈ S , then

lim
k→∞

x(k)

P(Y > k)
= [x(0)CB + x(0)CA](I −A)−1 > 0. (3.36)

Proof. Applying Proposition C.3 to (1.22) and using (3.27) and (3.31), we have

lim
k→∞

x(k)

P(Y > k)
= x(0)CB

(
I −

∞∑

ℓ=0

Φ(−ℓ)
)−1

(I −R)−1 + x(0)R0 lim
k→∞

F (k)

P(Y > k)
, (3.37)

where F (k) is given in (1.21). Furthermore, it follows from Lemma 6 in [28] and (3.30) that

lim
k→∞

F (k)

P(Y > k)
= (I −R)−1CA

(
I −

∞∑

ℓ=0

Φ(−ℓ)
)−1

(I −R)−1.

34



3.3. Locally subexponential asymptotics 35

Substituting the above equation into (3.37) and using (1.26), we have

lim
k→∞

x(k)

P(Y > k)
= [x(0)CB + x(0)CA]

(
I −

∞∑

ℓ=0

Φ(−ℓ)
)−1

(I −R)−1. (3.38)

Note here that (3.35) yields
(
I −

∞∑

ℓ=0

Φ(−ℓ)
)−1

(I −R)−1 = (I −G)−1 (I −Φ(0))−1(I −R)−1 = (I −A)−1, (3.39)

where the second equality follows from Proposition 1.3. As a result, we obtain (3.36) by combining (3.38)
with (3.39).

It is easy to show that the right hand side of (3.36) is positive. Indeed, (I − A)−1 > O due to the
irreducibility of A. In addition, x(0)CB + x(0)CA ≥ 0, ̸= 0 because x(0) > 0 and x(0) > 0; and
CA ̸= O or CB ̸= O. Therefore, (x(0)CB + x(0)CA)(I −A)−1 > 0. ✷

3.3 Locally subexponential asymptotics

This section considers the locally subexponential asymptotics of the stationary distribution.

3.3.1 Case of stochastic A

In this subsection, we proceed under Assumption 3.1 (I) and the following assumption:

Assumption 3.4 There exists some random variable Y in Z+ with positive finite mean such that

lim
k→∞

A(k)E

P(Y = k)
=

CE
A

E[Y ]
, lim

k→∞

B(k)E

P(Y = k)
=

CE
B

E[Y ]
, (3.40)

where E is given in (3.6), and where CE
A and CE

B are nonnegative M×τ and M0×τ matrices, respectively,
satisfying CE

A ̸= O or CE
B ̸= O.

Lemma 3.6 Suppose Assumptions 3.1 (I) and 3.4 hold. Furthermore, suppose either of the following is
satisfied: Y is locally long-tailed with span one (i.e., Y ∈ Lloc(1); see Definition C.4); or Y ∈ L and
{P(Y = k)} is eventually nonincreasing. We then have

lim
k→∞

∞∑

m=1

A(k +m)L(m)

P(Ye = k)
= CE

Ae
π(I −R)(I −Φ(0))

σ
, (3.41)

lim
k→∞

∞∑

m=1

B(k +m)L(m)

P(Ye = k)
= CE

Be
π(I −R)(I −Φ(0))

σ
. (3.42)

Proof. We give the proof of (3.41) only. Equation (3.42) can be proved in the same way. It follows from
(3.5), Ee = e and (3.4) that for ε > 0 there exists some m∗ := m∗(ε) ∈ N such that for all m ≥ m∗ and
ℓ = 0, 1, . . . , τ − 1,

E(τHℓ − εee⊤) ≤ L(m) ≤ E(τHℓ + εee⊤), m ≡ ℓ (mod τ), (3.43)
1

E[Y ]
(CE

A − εee⊤) ≤ A(m)E

P(Y = m)
≤ 1

E[Y ]
(CE

A + εee⊤). (3.44)
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Thus from (3.40), L(m) ≤ Eee⊤ and Y ∈ L (see Remark C.2), we have

lim
k→∞

m∗−1∑

m=1

A(k +m)L(m)

P(Ye = k)
≤ E[Y ]

m∗−1∑

m=1

lim
k→∞

A(k +m)Eee⊤

P(Y = k +m)

P(Y = k +m)

P(Y > k)
= O.

Using this and (3.43), we obtain

lim sup
k→∞

∞∑

m=1

A(k +m)L(m)

P(Ye = k)
= lim sup

k→∞

∞∑

m=m∗

A(k +m)L(m)

P(Ye = k)

= lim sup
k→∞

τ−1∑

ℓ=0

∑

m≥m∗
m≡ℓ (mod τ)

A(k +m)L(m)

P(Ye = k)

≤
τ−1∑

ℓ=0

⎡

⎢⎢⎢⎣
lim sup
k→∞

∑

m≥m∗
m≡ℓ (mod τ)

A(k +m)E

P(Ye = k)

⎤

⎥⎥⎥⎦
(τHℓ + εee⊤). (3.45)

Furthermore, it follows from (3.44) and Proposition C.4 that

lim sup
k→∞

∑

m≥m∗
m≡ℓ (mod τ)

A(k +m)E

P(Ye = k)
≤ CE

A + εee⊤

E[Y ]
lim sup
k→∞

∑

m≥m∗
m≡ℓ (mod τ)

P(Y = k +m)

P(Ye = k)

=
CE

A + εee⊤

τ
. (3.46)

Substituting (3.46) into (3.45) and letting ε ↓ 0, we obtain

lim sup
k→∞

∞∑

m=1

A(k +m)L(m)

P(Ye = k)
≤ CE

A

τ−1∑

ℓ=0

Hℓ =
1

σ
CE

Aeψ,

where we use (3.9) in the last equality. Similarly, we can show that

lim inf
k→∞

∞∑

m=1

A(k +m)L(m)

P(Ye = k)
≥ 1

σ
CE

Aeψ.

As a result,

lim
k→∞

∞∑

m=1

A(k +m)L(m)

P(Ye = k)
=

1

σ
CE

Aeψ,

from which and (3.4) we have (3.41). ✷

Remark 3.3 Lemma 3.6 is proved by using Proposition C.4, which requires either that Y ∈ Lloc(1) or that
Y ∈ L and {P(Y = k)} is eventually nonincreasing.

Lemma 3.7 Under the same assumptions as in Lemma 3.6,

lim
k→∞

R(k)

P(Ye = k)
= CE

Ae
π(I −R)

σ
, (3.47)

lim
k→∞

R0(k)

P(Ye = k)
= CE

Be
π(I −R)

σ
. (3.48)
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Proof. It follows from Ee = e, (3.40) and Y ∈ L that

lim
k→∞

A(k)

P(Ye = k)
≤ E[Y ] lim

k→∞

A(k)Eee⊤

P(Y > k)

P(Y = k)

P(Y > k)
= O.

Thus from (1.15), we have

lim
k→∞

R(k)

P(Ye = k)
= lim

k→∞

∞∑

m=1

A(k +m)L(m)

P(Ye = k)
(I −Φ(0))−1. (3.49)

Substituting (3.41) into (3.49) yields (3.47). Similarly, we can readily show (3.48). ✷

We now obtain a locally subexponential asymptotic formula for {x(k)}.

Theorem 3.3 Suppose Assumptions 3.1 (I) and 3.4 hold. Furthermore, suppose (i) Ye is locally subexpo-
nential with span one (i.e., Ye ∈ Sloc(1); see Definition C.5); and (ii) Y ∈ Lloc(1) or {P(Y = k)} is
eventually nonincreasing. We then have

lim
k→∞

x(k)

P(Ye = k)
=

x(0)CE
Be+ x(0)CE

Ae

σ
· π. (3.50)

Remark 3.4 According to Definition C.5 and Proposition C.5, Ye ∈ Sloc(1) is equivalent to Y ∈ S∗. Thus
since S∗ ⊂ S ⊂ L, the assumptions of Theorem 3.3 are sufficient for those of Lemma 3.6.

Proof of Theorem 3.3. Proposition C.9 yields

lim
k→∞

F (k)

P(Ye = k)
= lim

k→∞

∞∑

n=0

R∗n(k)

P(Ye = k)

= (I −R)−1 lim
k→∞

R(k)

P(Ye = k)
(I −R)−1,

from which and (3.47) it follows that

lim
k→∞

F (k)

P(Ye = k)
=

(I −R)−1CE
Aeπ

σ
. (3.51)

Furthermore applying Proposition C.8 to (1.20) and using (3.48) and (3.51), we obtain

lim
k→∞

x(k)

P(Ye = k)
=

x(0)

σ

[
CE

Beπ +R0(I −R)−1CE
Aeπ

]
.

Substituting (1.26) into the above equation yields (3.50). ✷

We present another asymptotic formula.

Assumption 3.5 There exists some random variable Y in Z+ with positive finite mean such that

lim
k→∞

A(k)e

P(Y = k)
=

cA
E[Y ]

, lim
k→∞

B(k)e

P(Y = k)
=

cB
E[Y ]

,

where cA and cB are nonnegative M × 1 and M0 × 1 vectors, respectively, satisfying cA ̸= 0 or cB ̸= 0.
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38 Chapter 3. Heavy-Tailed Asymptotics

Theorem 3.4 Suppose Assumptions 3.1 (I) and 3.5 hold. Furthermore, suppose (i) Ye ∈ Sloc(1); (ii)
Y ∈ Lloc(1) or {P(Y = k)} is eventually nonincreasing; and (iii) {A(k); k ∈ Z+} and {B(k); k ∈ N}
are eventually nonincreasing. We then have

lim
k→∞

x(k)

P(Ye = k)
=

x(0)cB + x(0)cA
σ

· π.

Proof. This theorem can be proved in a very similar way to Theorem 3.1. For doing this, we require an
additional condition that {A(k); k ∈ Z+} and {B(k); k ∈ N} are eventually nonincreasing, i.e., there exists
some k∗ ∈ N such that A(k) ≥ A(k+ 1) and B(k) ≥ B(k+ 1) for all k ≥ k∗. The details are omitted. ✷

Remark 3.5 Since Ee = e, Assumption 3.5 is sufficient for Assumption 3.4. Thus Theorem 3.4 is not a
corollary of Theorem 3.3.

Remark 3.6 We give an example of a queueing model that has locally subexponential-tail asymptotics in
the case of stochastic A in Appendix C.3.1.

3.3.2 Case of strictly substochastic A

In addition to Assumption 3.1 (II), we assume the following:

Assumption 3.6 There exists some random variable Y in Z+ such that

lim
k→∞

A(k)

P(Y = k)
= CA, lim

k→∞

B(k)

P(Y = k)
= CB, (3.52)

where CA and CB are nonnegative M × M and M0 × M matrices, respectively, satisfying CA ̸= O or
CB ̸= O.

Lemma 3.8 Suppose Assumptions 3.1 (II) and 3.6 hold. If Y ∈ Lloc(1); and rA− > 1 or {P(Y = k)} is
eventually nonincreasing, then

lim
k→∞

R(k)

P(Y = k)
= CA

(
I −

∞∑

ℓ=0

Φ(−ℓ)
)−1

, (3.53)

lim
k→∞

R0(k)

P(Y = k)
= CB

(
I −

∞∑

ℓ=0

Φ(−ℓ)
)−1

. (3.54)

Proof. From (1.15) and (3.52), we have

lim
k→∞

R(k)

P(Y = k)
=

[
CA + lim

k→∞

∞∑

m=1

A(k +m)

P(Y = k)
L(m)

]
(I −Φ(0))−1. (3.55)

To apply the dominated convergence theorem to (3.55), we show that for all sufficiently large k,

∞∑

m=1

A(k +m)

P(Y = k)
L(m) < ∞.
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Suppose {P(Y = k)} is eventually nonincreasing. We then have for all sufficiently large k,

∞∑

m=1

A(k +m)

P(Y = k)
L(m) ≤ sup

m′∈N

A(k +m′)

P(Y = k +m′)

∞∑

m=1

L(m) < ∞,

where the last inequality is due to (3.33) and (3.52). On the other hand, suppose rA− > 1. It then follows
from Proposition 1.2 that {G(k)} is light-tailed, i.e.,

∞∑

k=1

rkG(k) < ∞ for all 1 < r < rA− . (3.56)

Note here that Ĝ(1/z) =
∑∞

k=1 z
kG(k) and sp(Ĝ(1)) < 1 (see Proposition 1.4). Thus according to

Theorem 8.1.18 in [26],

sp(Ĝ(1/z)) = 1 only if 1 < z ≤ rA− . (3.57)

The equations (1.11), (3.56) and (3.57) imply that there exists some r > 1 such that

∞∑

m=1

rmL(m) < ∞.

Furthermore, it follows from Assumption 3.6 and Y ∈ Lloc(1) that for any ε > 0 there exists some k0 ∈ Z+

such that for all k ≥ k0,

A(k +m)

P(Y = k)
≤ (CA + εee⊤)

P(Y = k +m)

P(Y = k)
≤ (1 + ε)m(CA + εee⊤), m ∈ Z+.

Therefore, for 0 < ε ≤ r − 1 and k ≥ k0,

∞∑

m=1

A(k +m)

P(Y = k)
L(m) ≤ (CA + εee⊤)

∞∑

m=1

(1 + ε)mL(m) < ∞.

As a result, applying the dominated convergence theorem to (3.55) and following the proof of Lemma 3.5,
we can prove (3.53). Equation (3.54) can be proved in the same way. ✷

Using Lemma 3.8, we can readily prove the following theorem. The proof is very similar to that of
Theorem 3.2 and thus is omitted.

Theorem 3.5 Suppose Assumptions 3.1 (II) and 3.6 hold. If Y ∈ Sloc(1); and rA− > 1 or {P(Y = k)} is
eventually nonincreasing, then

lim
k→∞

x(k)

P(Y = k)
= [x(0)CB + x(0)CA](I −A)−1 > 0.

Remark 3.7 In Appendix C.3.2, we provide an example of a discrete-time single-server queue with disas-
ters. This queueing model has locally subexponential-tail asymptotics corresponding to the case of strictly
stochastic A.
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Chapter 4

Heavy-Traffic Asymptotics

4.1 Introduction

In this chapter, we study the heavy-traffic limits of the stationary distribution and moments of the GI/G/1-
type Markov chain. To begin with, we review the previous studies. Asmussen [5] assumed that

∞∑

k=1

k2B(k) < ∞,
∑

k∈Z
|k3|A(k) < ∞, (4.1)

and then proved that the diffusion-scaled level process converges weakly to a reflected Brownian motion as
the mean drift in level −σ goes to zero. It should be noted that if σ = 0 and Assumption 1.1 (a) and (b)
hold then T is null-recurrent [8, Chapter XI, Proposition 3.1]. Asmussen [5] also presented the asymptotic
formula for the stationary distribution of the following form:

P(σX > x, S = i) → e−x/γπi, x ≥ 0, i ∈ M, as σ ↓ 0, (4.2)

where γ > 0 is a certain parameter and (X,S) denotes a random vector distributed according to the sta-
tionary distribution of {(Xn, Sn)}, i.e., P(X = k, S = i) = xi(k) for (k, i) ∈ S. Falin [18] proved the
heavy-traffic limit (4.2) for the M/G/1-type Markov chain under the following conditions:

∞∑

k=1

kB(k) < ∞,
∑

k∈Z
k2A(k) < ∞, (4.3)

x(0) → 0, as σ ↓ 0, (4.4)

A = B(0) +
∞∑

k=1

B(k). (4.5)

In this chapter, we prove the heavy-traffic limit (4.2) for the GI/G/1-type Markov chain by the characteristic
function approach. The proof does not require Falin [18]’s additional conditions (4.4) and (4.5). Further-
more, our assumption is weaker than Asmussen’s. More specifically, Asmussen’s heavy-traffic limit theorem
requires that (4.1) holds. On the other hand, we assume the following:

∞∑

k=1

kB(k) < ∞,
∑

k∈Z
k2A(k) < ∞.
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We also present a heavy-traffic asymptotic formula for the moments of the stationary distribution. We
assume that

∞∑

k=1

kmB(k) < ∞,
∞∑

k=1

kmA(k) < ∞,

under which we prove that there exists some η > 0 such that, for i ∈ M and m ∈ N,

E[(σX)m11(S = i)] → m!γmπi, as σ ↓ 0.

As far as we know, there are no studies on the heavy-traffic limits of the moments of the stationary distribu-
tion of the GI/G/1-type Markov chain.

The rest of this chapter is organized as follows. In Section 4.2, we summarize preliminary results.
Section 4.3 provides the heavy-traffic asymptotic formula of the stationary distribution. Section 4.4 presents
a heavy-traffic asymptotic formula for the moments of the stationary distribution.

4.2 Preliminaries

In this section, we provide preliminary results for the heavy-traffic asymptotics. We first introduce the
characteristic function of {x(k); k ∈ N}. We then parameterize the Markov chain to consider the heavy
traffic limit and discuss the boundedness and continuity of the related vectors and matrices to the Markov
chain.

4.2.1 Characteristic functions and related results

In this chapter, we use a characteristic function approach in stead of a generating function one considered
in Chapters 2 and 3. To this end, we first provide necessary notations and results as preliminaries in this
subsection. We write i as the imaginary unit, i.e., i =

√
−1 hereafter.

Let Ã(ξ) =
∑

k∈Z e
iξkA(k), G̃(ξ) =

∑∞
k=1 e

−iξkG(k), R̃(ξ) =
∑∞

k=1 e
iξkR(k) and R̃0(ξ) =

∑∞
k=1 e

iξkR0(k) for ξ ∈ R := (−∞,∞), respectively. It then follows from Proposition 1.3 that

I − Ã(ξ) = (I − R̃(ξ))(I −Φ(0))(I − G̃(ξ)). (4.6)

The above equation is the RG-factorization expressed by characteristic functions.
In addition, we assume the following condition throughout this chapter.

Assumption 4.1 A is stochastic.

Remark 4.1 Assumptions 1.1 and 4.1 imply that σ > 0 and
∑∞

k=1 kB(k)e < ∞ (see Proposition 1.7).

Let x̃(ξ) =
∑∞

k=1 e
iξkx(k). It then follows from (1.22) that

x̃(ξ)(I − R̃(ξ)) = x(0)R̃0(ξ). (4.7)

From (4.6) and (4.7), we have

x̃(ξ)(I − Ã(ξ)) = x(0)R̃0(ξ)(I −Φ(0))(I − G̃(ξ)), (4.8)
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which yields, for ξ ∈ R such that φ(ξ) ̸= 0,

x̃(ξ) = x(0)R̃0(ξ)(I −Φ(0))(I − G̃(ξ))
adj(I − Ã(ξ))

φ(ξ)
, (4.9)

where

φ(ξ) = det(I − Ã(ξ)), ξ ∈ R. (4.10)

Let δ̃(ξ) := δ(Ã(ξ)) (ξ ∈ R) denote a maximum-modulus eigenvalue of Ã(ξ), whose imaginary part is
nonnegative and whose real part is not less than those of the other eigenvalues of maximum modulus. Let
µ̃(ξ) = (µ̃i(ξ))i∈M and ṽ(ξ) = (ṽi(ξ))i∈M denote the left- and right-eigenvectors of Ã(ξ) corresponding
to eigenvalue δ̃(ξ), which are normalized such that Re(µ̃1(ξ)) ≥ 0,

∑
i∈M |µ̃i(ξ)| = 1 and µ̃(ξ)ṽ(ξ) = 1.

Let Γ̃ (ξ) denote

Γ̃ (ξ) =
M∏

i=2

(1− λ̃(A)
i (ξ)),

where λ̃(A)
i (ξ) (m = 2, 3, . . . ,M ) denote the eigenvalues of Ã(ξ) such that |δ̃(ξ)| ≥ |λ̃(A)

2 (ξ)| ≥ |λ̃(A)
3 (ξ)| ≥

· · · ≥ |λ̃(A)
M (ξ)|. We then have

φ(ξ) = (1− δ̃(ξ))Γ̃ (ξ). (4.11)

Since Ã(0) = A is an irreducible stochastic matrix (see Assumptions 1.1 (b) and 4.1), the eigenvalue δ̃(0)
is simple (see, e.g., [10, Theorem 1.4.4]) and

µ̃(0) = π, ṽ(0) = e. (4.12)

The fact σ > 0 (see Remark 4.1) implies that iξ
∑

k∈Z ke
iξkA(k) is finite and thus Ã(ξ) is differentiable

for all ξ ∈ R. Therefore, it follows from Theorem 2.1 of [3] that δ̃(ξ), µ̃(ξ) and ṽ(ξ) are differentiable for
all ξ ∈ R. Furthermore, we obtain

δ̃′(0) = −iσ, (4.13)

by differentiating both sides of δ̃(ξ) = µ̃(ξ)Ã(ξ)ṽ(ξ) and letting ξ = 0.

Remark 4.2 If (dm/dξm)Ã(ξ) |ξ=0 exists, i.e., Ã(ξ) is m-times differentiable at ξ = 0, then δ̃(ξ), µ̃(ξ)
and ṽ(ξ) are m-times differentiable at ξ = 0, which indicates that Γ̃ (ξ) is also m-times differentiable at
ξ = 0. These facts can be easily confirmed because Ã(ξ) is m-times differentiable for all ξ ∈ R; and δ̃(ξ) is
a simple eigenvalue of Ã(ξ). Discussions on the differentiability and continuity of eigen-vectors and values
of matrix-valued functions are summarized in Appendix D.

In what follows, we assume the following.

Assumption 4.2
∑

k∈Z k
2A(k) < ∞.
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Under Assumption 4.2, (d2/dξ2)Ã(ξ) |ξ=0 exists and thus δ(ξ), µ̃(ξ), ṽ(ξ) and Γ̃ (ξ) are all twice differen-
tiable at ξ = 0 (see Remark 4.2). Therefore, by differentiating (4.11) with respect to ξ and using δ̃(0) = 1

and (4.13), we obtain

φ′(0) = iσΓ̃ (0) = iσ
M∏

i=2

(1− λ̃(A)
i (0)), (4.14)

φ′′(0) = −δ̃′′(0)Γ̃ (0)− 2iσΓ̃ ′(0). (4.15)

The following proposition gives the expression of δ̃′′(0).

Proposition 4.1 If Assumptions 1.1 (a) and (b), 4.1 and 4.2 hold, then

δ̃′′(0) = 2σ2 − π
∑

k∈Z
k2A(k)e− 2π

∑

k∈Z
kA(k)(I −A+ eπ)−1βA. (4.16)

Proof. From the definition of µ̃(ξ) and δ̃(ξ), we have

µ̃(ξ)Ã(ξ) = δ̃(ξ)µ̃(ξ). (4.17)

Differentiating both sides of (4.17) twice with respect to ξ, post-multiplying them by e and letting ξ = 0,
we obtain

δ̃′′(0) = −π
∑

k∈Z
k2A(k)e+ i2µ̃′(0)βA, (4.18)

where we use δ̃(0) = 1, µ̃(0) = π, µ̃′(ξ)e = 0 for all ξ ∈ R, and (4.13). Furthermore, it follows from
(4.17) that

µ̃(ξ)[δ̃(ξ)I − Ã(ξ) + eµ̃(ξ)] = µ̃(ξ).

By differentiating the above equation and letting ξ = 0, we have

µ̃′(0)(I −A+ eπ) = π(Ã′(0)− δ̃′(0)I),

which leads to

µ̃′(0) = iσπ + iπ
∑

k∈Z
kA(k)(I −A+ eπ)−1. (4.19)

Finally, (4.16) is obtained by substituting (4.19) into (4.18). ✷

The following lemma will be used to prove Proposition 4.2 and Lemma 4.17 in Section 4.3.

Lemma 4.1 If Assumptions 1.1 (a) and (b), 4.1 and 4.2 hold, then

d

dξ
adj(I − Ã(ξ))

∣∣∣∣
ξ=0

= iΓ̃ (0)(I −A+ eπ)−1 [βAπ + σI] + Γ̃ ′(0)eπ

+iΓ̃ (0)eπ

[
σI +

∑

k∈Z
kA(k)(I −A+ eπ)−1

]
. (4.20)
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Proof. From the definition, it is clear that

(I − Ã(ξ))adj(I − Ã(ξ)) = (1− δ̃(ξ))Γ̃ (ξ)I. (4.21)

By differentiating the above equation with respect to ξ and letting ξ = 0, we obtain

(I −A)
d

dξ
adj(I − Ã(ξ))

∣∣∣∣
ξ=0

− iΓ̃ (0)βAπ = iσΓ̃ (0)I, (4.22)

where we use (4.13) and the following fact (see Lemma 2.1):

lim
ξ→0

adj(I − Ã(ξ)) = eπΓ̃ (0). (4.23)

On the other hand, pre-multiplying (4.21) by eµ̃(ξ) leads to

eµ̃(ξ)adj(I − Ã(ξ)) = Γ̃ (ξ)eµ̃(ξ).

Differentiating the above equation with respect to ξ and letting ξ = 0 yields

eπ
d

dξ
adj(I − Ã(ξ))

∣∣∣∣
ξ=0

= Γ̃ ′(0)eπ + Γ̃ (0)eµ̃′(0), (4.24)

where we use (4.23) and µ̃′(0)e = 0. It thus follows from (4.22) and (4.24) that

(I −A+ eπ)
d

dξ
adj(I − Ã(ξ))

∣∣∣∣
ξ=0

= iΓ̃ (0) (βAπ + σI) + Γ̃ ′(0)eπ + Γ̃ (0)eµ̃′(0).

Finally, combining (4.19) with the above equation leads to (4.20). ✷

Using (4.9), (4.14) and Lemma 4.1, we have Proposition 4.2 below, which is needed to prove Lemma 4.17
in Section 4.3.

Proposition 4.2 If Assumptions 1.1 and 4.1 hold, then

x̃(0)e =
1

σ
x(0)R0(I −Φ(0))

[
βG + (I −G)(I −A+ eπ)−1βA

]
, (4.25)

where R0 =
∑∞

k=1R0(k) and βG =
∑∞

k=1 kG(k)e.

Remark 4.3 Under Assumptions 1.1 and 4.1, it holds that σ ∈ (0,∞) and
∑∞

k=1 kB(k)e < ∞ (see
Remark 4.1), which implies that R0 < ∞ (see [68, Lemma 25]). In addition, Assumption 4.2 implies that
βG < ∞ (see Proposition 3.1 in Chapter XI of [8]).

Proof. Post-multiplying both sides of (4.9) by e, we obtain

x̃(ξ)e = x(0)R̃0(ξ)(I −Φ(0))
I − G̃(ξ)

ξ
adj(I − Ã(ξ))

ξ

φ(ξ)
e. (4.26)

From the definition of the adjugate matrix, each element of adj(I − Ã(ξ)) is infinitely differentiable at
ξ = 0. It thus follows from Taylor’s theorem that there exists s := s(ξ) such that limξ→0 s(ξ) = 0 and

adj(I − Ã(ξ)) = adj(I − Ã(0)) + ξ
d

dξ
adj(I − Ã(ξ))

∣∣∣
ξ=0

+
ξ2

2

d2

dξ2
adj(I − Ã(ξ))

∣∣∣
ξ=s

. (4.27)
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On the other hand, using l’Hôpital’s rule, we have

lim
ξ→0

(I − G̃(ξ))e

ξ
= iβG. (4.28)

Therefore, combining (4.28) with (4.20), (4.23), and (4.27) yields

lim
ξ→0

(I − G̃(ξ))

ξ
adj(I − Ã(ξ))

= Γ̃ (0) lim
ξ→0

(I − G̃(ξ))e

ξ
π + (I −G)

d

dξ
adj(I − Ã(ξ))

∣∣∣
ξ=0

= iΓ̃ (0)
(
βGπ + (I −G)(I −A+ eπ)−1 [βAπ + σI]

)
. (4.29)

Furthermore, using l’Hôpital’s rule to (4.14), we obtain

lim
ξ→0

ξ

φ(ξ)
=

1

φ′(0)
=

1

iσΓ̃ (0)
. (4.30)

As a result, applying (4.29) and (4.30) to (4.26) yields (4.25). ✷

Remark 4.4 It follows from (4.6), (4.29) and (4.30) that

(I −R)−1 =
1

σ
(I −Φ(0))

(
βGπ + (I −G)(I −A+ eπ)−1 [βAπ + σI]

)
≥ I,

which implies that

(I −Φ(0))
[
βG + (I −G)(I −A+ eπ)−1βA

]
≥ σe. (4.31)

Note that G is stochastic (see [66, Theorem 3.4]). In addition, G has exactly one irreducible class due
to the irreducibility of A (see Proposition 2.5.1 in [32]). Let g = (gi)i∈M denote the unique stationary
probability vector of G. We then have the following result.

Proposition 4.3 Under Assumptions 1.1 and 4.1, it holds that

∑

i∈M
giE[τ0 | X0 = 1, S0 = i] =

gβG

σ
. (4.32)

Lemma 4.2 below relates the finiteness of {A(k); k ∈ N}, {A(−k); k ∈ N} and {B(k); k ∈ N} to that
of {R(k); k ∈ N}, {G(k); k ∈ N} and {R0(k); k ∈ N}, respectively. This result is directly connected with
the sufficient condition for the heavy traffic limit of the m-th moment of the stationary distribution, which
will be shown in Lemma 4.18 and Theorem 4.2.

Lemma 4.2 If Assumptions 1.1 (a) and (b) and 4.1 hold, then the following are true for any m ∈ N:

(i) If
∑∞

k=1 k
m+1A(k) < ∞, then

∑∞
k=1 k

mR(k) < ∞.

(ii) If
∑∞

k=1 k
m+1A(−k) < ∞, then

∑∞
k=1 k

mG(k) < ∞.

(iii) If
∑∞

k=1 k
m+1B(k) < ∞, then

∑∞
k=1 k

mR0(k) < ∞.
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Proof. Owing to the duality between the G-matrices and the R-matrices [67], we can prove the statements
(i) and (ii) in the same way. Furthermore, the statement (iii) is also proved in the same way according to the
definitions of R(k) and R0(k) (see (1.12) and (1.13)). Thus, the proof of statement (ii) and (iii) are omitted.

Let T+ denote a submatrix of T , which is obtained by deleting the first block row and column:

T+ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

A(0) A(1) A(2) A(3) · · ·
A(−1) A(0) A(1) A(2) · · ·
A(−2) A(−1) A(0) A(1) · · ·
A(−3) A(−2) A(−1) A(0) · · ·

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Since T is irreducible and recurrent, U :=
∑∞

n=0(T+)n is finite.
As with T+, we partition U as (U(ℓ,m))ℓ,m∈N, where U(ℓ,m) is an M × M matrix whose (i, j)th

element represents

E

[
τ0−1∑

n=0

11(Xn = m, Sn = j) | X0 = ℓ, S0 = i

]
.

We then have

R(k) =
∞∑

ℓ=k

A(ℓ)U(ℓ− k, 1).

Note here that there exists some b ∈ (0,∞) such that U(ℓ, 1)e ≤ be for all ℓ ∈ N (see the proof of
Lemma 25 in [68]). Thus, since

∑∞
k=1 k

m+1A(k) < ∞ we obtain

∞∑

k=1

kmR(k)e ≤ b
∞∑

k=1

km
∞∑

ℓ=k

A(ℓ)e

= b
∞∑

ℓ=1

[
ℓ∑

k=1

km
]
A(ℓ)e

=
b

m+ 1

∞∑

ℓ=1

⎡

⎣
m∑

j=0

(−1)j
(
m+ 1

j

)
Bjℓ

m+1−j

⎤

⎦A(ℓ)e < ∞,

where we use the Faulhaber’s formula (see e.g. [16]) in the last equality and Bj < ∞ (j ∈ N) are Bernoulli
numbers such that

B0 = 1, Bn = − 1

n+ 1

n−1∑

k=0

(
n+ 1

k

)
Bk, n ∈ N.

✷

4.2.2 α-parametrization

To consider the heavy traffic limit, we parameterize {(Xn, Sn)} with a parameter α ≥ 0, which is de-
noted by {((α)Xn, (α)Sn)}. All the vectors, matrices and functions associated with {((α)Xn, (α)Sn)} are
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48 Chapter 4. Heavy-Traffic Asymptotics

also denoted with a subscript “(α)”, e.g., (α)x(k), (α)T , (α)Ã(ξ) etc. In this subsection, we prove the bound-
edness and right-continuity at α = 0 of the vectors, matrices related to the Markov chain {(α)Xn, (α)Sn}.
These results are needed to show our main results in the following sections.

In what follows, we make the following assumption.

Assumption 4.3

(a) Assumptions 1.1 (a) and (b), 4.1 and 4.2 hold for all α ≥ 0;

(b) Assumption 1.1 (c) holds for all α > 0;

(c) as α ↓ 0, (α)σ converges to zero from above and (0)σ = 0; and

(d) (α)A = A for all α ≥ 0.

(e) supα≥0

∑∞
k∈Z k

2
(α)A(k) < ∞; and

(f) the sequences of the matrices {(α)A(k); k ∈ Z} and {(α)B(k); k ∈ Z} are uniformly right-continuous
at α = 0, i.e., for any ε > 0, there exists some α0 > 0 such that, for all k ∈ Z and 0 ≤ α < α0,

|(α)A(k)− (0)A(k)| < ε, |(α)B(k)− (0)B(k)| < ε.

Remark 4.5 Assumption 4.3 implies that (α)T is recurrent for all α ≥ 0 [8, Chapter XI, Proposition 3.1].

Under Assumption 4.3 (f), we can show the right-continuities at α = 0 of several matrices and vectors
related to the Markov chain (α)T (e.g., (α)Φ(k), (α)R(k), (α)G(k), (α)κ) as shown in Lemmas 4.4–4.9
below. To begin with, we provide the basic lemma below.

Lemma 4.3 Let (α)f(x) denote a right-continuous function for x ∈ R such that limα↓0 (α)f(x) = (0)f(x)

for all x ∈ R. If there exists some (α)c ∈ R such that limα↓0 (α)c = (0)c, then

lim
α↓0 (α)f((α)c) = (0)f((0)c).

Proof. Let α0 > 0 denote a sufficiently small number. We then have for any ε > 0, (α)f(x) ≤ (0)f(x) + ε

and (α)c ≤ (0)c+ ε for 0 ≤ α ≤ α0. Furthermore, since f is right-continues at (0)c, there exists some δ > 0

such that for all α ≥ 0,

|(α)f((0)c)− (α)f((0)c+ δ)| ≤ ε.

Thus, we obtain for 0 ≤ α ≤ α0,

|(α)f((α)c)− (0)f((0)c)|

≤ |(α)f((α)c)− (α)f((0)c)|+ |(α)f((0)c)− (0)f((0)c)| ≤ 2ε,

which completes the proof. ✷

Lemma 4.4 If Assumption 4.3 holds, then limα↓0 (α)Φ(k) = (0)Φ(k) for all k ∈ Z.
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Proof. From the definition of (α)Φ(k) (k ∈ Z), it suffices to prove that limα↓0 (α)T
[k] = (0)T

[k] (see (1.6)).
According to Assumption 4.3 (f), for any ε > 0, there exists some α0 such that, for 0 ≤ α ≤ α0,

(α)T
≤ke ≤ (0)T

≤ke+ εe, (4.33)

(α)T
>ke ≤ (0)T

>ke+ εe, (4.34)

(α)U
[k]e ≤ (0)U

[k]e+ εe, (α)D
[k]e ≤ (0)D

[k]e+ εe. (4.35)

Since (α)T is irreducible and recurrent for any α ≥ 0, there exists some γ0 ∈ (0, 1) such that

(0)U
[k]e ≤ γ0e, (0)D

[k]e ≤ γ0e.

It thus follows from (4.35) and the above inequalities that there exists some γ1 ∈ (γ0, 1) such that, for
0 ≤ α ≤ α0,

(α)U
[k]e ≤ γ1e, (α)D

[k]e ≤ γ1e. (4.36)

Note that
∑∞

m=0((α)T
>k)m = (I − (α)T

>k)−1 < ∞ for all α ≥ 0. Therefore, there exists some m∗ ∈ N
such that

((0)T
>k)m∗e ≤ γ0e. (4.37)

Inequalities (4.34) and (4.37) imply that there exists some γ2 ∈ (γ0, 1) such that, for 0 ≤ α ≤ α0,

((α)T
>k)m∗e ≤ γ2e,

from which and (α)T
>ke ≤ e, we have

∞∑

m=0

((α)T
>k)me =

m∗−1∑

i=1

∞∑

ℓ=1

((α)T
>k)ℓm∗+ie ≤

m∗−1∑

i=1

∞∑

ℓ=1

γ2e =
m∗

1− γ2
e. (4.38)

It follows from (4.33), (4.36) and (4.38) that

(α)T
[k]e = (α)T

≤ke+ (α)U
[k](I − (α)T

>k)−1
(α)D

[k]e

≤ (0)T
≤e+ εe+

m∗γ21
1− γ2

e,

which implies that (α)T
[k] is bounded for α ∈ [0,α0] and right-continuous at α = 0. ✷

Lemma 4.5 If Assumption 4.3 holds, then limα↓0(I − (α)Φ(0))−1 = (I − (0)Φ(0))−1.

Proof. From Lemma 4.4, for any ε > 0, there exists some α0 > 0 such that

(α)Φ(0) ≤ (0)Φ(0) + εee⊤, for 0 ≤ α ≤ α0. (4.39)

Since {((α)Xn, (α)Sn)} is irreducible and recurrent for all α ≥ 0,
∑∞

m=0[(α)Φ(0)]m = (I − (α)Φ(0))−1 <

∞ and (α)Φ(0)e ≤ e for all α ≥ 0. Thus, there exists some γ0 ∈ (0, 1) and m∗ ∈ N such that

[(0)Φ(0)]m∗e ≤ γ0e. (4.40)
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Inequalities (4.39) and (4.40) show that, for any γ ∈ (γ0, 1), there exists some γ∗ > 0 such that

[(α)Φ(0)]m∗e ≤ γ∗e, for 0 ≤ α ≤ α0.

Using the above inequality and (α)Φ(0)e ≤ e and the similar argument to (4.38), we obtain for 0 ≤ α ≤ α0,

∞∑

m=0

[(α)Φ(0)]me ≤ m∗
1− γ∗

e, (4.41)

which implies that (I − (α)Φ(0))−1 is bounded for α ∈ [0,α0] and right-continuous at α = 0. ✷

Lemma 4.6 If Assumption 4.3 holds, then, for all k ∈ N, the following are true: (i) limα↓0 (α)R(k) =

(0)R(k); (ii) limα↓0 (α)R0(k) = (0)R0(k); and (iii) limα↓0 (α)G(k) = (0)G(k).

Proof. From Lemma 4.4, (α)Φ(k) (k ∈ Z) and (α)T
[k]
0,k (k ∈ N) are right-continuous at α = 0. According

to Lemma 4.5, (I − (α)Φ(0))−1 is also right-continuous at α = 0. Therefore, the statements (i)–(iii) are
obvious from the equations (1.12), (1.13) and (1.9), respectively. ✷

Lemma 4.7 If Assumption 4.3 holds, then for all ξ ∈ R the following are true: (i) limα↓0 (α)Ã(ξ) =

(0)Ã(ξ); (ii) limα↓0 (α)R̃(ξ) = (0)R̃(ξ); (iii) limα↓0 (α)R̃0(ξ) = (0)R̃0(ξ); and (iv) limα↓0 (α)G̃(ξ) =

(0)G̃(ξ).

Proof. Note that for any (i, j) ∈ M2 and α ≥ 0,

|[(α)Ã(ξ)]i,j | ≤
∞∑

k=1

[(α)A(k)]i,j ≤ [A]i,j .

Therefore, using the dominated convergence theorem, we obtain

lim
α↓0 (α)Ã(ξ) =

∑

k∈Z
eiξk lim

α↓0 (α)A(k) = (0)Ã(ξ).

Next, we consider the statements (ii)–(iv). By definition, the spectral radius of (α)Φ(k), (α)Φ(−k), and

(α)T
[k]
0,k are less than or equal to 1, which means that

∑∞
k=1 (α)Φ(k)e ≤ e,

∑∞
k=1 (α)Φ(−k)e ≤ e, and

∑∞
k=1 (α)T

[k]
0,ke ≤ e. Combining these facts with (1.12), (1.13), and (1.9), we can prove the statements (ii)–

(v) in the similar way to the statement (i). ✷

Lemma 4.8 If Assumption 4.3 holds, then limα↓0 (α)κ = (0)κ.

Proof. Since (α)κ is the unique stationary vector of (α)T
[0] for all α ≥ 0, (α)κ = (α)κ(α)T

[0] and

(α)κe = 1. Therefore, we obtain

(α)κ− (0)κ = (α)κ(α)T
[0] − (α)κ(0)T

[0] + (α)κ(0)T
[0] − (0)κ(0)T

[0]

= (α)κ
(
(α)T

[0] − (0)T
[0]
)
+
(
(α)κ− (0)κ

)
(0)T

[0]. (4.42)

Note here that K∗ " (I − (0)T
[0] + e(0)κ)

−1 exists. Thus, (4.42) leads to

(α)κ− (0)κ = (0)κ
(
(α)T

[0] − (0)T
[0]
)
K∗. (4.43)

50



4.3. Heavy-traffic limit of stationary distribution 51

Note also that limα↓0 (α)T
[0] = (0)T

[0] (see Lemma 4.4), which implies that there exists some α0 > 0 such
that (α)T

[0] ≤ (0)T
[0] + εee⊤ for all ε > 0 and α ∈ [0,α0]. It thus follows from (4.43) that, for α ∈ [0,α0]

and i ∈ M0,

∣∣∣
[
(α)κ− (0)κ

]
i

∣∣∣ ≤
M0∑

j=1

∣∣∣∣
[
(0)κ

(
(α)T

[0] − (0)T
[0]
)]

j

∣∣∣∣ |[K∗]ij | ≤ ε
M0∑

j=1

|[K∗]ij |,

which completes the proof. ✷

Lemma 4.9 If Assumption 4.3 holds and supα≥0

∑∞
k=1 k

2
(α)A(−k) < ∞, then limα↓0 (α)βG = (0)βG.

Proof. We can easily confirm that if supα≥0

∑∞
k=1 k

2
(α)A(−k) < ∞, then supα≥0

∑∞
k=1 k(α)G(k) < ∞

in the similar way to Proposition 4.2. Thus, using the dominated convergence theorem, we have

lim
α↓0 (α)βG =

∞∑

k

lim
α↓0

k(α)G(k)e = (0)βG.

✷

Lemma 4.10 If Assumption 4.3 (a)–(c) hold, then the following are true for any m ∈ N:

(i) If supα≥0

∑∞
k=1 k

m+1
(α)A(k) < ∞, then supα≥0

∑∞
k=1 k

m
(α)R(k) < ∞;

(ii) If supα≥0

∑∞
k=1 k

m+1
(α)A(−k) < ∞, then supα≥0

∑∞
k=1 k

m
(α)G(k) < ∞; and

(iii) If supα≥0

∑∞
k=1 k

m+1
(α)B(k) < ∞, then supα≥0

∑∞
k=1 k

m
(α)R0(k) < ∞.

Proof. This lemma can be proved in the same way to the proof of Lemma 4.2 by using Lemma 4.5; thus,
we omit the proof. ✷

Remark 4.6 Lemma 4.2 presents the existence condition of moments for each α whereas Lemma 4.10 as-
sures the boundedness of them for α ≥ 0.

4.3 Heavy-traffic limit of stationary distribution

In this section, we consider the heavy-traffic limit for the stationary distribution. The following theorem
shows the heavy-traffic asymptotic formula.

Theorem 4.1 If Assumption 4.3 holds, then

lim
α↓0 (α)x̃((α)σξ) =

1

1− iξγ
π, ξ ∈ R, (4.44)

where

γ =
1

2
π
∑

k∈Z
k2(0)A(k)e+ π

∑

k∈Z
k(0)A(k)(I −A+ eπ)−1

(0)βA. (4.45)
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Remark 4.7 Theorem 4.1 shows that

lim
α↓0

P((α)σ(α)X > x, (α)S = i) = e−x/γπi, x ≥ 0, i ∈ M.

In what follows, we present a complete proof of Theorem 4.1, following the several lemmas necessary
for the proof.

Lemma 4.11 limα↓0 (α)x(0) = 0.

Proof. Recall here that, for all α ≥ 0, (α)T is recurrent (see Remark 4.5) and thus (α)G is stochastic [68].
Combining this fact and the definition of (α)βG, we have (α)g(α)βG ≥ (α)g(α)Ge = 1 for all α ≥ 0. It
follows from this inequality and Proposition 4.3 that

lim
α↓0

∑

i∈M
(α)giE[(α)τ0 | (α)X0 = 1, (α)S0 = i1] ≥ lim

α↓0

1

(α)σ
= ∞, (4.46)

which implies that there exists at least one i1 ∈ M such that

lim
α↓0

E[(α)τ0 | (α)X0 = 1, (α)S0 = i1] = ∞.

It should be noted that the recurrence of (α)T implies that there exists some i0 ∈ M0 such that the Markov
chain {((α)Xn, (α)Sn)} reaches state (1, i1) from state (0, i0) avoiding level zero with probability 1. Thus,
since limα↓0 (α)κ = (0)κ > 0 (see Lemma 4.8), we obtain

lim
α↓0

∑

i∈M0

(α)κiE[(α)τ0 | (α)X0 = 0, (α)S0 = i] = ∞.

Finally, applying this to (1.27) yields limα↓0 (α)x(0) = 0. ✷

Lemma 4.12 (0+)x̃(0) := limα↓0 (α)x̃(0) = π.

Proof. From (4.8), we have

(α)x̃(0)(I −A) = (α)x(0)(α)R0(I − (α)Φ(0))(I − (α)G). (4.47)

Note here that for all α ≥ 0, (α)Φ(0) is substochastic and (α)G = (α)G̃(0) is stochastic because (α)T is
irreducible and recurrent. Note also that for all α ≥ 0, (α)R0 = (α)R̃0(0) < ∞ due to

∑∞
k=1 k(α)B(k)e <

∞ (see Remark 4.3). It thus follows from (4.47), Lemmas 4.7 and 4.11 that

(0+)x̃(0)(I −A) = 0,

which implies that (0+)x̃(0) = cπ for some c ≥ 0. Furthermore, since (α)x̃(0)e+ (α)x(0)e = 1 (∀α > 0),
Lemma 4.11 yields (0+)x̃e = c = 1. ✷

Lemma 4.13

lim
α↓0

((α)σ)
2

(α)φ((α)σξ)
=

1

iξ + (iξ)2
(0)δ̃

′′(0)

2

1

(0)Γ̃ (0)
. (4.48)
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Proof. Note that |(α)φ′′(ξ)| < ∞ for all ξ ∈ R and all α ≥ 0 due to Assumption 4.3 (d) (see (4.15)).
Note also that limα↓0 (α)φ(ξ) = (0)φ(ξ) for all ξ ∈ R because (α)φ(ξ) is a polynomial function of ξ whose
coefficients are polynomials of elements of (α)Ã(ξ). Furthermore, (α)φ(0) = det(I − A) = 0. It thus
follows from Taylor’s theorem that there exists some (α)c := (α)c(ξ) ∈ (0, (α)σξ) such that limα↓0 (α)c =

(0)c and

(α)φ((α)σξ) = (α)φ
′(0) · ((α)σξ) +

(α)φ
′′((α)c)

2
((α)σξ)

2. (4.49)

Since limα↓0 (α)φ
′′(ξ) = (0)φ

′′(ξ) for all ξ and limξ↓0 (α)φ
′′(ξ) = (α)φ

′′(0) for all α ≥ 0, Lemma 4.3 yields
limα↓0 (α)φ

′′((α)c) = (0)φ
′′((0)c). Therefore (4.49) leads to

lim
α↓0

(α)φ((α)σξ)

((α)σ)2
= ξ lim

α↓0
(α)φ

′(0)

(α)σ
+ ξ2

(α)φ
′′(0)

2
. (4.50)

From (4.14) and (4.15), we have

ξ lim
α↓0

(α)φ
′(0)

(α)σ
= iξ(0)Γ̃ (0), (4.51)

ξ2
(0)φ

′′(0)(0)

2
= (iξ)2

(0)δ̃
′′(0)

2 (0)Γ̃ (0). (4.52)

Substituting (4.51) and (4.52) into (4.50) yields (4.48). ✷

Lemma 4.14

lim
α↓0

e− (α)G̃((α)σξ)e

(α)σ
= iξ(0)βG. (4.53)

Proof. Let ∆
(α)βG

denote a diagonal matrix whose jth diagonal element is equal to the jth element of

(α)βG. We then have

e− (α)G̃((α)σξ)e

(α)σ
= ∆

(α)βG
· 1− e−i(α)σξ

(α)σ
·∆−1

(α)βG

e− (α)G̃((α)σξ)e

1− e−i(α)σξ

= ∆
(α)βG

· 1− e−i(α)σξ

(α)σ
·

∞∑

k=0

e(−i(α)σξ)k
∞∑

m=k+1

∆−1
(α)βG

(α)G(m)e. (4.54)

Using Lemma 4.9 and the dominated convergence theorem, we obtain

lim
α↓0

∞∑

k=0

e(−i(α)σξ)k
∞∑

m=k+1

∆−1
(α)βG

(α)G(m)e = e. (4.55)

Note here that

lim
α↓0

1− e−i(α)σξ

(α)σ
= iξ. (4.56)

Finally, applying (4.55) and (4.56) to (4.54), we have (4.53). ✷
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Lemma 4.15

lim
α↓0

adj(I − (α)Ã((α)σξ)) = eπ(0)Γ̃ (0). (4.57)

Proof. From the definition of adjugate matrix, adj(I−(α)Ã(ξ))ij represents the (i, j)-minor of I−(α)Ã(ξ),
which is a polynomial of elements of I − (α)Ã(ξ). Therefore Lemma 4.7 (i) implies that

lim
α↓0

adj(I − (α)Ã(ξ)) = adj(I − (0)Ã(ξ)), ξ ∈ R.

Thus, using Lemma 4.3 yields

lim
α↓0

adj(I − (α)Ã((α)σξ)) = adj(I − (0)Ã(0)). (4.58)

Note here that (4.23) leads to

lim
ξ→0

adj(I − (0)Ã(ξ)) = eπ(0)Γ̃ (0). (4.59)

From (4.58), we have (4.57). ✷

Lemma 4.16

lim
α↓0

1

(α)σ
(I − (α)G̃((α)σξ))adj(I − (α)Ã((α)σξ)) = iξ(0)Γ̃ (0)(0)d0π, (4.60)

where

(0)d0 = (0)βG + (I − (0)G)(I −A+ eπ)−1
(0)βA < ∞. (4.61)

Proof. Note first that |adj(I − (α)Ã(ξ))| < ∞ for all ξ ∈ R and all α ≥ 0. It follows from (4.57) and
Taylor’s theorem that there exists some (α)s := (α)s(ξ) such that (α)s(ξ) ∈ (0, (α)σξ) and limα↓0 (α)s = (0)s

and

adj(I − (α)Ã((α)σξ)) = adj(I − (0)Ã(0)) + ((α)σξ)
d

dξ
adj(I − (α)Ã(ξ))

∣∣∣∣
ξ=0

+((α)σξ)
2 d2

dξ2
adj(I − (α)Ã(ξ))

∣∣∣∣
ξ=(α)s

. (4.62)

From (4.53) and (4.57), we have

lim
α↓0

1

(α)σ
(I − (α)G̃((α)σξ))adj(I − (0)Ã(0)) = iξ(0)Γ̃ (0)(0)βGπ. (4.63)

Furthermore, from (4.21), we obtain

lim
α↓0

d

dξ
adj(I − (α)Ã(ξ))

∣∣∣∣
ξ=0

= i(0)Γ̃ (0)(I −A+ eπ)−1
(0)βAπ

+eπ

(

(0)Γ̃
′(0)I ++i(0)Γ̃ (0)

∑

k∈Z
k(0)A(k)(I −A+ eπ)−1

)
,
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from which and (4.53) it follows that

lim
α↓0

(I − (α)G̃((α)σξ))
d

dξ
adj(I − (α)Ã((α)σξ))

∣∣∣∣
ξ=0

= i(0)Γ̃ (0)(I − (0)G)(I −A+ eπ)−1
(0)βAπ. (4.64)

According to the definition of the adjugate matrix, it is clear that for any α ≥ 0,

d2

dξ2
adj(I − (α)Ã(ξ))

∣∣∣∣
ξ=0

< ∞.

Thus, (4.62) leads to

lim
α↓0

1

(α)σ
(I − (α)G̃((α)σξ))

d

dξ
adj(I − (α)Ã((α)σξ))

= lim
α↓0

(I − (α)G̃((α)σξ))

(α)σ
adj(I − (α)Ã(0))

+ξ lim
α↓0

(I − (α)G̃((α)σξ))
d

dξ
adj(I − (α)Ã(ξ))

∣∣∣
ξ=0

.

As a result, substituting (4.63) and (4.64) into the above equation yields (4.60) and (4.61). ✷

Lemma 4.17

lim
α↓0

(α)x(0)

(α)σ
= ν∗ · (0)κ,

where ν∗ is a finite positive number such that

ν∗ =
[
(0)κ(0)R0(I − (0)Φ(0))(0)d0

]−1
. (4.65)

Proof. It follows from (1.27) and Lemma 4.11 that (α)x(0) = (α)ψ(α)κ for some (α)ψ > 0 such that
limα↓0 (α)ψ = 0. Thus, from Proposition 4.2 and (α)x̃(0)e = 1− (α)ψ, we have

lim
α↓0

(α)ψ

(α)σ
= lim

α↓0
(1− (α)ψ)

[
(α)κ(α)R0(I − (α)Φ(0))

×
(
(α)βG + (I − (0)G)(I −A+ eπ)−1

(α)βA

)]−1
= ν∗,

where we use Lemmas 4.7, 4.8, and 4.9 in the second equality. ✷

Next, we prove ν∗ ∈ (0,∞). Since (α)T is irreducible, (α)R0 has no zero column. It thus follows from

(α)κ > 0 (∀α ≥ 0) that

(α)κ(α)R0 > 0, for all α ≥ 0.

Furthermore, (4.31) implies that (I − (α)Φ(0))(α)d0 ≥ 0 for all α ≥ 0. Thus, it is sufficient to show that
(I − (0)Φ(0))(0)d0 ̸= 0. Note here that (α)Φ(0) does not have an eigenvalue 1. In addition, if (α)d0 = 0

(see (4.61)),

(α)g(α)d0 = (α)g(α)βG = 0,
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56 Chapter 4. Heavy-Traffic Asymptotics

which contradicts with (α)g(α)βG ≥ (α)g(α)Ge = 1. Therefore, we obtain, for all α ≥ 0, (α)d0 ̸= 0 and
thus

(α)κ(α)R0(I − (α)Φ(0))(α)d0 > 0 for all α > 0.

Finally, the positivity of ν (i.e., ν > 0) follows from the fact that for all α ≥ 0, (α)R0 < ∞ (see Remark 4.3)
and (α)βG < ∞ (see Lemma 4.2 (ii)). ✷

We now provide the proof of Theorem 4.1.
Proof of Theorem 4.1. Lemma 4.12 shows that (4.44) holds for ξ = 0. Thus, we consider the case of ξ ̸= 0.
From (4.9), we have

lim
α↓0 (α)x̃((α)σξ) = lim

α↓0
(α)x(0)

(α)σ
(α)R̃0((α)σξ)(I − (α)Φ(0))

×
I − (α)G̃((α)σξ)

(α)σ
adj(I − (α)Ã((α)σξ))

((α)σ)
2

(α)φ((α)σξ)
. (4.66)

Applying Lemmas 4.7, 4.13, 4.16, and 4.17 to (4.66) yields

lim
α↓0 (α)x̃((α)σξ) =

1

1− iξ
−(0)δ̃

′′(0)

2

π,

from which and (4.16) we have (4.44). ✷

4.4 Heavy-traffic limit of moments

In this section, we provide the heavy-traffic asymptotic formula for the moments of the stationary distri-
bution. For simplicity, for any function f (including vectors and matrix functions), let f (n) (n ∈ N) denote
an n times differential of f hereafter. Before giving the main theorem, we provide the following lemma.

Lemma 4.18 Suppose that Assumption 4.3 holds. If supα≥0

∑∞
k=1 k

m+1
(α)A(k) < ∞ for some m ∈ Z+,

then,

lim
α↓0 (α)σ

dm

dξm

(
I − (α)R̃((α)σξ)

)−1
=

m!

(1− iξγ)m+1 (iγ)
m (I − (0)Φ(0))(0)d0π, (4.67)

where γ and (0)d0 are given in (4.45) and (4.61), respectively.

Proof. We prove this lemma by induction. By applying Lemmas 4.14–4.16 to (4.6), we can easily confirm
that (4.67) holds when m = 0, i.e.,

lim
α↓0 (α)σ(I − (α)R̃((α)σξ))

−1 =
1

1− iξγ
(I − (0)Φ(0))(0)d0π. (4.68)

Next, we assume that (4.67) holds for m ≤ n (n ∈ N) under the condition that

sup
α≥0

∞∑

k=1

kn+1
(α)A(k) < ∞.
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By differentiating (n+ 1) times the equation

[
I − (α)R̃((α)σξ)

]
·
[
I − (α)R̃((α)σξ)

]−1
= I,

with respect to ξ, we obtain

(
I − (α)R̃((α)σξ)

) dn+1

dξn+1

(
I − (α)R̃((α)σξ)

)−1

=
n∑

ℓ=0

(
n+ 1

ℓ

)
((α)σ)

n+1−ℓ
(α)R̃

(n+1−ℓ)((α)σξ)
dℓ

dξℓ

(
I − (α)R̃((α)σξ)

)−1
. (4.69)

Note here that, for any ℓ ≥ 2 and m ≤ n,

lim
α↓0

((α)σ)
ℓ d

m

dξm

(
I − (α)R̃((α)σξ)

)−1
= O.

Furthermore, if supα≥0

∑∞
k=1 k

n+2
(α)A(k) < ∞, then supα≥0

∑∞
k=1 k

n+1
(α)R(k) < ∞ due to Lemma 4.10.

Thus, applying the dominated convergence theorem to (4.69) leads to

lim
α↓0 (α)σ

dn+1

dξn+1

(
I − (α)R̃((α)σξ)

)

= lim
α↓0 (α)σ

(
I − (α)R̃((α)σξ)

)−1

× lim
α↓0

[
n∑

ℓ=0

(
n+ 1

l

)(
(α)σ

)n+1−l
(α)R̃

(n+1−l)((α)σξ)
dℓ

dξℓ

(
I − (α)R̃((α)σξ)

)−1
]

= lim
α↓0 (α)σ

(
I − (α)R̃((α)σξ)

)−1

× (n+ 1) · lim
α↓0 (α)R̃

′((α)σξ) · lim
α↓0 (α)σ

dn

dξn

(
I − (α)R̃((α)σξ)

)−1
.

Substituting the induction assumption (4.67) and (4.68) into the above equation yields

lim
α↓0 (α)σ

dn+1

dξn+1

(
I − (α)R̃((α)σξ)

)

=
(n+ 1)!

(1− iξγ)n+2 (iγ)
n(I − (0)Φ(0))d0π

[ ∞∑

k=0

ik(0)R(k)

]
(I − (0)Φ(0))(0)d0π. (4.70)

In addition, by differentiating twice (4.6) with respect to ξ and letting ξ = 0, we obtain
∑

k∈Z
k2(0)A(k) =

∑

k∈N
k2(0)R(k)(I − (0)Φ(0))(I − (0)G)

+2
∑

k∈N
k(0)R(k)(I − (0)Φ(0))

∑

k∈N
k(0)G(k)

+(I − (0)R)(I − (0)Φ(0))
∑

k∈N
k2(0)G(k). (4.71)

Note that (0)T is null-recurrent because (0)σ = 0. Thus, we have π(I− (0)R) = O (see [67, Theorem 15]).
It then follows from (4.71) that
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π
∞∑

k=1

k(0)R(k)(I − (0)Φ(0))(0)βG =
1

2
π
∑

k∈Z
k2(0)A(k)e. (4.72)

Furthermore, by differentiating (4.6) with respect to ξ and letting ξ = 0 and α = 0, and pre-multiplying π,
we have

π
∑

k∈Z
k(0)A(k) = π

∑

k∈N
k(0)R(k)(I − (0)Φ(0))(I − (0)G), (4.73)

where we use π(I − (0)R) = 0. As a result, combining (4.72) and (4.73) with (4.61) leads to

π
∞∑

k=0

k(0)R(k)(I − (0)Φ(0))(0)d0

=
1

2
π
∑

k∈Z
k2(0)A(k)e+ π

∑

k∈Z
k(0)A(k)(I −A+ eπ)−1

(0)βA = γ. (4.74)

Therefore, applying (4.74) to (4.70) leads to

lim
α↓0 (α)σ

dn+1

dξn+1

(
I − (α)R̃((α)σξ)

)
=

(n+ 1)!

(1− iξγ)n+2 (iγ)
n+1 (I − (0)Φ(0))(0)d0π,

which shows that (4.67) holds when m = n+1 under the condition that supα≥0

∑∞
k=1 k

n+2
(α)A(k) < ∞.

✷

Theorem 4.2 Suppose that Assumption 4.3 holds. If

sup
∞∑

k=1

km+1
(α)A(k) < ∞, sup

∞∑

k=1

km+1
(α)B(k) < ∞,

for any m ∈ Z+, then,

lim
α↓0

dm

dξm (α)x̃((α)σξ)

∣∣∣∣
ξ=0

= m! (iγ)m · π, (4.75)

where γ is given in (4.45).

Proof. By differentiating m times (4.7) with respect to ξ, we obtain

dm

dξm (α)x̃
(m)((α)σξ) = (α)x(0)

m∑

ℓ=0

(
m

ℓ

)(
(α)σ

)ℓ
(α)R̃

(ℓ)
0 ((α)σξ)

× dm−ℓ

dξm−ℓ

(
I − (α)R̃((α)σξ)

)−1
. (4.76)

According to Lemma 4.10, sup
∑∞

k=1 k
m+1

(α)B(k) < ∞ implies that sup
∑∞

k=1 k
ℓ
(α)R0(k) < ∞ for all

ℓ ≤ m. Thus, applying the dominated convergence theorem, Lemmas 4.17 and 4.18 to (4.76), we obtain

lim
α↓0

dm

dξm (α)x̃
(m)((α)σξ)

= lim
α↓0

(α)x(0)

(α)σ

m∑

ℓ=0

(
m

ℓ

)(
(α)σ

)ℓ
(α)R̃

(ℓ)
0 ((α)σξ)

(
(α)σ

) dm−ℓ

dξm−ℓ

(
I − (α)R̃((α)σξ)

)−1

= lim
α↓0

(α)x(0)

(α)σ
(α)R̃0((α)σξ) · lim

α↓0

[(
(α)σ

) dm

dξm

(
I − (α)R̃((α)σξ)

)−1
]

=
m!(iγ)mν∗

(1− iξγ)m+1 (0)κ(0)R0(I − (0)Φ(0))(0)d0π =
m!(iγ)m

(1− iξγ)m+1π,
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where we use (4.65) in the last equality. Consequently, letting ξ = 0 in the above equation yields (4.75). ✷
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Chapter 5

Conclusion

5.1 Summary of results

This thesis studied the asymptotic analysis of the stationary distribution of the GI/G/1-type Markov
chain. The summary of the results is listed as follows.

(a) We studied the light-tailed asymptotics and showed asymptotic formulae for the cases where the decay
rate is determined by (i) a root θ+ of the fundamental equation of MAdP; (ii) the convergence radius
of B̂(z); and (iii) that of Â(z). We extended the previous results for the M/G/1-type Markov chains
to the GI/G/1-type for the cases (i) and (ii), and derived completely new asymptotics formulae in the
case (iii).

(b) We studied the subexponential tail asymptotics for the cases where A is stochastic and is strictly
substochastic. In the former case, we extended the result for the M/G/1-type Markov chain to the
GI/G/1-type one. Furthermore, in the latter case, we derived new asymptotic formulae, which is not
considered in the literature.

(c) We conducted the heavy-traffic asymptotics of the GI/G/1-type Markov chain. We derived the heavy-
traffic formula under weaker conditions than those of the previous studies. We also showed the heavy-
traffic limit of the moments of the stationary distributions, which is not reported in previous studies.

5.2 Future work

This thesis studies the asymptotic behaviors of the stationary distribution of a special type of block-
structured Markov chains from the several standpoints: tail asymptotics and heavy traffic. However, there
remain many research problems in this area. The author describes some future work below.

(a) Although we derived various asymptotic formulae in this thesis, their errors or rates of the conver-
gence were not considered. To apply the results in this thesis as approximate formulae, Theoretical
understanding to their accuracy is necessary.

(b) As well as heavy-traffic limit, the light-traffic limit for the GI/G/1-type Markov chain has not been
studied and is limited to a GI/G/1 queueing model. Thus, we leave this as future work.
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62 Chapter 5. Conclusion

(c) Although the GI/G/1-type Markov chain is a general model that appears in the analysis of various
queueing models, a level-dependent GI/G/1-type Markov chain is a more general one. It is known
that retrial queueing models or queues with impatient customers can be directly connected to level-
dependent GI/G/1-type Markov chains, in which increments of levels are not homogeneous and de-
pend on the current levels. The analysis of such models is a challenging task because it is difficult to
apply the technique used in this thesis due to the high flexibility of the models.

62



Appendix A

Tail Asymptotics of Nonnegative Sequences

Let {xk; k = 0, 1, . . . } denote a sequence of nonnegative numbers including infinite positive-numbers.
Let σ denote

σ = sup

{
|z|;

∞∑

k=0

xkz
k < ∞, z ∈ C

}
,

which is called the convergence radius of the power series. Let f(z) denote the generating function of
{xk; k = 0, 1, . . . }. We then have

f(z) =
∞∑

k=0

xkz
k, |z| < σ. (A.1)

Furthermore, by definition, f(z) is holomorphic inside the convergence radius.
In what follows, we make the following assumption.

Assumption A.1 f(z) is meromorphic in the domain {z ∈ C; |z| ≤ σ}, and the point z = σ is an m̆th pole
of f(z), where m̆ is some finite positive integer.

Lemma A.1 Under Assumption A.1, any pole of f(z) on C(0,σ) is of order less than or equal to m̆.

Proof. We define g(z) as

g(z) = f(z)
(
1− z

σ

)m̆
.

From (A.1), we have for any ε > 0,

g(σ − ε) = f(σ − ε)
( ε
σ

)m̆
=

∞∑

k=0

xk(σ − ε)k
( ε
σ

)m̆
. (A.2)

It thus follows from (A.1) and (A.2) that for any ω∗ ∈ C such that |ω∗| = 1 and ω∗ ̸= 1,

lim inf
z=(σ−ε)ω∗

ε↓0

∣∣∣∣∣f(z)
(
1− z

σω∗

)m̆
∣∣∣∣∣ = lim inf

ε↓0

∣∣∣∣∣

∞∑

k=0

xk(σ − ε)k(ω∗)
k
( ε
σ

)m̆
∣∣∣∣∣

≤ lim sup
ε↓0

∞∑

k=0

xk(σ − ε)k
( ε
σ

)m̆

= lim sup
ε↓0

g(σ − ε) = g(σ) < ∞, (A.3)
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64 Appendix A. Tail Asymptotics of Nonnegative Sequences

where the last inequality holds because g(z) is holomorphic in some neighborhood of z = σ. Let m̆∗ denote

m̆∗ = inf

{
m ∈ N ∪ {0}; lim

z→σω∗

∣∣∣∣f(z)
(
1− z

σω∗

)m∣∣∣∣ < ∞
}
,

where f(z)(1 − z/(σω∗))m is meromorphic in the domain {z ∈ C; |z| ≤ σ} for m = 0, 1, . . . . Thus, if
m̆∗ > m̆, we have

lim inf
z=(σ−ε)ω∗

ε↓0

∣∣∣∣∣f(z)
(
1− z

σω∗

)m̆
∣∣∣∣∣ ≥ lim inf

z→σω∗

∣∣∣∣∣f(z)
(
1− z

σω∗

)m̆
∣∣∣∣∣ = ∞,

which contradicts (A.3). As a result, m̆∗ ≤ m̆, which implies that this lemma is true. ✷

According to Lemma A.1, we introduce the following definition.

Definition A.1 Under Assumption A.1, a dominant pole of f(z) is a pole that is located on its convergence
radius C(0,σ) and is of the same order as that of pole z = σ. Thus the order of any dominant pole of f(z)
is equal to m̆.

We make the following assumption, in addition to Assumption A.1.

Assumption A.2 There exist exactly P (P ≥ 1) dominant poles, σj’s (j = 0, 1, . . . , P − 1), of f(z), where
σ0 = σ and 0 = arg σ0 < arg σ1 < · · · < arg σP−1 < 2π.

Remark A.1 Since f(z) is the generating function of the nonnegative sequence {xk}, the set {σj ; j =

0, 1, . . . , P − 1} consists of one or two real numbers and ⌊(P − 1)/2⌋ pairs of conjugate complex numbers.
Therefore σjσP−j = σ2 for j = 1, 2, . . . , ⌊(P − 1)/2⌋.

Theorem A.1 Let a1,k = 1/(σ + ε0)k (k = 0, 1, . . . ), where ε0 > 0 is a sufficiently small number; and for
m = 2, 3, . . . , am,k = km−2/σk (k = 0, 1, . . . ). If Assumptions A.1 and A.2 hold, then the following are
true.

(a) The sequence {xk; k = 0, 1, . . . } satisfies

xk =

(
k + m̆− 1

m̆− 1

)
1

σk
ξk +O(am̆,k)

=
km̆−1

(m̆− 1)!

1

σk
ξk +O(am̆,k), (A.4)

where

ξk =
P−1∑

j=0

(
σ

σj

)k

lim
z→σj

(
1− z

σj

)m̆

f(z). (A.5)

(b) lim supk→∞ ξk > 0.

(c) ξk ≥ 0 for all k = 0, 1, . . . .
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(d) In addition, if {xk} is nonincreasing and (arg σj)/π is a rational number for any j = 0, 1, . . . , P −1,
then ξk > 0 for all k = 0, 1, . . . .

Proof. Statement (a). It follows from Assumption A.1 that there exists some R > σ such that f(z)
is holomorphic in the domain {z ∈ C;σ < |z| ≤ R}. We can choose P positive numbers rj’s (j =

0, 1, . . . , P − 1) such that all the C(σj , rj)’s are strictly inside C(0, R) and any two of them have no
intersection. Let D denote

D = {z; |z| < R}
∖

P−1⋃

j=0

{z; |z − σj | ≤ rj}.

Clearly f(z) is holomorphic in domain D∪C(0, R)∪C(σ0, r0)∪ · · ·∪C(σP−1, rP−1). Thus by the Cauchy
integral formula, we have

f(z) =
1

2πi

∮

C(0,R)

f(ζ)

ζ − z
dζ − 1

2πi

P−1∑

j=0

∮

C(σj ,rj)

f(ζ)

ζ − z
dζ, z ∈ D, (A.6)

where the integrals are taken counter-clockwise.
We now consider the first term in (A.6). For any z ∈ D and ζ ∈ C(0, R), we have |z/ζ| < 1 and

therefore

1

2πi

∮

C(0,R)

f(ζ)

ζ − z
dζ =

1

2πi

∮

C(0,R)

f(ζ)

ζ

∞∑

n=0

zn

ζn
dζ, z ∈ D. (A.7)

Since f(ζ) is holomorphic for ζ ∈ C(0, R), there exists some fmax > 0 such that

|f(ζ)| ≤ fmax, ζ ∈ C(0, R). (A.8)

Thus for any fixed z ∈ D,
∣∣∣∣∣
f(ζ)

ζ

∞∑

n=0

zn

ζn

∣∣∣∣∣ ≤
fmax

R

∞∑

n=0

∣∣∣
z

R

∣∣∣
n
=

fmax

R

1

1−
∣∣∣
z

R

∣∣∣
< ∞, ζ ∈ C(0, R),

which shows that the order of summation and integration on the right hand side of (A.7) is interchangeable.
As a result, it follows from (A.7) that

1

2πi

∮

C(0,R)

f(ζ)

ζ − z
dζ =

∞∑

n=0

(
1

2πi

∮

C(0,R)

f(ζ)

ζn+1
dζ

)
zn =

∞∑

n=0

cnz
n, (A.9)

where

cn =
1

2πi

∮

C(0,R)

f(ζ)

ζn+1
dζ, n = 0, 1, . . . . (A.10)

Next we consider the second term in (A.6). Since |ζ−σj |/|z−σj | < 1 for any z ∈ D and ζ ∈ C(σj , rj),

1

ζ − z
=

1

(σj − z)− (σj − ζ)
=

1

σj − z
· 1

1− σj − ζ

σj − z

=
1

σj − z

∞∑

n=0

(
σj − ζ

σj − z

)n

.
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66 Appendix A. Tail Asymptotics of Nonnegative Sequences

Thus we have

1

2πi

∮

C(σj ,rj)

f(ζ)

ζ − z
dζ =

1

2πi

∮

C(σj ,rj)

∞∑

n=1

f(ζ)(σj − ζ)n−1

(σj − z)n
dζ, z ∈ D.

In a way very similar to the right hand side of (A.7), we can confirm that the order of summation and
integration in the above equation is interchangeable, and then obtain

1

2πi

∮

C(σj ,rj)

f(ζ)

ζ − z
dζ =

∞∑

n=1

(−1)n−1

(
1

2πi

∮

C(σj ,rj)
f(ζ)(ζ − σj)

n−1dζ

)
1

(σj − z)n
, z ∈ D.

(A.11)

Since z = σj is an m̆th order pole,

1

2πi

∮

C(σj ,rj)
f(ζ)(ζ − σj)

n−1dζ = 0, for all n = m̆+ 1, m̆+ 2, . . . ,

from which and (A.11) we have

1

2πi

∮

C(σj ,rj)

f(ζ)

ζ − z
dζ

=
m̆∑

n=1

(−1)n−1

(
1

2πi

∮

C(σj ,rj)
f(ζ)(ζ − σj)

n−1dζ

)
1

(σj − z)n

= −
m̆∑

n=1

σm̆j

[
(−1)n+m̆

(
1

2πi

∮

C(σj ,rj)

f(ζ)(1− ζ/σj)m̆

(ζ − σj)m̆−n+1
dζ

)]
1

(σj − z)n

= −
m̆∑

n=1

σm̆j cj,n

(σj − z)n
, (A.12)

where

cj,n = (−1)n+m̆ · 1

2πi

∮

C(σj ,rj)

f(ζ)(1− ζ/σj)m̆

(ζ − σj)m̆−n+1
dζ. (A.13)

Substituting (A.9) and (A.12) into (A.6), we have

f(z) =
∞∑

n=0

cnz
n +

P−1∑

j=0

m̆∑

n=1

σm̆j cj,n

(σj − z)n
, z ∈ D,

and therefore

∞∑

n=0

xnz
n =

∞∑

n=0

cnz
n +

P−1∑

j=0

m̆∑

n=1

σm̆j cj,n

(σj − z)n
, z ∈ D ∩ {z ∈ C; |z| < σ}. (A.14)

Differentiating both sides of (A.14) k times with respect to z, dividing them by k! and letting z = 0 yield

xk = ck +
P−1∑

j=0

m̆∑

n=1

σm̆−n
j cj,n

(
k + n− 1

n− 1

)
1

σkj
. (A.15)
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It follows from (A.8) and (A.10) that

|ck| ≤
1

2π

∮

C(0,R)

∣∣∣∣
f(ζ)

ζk+1

∣∣∣∣ dζ ≤ 1

2π

∮

C(0,R)

fmax

Rk+1
dζ =

fmax

Rk
,

which leads to

lim
k→∞

∣∣∣∣∣∣∣∣∣

ck
1

σkj

∣∣∣∣∣∣∣∣∣

= lim
k→∞

|ck|σk ≤ lim
k→∞

fmax

( σ
R

)k
= 0, for all j = 0, 1, . . . , P − 1, (A.16)

where we use |σj | = σ (j = 0, 1, . . . , P − 1) and 0 < σ/R < 1. From (A.15) and (A.16), we have

xk =

(
k + m̆− 1

m̆− 1

)
1

σk

P−1∑

j=0

(
σ

σj

)k

cj,m̆ +O(am̆,k)

=
km̆−1

(m̆− 1)!

1

σk

P−1∑

j=0

(
σ

σj

)k

cj,m̆ +O(am̆,k). (A.17)

Note here that (A.13) yields

cj,m̆ =
1

2πi

∮

C(σj ,rj)

f(ζ)(1− ζ/σj)m̆

ζ − σj
dζ = lim

ζ→σj

(
1− ζ

σj

)m̆

f(ζ), (A.18)

where we use the Cauchy integral formula in the last equality. As a result, statement (a) is true.

Statement (b). From (A.4) and the definition of {am̆,k}, we have

xk =
km̆−1

(m̆− 1)!

1

σk
ξk + o

(
km̆−1

σk

)
. (A.19)

We now suppose lim supk→∞ ξk ≤ 0. Equation (A.19) yields

lim sup
k→∞

xk
km̆−1σ−k

= 0,

which implies that for any ε > 0 there exists some positive integer Kε ≥ m̆−1 such that xk < ε(km̆−1/σk)

for all k = Kε,Kε + 1, . . . . Thus we have

f(y) ≤
Kε−1∑

k=0

ykxk + ε
∞∑

k=Kε

km̆−1
( y
σ

)k
, 0 ≤ y < σ. (A.20)

Note that for ℓ = 1, 2, . . . ,

∞∑

k=ℓ

k(k − 1) · · · (k − ℓ+ 1)
( y
σ

)k
= (−1)ℓ+1ℓ!

σyℓ

(y − σ)ℓ+1
. (A.21)

Note also that there exists an (m̆− 1)-tuple (b1, b2, . . . , bm̆−1) of real numbers such that

km̆−1 =
m̆−1∑

ℓ=1

bℓ · k(k − 1) · · · (k − ℓ+ 1). (A.22)
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It follows from (A.20), (A.21) and (A.22) that for any ε > 0,

0 ≤ lim sup
y↑σ

(
1− y

σ

)m̆
f(y) ≤ εbm̆−1(m̆− 1)!.

Letting ε → 0 in the above inequality, we have limy↑σ {1− (y/σ)}m̆ f(y) = 0, which is inconsistent with
Assumption A.1.

Statement (c). It follows from (A.18), Assumption A.2 and Remark A.1 that c0,m̆ is a real number and
(cj,m̆, cP−j,m̆) (j = 1, 2, . . . , ⌊(P − 1)/2⌋) is a pair of complex conjugates, and thus ξk is a real number
such that

ξk = y0 +

⌊(P−1)/2⌋∑

j=1

yj cos(2πkαj), k = 0, 1, . . . , (A.23)

where yj ∈ R (j = 0, 1, . . . , ⌊(P − 1)/2⌋) and 0 ≤ αj < 1 (j = 1, 2, . . . , ⌊(P − 1)/2⌋).
In what follows, we assume ξk0 < 0 for some nonnegative integer k0 and then prove the following.

Claim: There exists some b > 0 such that ξk < −b for infinitely many k’s.

If this is true, (A.19) implies that xk < 0 for a sufficiently large k, which contradicts the fact that xk ≥ 0

for all k = 0, 1, . . . . As a result, for all k = 0, 1, . . . , ξk must be nonnegative, i.e., the statement (c) is true.
We split A " {αj ; j = 1, 2, . . . , ⌊(P − 1)/2⌋} into rational numbers and irrational numbers. We then

define A0 as the set of the rational numbers of A. Next we choose an irrational number αj1 from A\A0

(if any) and let A1 = {αj ∈ A\A0;αj/αj1 is rational}. Furthermore, we choose an irrational number
αj2 from A\(A0 ∪ A1) (if any) and let A2 = {αj ∈ A\(A0 ∪ A1);αj/αj2 is rational}. Repeating this
procedure, we can obtain P̃ sets, Aj’s (j = 1, 2, . . . , P̃ ), where P̃ may be equal to zero, i.e., all members of
A may be rational. Let α̃j (j = 0, 1, . . . , P̃ ) denote some number such that all members of Aj are multiples
of α̃j . From Definition A.2, α̃j’s (j = 0, 1, . . . , P̃ ) are linearly independent over the rationals. Note here
that for n = 1, 2, . . . ,

cos(nt) = Tn(cos t), t ∈ R,

where Tn(t)’s (n = 1, 2, . . . ) denote the Chebyshev polynomials of the first kind. It thus follows from
(A.23) that there exist some polynomial functions ψ(Aj)’s (j = 0, 1, . . . , P̃ ) on R such that

ξk = y0 + ψ(A0) ◦ cos(2πkα̃0) +
P̃∑

j=1

ψ(Aj) ◦ cos(2πkα̃j), k = 0, 1, . . . , (A.24)

where ψ(Aj) ◦ cos(·) denotes a composite function ψ(Aj)(cos(·)) of functions ψ(Aj)(·) and cos(·). Since α̃0

is rational, there exists some g ∈ N such that

ψ(A0) ◦ (2π(ng + k)α̃0) = ψ(A0) ◦ cos(2πkα̃0), for all k, n = 0, 1, . . . . (A.25)

Therefore in the case of P̃ = 0, it follows from (A.24) and (A.25) that

ξng+k0 = y0 + ψ(A0) ◦ cos(2πk0α̃0) = ξk0 < 0, for all n = 0, 1, . . . ,
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which implies the above claim.
We next consider the case of P̃ ≥ 1. Since gα̃1, gα̃2, . . . , gα̃P̃ are linearly independent over the

rationals, it follows from Proposition A.1 that for any ε > 0 and any t " (t1, t2, . . . , tP̃ ) ∈ RP̃ , there exist
integers n∗ := n∗(ε, t) and lj := lj(ε, t) (j = 1, 2, . . . , P̃ ) such that

|(n∗g + k0)α̃j − lj − tj | <
ε

2π
, j = 1, 2, . . . , P̃ .

Thus since ψ(Aj) ◦ cos(2πx) is a continuous function of x, there exists some δ := δ(ε) > 0 such that
limε↓0 δ = 0 and

|ψ(Aj) ◦ cos(2π(n∗g + k0)α̃j)− ψ(Aj) ◦ cos(2πtj)| < δ, j = 1, 2, . . . , P̃ . (A.26)

It follows from (A.24), (A.25) and (A.26) that
∣∣∣∣∣∣
ξn∗g+k0 −

⎛

⎝y0 + ψ(A0) ◦ cos(2πk0α̃0) +
P̃∑

j=1

ψ(Aj) ◦ cos(2πtj)

⎞

⎠

∣∣∣∣∣∣

≤
P̃∑

j=1

∣∣∣ψ(Aj) ◦ cos(2π(n∗g + k0)α̃j)− ψ(Aj) ◦ cos(2πtj)
∣∣∣ < P̃ δ. (A.27)

We define V+(k) and V−(k) (k = 0, 1, . . . ) as

V+(k) = y0 + ψ(A0) ◦ cos(2πkα̃0) + max
t∈RP̃

P̃∑

j=1

ψ(Aj) ◦ cos(2πtj),

V−(k) = y0 + ψ(A0) ◦ cos(2πkα̃0) + min
t∈RP̃

P̃∑

j=1

ψ(Aj) ◦ cos(2πtj),

respectively. It follows from the above definition and (A.24) that V−(k0) ≤ ξk0 ≤ V+(k0). Furthermore,
(A.27) implies that {ξng+k0 ;n = 0, 1, . . . } is dense in the interval [V−(k0), V+(k0)]. Thus there exist
infinitely many n’s such that ξng+k0 < V−(k0)/2 < 0. This completes the proof of the statement (c).

Statement (d). We prove this by reduction to absurdity, assuming ξk̂ ≤ 0 for some nonnegative integer
k̂. Since (arg σj)/π is a rational number for any j = 0, 1, . . . , P − 1, there exist a positive integer g and
nonnegative integers ℓ0, ℓ1, . . . , ℓP−1 such σj = σ exp(i2πℓj/g) (j = 0, 1, . . . , P − 1). Clearly, ξng+k̂ ≤ 0

for all n = 0, 1, . . . . It thus follows from (A.19) that for any ε > 0 there exists some nonnegative integer n̂
such that n̂g + k̂ ≥ m̆− 1 and

xng+k̂ ≤ ε
(ng + k̂)m̆−1

σng+k̂
, for all n = n̂, n̂+ 1, . . . .

Since {xk} is nonincreasing,

xng+k̂+ℓ ≤ ε
(ng + k̂)m̆−1

σng+k̂
, n = n̂, n̂+ 1, . . . , ℓ = 0, 1, . . . , g − 1,
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which yields for 0 ≤ y < σ,

0 ≤ f(y) ≤
n̂g+k̂−1∑

k=0

ykxk + ε
∞∑

n=n̂

(ng + k̂)m̆−1

σng+k̂
yng+k̂

g−1∑

ℓ=0

yℓ

≤ C1 + ε
1− σg

1− σ

∞∑

n=n̂

(ng + k̂)m̆−1
( y
σ

)ng+k̂

≤ C1 + εC2

∞∑

k=m̆−1

km̆−1
( y
σ

)k
≤ C1 + εC2

∞∑

k=m̆−1

km̆−1
( y
σ

)k−m̆+1
, (A.28)

where C1 =
∑n̂g+k̂−1

k=0 σkxk < ∞ and C2 = (1− σg)/(1− σ). Note here that the second last inequality in
(A.28) follows from n̂g + k̂ ≥ m̆− 1 and the last one follows from 0 ≤ y/σ < 1.

Let φ(y) =
∑∞

k=0(y/σ)
k = −σ(y − σ)−1 for 0 ≤ y < σ. We then have for 0 ≤ y < σ,

dm̆−1

dym̆−1
φ(y) =

∞∑

k=0

dm̆−1

dym̆−1

( y
σ

)k
=

1

σm̆−1

∞∑

k=m̆−1

k(k − 1) · · · (k − m̆+ 2)
( y
σ

)k−m̆+1
.

Thus, for 1 ≤ ℓ ≤ m̆− 1,
∞∑

k=m̆−1

k(k − 1) · · · (k − ℓ+ 1)
( y
σ

)k−m̆+1
≤ σm̆−1 dm̆−1

dym̆−1
φ(y).

Using this inequality and (A.22), we can bound f(y) in (A.28) as follows.

0 ≤ f(y) ≤ C1 + εC
dm̆−1

dym̆−1
φ(y),

where C = C2σm̆−1∑m̆−1
ℓ=1 bℓ. Furthermore,

dm̆−1

dym̆−1
φ(y) = −σ dm̆−1

dym̆−1
(y − σ)−1 = σ(−1)m̆(m̆− 1)!(y − σ)−m̆.

As a result,

0 ≤ lim sup
y↑σ

(
1− y

σ

)m̆
f(y) ≤ εC(m̆− 1)!σ−m̆+1.

Letting ε → 0 in the above inequality, we have limy↑σ (1− y/σ)m̆ f(y) = 0, which contradicts Assump-
tion A.1. ✷

Remark A.2 A result similar to the statement (a) is given in Theorem 5.2.1 in [65]. Furthermore, when
P = 1, (A.5) is reduced to eq. (2) at p. 238 in [9].

Remark A.3 Suppose the candidates for the dominant poles are σj’s (j = 0, 1, . . . , P −1) and at least one
of them is indeed a dominant pole (according to Assumption A.1, z = σ is a dominant pole). For σj not a
dominant pole, we have

lim
z→σj

(
1− z

σj

)m̆

f(z) = 0.

Thus the statements (a)–(d) of Theorem A.1 still hold, though the right hand side of (A.5) may include some
null terms.
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A.1 Kronecker’s approximation theorem

The following is Kronecker’s approximation theorem. For details, see, e.g., Theorem 7.10 in [4].

Proposition A.1 Let γi’s (i = 1, 2, . . . , n) are arbitrary real numbers. Let βi’s (i = 1, 2, . . . , n) arbitrary
real numbers such that β1,β2, . . . ,βn and 1 are linearly independent over the rationals (see Definition A.2
below). For any ε > 0, there exist an (n+ 1)-tuple (k, l1, l2, . . . , ln) of integers such that

|kβi − li − γi| < ε, for all i = 1, 2, . . . , n, (A.29)

and thus for any ε > 0 and any γ̃i ∈ [0, 1],

|kβi − ⌊kβi⌋ − γ̃i| < ε, for all i = 1, 2, . . . , n,

which implies that kβi − ⌊kβi⌋ (k ∈ Z) is dense in the interval [0, 1].

Definition A.2 Arbitrary real numbers βi’s (i = 1, 2, . . . , n) are said to be linearly independent over the
rationals (equivalently integers) if there exists no set of nonzero rational numbers qi’s (i = 1, 2, . . . , n) such
that

β1q1 + β2q2 + · · ·+ βnqn = 0. (A.30)

Therefore if βi’s are linearly independent over the rationals, (A.30) implies that q1 = q2 = · · · = qn = 0.
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Appendix B

Period of Markov Additive Processes

This appendix summarizes fundamental results of the period of MAdPs. In fact, most of the results
described here are already implied in [2, 59], though that is done in not an accessible way. Furthermore, an
MAdP related to the Markov chain of M/G/1 type (and slightly more general one) are discussed in [21].

We consider an MAdP {(Γn, Jn);n = 0, 1, . . . }, where the level variable Γn takes a value in Z =

{0,±1,±2, . . . } and the phase variable Jn takes a value in J " {1, 2, . . . , J}. Let Γ(k) (k ∈ Z) denote a
J × J matrix whose (i, j)th (i, j ∈ J) element represents

Pr[Γn+1 = k0 + k, Jn+1 = j | Γn = k0, Jn = i],

for any fixed k0 ∈ Z. For simplicity, we denote the MAdP {(Γn, Jn);n = 0, 1, . . . } with kernel {Γ(k); k ∈
Z} by MAdP {Γ(k); k ∈ Z}. For any two states (k1, j1) and (k2, j2) in Z× J, we write (k1, j1) → (k2, j2)

when there exists a path from (k1, j1) to (k2, j2) with some positive probability.

Assumption B.1

(a) Γ "∑k∈Z Γ(k) is irreducible.

(b) For each j ∈ J, there exists a nonzero integer kj such that (0, j) → (kj , j).

Let Kj (j ∈ J) denote

Kj = {k ∈ Z\{0}; (0, j) → (k, j)},

which is well-defined under Assumption B.1.

Lemma B.1 Let dj = gcd{k ∈ Kj} for j ∈ J. If Assumption B.1 holds, then dj’s (j ∈ J) are all identical.

Proof. Under Assumption B.1, for any i, j ∈ J (i ̸= j) there exist integers ki,j and kj,i (ki,j + kj,i ̸= 0)
such that (0, i) → (ki,j , j) and (0, j) → (kj,i, i). Let Kj→i→j denote

Kj→i→j = {kj,i + ki,j} ∪ {kj,i + k + ki,j ; k ∈ Ki}. (B.1)

Clearly Kj→i→j ⊆ Kj and therefore

gcd{k ∈ Kj→i→j} ≥ gcd{k ∈ Kj} = dj . (B.2)
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In what follows, we prove gcd{k ∈ Kj→i→j} ≤ di, from which and (B.2) it follows that dj ≤ di. Inter-
changing i and j in the proof of dj ≤ di, we can readily show that di ≤ dj . Therefore we have di = dj .

Since (0, i) → (ki,j , j) → (ki,j + kj,i, i), we have ki,j + kj,i ∈ Ki and therefore ki,j + kj,i = a0di for
some integer a0 ̸= 0. Note here that Ki has at least two elements because

{ki,j + kj,i} ∪ {ki,j + k + kj,i; k ∈ Kj} ⊆ Ki.

Thus there exists a couple of nonzero integers (a1, a2) such that {a1di, a2di} ⊆ Ki and gcd{a1, a2} = 1,
due to di = gcd{k ∈ Ki}. It follows from (B.1) and ki,j + kj,i = a0di that

Kj→i→j ⊇ {kj,i + ki,j} ∪ {kj,i + a1di + ki,j , kj,i + a2di + ki,j}

= {a0di} ∪ {a0di + a1di, a0di + a2di}

= {a0di, (a0 + a1)di, (a0 + a2)di},

which leads to gcd{k ∈ Kj→i→j} ≤ gcd{a0di, (a0 + a1)di, (a0 + a2)di} = di. ✷

Definition B.1 According to Lemma B.1, we write d to represent dj’s and refer to the constant d as the
period of MAdP {Γ(k); k ∈ Z}.

We choose a state i0 ∈ J and then define J(i0)0 as

J(i0)0 = {j ∈ J; (0, i0) → (k, j), k ≡ 0 (mod d)}.

We also define J(i0)m (m = 1, 2, . . . , d− 1) as

J(i0)m = {j ∈ J; (0, i0) → (k, j), k ≡ m (mod d)}.

Since Γ is irreducible, each j ∈ J must belong to at least one of {J(i0)m ;m = 0, 1, . . . , d− 1}. Furthermore,
for any i ∈ J(i0)m ,

(0, i) → (k, i0) only if k ≡ −m (mod d),

which implies that J(i0)m1 ∩ J(i0)m2 = ∅ for m1 ̸≡ m2 (if not, it would hold that (0, i0) → (k, i0) for some
k ≡ m1 −m2 ̸≡ 0 (mod d)). Thus J(i0)0 + J(i0)1 + · · ·+ J(i0)d−1 = J and there exists an injective function q0

from J to {0, 1, . . . , d− 1} such that j ∈ J(i0)q0(j)
. It follows from the definition of J(i0)m ’s that

[Γ(k)]i,j > 0 only if k ≡ q0(j)− q0(i) (mod d).

As a result, we obtain the following result.

Lemma B.2 Under Assumption B.1, the period d is the largest positive integer such that

[Γ(k)]i,j > 0 only if k ≡ q(j)− q(i) (mod d), (B.3)

where q is some injective function from J to {0, 1, . . . , d − 1}. Furthermore, Jm " {j ∈ J; q(j) = m}
(m = 0, 1, . . . , d− 1) are disjoint each other and J0 + J1 + · · ·+ Jd−1 = J.
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In the rest of this section, we discuss the relationship between the period d of MAdP {Γ(k); k ∈ Z}
and the eigenvalues of the generating function Γ̂(z) defined by

∑
k∈Z z

kΓ(k). Let ∆(z) denote a J × J

diagonal matrix whose jth diagonal element is equal to z−q(j). It then follows from (B.3) that

Γ̂(z) = ∆(z)Λ∗(zd)∆(z)−1 = ∆(z/|z|)Λ∗(zd)∆(z/|z|)−1, (B.4)

where Λ∗(z) denotes a J × J matrix whose (i, j)th element is given by

[Λ∗(z)]i,j =
∑

n∈Z
zn[Γ(nd+ q(j)− q(i))]i,j .

Let γ(z) and g(z) denote left- and right-eigenvectors of Γ̂(z) corresponding to eigenvalue δ(Γ̂(z)), nor-
malized such that

γ(z)∆(z/|z|)e = 1, γ(z)g(z) = 1. (B.5)

We then have the following lemma.

Lemma B.3 Let Iγ = {y > 0;
∑

k∈Z y
kΓ(k) < ∞} and ωx = exp(2πi/x) (x ≥ 1). If Assumption B.1

holds, then the following hold for any y ∈ Iγ and ν = 0, 1, . . . , d− 1.

(a) δ(Γ̂(yων
d)) = δ(Γ̂(y)), both of which are simple eigenvalues.

(b) γ(yων
d) = γ(y)∆(ων

d)
−1 and g(yων

d) = ∆(ων
d)g(y).

Proof. It follows from (B.4) that for ν = 0, 1, . . . , d− 1,

Γ̂(yων
d) = ∆(yων

d)Λ
∗(yd)∆(yων

d)
−1,

= ∆(ων
d)[∆(y)Λ∗(yd)∆(y)−1]∆(ων

d)
−1

= ∆(ων
d)Γ̂(y)∆(ων

d)
−1, (B.6)

which implies the statement (a) because Γ̂(y) is nonnegative and irreducible. Next we prove the statement
(b). Pre-multiplying both sides of (B.6) by γ(y)∆(ων

d)
−1 and using δ(Γ̂(yων

d)) = δ(Γ̂(y)), we have

[
γ(y)∆(ων

d)
−1
]
Γ̂(yων

d) = δ(Γ̂(y))
[
γ(y)∆(ων

d)
−1
]

= δ(Γ̂(yων
d))
[
γ(y)∆(ων

d)
−1
]
. (B.7)

Similarly, we obtain

Γ̂(yων
d) [∆(ων

d)g(y)] = δ(Γ̂(yων
d)) [∆(ων

d)g(y)] . (B.8)

It follows from (B.7) and (B.8) that there exist some constants ϕ1 and ϕ2 such that

γ(yων
d) = ϕ1γ(y)∆(ων

d)
−1, g(yων

d) = ϕ2∆(ων
d)g(y).

We can easily confirm that ϕ1 = ϕ2 = 1 satisfies the normalizing condition (B.5). ✷
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Theorem B.1 Suppose Assumption B.1 holds, and let ω denote a complex number such that |ω| = 1. If
δ(Γ̂(y)) = 1 for some y ∈ Iγ , then δ(Γ̂(yω)) = 1 if and only if ωd = 1. Therefore

d = max{n ∈ N; δ(Γ̂(yωn)) = 1}. (B.9)

Furthermore, if δ(Γ̂(yω)) = 1, the eigenvalue is simple.

Proof. Although Theorem B.1 can be proved in a similar way to Proposition 14 in [21], we give a complete
proof for completeness.

Since the if-part follows from Lemma B.3, we prove the only-if part. Let V (ω) denote a J × J matrix
such that

V (ω) = diag(g(y))−1Γ∗(yω)diag(g(y)), |ω| = 1,

where diag(x) denotes a diagonal matrix whose jth diagonal element is equal to [x]j for a vector x. It
is easy to see that V (1) is irreducible and stochastic and δ(V (ω)) = δ(Γ̂(yω)) = 1. Let f = (fj ; j ∈
J) denote a right eigenvector of V (ω) corresponding to δ(V (ω)) = 1. We then have for any n ∈ N,
(V (ω))nf = f and thus

fi =
∑

j∈J
[(V (ω))n]i,jfj =

∑

j∈J

∑

k∈Z
yk[Γn∗(k)]i,j

[g(y)]j
[g(y)]i

· ωkfj , i, j ∈ J, (B.10)

where {Γn∗(k); k ∈ Z} is the nth-fold convolution of {Γ(k); k ∈ Z} with itself. Note that

∑

j∈J

∑

k∈Z
yk[Γn∗(k)]i,j [g(y)]j/[g(y)]i = 1,

because (V (1))ne = e. Let i′ denote an element of J such that |fi′ | ≥ |fj | for all j ∈ J. It then follows
from (B.10) that for any j ∈ J,

ωk fj
fi′

= 1 if [Γn∗(k)]i′,j > 0. (B.11)

Since Γ̂(1) is irreducible, for any j ∈ J there exist some n ∈ N and k ∈ Z such that [Γn∗(k)]i′,j > 0. Thus
(B.11) implies that |fj |’s are all equal, because |ω| = 1. We now consider a path from phase i to phase i

such that

(0, i) → (k1, i1) → (k2, i2) → (km, im) " (km, i),

where (kl, il) ∈ Z × J for l = 1, 2, . . . ,m and m ∈ N. Since the period of MAdP {Γ(k)} is equal to d,
k1+k2+ · · ·+km is a multiple of d. From (B.11), we have ωk1+k2+···+km = 1 and thus ωd = 1. The proof
of the only-if part is completed.

As for the remaining statements, (B.9) is obvious, and it follows from Lemma B.3 (a) that if δ(Γ̂(yω)) =
1, then the eigenvalue δ(Γ̂(yων

d)) = 1 is simple for ν = 0, 1, . . . , d− 1. ✷
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Remark B.1 Theorem B.1 provides a definition of the period of MAdP {Γ(k); k ∈ Z}. In a very similar
way, Shurenkov [59] defined the period of MAdPs with proper kernels. In the context of this thesis, his
definition is as follows:

d = max
{
n ∈ N; Γ̂(ωn)f = f for some f ∈ CJ such that |[f ]j | = 1 (j ∈ J)

}
. (B.12)

We can confirm that (B.12) is equivalent to Theorem B.1 if Γ̂(1) is stochastic. Shurenkov [59] also implied
that the statement of Lemma B.2 holds, based on which Alsmeyer [2] defined the period of MAdPs.
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Appendix C

Subexponential Distributions

This appendix provides a brief overview of two classes of subexponential distributions on Z+ and show
some related results, which are required in Chapter 2. One of the classes is the class of “ordinal” subexpo-
nential distributions introduced by Chistyakov [14], and the other one is the class of “locally” subexponential
distributions introduced by Chover et al. [15] and generalized by Asmussen et al. [8].

In what follows, let U denote a random variable in Z+ and Uj (j ∈ Z+) denote independent copies of U .
Let Ue denote the discrete equilibrium random variable of U , distributed with P(Ue = k) = P(U > k)/E[U ]

(k ∈ Z+). Furthermore, for any h ∈ N ∪ {∞}, let ∆h = (0, h] and k +∆h = {x ≥ 0; k < x ≤ k + h} for
k ∈ Z+.

C.1 Ordinal subexponential class

We begin with the definition of the long-tailed class, which covers the subexponential class.

Definition C.1 ([8, 17, 60]) A random variable U in Z+ and its distribution are said to be long-tailed if
P(U > k) > 0 for all k ∈ Z+ and

lim
k→∞

P(U > k + 1)

P(U > k)
= 1.

The class of long-tailed distributions is denoted by L.

The following result is used to derive some of the asymptotic results presented in Section 3.3.

Proposition C.1 (Proposition A.1 in [42]) If Ue ∈ L, then for any h ∈ N, ℓ0 ∈ Z+ and ν = 0, 1, . . . , h−1,

1

E[U ]
lim
k→∞

∑∞
ℓ=ℓ0

P(U > k + ℓh+ ν)

P(Ue > k)
=

1

h
.

We now introduce the definition of the subexponential class.

Definition C.2 ([14, 17, 60]) A random variable U and its distribution are said to be subexponential if
P(U > k) > 0 for all k ∈ Z+ and

lim
k→∞

P(U1 + U2 > k)

P(U > k)
= 2.

The class of subexponential distributions is denoted by S .
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Remark C.1 It is known that S ! L. Furthermore, if Y ∈ L, then Y is heavy-tailed, i.e., limk→∞ eεkP(Y >

k) = ∞ for all ε > 0. For details, see [20]. In addition, there exists an example of not subexponential but
long-tailed distributions (see [53]).

The following is a discrete analog of class S∗ introduced by Klüppelberg [36].

Definition C.3 A random variable U and its distribution belong to class S∗ if P(U > k) > 0 for all k ∈ Z+

and

lim
k→∞

k∑

ℓ=0

P(U > k − ℓ)P(U > ℓ)

P(U > k)
= 2E[U ] < ∞. (C.1)

Proposition C.2 (Proposition A.2 in [42]) If Y ∈ S∗, then Y ∈ S and Ye ∈ S .

Proposition C.3 (Proposition A.3 in [42]) For di ∈ N (i = 0, 1, 2), let {P (k); k ∈ Z+} and {Q(k); k ∈
Z+} denote nonnegative d0 × d1 and d1 × d2 matrix sequences, respectively, such that P :=

∑∞
k=0P (k)

and Q :=
∑∞

k=0Q(k) are finite. Suppose that for some U ∈ S ,

lim
k→∞

P (k)

P(U > k)
= P̃ ≥ O, lim

k→∞

Q(k)

P(U > k)
= Q̃ ≥ O.

We then have

lim
k→∞

P ∗Q(k)

P(U > k)
= P̃Q+ PQ̃.

C.2 Locally subexponential class

We first introduce the locally long-tailed class, which is required by the definition of the locally subex-
ponential class.

Definition C.4 (Definition 1 in [8]) A random variable U and its distribution F are called locally long-
tailed with span h ∈ N ∪ {∞} if P(U ∈ k +∆h) > 0 for all sufficiently large k and

lim
k→∞

P(U ∈ k + 1 +∆h)

P(U ∈ k +∆h)
= 1.

We denote by Lloc(h) the class of locally long-tailed distributions with span h hereafter.

Remark C.2 By definition, Lloc(∞) = L. Furthermore, if U ∈ Lloc(1), then U ∈ Lloc(n) for all n =

2, 3, . . . and U ∈ L.

The following proposition is a locally asymptotic version of Proposition C.1.

Proposition C.4 If (i) U ∈ Lloc(1); or (ii) U ∈ L and {P(U = k)} is eventually nonincreasing, then for
any h ∈ N, ℓ0 ∈ Z+ and ν = 0, 1, . . . , h− 1,

lim
k→∞

∑∞
ℓ=ℓ0

P(U = k + ℓh+ ν)

P(U > k)
=

1

h
. (C.2)
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Proof. We assume that condition (i) holds. It follows from U ∈ Lloc(1) that for any ε > 0 there exists
k0 ∈ N such that for all k ≥ k0 and l ∈ Z+,

1− ε ≤ P(U = k + lh+ ν)

P(U = k + lh)
≤ 1 + ε, ν = 0, 1, . . . , h− 1.

Thus for all k ≥ k0, we have

1− ε ≤
∑∞

ℓ=ℓ0
P(U = k + ℓh+ ν)

∑∞
ℓ=ℓ0

P(U = k + ℓh)
≤ 1 + ε, ν = 0, 1, . . . , h− 1,

which leads to

lim
k→∞

∑∞
ℓ=ℓ0

P(U = k + ℓh+ ν)
∑∞

ℓ=ℓ0
P(U = k + ℓh)

= 1, ν = 0, 1, . . . , h− 1. (C.3)

Therefore (C.3) yields for ν = 0, 1, . . . , h− 1,

lim
k→∞

∑∞
ℓ=ℓ0

P(U = k + ℓh+ ν)

P(U > k + ℓ0h− 1)

= lim
k→∞

∑∞
ℓ=ℓ0

P(U = k + ℓh+ ν)
∑∞

m=ℓ0h
P(U = k +m)

= lim
k→∞

∑∞
ℓ=ℓ0

P(U = k + ℓh)
∑h−1

j=0

∑∞
ℓ=ℓ0

P(U = k + ℓh+ j)
·
∑∞

ℓ=ℓ0
P(U = k + ℓh+ ν)

∑∞
ℓ=ℓ0

P(U = k + ℓh)
=

1

h
. (C.4)

Note here that if U ∈ Lloc(1), then U ∈ L and thus limk→∞ P(U > k + ℓ0h − 1)/P(U > k) = 1. As a
result, (C.4) implies (C.2).

Next we assume that condition (ii) holds. It then follows that for all sufficiently large k,
∞∑

ℓ=ℓ0

P(U = k + ℓh) ≥
∞∑

ℓ=ℓ0

P(U = k + ℓh+ j), j ∈ Z+. (C.5)

Thus for any fixed (possibly negative) integer i,

lim
k→∞

P(U = k + ℓ0h+ i)

h
∑∞

ℓ=ℓ0
P(U = k + ℓh)

≤ lim
k→∞

P(U = k + ℓ0h+ i)
∑h−1

j=0

∑∞
ℓ=ℓ0

P(U = k + ℓh+ j)

= lim
k→∞

P(U > k + ℓ0h+ i− 1)− P(U > k + ℓ0h+ i)

P(U > k + ℓ0h− 1)
= 0,

which implies that

lim
k→∞

P(U = k + ℓ0h+ i)∑∞
ℓ=ℓ0

P(U = k + ℓh)
= 0. (C.6)

Furthermore, (C.5) yields for all sufficiently large k,

1 ≥
∑∞

ℓ=ℓ0
P(U = k + ℓh+ ν)

∑∞
ℓ=ℓ0

P(U = k + ℓh)

≥ 1− P(U = k + ℓ0h)∑∞
ℓ=ℓ0

P(U = k + ℓh)
, ν = 0, 1, . . . , h− 1,

from which and (C.6) it follows that (C.3) holds for ν = 0, 1, . . . , h − 1. Therefore we can prove (C.2) in
the same way as the case of condition (i). ✷
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Definition C.5 (Definition 2 in [8]) A random variable U and its distribution F are called locally subex-
ponential with span h ∈ N ∪ {∞} if U ∈ Lloc(h) and

lim
k→∞

P(U1 + U2 ∈ k +∆h)

P(U ∈ k +∆h)
= 2.

We denote by Sloc(h) the class of locally subexponential distributions with span h. Obviously, Sloc(∞)

is equivalent to (ordinal) subexponential class S (see Definition C.2). Furthermore, Definition C.5 shows
that Sloc(h) ⊂ Lloc(h).

Remark C.3 If U ∈ Sloc(h) for some h ∈ N, then U ∈ Sloc(nh) for all n ∈ N and U ∈ S (see Remark 2
in [8]).

Proposition C.5 U ∈ S∗ if and only if Ue ∈ Sloc(1).

Proof. The if-part is obvious. Indeed, since P(Ue = k) = P(U > k)/E[U ] for k ∈ Z+, it follows that if
Ue ∈ Sloc(1), then (C.1) holds, i.e., U ∈ S∗.

On the other hand, suppose (C.1) holds for h = 1. We then have

lim
k→∞

k∑

ℓ=0

P(Ue = k − ℓ)P(Ue = ℓ)

P(Ue = k)
= 2.

Furthermore, U ∈ S ⊂ L (see Proposition C.2) and thus

lim
k→∞

P(U > k + 1)

P(U > k)
= lim

k→∞

P(Ue = k + 1)

P(Ue = k)
= 1.

As a result, Ue ∈ Sloc(1). ✷

Proposition C.6 (Proposition 3 in [8]) Suppose U ∈ Sloc(h) for some h ∈ N ∪ {∞} and let U (j) (j ∈ N)
denote independent random variables in Z+ such that

lim
k→∞

P(U (j) ∈ k +∆h)

P(U ∈ k +∆h)
= cj ∈ R+.

We then have, for n ∈ N,

lim
k→∞

P(U (1) + U (2) + · · ·+ U (n) ∈ k +∆h)

P(U ∈ k +∆h)
=

n∑

j=1

cj .

Furthermore, if
∑n

j=1 cj > 0, then U (1) + U (2) + · · ·+ U (n) ∈ Sloc(h).

Proposition C.7 Let {F (k); k ∈ Z+} and {Fj(k); k ∈ Z+} (j = 1, 2, . . . ,m) denote probability mass
functions. If (i) F ∈ Sloc(1); and (ii) for j = 1, 2, . . . ,m,

lim
k→∞

Fj(k)

F (k)
= cj ∈ R+. (C.7)

then, for any ε > 0 there exists some Cε ∈ (0,∞) such that

F ∗n1
1 ∗ F ∗n2

2 ∗ · · · ∗ F ∗nm
m (k) ≤ Cε(1 + ε)n1+n2+···+nmF (k), (C.8)

for all k > sup{k ∈ Z+;F (k) = 0} and n1, n2, . . . , nm ∈ N.
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Proof. The techniques for the proof are based on Lemma 4.2 in [6] and Lemma 10 in [28], though some
modifications are required. For the reader’s convenience, we provide a complete proof of this proposition.

We first prove the statement under an additional condition that cj > 0 for all j = 1, 2, . . . ,m, and then
remove the condition.

Let C = max{1, c1, . . . , cm}, d0 = 1 and dj = cj/C ≤ 1 for j = 1, 2, . . . ,m. Let F0(k) (k ∈ Z+)
denote a probability mass function such that F0(k) = CF (k) for all sufficiently large k ≥ k0, where k0 is a
positive integer such that F (k) > 0 for all k ≥ k0 (see Definitions C.4 and C.5).

From (C.7), we have

lim
k→∞

Fj(k)

F0(k)
= dj ≤ 1, j = 0, 1, . . . ,m. (C.9)

Furthermore, since Fj ∈ Sloc(1) ⊂ Lloc(1) (see Proposition C.6),

lim
n→∞

lim
k→∞

∑n
ℓ=0 Fi(ℓ)Fj(k − ℓ)

Fj(k)
= lim

n→∞

n∑

ℓ=0

Fi(ℓ) = 1, (C.10)

lim
k→∞

Fi ∗ Fj(k)

F0(k)
= di + dj , (C.11)

for all i, j = 0, 1, . . . ,m. Thus any ε > 0, there exist some positive integers k′ and k′′ such that k′′ > 2k′ ≥
2k0, F0(k) = CF (k) ≤ 1 for all k ≥ k′ and for all i, j = 0, 1, . . . ,m,

F0(k + 1)

F0(k)
≥ 1− ε, ∀k ≥ k′, (C.12)

dj −
ε

8
≤ Fj(k)

F0(k)
≤ 1 +

ε

2
, ∀k ≥ k′, (C.13)

∑k′−1
ℓ=0 Fi(ℓ)Fj(k − ℓ)

Fj(k)
≥ 1− ε

8dj
, ∀k ≥ k′′, (C.14)

Fi ∗ Fj(k) ≤ (di + dj + ε/4)F0(k), ∀k ≥ k′′. (C.15)

Note here that (C.12), (C.13), (C.14) and (C.15) follow from F0 ∈ Lloc(1), (C.9), (C.10) and (C.11),
respectively.

We now show (C.8) for the convolution of two mass functions Fi and Fj (i, j = 0, 1, . . . ,m). Note that

Fi ∗ Fj(k) =
k−k′∑

ℓ=0

Fi(k − ℓ)Fj(ℓ) +
k′−1∑

ℓ=0

Fi(ℓ)Fj(k − ℓ). (C.16)

It then follows from (C.13), (C.14) and (C.15) that for k ≥ k′′ > 2k′,

k−k′∑

ℓ=0

Fi(k − ℓ)Fj(ℓ) = Fi ∗ Fj(k)−
k′−1∑

ℓ=0

Fi(ℓ)Fj(k − ℓ)

≤
(
di + dj +

ε

4

)
F0(k)−

(
1− ε

8dj

)
Fj(k)

≤
[(

di + dj +
ε

4

)
−
(
1− ε

8dj

)(
dj −

ε

8

)]
F0(k)

≤
(
di +

ε

2

)
F0(k) ≤

(
1 +

ε

2

)
CF (k), (C.17)
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where the last inequality is due to dj ≤ 1 and F0(k) = CF (k) for all k ≥ k′. Applying (C.17) to (C.16),
we have for k ≥ k′′ > 2k′,

Fi ∗ Fj(k) ≤
(
1 +

ε

2

)
CF (k) +

k′−1∑

ℓ=0

Fi(ℓ)Fj(k − ℓ)

≤
(
1 +

ε

2

)
CF (k) + sup

k−k′+1≤ℓ≤k
Fj(ℓ). (C.18)

Furthermore, for k ≥ k′′ > 2k′, k − k′ + 1 > k′ + 1 and thus (C.12) and (C.13) yield

sup
k−k′+1≤ℓ≤k

Fj(ℓ) ≤
(
1 +

ε

2

)
sup

k−k′+1≤ℓ≤k
F0(ℓ)

=
(
1 +

ε

2

)
sup

k−k′+1≤ℓ≤k

F0(ℓ)

F0(k)
· CF (k)

≤
(
1 +

ε

2

) 1

(1− ε)k′−1
· CF (k)

=
(
1 +

ε

2

)
C ′
ε · CF (k), k ≥ k′′ > 2k′, (C.19)

where C ′
ε = 1/(1− ε)k

′−1. Substituting (C.19) into (C.18), we obtain

Fi ∗ Fj(k) ≤
(
1 +

ε

2

) (
1 + C ′

ε

)
CF (k)

≤ (1 + ε) · 2C ′
εCF (k)

≤ 2C ′
ε · (1 + ε)2CF (k), k ≥ k′′, (C.20)

where we use C ′
ε ≥ 1. Note here that Fi ∗ Fj(k) ≤ 1 for all k ∈ Z+ and

sup
k0≤k≤k′′−1

F (k)/F (k′′) ∈ (0,∞).

Therefore there exists some C ′′
ε > 0 such that

Fi ∗ Fj(k) ≤ C ′′
ε
F (k)

F (k′′)

≤ C ′′
ε

CF (k′′)
· (1 + ε)2CF (k), k0 ≤ k ≤ k′′ − 1. (C.21)

We now define Kε as

Kε = max

(
2C ′

ε,
C ′′
ε

CF (k′′)
,

2 + ε

ε(1 + ε)2
C ′
ε

)
.

We then have the following inequality (which is used later).
(
1 +

ε

2

)
C ′
ε ≤ Kε(1 + ε)2

ε

2
. (C.22)

Furthermore, combining (C.20) and (C.21) leads to

Fi ∗ Fj(k) ≤ Kε(1 + ε)2CF (k), k ≥ k0. (C.23)
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Next we show (C.8) for the convolution of three mass functions Fi, Fj and Fν (i, j, ν = 0, 1, . . . ,m). It
follows from (C.23) and F0(k) = CF (k) for all k ≥ k′ that

Fi ∗ Fj(k) ≤ Kε(1 + ε)2F0(k), k ≥ k′.

From this and (C.19), we have for k ≥ k′′ > 2k′,

Fi ∗ Fj ∗ Fν(k)

=
k−k′∑

ℓ=0

Fi ∗ Fj(k − ℓ)Fν(ℓ) +
k′−1∑

ℓ=0

Fi ∗ Fj(ℓ)Fν(k − ℓ)

≤
k−k′∑

ℓ=0

Fi ∗ Fj(k − ℓ)Fν(ℓ) + sup
k−k′+1≤ℓ≤k

Fν(ℓ)

≤ Kε(1 + ε)2
k−k′∑

ℓ=0

F0(k − ℓ)Fν(ℓ) +
(
1 +

ε

2

)
C ′
εCF (k). (C.24)

Applying (C.17) and (C.22) to (C.24) yields for k ≥ k′′ > 2k′,

Fi ∗ Fj ∗ Fν(k)

≤ Kε(1 + ε)2
(
1 +

ε

2

)
CF (k) +Kε(1 + ε)2

ε

2
CF (k)

= Kε(1 + ε)2
(
1 +

ε

2
+
ε

2

)
CF (k)

= Kε(1 + ε)3CF (k).

Furthermore, using C ′′
ε > 0 such that (C.21) holds, we obtain

Fi ∗ Fj ∗ Fν(k) ≤ C ′′
ε
F (k)

F (k′′)

≤ C ′′
ε

CF (k′′)
· (1 + ε)3CF (k), k0 ≤ k ≤ k′′ − 1.

Therefore Fi ∗ Fj ∗ Fν(k) ≤ Kε(1 + ε)3CF (k) for k ≥ k0.
By repeating the above argument, we can prove that (C.8) holds under the additional condition that

cj > 0 for all j = 1, 2, . . . ,m. In what follows, we remove this condition.
Without loss of generality, we assume that cj = 0 for j = 1, 2, . . . ,m′ (1 ≤ m′ ≤ m) and cj > 0 for

j = m′ + 1,m′ + 2, . . . ,m. Thus, for any δ > 0, there exists some positive integer k∗ := k∗(δ) ≥ k0 such
that for all k ≥ k∗,

Fj(k) ≤ δF (k), j = 1, 2, . . . ,m′.

Let {F̃j(k); k ∈ Z+} (j = 1, 2, . . . ,m′) denote a probability mass function such that

F̃j(k) =

{
Fj(k)/Θj , k < k∗,

δF (k)/Θj , k ≥ k∗,
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86 Appendix C. Subexponential Distributions

where Θj := Θj(δ) =
∑k∗−1

k=0 Fj(k)+
∑∞

k=k∗ δF (k). It then follows that Fj(k) ≤ ΘjF̃j(k) for all k ∈ Z+

and j = 1, 2, . . . ,m′. Thus we have

F ∗n1
1 ∗ F ∗n2

2 ∗ · · · ∗ F ∗nm
m (k)

≤
m′∏

j=1

Θ
nj

j · F̃ ∗n1
1 ∗ · · · ∗ F̃ ∗nm′

m′ ∗ F ∗nm′+1

m′+1 ∗ · · · ∗ F ∗nm
m (k). (C.25)

By definition,

lim
k→∞

F̃j(k)

F (k)
=

δ

Θj
> 0, j = 1, 2, . . . ,m′.

Therefore for any ε > 0, there exists some Cε > 0 such that

F̃ ∗n1
1 ∗ · · · ∗ F̃ ∗nm′

m′ ∗ F ∗nm′+1

m′+1 ∗ · · · ∗ F ∗nm
m (k) ≤ Cε(1 + ε)n1+n2+···+nmF (k). (C.26)

Note here that limδ↓0Θj(δ) = 1 for all j = 1, 2, . . . ,m′. Substituting (C.26) into (C.25) and letting δ ↓ 0

yields (C.8). ✷

Proposition C.8 For di ∈ N (i = 0, 1, 2), let {P (k); k ∈ Z+} and {Q(k); k ∈ Z+} denote nonnegative
d0× d1 and d1× d2 matrix sequences, respectively, such that P :=

∑∞
k=0P (k) and Q :=

∑∞
k=0Q(k) are

finite. Suppose that for some U ∈ Sloc(1),

lim
k→∞

P (k)

P(U = k)
= P̃ ≥ O, lim

k→∞

Q(k)

P(U = k)
= Q̃ ≥ O.

We then have

lim
k→∞

P ∗Q(k)

P(U = k)
= P̃Q+ PQ̃.

Proof. This proposition can be proved in the same way as Proposition A.3 in [42], and thus the proof is
omitted. ✷

Proposition C.9 Let {W (k); k ∈ Z+} denote a sequence of (finite dimensional) nonnegative square matri-
ces such that

∑∞
n=0W

n = (I −W )−1 < ∞, where W =
∑∞

k=0W (k). If there exists some U ∈ Sloc(1)

such that

lim
k→∞

W (k)

P(U = k)
= W̃ ≥ O,

then

lim
k→∞

∑∞
n=0W

∗n(k)

P(U = k)
= (I −W )−1W̃ (I −W )−1.

Proof. Using Proposition C.8, we can readily prove, by induction, that

lim
k→∞

W ∗n(k)

P(U = k)
=

n−1∑

ℓ=0

W ℓW̃W n−ℓ−1. (C.27)

86



C.3. Examples of locally subexponential case 87

Furthermore, it follows from Proposition C.7 that for any ε > 0 there exist some k0 ∈ Z+ and some
Cε ∈ (0,∞) such that for all k ≥ k0 and n ∈ N,

[W ∗n(k)]i,j
P(U = k)

≤ Cε(1 + ε)n[W n]i,j .

Note here that sp(W ) < 1 and thus
∑∞

n=1(1 + ε)nW n < ∞ for any sufficiently small ε > 0. As a result,
using the dominated convergence theorem and (C.27), we obtain

lim
k→∞

∑∞
n=0W

∗n(k)

P(U = k)
= lim

k→∞

W ∗0(k)

P(U = k)
+

∞∑

n=1

lim
k→∞

W ∗n(k)

P(U = k)

=
∞∑

n=1

n−1∑

ℓ=0

W ℓW̃W n−ℓ−1

= (I −W )−1W̃ (I −W )−1.

✷

C.3 Examples of locally subexponential case

C.3.1 M/GI/1 queue with Pareto service-time distribution

We consider a stable M/GI/1 queue with a Pareto service-time distribution. Let λ denote the arrival rate
of customers. Let H denote the service time distribution, which is given by

H(x) = 1− (x+ 1)−γ , x ≥ 0,

with γ > 1 and γ ̸∈ N. Note here that the mean service time is equal to 1/(γ − 1) and thus the traffic
intensity, denoted by ρ, is equal to λ/(γ − 1) < 1. Let H̃(s) denote the Laplace-Stieltjes transform (LST)
of the service time distribution H . It then follows from Theorem 8.1.6 in [12] that

H̃(s) =

⌊γ⌋∑

j=0

hj
(−s)j

j!
− Γ(1− γ)sγ + o(sγ), (C.28)

where hj =
∫∞
0 xjdH(x) (j = 1, 2, . . . ), f(x) = o(g(x)) represents limx→0 f(x)/g(x) = 0 and Γ denotes

the Gamma function. Equation (C.28) yields

H̃(λ− λz) =

⌊γ⌋∑

j=0

hj
(−λ)j(1− z)j

j!
− Γ(1− γ)λγ(1− z)γ + o((1− z)γ). (C.29)

It is well-known that the stationary queue length distribution of the M/GI/1 queue, denoted by {x(k); k ∈
Z+}, is identical with the stationary distribution of the following stochastic matrix:

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

α(0) α(1) α(2) α(3) · · ·
α(0) α(1) α(2) α(3) · · ·
0 α(0) α(1) α(2) · · ·
0 0 α(0) α(1) · · ·
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,
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88 Appendix C. Subexponential Distributions

where {α(k); k ∈ Z+} satisfies
∑∞

k=0 z
kα(k) = H̃(λ− λz) and thus

∑∞
k=1 kα(k) = ρ.

Let α(k) =
∑∞

l=k+1 αl for k ∈ Z+. From (C.29), we then have
∞∑

k=0

zkα(k) =
1− H̃(λ− λz)

1− z

= −
⌊γ⌋∑

j=1

hj
(−λ)j(1− z)j−1

j!

+ Γ(1− γ)λγ(1− z)γ−1 + o((1− z)γ−1). (C.30)

Applying Lemma 5.3.2 in [65] to (C.29) and (C.30) yields

α(k)
k∼ γλγk−γ−1, (C.31)

α(k)
k∼ λγk−γ , (C.32)

where f(x) x∼ g(x) represents limx→∞ f(x)/g(x) = 1. Note that (C.31) shows that the discrete distribution
{α(k); k ∈ Z+} is in the class Lloc. In fact, as shown later, {α(k)} ∈ S∗, i.e., {αe(k)} ∈ Sloc(1), where
αe(k) = α(k)/ρ for k = 0, 1, . . . . Therefore it follows from Theorem 3.3 that

x(k)
k∼ ρ

1− ρ
· αe(k) =

ρ

1− ρ
· α(k)

ρ
k∼ λγ

1− ρ
k−γ .

In what follows, we prove that {α(k)} ∈ S∗, i.e.,

k∑

ℓ=0

α(ℓ)α(k − ℓ)
k∼ 2ρ · α(k).

Let ν := ν(k) denote an integer such that k/3 ≤ ν(k) < k/2. For k ∈ Z+, we have
k∑

ℓ=0

α(ℓ)α(k − ℓ)

α(k)
= 2

ν−1∑

ℓ=0

α(ℓ)
α(k − ℓ)

α(k)
+

k−ν∑

ℓ=ν

α(ℓ)
α(k − ℓ)

α(k)
. (C.33)

From (C.32), we obtain

lim
k→∞

ν−1∑

ℓ=0

α(ℓ)
α(k − ℓ)

α(k)
=

ν−1∑

ℓ=0

α(ℓ) lim
k→∞

α(k − ℓ)

α(k)
=

ν−1∑

ℓ=0

α(ℓ). (C.34)

Furthermore, it follows from (C.32) that for any ε > 0 there exists some k∗ ∈ Z+ such that for all k ≥ k∗/3,

1− ε <
α(k)

λγk−γ
< 1 + ε,

which implies that for k ≥ k∗ and k/3 ≤ ν < k/2,
k−ν∑

ℓ=ν

α(ℓ)
α(k − ℓ)

α(k)
≤ (1 + ε)2

1− ε

k−ν∑

ℓ=ν

λγℓ−γ

(
k − ℓ

k

)−γ

≤ (1 + ε)2

1− ε
λγ(k − 2ν + 1)ν−γ

(ν
k

)−γ

≤ (1 + ε)2

1− ε
λγk

(
k

3

)−γ

3γ

≤ (1 + ε)2

1− ε
(9λ)γk−γ+1 → 0, as k → ∞. (C.35)
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Finally, applying (C.34) and (C.35) to (C.33) and letting ν → ∞ yield

lim
k→∞

k∑

ℓ=0

α(ℓ)α(k − ℓ)

α(k)
= 2

∞∑

ℓ=0

α(ℓ) = 2ρ.

C.3.2 Discrete-time queue with disasters and Pareto-distributed batch arrivals

This section considers a discrete-time single-server queue with disasters and Pareto-distributed batch
arrivals. The time interval [n, n + 1) (n ∈ Z+) is called slot n. Customers and disasters can arrive at the
beginnings of respective slots, whereas departures of served customers can occur at the ends of respective
slots.

We assume that the numbers of customer arrivals in respective slots are independent and identically
distributed (i.i.d.) with a discrete Pareto distribution, β(k) = 1/(k + 1)γ − 1/(k + 2)γ (k ∈ Z+), where
γ > 1. Service times are i.i.d. with a geometric distribution with mean 1/(1 − q) (0 < q < 1). We also
assume that at most one disaster occurs at one slot with probability φ (0 < φ < 1), which are independent
of the arrival process of customers. If a disaster occurs in a slot, then both customers arriving in the slot and
all the ones in the system are removed.

Let Ln (n ∈ Z+) denote the number of customers at the middle of slot n. It then follows from Proposi-
tion 1.8 that {Ln;n ∈ Z+} is an ergodic Markov chain whose transition probability matrix is given by

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(0) b(1) b(2) b(3) b(4) · · ·
φ+ a(0) a(1) a(2) a(3) a(4) · · ·

φ a(0) a(1) a(2) a(3) · · ·
φ 0 a(0) a(1) a(2) · · ·

φ 0 0 a(0) a(1)
. . .

...
...

...
...

. . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

b(0) = φ+ (1− φ)β(0),

b(k) = (1− φ)β(k), k = 1, 2, . . . ,

a(0) = (1− φ)β(0)(1− q),

a(k) = (1− φ)[β(k − 1)q + β(k)(1− q)], k = 1, 2, . . . .

It is easy to see that
∑∞

k=0 a(k) = 1− φ < 1 and

lim
k→∞

a(k)

β(k)
= 1− φ, lim

k→∞

b(k)

β(k)
= 1− φ.

Note here that {β(k); k ∈ Z+} is decreasing and

β(k)
k∼ γk−γ−1.

Thus as in subsection C.3.1, we can show that {β(k); k ∈ Z+} ∈ Sloc(1). As a result, Theorem 3.5 yields

lim
n→∞

P(Ln = k)
k∼ 1− φ

φ
β(k)

k∼ 1− φ

φ
γk−γ−1.
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90 Appendix C. Subexponential Distributions

C.4 Related results on long-tailed distributions

In this subsection, we provide several results related to long-tailed distributions. These results are used
in deriving light-tailed asymptotic formulae in Chapter 2, more specifically, in the case where θ+ and θ−
do not exist (see e.g., Assumption 2.1). Proposition C.10 below is an extension of Lemma 10 of Jelenković
and Lazar [28]. The proposition can be proved by using the techniques presented in Jelenković and Lazar
[28] and Asmussen et al. [6] though many (minor) modifications are required. Thus, we provide a complete
proof of this proposition.

Proposition C.10 Let {F (k); k ∈ Z+} and {Fj(k); k ∈ Z+} (j = 1, 2, . . . ,m) denote probability mass
functions of random variables in Z+ such that

∑∞
k=0 γ

kF (k) and
∑∞

k=0 γ
kFj(k) are finite for some γ ≥ 1

and

lim
k→∞

F j(k)

γ−kF (k)
= cj ≥ 0, j = 1, 2, . . . ,m. (C.36)

If {F (k)} ∈ S and γ = 1, or if {F (k)} ∈ S∗ and γ > 1, then the following hold:

(a) For all n1, n2, . . . , nm ∈ N,

lim
k→∞

F ∗n1
1 ∗ F ∗n2

2 ∗ · · · ∗ F ∗nm
m (k)

γ−kF (k)
=

m∑

i=1

cini

(
F̂i(γ)

)ni−1 ∏

j=1,2,...,m
j ̸=i

(
F̂j(γ)

)nj

, (C.37)

where F̂i(z) =
∑∞

ℓ=0 z
ℓFi(ℓ) for i = 1, 2, . . . ,m.

(b) For any ε > 0, there exists some Cε ∈ (0,∞) such that

F ∗n1
1 ∗ F ∗n2

2 ∗ · · · ∗ F ∗nm
m (k) ≤ Cε(1 + ε)n1+n2+···+nmγ−kF (k), (C.38)

for all k ∈ Z+ and n1, n2, . . . , nm ∈ N.

Proof. The case where {F (k)} ∈ S and γ = 1 is equivalent to Lemma 10 of Jelenković and Lazar [28].
Therefore, we prove only the case where {F (k)} ∈ S∗ and γ > 1.

We first prove the statement (a). To this end, it suffices to show that

lim
k→∞

Fi ∗ Fj(k)

γ−kF (k)
= ciF̂j(γ) + cjF̂i(γ), i, j = 1, 2, . . . ,m. (C.39)

From (C.36), we have

lim
k→∞

Fi ∗ Fj(k)

γ−kF (k)
=

[
lim
k→∞

F i(k)

γ−kF (k)
+ lim

k→∞

k∑

ℓ=0

Fi(ℓ)F j(k − ℓ)

γ−kF (k)

]

=

[
ci + lim

k→∞

k∑

ℓ=0

Fi(ℓ)F j(k − ℓ)

γ−kF (k)

]
.

Therefore, (C.39) holds if

lim
k→∞

k∑

ℓ=0

Fi(ℓ)F j(k − ℓ)

γ−kF (k)
= ci(F̂j(γ)− 1) + cjF̂i(γ). (C.40)
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In what follows, we prove that (C.40) holds.
It follows from (C.36) and {F (k)} ∈ S∗ ⊂ L (see Definitions C.1 and C.3) that

lim
k→∞

Fi(k)

γ−kF (k)
= γ lim

k→∞

F i(k − 1)

γ−k+1F (k − 1)

F (k − 1)

F (k)
− lim

k→∞

F i(k)

γ−kF (k)

= (γ − 1)ci. (C.41)

Furthermore, (C.36) and (C.41) imply that for any ε > 0 there exists some k0 ∈ N such that for all
k ≥ k0 − 1,

cj − ε ≤ F j(k)

γ−kF (k)
≤ cj + ε, j = 1, 2, . . . ,m, (C.42)

(γ − 1)(ci − ε) ≤ Fi(k)

γ−kF (k)
≤ (γ − 1)(ci + ε), i = 1, 2, . . . ,m. (C.43)

We now fix k > 2k0 and decompose the term

k∑

ℓ=0

Fi(ℓ)F j(k − ℓ)

γ−kF (k)

as follows:
k∑

ℓ=0

Fi(ℓ)F j(k − ℓ)

γ−kF (k)
=

k0−1∑

ℓ=0

Fi(ℓ)F j(k − ℓ)

γ−kF (k)
+

k−k0∑

ℓ=k0

Fi(ℓ)F j(k − ℓ)

γ−kF (k)

+
k∑

ℓ=k−k0+1

Fi(ℓ)F j(k − ℓ)

γ−kF (k)
. (C.44)

From (C.36) and {F (k)} ∈ L, we have

lim
k0→∞

lim
k→∞

k0−1∑

ℓ=0

Fi(ℓ)F j(k − ℓ)

γ−kF (k)

= lim
k0→∞

k0−1∑

ℓ=0

γℓFi(ℓ) lim
k→∞

F j(k − ℓ)

γ−k+ℓF (k − ℓ)

F (k − ℓ)

F (k)

=
∞∑

ℓ=0

γℓcjFi(ℓ) = cjF̂i(γ). (C.45)

From (C.42) and (C.43), we also obtain

k−k0∑

ℓ=k0

Fi(ℓ)F j(k − ℓ)

γ−kF (k)
=

k−k0∑

ℓ=k0

Fi(ℓ)

γ−ℓF (ℓ)

F j(k − ℓ)

γ−k+ℓF (k − ℓ)

F (ℓ)F (k − ℓ)

F (k)

≤ (γ − 1)(ci + ε)(cj + ε)
k−k0∑

ℓ=k0

F (ℓ)F (k − ℓ)

F (k)
. (C.46)

Note here that
k∑

ℓ=0

F (ℓ)F (k − ℓ)

F (k)
= 2

k0−1∑

ℓ=0

F (ℓ)F (k − ℓ)

F (k)
+

k−k0∑

ℓ=k0

F (ℓ)F (k − ℓ)

F (k)
.
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Note also that since {F (k)} ∈ S∗ ⊂ L (see Definition C.3),

lim
k→∞

k∑

ℓ=0

F (ℓ)F (k − ℓ)

F (k)
= 2

∞∑

ℓ=0

F (ℓ),

lim
k0→∞

lim
k→∞

k0−1∑

ℓ=0

F (ℓ)F (k − ℓ)

F (k)
= lim

k0→∞

k0−1∑

ℓ=0

F (ℓ) =
∞∑

ℓ=0

F (ℓ).

Therefore, we have

lim
k0→∞

lim
k→∞

k−k0∑

ℓ=k0

F (ℓ)F (k − ℓ)

F (k)
= lim

k→∞

k∑

ℓ=0

F (ℓ)F (k − ℓ)

F (k)

− 2 lim
k0→∞

lim
k→∞

k0−1∑

ℓ=0

F (ℓ)F (k − ℓ)

F (k)

= 2
∞∑

ℓ=0

F (ℓ)− 2
∞∑

ℓ=0

F (ℓ) = 0.

Substituting this into (C.46) yields

lim
k0→∞

lim sup
k→∞

k−k0∑

ℓ=k0

Fi(ℓ)F j(k − ℓ)

γ−kF (k)
= 0. (C.47)

Furthermore, it follows from (C.43) that
k∑

ℓ=k−k0+1

Fi(ℓ)F j(k − ℓ)

γ−kF (k)
=

k∑

ℓ=k−k0+1

F (ℓ)

F (k)

F j(k − ℓ)

γ−k+ℓ

Fi(ℓ)

γ−ℓF (ℓ)

≤ (γ − 1)(ci + ε)
k∑

ℓ=k−k0+1

F (ℓ)

F (k)

F j(k − ℓ)

γ−k+ℓ

= (γ − 1)(ci + ε)
k0−1∑

ℓ=0

F (k − l)

F (k)
γℓF j(ℓ),

which leads to

lim
k0→∞

lim sup
k→∞

k∑

ℓ=k−k0+1

Fi(ℓ)F j(k − ℓ)

γ−kF (k)

≤ (γ − 1)(ci + ε) lim
k0→∞

k0−1∑

ℓ=0

lim sup
k→∞

F (k − ℓ)

F (k)
γℓF j(ℓ)

= (γ − 1)(ci + ε)
∞∑

ℓ=0

γℓF j(ℓ)

= (ci + ε)(F̂j(γ)− 1), (C.48)

where the second last equality follows from {F (k)} ∈ L; and the last one follows from
∑∞

ℓ=0 γ
ℓF j(ℓ) =

(F̂j(γ)− 1)/(γ − 1). Thus, combining (C.44) with (C.45), (C.47) and (C.48) and letting ε→ 0, we have

lim sup
k→∞

k∑

ℓ=0

Fi(ℓ)F j(k − ℓ)

γ−kF (k)
≤ ciF̂j(γ) + F̂i(γ)cj .
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Similarly, we can show that

lim inf
k→∞

k∑

ℓ=0

Fi(ℓ)F j(k − ℓ)

γ−kF (k)
≥ ciF̂j(γ) + F̂i(γ)cj .

As a result, we obtain (C.40).
We move on to the proof of the statement (b). For this purpose, we assume that cj > 0 for all j =

1, 2, . . . ,m (which is removed later). Let C = max{1, c1, . . . , cm}, d0 = 1 and dj = cj/C ≤ 1, for
j = 1, 2, . . . ,m. Let

F 0(k) = min(1, CF (k)), k ∈ Z+. (C.49)

From (C.36) and (C.49), we have

lim
k→∞

F j(k)

γ−kF 0(k)
= dj ≤ 1, j = 0, 1, . . . ,m, (C.50)

and thus, for i, j = 0, 1, . . . ,m and n ∈ Z+,

lim
k→∞

n∑

ℓ=0

F j(k − ℓ)Fi(ℓ)

F j(k)
=

n∑

ℓ=0

lim
k→∞

F j(k − ℓ)

γ−k+ℓF 0(k − ℓ)

γ−kF 0(k)

F j(k)

F 0(k − ℓ)

F 0(k)
γℓFi(ℓ)

= dj · d−1
j · 1 ·

n∑

ℓ=0

γℓFi(ℓ) =
n∑

ℓ=0

γℓFi(ℓ),

where we use {F0(k)} ∈ L in the first equality. The above equation leads to

lim
n→∞

lim
k→∞

n∑

ℓ=0

F j(k − ℓ)Fi(ℓ)

F j(k)
=

∞∑

ℓ=0

γℓFi(ℓ) = F̂i(γ) ≥ 1. (C.51)

Therefore, it follows from (C.49), (C.50), (C.51) and (C.39) that for any ε > 0 there exist some positive
integers k′ and k′′ > 2k′ such that

F 0(k) = CF (k) ≤ 1, k ≥ k′, (C.52)

and for all i, j = 0, 1, . . . ,m,

dj −
ε

8
≤ F j(k)

γ−kF 0(k)
≤ 1 +

ε

2
, k ≥ k′, (C.53)

k′−1∑

ℓ=0

F j(k − ℓ)Fi(ℓ)

F j(k)
≥ 1− ε

8dj
, k ≥ k′′, (C.54)

Fi ∗ Fj(k) ≤ (di + dj + ε/4)γ−kF 0(k), k ≥ k′′. (C.55)

Using the above inequalities (C.52)–(C.55), we first prove the statement (b) for the convolution of two
probability mass functions {Fi(k)} and {Fj(k)} (i, j ∈ {0, 1, . . . ,m}). From (C.53)–(C.55), we obtain for
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k ≥ k′′ > 2k′,

Fi ∗ Fj(k)−
k′∑

ℓ=0

Fi(ℓ)F j(k − ℓ)

≤
(
di + dj +

ε

4

)
γ−kF 0(k)−

(
1− ε

8dj

)
F j(k)

≤
[(

di + dj +
ε

4

)
−
(
1− ε

8dj

)(
dj −

ε

8

)]
γ−kF 0(k)

≤
(
di +

ε

2

)
γ−kF 0(k) ≤

(
1 +

ε

2

)
γ−kF 0(k), (C.56)

where the last inequality holds because dj ≤ 1 for j = 0, 1, . . . ,m. From (C.56), we have

Fi ∗ Fj(k) ≤
(
1 +

ε

2

)
γ−kF 0(k) +

k′∑

ℓ=0

Fi(ℓ)F j(k − ℓ)

≤
(
1 +

ε

2

)
γ−kF 0(k) +

k′∑

ℓ=0

Fi(ℓ)F j(k − k′)

≤
(
1 +

ε

2

)
γ−kF 0(k) + F j(k − k′), k ≥ k′′ > 2k′.

Applying (C.53) to the right hand side of the above inequality yields

Fi ∗ Fj(k) ≤
[(

1 +
ε

2

)
+
(
1 +

ε

2

)
γk

′ F 0(k − k′)

F 0(k)

]
γ−kF 0(k)

≤
(
1 + γk

′
sup
k≥k′′

F 0(k − k′)

F 0(k)

)(
1 +

ε

2

)
γ−kF 0(k), k ≥ k′′ > 2k′. (C.57)

Note here that since γ > 1 and {F0(k)} ∈ L,

1 ≤ C(1) := γk
′
sup
k≥k′′

F 0(k − k′)

F 0(k)
< ∞. (C.58)

Substituting this into (C.57), we obtain for k ≥ k′′,

Fi ∗ Fj(k) ≤ (1 + C(1))
(
1 +

ε

2

)
γ−kF 0(k)

≤ 2C(1)(1 + ε)2γ−kF 0(k)

= 2C(1)(1 + ε)2γ−kCF (k), (C.59)

where the last equality follows from (C.52). On the other hand, for k < k′′,

Fi ∗ Fj(k) ≤ 1 ≤ γ−kF (k)

γ−k′′F (k′′)
≤ 1

γ−k′′F (k′′)
· (1 + ε)2γ−kF (k). (C.60)

We now define Kε as

Kε = max

(
2C(1),

1

Cγ−k′′F (k′′)
,
2C(1)

ε

)
, (C.61)
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where we fix ε > 0 such that Kε ≥ 2C(1)/ε for later use. It follows from (C.59) and (C.60) that

Fi ∗ Fj(k) ≤ Kε(1 + ε)2γ−kCF (k), k ∈ Z+. (C.62)

The inequality (C.62) shows that the statement (b) holds for the convolution of two probability mass func-
tions {Fi(k)} and {Fj(k)} (i, j ∈ {0, 1, . . . ,m}).

We next consider the convolution of three probability mass functions {Fi(k)}, {Fj(k)} and {Fν(k)}
(i, j, ν ∈ {0, 1, . . . ,m}). Using (C.62), (C.49) and Fi ∗ Fj(k′) ≤ 1, we have for k ≥ k′′ > 2k′,

Fi ∗ Fj ∗ Fν(k)

=
k−k′∑

ℓ=0

Fi ∗ Fj(k − ℓ)Fν(ℓ) + Fi ∗ Fj(k
′)F ν(k − k′) +

k′∑

ℓ=0

Fi ∗ Fj(ℓ)F ν(k − ℓ)

≤
k−k′∑

ℓ=0

Fi ∗ Fj(k − ℓ)Fν(ℓ) + Fi ∗ Fj(k
′)F ν(k − k′) + F ν(k − k′)

≤ Kε(1 + ε)2
(

k−k′∑

ℓ=0

γ−k+ℓF 0(k − ℓ)Fν(ℓ) + γ−k′F 0(k
′)F ν(k − k′)

)
+ F ν(k − k′)

≤ Kε(1 + ε)2
(

k−k′∑

ℓ=0

F 0(k − ℓ)Fν(ℓ) + F 0(k
′)F ν(k − k′)

)
+ F ν(k − k′), (C.63)

where the last inequality holds because of γ ≥ 1. Note here that for k ∈ Z+,

Fi ∗ Fj(k) =
k−k′∑

ℓ=0

F i(k − ℓ)Fj(ℓ) +
k′∑

ℓ=0

Fi(ℓ)F j(k − ℓ) + F i(k
′)F j(k − k′),

from which and (C.56), we have for i, j ∈ {0, 1, . . . ,m},

k−k′∑

ℓ=0

F i(k − ℓ)Fj(ℓ) + F i(k
′)F j(k − k′)

= Fi ∗ Fj(k)−
k′∑

ℓ=0

Fi(ℓ)F j(k − ℓ)

≤
(
1 +

ε

2

)
γ−kF 0(k), k ≥ k′′ > 2k′. (C.64)

Applying (C.64) and (C.53) to (C.63), we obtain for k ≥ k′′ > 2k′,

Fi ∗ Fj ∗ Fν(k)

≤ Kε(1 + ε)2
(
1 +

ε

2

)
γ−kF 0(k) +

(
1 +

ε

2

)
γ−k+k′F 0(k − k′)

≤ Kε(1 + ε)2
(
1 +

ε

2

)
γ−kF 0(k) +

(
1 +

ε

2

)
C(1)γ−kF 0(k), (C.65)

where the second inequality follows from (C.58). Note here that since Kε ≥ 2C(1)/ε (due to (C.61)),
(
1 +

ε

2

)
C(1) ≤ (1 + ε)2C(1) ≤ Kε(1 + ε)2

ε

2
.
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Substituting this inequality and (C.49) into (C.65) leads to for k ≥ k′′,

Fi ∗ Fj ∗ Fν(k) ≤ Kε(1 + ε)2
(
1 +

ε

2
+
ε

2

)
γ−kF 0(k)

= Kε(1 + ε)3γ−kF 0(k)

= Kε(1 + ε)3γ−kCF (k).

Similarly to (C.60), we have for k < k′′,

Fi ∗ Fj ∗ Fν(k) ≤ 1 ≤ γ−kF (k)

γ−k′′F (k′′)
≤ 1

γ−k′′F (k′′)
(1 + ε)3γ−kF (k)

≤ Kε(1 + ε)3γ−kCF (k).

Therefore, the statement (b) holds for the convolution of three probability mass functions {Fi(k)}, {Fj(k)}
and {Fν(k)} (i, j, ν ∈ {0, 1, . . . ,m}). Recall that it is assumed in the above argument that cj > 0 for
all j = 1, 2, . . . ,m. Thus, by repeating the above argument, we can show that (C.38) holds under this
additional condition.

In what follows, we remove the additional condition, i.e., cj > 0 (j = 1, 2, . . . ,m). To this end,
without loss of generality, we assume that cj = 0 for j = 1, 2, . . . ,m′ (1 ≤ m′ ≤ m) and cj > 0 for
j = m′+1,m′+2, . . . ,m. Under this assumption, for any δ > 0 there exists some positive integer k∗ such
that for all k ≥ k∗,

F j(k) ≤ δγ−kF (k), j = 1, 2, . . . ,m′.

Thus, let {Hδ(k); k ∈ Z+} denote a probability mass function such that

Hδ(k) = min(1, δγ−kF (k)), k ∈ Z+.

We then have for j = 1, 2, . . . ,m′,

F j(k) ≤ Hδ(k), k ∈ Z+.

Therefore, we obtain

F ∗n1 ∗ F ∗n2 ∗ · · · ∗ F ∗nm(k)

≤ H
∗(n1+···+nm′ )
δ ∗ F ∗nm′+1

m′+1 ∗ · · · ∗ F ∗nm
m (k).

Note here that

lim
k→∞

Hδ(k)

γ−kF (k)
= δ > 0.

Note also that the statement (b) have been proved under the additional condition that cj > 0 for all j =

1, 2, . . . ,m. Therefore, for any ε > 0 there exists some Cε > 0 such that

H
∗(n1+···+nm′ )
δ ∗ F ∗nm′+1

m′+1 ∗ · · · ∗ F ∗nm
m (k)

≤ Cε(1 + ε)n1+n2+···+nmγ−kF (k).

We have completed the proof of the statement (b). ✷

Using Proposition C.10, we obtain the following proposition, which is an extension of Proposition C.3,
i.e., Proposition A.3 of Masuyama [42].
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Proposition C.11 Let {P (k); k ∈ Z+} and {Q(k); k ∈ Z+} denote nonnegative d0×d1 and d1×d2 matrix
sequences, respectively, such that P̂ (γ) and Q̂(γ) are finite for some γ ≥ 1, where P̂ (z) =

∑∞
k=0 z

kP (k)

and Q̂(z) =
∑∞

k=0 z
kQ(k). Suppose that for some random variable U in Z+,

lim
k→∞

P (k)

γ−kP(U > k)
= P̃ ≥ O, (C.66)

lim
k→∞

Q(k)

γ−kP(U > k)
= Q̃ ≥ O, (C.67)

where P̃ = Q̃ = O is allowed. If U ∈ S and γ = 1, or if U ∈ S∗ and γ > 1, then

lim
k→∞

P ∗Q(k)

γ−kP(U > k)
= P̃ Q̂(γ) + P̂ (γ)Q̃. (C.68)

Proof. Let D1 = {1, 2, . . . , d1} and D1(i, j) = {ν ∈ D1; [P̂ (1)]i,ν [Q̂(1)]ν,j > 0} for i ∈ {1, 2, . . . , d0}
and j ∈ {1, 2, . . . , d2}. In what follows, we fix i ∈ {1, 2, . . . , d0} and j ∈ {1, 2, . . . , d2} arbitrarily.

Let P (k) =
∑k

ℓ=0P (ℓ) for k ∈ Z+. We then have

P ∗Q(k) = P̂ (1)Q̂(1)−
k∑

ℓ=0

P (k − ℓ)Q(ℓ), k ∈ Z+,

and thus

[P ∗Q(k)]i,j =
∑

ν∈D1(i,j)

(
[P̂ (1)]i,ν [Q̂(1)]ν,j −

k∑

ℓ=0

[P (k − ℓ)]i,ν [Q(ℓ)]ν,j

)

=
∑

ν∈D1(i,j)

[P̂ (1)]i,ν [Q̂(1)]ν,j

(
1−

k∑

ℓ=0

[P (k − ℓ)]i,ν

[P̂ (1)]i,ν

[Q(ℓ)]ν,j

[Q̂(1)]ν,j

)
. (C.69)

We now define Pi,ν and Qν,j (ν ∈ D1(i, j)) as random variables in Z+ such that for all k ∈ Z+,

P(Pi,ν = k) =
[P (k)]i,ν

[P̂ (1)]i,ν
, P(Qν,j = k) =

[Q(k)]ν,j

[Q̂(1)]ν,j
.

Using these random variables, we rewrite (C.69) as

[P ∗Q(k)]i,j =
∑

ν∈D1(i,j)

[P̂ (1)]i,ν [Q̂(1)]ν,jP(Pi,ν +Qν,j > k). (C.70)

Note here that (C.66) and (C.67) imply that, for ν ∈ D1(i, j),

lim
k→∞

P(Pi,ν > k)

γ−kP(U > k)
=

[P̃ ]i,ν

[P̂ (1)]i,ν
, lim

k→∞

P(Qν,j > k)

γ−kP(U > k)
=

[Q̃]ν,j

[Q̂(1)]ν,j
. (C.71)

Note also that if [P̂ (1)]i,ν = 0 (resp. [Q̂(1)]ν,j = 0) then [P̃ ]i,ν = 0 (resp. [Q̃]ν,j = 0), and thus

[P̃ ]i,ν [Q̂(1)]ν,j + [P̂ (1)]i,ν [Q̃]ν,j = 0, ν ∈ D1\D1(i, j). (C.72)
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By applying Proposition C.10 (a) to (C.70) and using (C.71) and (C.72), we obtain

lim
k→∞

[P ∗Q(k)]i,j
γ−kP(U > k)

=
∑

ν∈D1(i,j)

[P̂ (1)]i,ν [Q̂(1)]ν,j

×
(

[P̃ ]i,ν

[P̂ (1)]i,ν

[Q̂(γ)]ν,j

[Q̂(1)]ν,j
+

[P̂ (γ)]i,ν

[P̂ (1)]i,ν

[Q̃]ν,j

[Q̂(1)]ν,j

)

=
∑

ν∈D1(i,j)

(
[P̃ ]i,ν [Q̂(γ)]ν,j + [P̂ (γ)]i,ν [Q̃]ν,j

)

=
∑

ν∈D1

(
[P̃ ]i,ν [Q̂(γ)]ν,j + [P̂ (γ)]i,ν [Q̃]ν,j

)
,

which leads to (C.68). ✷

From Propositions C.10 and C.11, we obtain the following result, which is an extension of Lemma 6 of
Jelenković and Lazar [28].

Proposition C.12 Let {W (k); k ∈ Z+} denote a nonnegative d×d matrix sequences such that δ(Ŵ (γ)) <

1 for some γ ≥ 1, where Ŵ (z) =
∑∞

k=0 z
kW (k). Suppose that, for some random variable U ∈ Z+,

lim
k→∞

W (k)

γ−kP(U > k)
= W̃ ≥ O. (C.73)

If U ∈ S and γ = 1, or if U ∈ S∗ and γ > 1, then

lim
k→∞

∑∞
n=0W

∗n(k)

γ−kP(U > k)
=
(
I − Ŵ (γ)

)−1
W̃
(
I − Ŵ (γ)

)−1
.

Proof. Using Proposition C.10 (b) and proceeding as in the proof of Lemma 3.4 of Masuyama et al. [45],
we can readily prove that for any ε > 0 there exists some Cε ∈ (0,∞) such that for all k ∈ Z+,

W n∗(k) ≤ Cε(1 + ε)nγ−kP(U > k)
(
Ŵ (γ)

)n
,

which yields for all sufficiently small ε > 0,
∑∞

n=0W
n∗(k)

γ−kP(U > k)
=

∞∑

n=0

W n∗(k)

γ−kP(U > k)
≤ Cε

∞∑

n=0

(1 + ε)n
(
Ŵ (γ)

)n

= Cε

[
I − (1 + ε)Ŵ (γ)

]−1
< ∞.

Therefore, using the dominated convergence theorem and Proposition C.11, we obtain

lim
k→∞

∑∞
n=0W

n∗(k)

γ−kP(U > k)
=

∞∑

n=0

lim
k→∞

W n∗(k)

γ−kP(U > k)

=
∞∑

n=1

n−1∑

ℓ=0

(
Ŵ (γ)

)ℓ
W̃
(
Ŵ (γ)

)n−ℓ−1

=
(
I − Ŵ (γ)

)−1
W̃
(
I − Ŵ (γ)

)−1
.

✷
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Appendix D

Continuity and Differentiability of
Eigenvalues and Eigenvectors

In this appendix, we summarize the basic results on the continuity and differentiability of the eigenvalues
and eigenvectors of matrix-valued functions. For this purpose, we define P ( · ) as an n× n matrix function
on R.

Proposition D.1 Suppose that, for some m ∈ N, P (ξ) is m-times differentiable with respect to ξ. If P (ξ0),
ξ0 ∈ R, has a simple eigenvalue λ0, then, in the neighbor of ξ = ξ0, P (ξ) has an m-times differentiable
eigenvalue λ(ξ), which is equal to λ0 at ξ = ξ0.

Remark D.1 Theorem 7 of Chapter 9 in [38] states the result on a special case where P (ξ) is once differ-
entiable at ξ = ξ0.

Proof. Let f(z, ξ) denote the characteristic polynomial of P (ξ), i.e.,

f(z, ξ) = det(zI − P (ξ)), z ∈ C, ξ ∈ R.

Clearly, f(z, ξ) is an nth-degree polynomial function of z and is m-times differentiable with respect to ξ.
Since λ0 is a simple eigenvalue of P (ξ0), we have

f(λ0, ξ0) = 0, lim
z→λ0

∂

∂z
f(z, ξ0) ̸= 0.

It thus follows from the implicit function theorem that there exists a neighborhood U of ξ0 and an m-times
differentiable function λ : U → V such that λ(ξ0) = λ0 and

f(z, ξ) = 0 if and only if z = λ(ξ) for all (z, ξ) ∈ (V, U),

which completes the proof. ✷

Proposition D.2 Suppose that, for some m ∈ N, P (ξ) is m-times differentiable with respect to ξ and has
an eigenvalue λ(ξ) in the domain U ⊆ R whose corresponding left and right eigenvectors ϕ(ξ) and h(ξ)

are normalized such that ϕ(ξ)e∗ = 1 and ϕ(ξ)h(ξ) = 1, where e∗ is an arbitrary n dimensional vector
whose elements satisfies |[e∗]j | = 1, j ∈ {1, . . . , N}. If λ(ξ) is a simple eigenvalue, then we can choose
ϕ(ξ) and h(ξ) so that they are m-times differentiable with respect to ξ in U .
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Proof. Let P−ii(ξ), i ∈ {1, 2, . . . , n}, denote an (n−1)× (n−1) matrix obtained by removing the ith row
and column of P (ξ). It then follows from Lemma 9 of Chapter 9 in [38] that there exists i0 ∈ {1, 2, . . . , n}
such that det(λ(ξ0)I − P−i0i0(ξ0)) ̸= 0 for any fixed ξ0 ∈ U . It also follows from Proposition D.1 that
det(λ(ξ)I − P−i0i0(ξ)) is continuous at ξ = ξ0. Thus, det(λ(ξ)I − P−i0i0(ξ)) ̸= 0 holds in some open
interval S ⊆ U including ξ0.

We now define ϕ−i(ξ) as the vector obtained by removing the ith element of ϕ(ξ). We also define
p−i(ξ) as the ith row vector of P (ξ) whose ith element is removed. We then have, for ξ ∈ S and i ∈
{1, . . . , n},

λ(ξ)ϕ−i(ξ) = ϕ−i(ξ)P−ii(ξ) + ϕi(ξ)p−i(ξ). (D.1)

It can be easily confirmed that ϕi0(ξ) ̸= 0 for ξ ∈ S . Indeed, if ϕi0(ξ) = 0, then (D.1) leads to

ϕ−i0(ξ)(λ(ξ)I − P−i0i0(ξ)) = 0.

Since det(λ(ξ)I−P−i0i0(ξ)) ̸= 0, the above equation implies thatϕ(ξ) = 0, which yields a contradiction.
As a result, ϕi0(ξ) ̸= 0 for ξ ∈ S. It thus follows from (D.1) that

ϕ−i0(ξ) = ϕi0(ξ)p−i0(ξ)(λ(ξ)I − P−i0i0(ξ))
−1. (D.2)

Therefore, by choosing ϕi0(ξ) as

ϕi0(ξ) =
1∑

j

[
p−i0(ξ)(λ(ξ)I − P−i0i0(ξ))

−1
]
j
[e∗]j + [e∗]i0

, (D.3)

ϕ(ξ) satisfies the normalized condition. Note that P−ii(ξ), p−i(ξ) and λ(ξ) are m-times differentiable in
the domain S due to Proposition D.1. Thus, (D.3) implies that ϕi0(ξ) is also m-times differentiable in the
same domain. Combining this with (D.2), it follows that ϕ(ξ) is m−differentiable in the domain S. Finally,
by applying the above argument to any ξ in U , we can choose am m-times differentiable eigenvector ϕ(ξ)
in the domain U .

Next, we prove that h(ξ) is m-times differentiable in the domain U . Similarly to the case of ϕ(ξ), we
have, for ξ ∈ S,

h−i0(ξ) = hi0(ξ)(λ(ξ)(I − P−i0i0(ξ))
−1q−i0(ξ), (D.4)

where h−i(ξ) and q−i(ξ) represent the vector obtained by removing the ith element of h(ξ) and the ith
column vector of P (ξ) whose ith element is removed. The normalized condition and (D.4) yield

hi0(ξ) =
1∑

j

[
(λ(ξ)I − P−i0i0(ξ))

−1q−i0(ξ)
]
j
[ϕ(ξ)]j + [ϕ(ξ)]i0

. (D.5)

Since P−ii(ξ), p−i(ξ), λ(ξ), and ϕ(ξ) are m-times differentiable in the domain S, (D.5) shows that hi0(ξ)
is also m-times differentiable in the same domain. Therefore, from (D.4), h(ξ) is also m-times differentiable
in the domain S. Finally, choosing any ξ in U completes the proof.
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