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Abstract

Uncertainty of fear conditioning is crucial for the acquisition and extinction of fear memory.
Fear memory acquired through partial pairings of a conditioned stimulus (CS) and an
unconditioned stimulus (US) is more resistant to extinction than that acquired through full
pairings; this effect is known as the partial reinforcement extinction effect (PREE). Although
the PREE has been explained by psychological theories, the neural mechanisms underlying
the PREE remain largely unclear. Here, we developed a neural circuit model based on
three distinct types of neurons (fear, persistent and extinction neurons) in the amygdala and
medial prefrontal cortex (mPFC). In the model, the fear, persistent and extinction neurons
encode predictions of net severity, of unconditioned stimulus (US) intensity, and of net
safety, respectively. Our simulation successfully reproduces the PREE. We revealed that
unpredictability of the US during extinction was represented by the combined responses of
the three types of neurons, which are critical for the PREE. In addition, we extended the
model to include amygdala subregions and the mPFC to address a recent finding that the
infralimbic cortex of the mPFC (IL) is required for consolidating extinction memory but not
for memory retrieval. Furthermore, model simulations led us to propose a novel procedure to
enhance extinction learning through re-conditioning with a stronger US; strengthened fear
memory up-regulates the extinction neuron which in turn, further inhibits the fear neuron
during re-extinction. Thus, our models increased the understanding of the functional roles of
the amygdala and IL in the processing of uncertainty in fear conditioning and extinction.





Chapter 1

Introduction



4 Introduction

How do we learn? We learn from experiences, which form memories. Then over time much
of these memories will be forgotten.

The process of forgetting is involved with all memories. It is the view of many theories
and models that forgetting is not simply a process of erasing memories, but another type of
learning process that inhibits old memories [1]. The rate at which memories are forgotten
varies greatly depending on the nature of the memories and is affected by a number of factors.
There is a well-known proverb that "Soon learn, soon forgotten", suggesting the hypothesis
that one factor affecting how quickly a memory is forgotten is the learning process itself.

In support of this hypothesis, we can point to a phenomenon in classical conditioning,
known as the "partial reinforcement learning affect" (PREE) [2–4]. Associative fear memory
acquired through partial reinforcement conditioning, where a conditional stimulus(CS) (such
as a sound tone) which is probabilistically paired with an unconditional stimulus(US) (such
as an electric shock) is more resistant to extinction (forgetting of conditioned fear memory of
CS) than those that are acquired through full reinforcement conditioning, in which the CSs
are always followed by a US. Therefore, by comparing the rate of memory extinction between
the partial reinforcement conditioning and full reinforcement regimes, we can deduce that
the uncertainty of CS-US pairing in the partial reinforcement is a key factor leading the
resistance to extinction of the conditioned fear memory, and causing the PREE.

Uncertainty is a ubiquitous and unavoidable factor in the learning process. Behavioral
studies on partial reinforcement fear conditioning have been conducted since the 1970s,
however for simplicity most of the neurophysiology research on fear conditioning up to now
either avoids the uncertainty of CS-US pairing in the conditioning paradigms, or has ignored
the effect of partial reinforcement on neural and behavioral performance. As a result, how
the brain processes the uncertainty in fear conditioning and generates PREE largely remains
unclear.

This thesis presents a computational model for explaining PREE, and reveals how the un-
certainty in associative fear learning affects the extinction process in terms of the interactions
of neural activities. I also extended this model to adapt to more complicated condition-
ing paradigms. The extended model captures the behavior of the additional conditioning
paradigms and also suggests a method to accomplish full extinction of the residual fear
memory after PREE.

1.1 Fear conditioning and extinction

The focus of my model is on fear conditioning which is a form of classical conditioning.
Classical conditioning is a type of associative learning famously pioneered by Ivan Pavlov
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in the 1920s [5], in which a subject learns the association between a neutral stimulus and
an reward/punishment stimulus. Fear conditioning is a subset of classical conditioning and
focuses on the neutral stimulus and punishment stimulus connection.

The process of fear conditioning is outlined here: A subject is presented with a neutral
stimulus (or conditional stimulus(CS)) followed by an aversive stimulus (or unconditional
stimulus(US)). This is repeated a number of times and the repetition results in the subject
learning the association between the CS-US pair. The result of this is that the subject will
express a fear response to the previously neutral stimulus. This part is referred to as the
acquisition phase (or conditioning phase) (see left panel in Fig. 1.1A). In general we can
identify the fear response through changes in behavior or neural activity of the subject. After
learning the association between the CS and US, and acquiring a fear response to the CS,
repeated presence of the CS without the US leads a decrease of the fear response to the CS,
this is referred to as the extinction phase (the right panel in Fig. 1.1A).

1.2 Extinction: Not unlearning but new learning

Extinction is not simply "erasing" or "unlearning" the CS-US association, but a newly learned
inhibition of a conditioned fear memory. Facts in support of this view are that:

• extinguished fear responses can spontaneously recover after a delay, known as sponta-
neous recovery [5–7];

• extinguished fear responses can reappear after presenting the US even without the CS.
Sudden application of the US can then provoke the fear response again, this is known
as reinstatement" [8, 9];

• extinguished fear responses in a context can recover if tested in a context different
from the one where extinction occurred, known as renewal [10, 11].

A key conclusion is that fear extinction creates a new "safe", inhibiting memory that
co-exists with the original fear memory. This conclusion has been very important to both
theories of classical conditioning and to its applications in behavioral therapy.

1.3 Partial reinforcement extinction effect

One of the first reports of the partial reinforcement effect is from Humphrey et al. [12] ’s
research on human eyeblink conditioning, in which a light signal is followed by an air puff
to the cornea. In his research, the subjects were divided into three groups: group I and group
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Fig. 1.1 Partial reinforcement extinction effect (PREE). (A, B) During fear conditioning, a
CS, e.g., a tone, is fully (in the full reinforcement schedule (A)) or partially (in the partial
reinforcement schedule (B)) followed by a US, e.g., electric foot shock (left panels). The
fear memory acquired in the fear conditioning can be extinguished by the extinction training,
during which the CSs are presented without the US (right panels). (C) Conditional responses
to the CS, which are usually measured as the degree of behavioral freezing responses, are
depicted during fear conditioning and extinction. The conditional fear memory, which can
be measured as the conditional response to the CS, acquired during a partial reinforcement
conditioning with P(US|CS) < 1 exhibits a resistance to extinction (PREE) (blue line),
comparing with that acquired during a partial reinforcement conditioning with P(US|CS) = 1
(black line).

III were given full reinforcement, i.e., all light signals were followed by an air puff to the
cornea, while group II was given 50% partial reinforcement, i.e., only 50% of the trials in
conditioning phase were reinforced by the air puff; the number of the CS-US pairs in group I
is twice as much as that in group II, which is the same as that in group III.

His result shows that there was no big difference in the conditioning responses acquired
in the conditioning trials of the three groups, but group II responded at a significantly higher
level after extinction trials than the other two groups.

This result indicates that in certain conditioning regimes less is more: fewer reinforce-
ments could result in an apparently more durable association.

Early research on PREE was mainly focused on examining the behavioral effects of
different patterns of reinforced (CS-US) and non-reinforced (CS-only) trials . During their
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studies, it was found that behaviors that are partially reinforced (Fig. 1.1B) are more resistant
to extinction than those reinforced every time (full reinforcement) (Fig. 1.1A) (see Fig. 1.1C).
This is found to be true regardless of the schedules used during the conditioning phase.

1.4 Neurophysiology background

The neural substrates associated with fear conditioning and extinction are the amygdala
and the medial prefrontal cortex (mPFC), respectively . The amygdala is a major region
for the acquisition and expression of fear memory [16–18]. In contrast, the mPFC plays
an important role in the extinction of fear memory [19–21]. Although both the amygdala
and mPFC function during partial reinforcement fear conditioning [22–27], their roles in the
PREE have seldom been examined [28]. Thus, the connection between the amygdala and
mPFC during PREE remains elusive.

1.4.1 Amygdala

The amygdalae are two regions of highly interconnected nuclei positioned in the temporal
lobes of the brain. There is one located in each hemisphere. The amygdalae are associated
with memory, emotional decision making, and fear response. Each amygdala is an almond
shaped assemblage of nuclei complexes, including the basolateral complex( BLA), which
consists of the lateral and the basal nuclei (LA and BA); the central nucleus (CEA), which
consists of the lateral and medial components (CEI and CEM); and the intercalated cell
masses (ITCs) [29]. These three components of the amygdala play a crucial role in processing
fear stimuli and responses, as well their inhibition.

The role each region plays in fear response is as follows: The LA receives sensory
information, including the CS and the US, from various sources such as thalamic and cortical
inputs. These signals are then passed to the CEA, which sends appropriate output signals to
other parts of the nervous system as a fear response. The LA also sends signals to the ITCs,
which in turn inhibits the fear response.

1.4.2 Medial Prefrontal Cortex

The medial prefrontal cortex (mPFC) is a region in the frontal lobe of the brain. It is associated
with decision making and memories, and is involved in the fear conditioning and extinction
circuits. In humans, the neural circuits underlying fear conditions and extinction in mPFC
encompass the dorsal anterior cingulate cortex (dACC) and the ventromedial prefrontal
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cortex(vMPFC), which have been proposed to regulate the expression and suppression of
fear, respectively [30].

The mPFC in rodents is split into three subdivisions: the anterior cingulate (ACC), the
prelimbic (PL) and the infralimbic cortexes (IL) [31]. The PL and the IL are involved
in the fear conditioning and extinction. They both receive excitatory inputs from BLA,
hippocampus and contralateral mPFC, and their output projects to the BLA and ITCs. The
PL is critical for expression of fear-related behavior, whereas, the IL is important for the
suppression of fear.

Common view of the IL function

The IL is widely considered to be a primary inhibition source to the fear memory because it
inhibits the amygdala through activating the GABAergic ITC [32, 33]. In fact, activation of
the IL leads to the suppression of CS-evoked fear memory [34, 35].

Revision of the IL function

Nevertheless, in a recent optogenetic study in rats [36] , it was shown that activating the
IL during extinction reduces fear expression and enhances extinction retrieval the next day,
indicating that the IL regulates fear suppression and influences the extent of retrieval, which
is consistent with the common view of the IL function; However, it was also shown that
silencing the IL during extinction and retrieval had no within-session effect, but silencing the
IL during extinction impaired retrieval the following day.

Taken together, the IL is necessary for the formation but not the expression of the
extinction memory, suggesting that inhibitory sources other than the IL could also suppress
the fear memory [36]. Thus, the functional role of the IL remains controversial.

1.4.3 Fear, extinction, persistent neurons

Recently, the electrophysiological properties of neurons in the amygdala and mPFC have
been extensively investigated; interestingly, three different types of neurons in BA have been
identified and have been shown to have the following basic properties [37]:

• ‘fear neurons’ exhibit CS-evoked activity (spike firing) after fear conditioning and
abolished activity after subsequent extinction.

• ‘persistent neurons’ also exhibit CS-evoked activity after fear conditioning but are
resistant to subsequent extinction and display sustained activity.
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• ‘extinction neurons’ are silent after fear conditioning but display CS-evoked activity
following extinction.

Neural populations that match the definitions of these three-types of neurons are not
localized to specific regions; instead, they are distributed over the amygdala and mPFC:
fear neurons have been found in the basal nuclei of the amygdala (BA) [38, 37], lateral
nuclei of the amygdala (LA) [37, 39–41] and central nuclei of the amygdala (CEA) [42] ;
persistent neurons have been found in the BA [38, 37] and LA [37, 40, 41]; and extinction
neurons have been found in the BA [38, 37], the group of intercalated cells (ITC) [42] and
the vmPFC [43–45].

The following questions arise: How do these three neural populations interact? Further-
more, how do their interactions process both CS and uncertainly generated US inputs during
partial reinforcement fear conditioning and generate an extinction-resistant fear response as
output?

1.5 Organization of this thesis

Based on these neural findings, this study sought a possible explanation of the PREE
by hypothesizing that a combination of fear, persistent and extinction neurons plays an
important role in creating the PREE. To test this hypothesis, I first introduce two classical
mathematical models of the classical conditioning (Chapter 2), and inspired by which, I
propose a mathematical model of a neural circuit based on three neural units with the basic
properties of the fear, persistent and extinction neurons (Chapter 3). I then present an
extension of the model providing a plausible explanation for the controversial role of the
mPFC in the formation of extinction memory (Chapter 4). I then made some interesting
predictions using the two neural circuit models (Chapter 5). A statistical inference model
also is proposed to apply to the PREE, and compared with the neural circuit models (Chapter
6). At the end, I conclude this dissertation with summarizing my proposals and comparing
with previous models (Chapter 7).





Chapter 2

Classical Models for Classical
Conditioning
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2.1 Framework of a model for conditioning

A learning theory should predict how the associations between CSs and USs change. Most
theories propose a simple linear relationship between CS processing and US processing for
determining the change in the associative strength, V:

∆V = (level of US processing )× (level of CS processing). (2.1)

In this chapter, I will introduce two famous classical models of the classical conditioning
using the framework above.

2.2 The Rescorla-Wagner model

The Rescorla-Wagner model is a mathematical model of classical conditioning, proposed
by Rescorla and Wagner in 1972 [46]. This model describes the amount of learning, the
trial-by-trial change of the associative strength (V) between a CS and a US, as a result
of a conditioning trial. The key point of this model is that the difference between the
expectation of the US and its actual value, the prediction error or surprise, drives learning.
This surprise can be positive, which drives excitatory learning, or negative, which drives
inhibitory learning.

When a trial does not match the expectation, learning will occur and the associative
strength will change. The change of the associative strength in the model is determined by

∆VX = αX β (λ −∑Vi), (2.2)

where ∆VX is the amount of learning (the change in the associative strength, which is also
the predictive value of the US, V) for input X . λ is the actual value of the US, usually set to
a value of 1 when the US is present, and 0 when it is absent, but a value other than 1 also
might be used if you want to model a larger or smaller US. ∑Vi is the sum of the predictive
values of the US based on each conditional stimulus, i.

2.2.1 Successes of the Rescorla-Wagner model

The Rescorla-Wagner model explains the basic acquisition and extinction behaviors. At
the beginning of an acquisition phase, the associative strength between a CS and a US
is weak, the predicted value of the US is small, which causes a big surprise when US is
encountered, and drives a quick learning of the CS-US association; Later in acquisition, as
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learning more and more about the CS-US association, the CS predicts a bigger value of
US, and the appearance of the US only causes a little, this drives slow learning. Eventually,
learning will stop when the CS predicts with certainty that the US will come. Similarly in
the extinction phase, the absence of the US results in a negative surprise in each trial, and
reduce the predictive value of the US [47].

The Rescorla-Wagner Model makes some unexpected predictions, and many of them
have been demonstrated in experiments. For instance,

• Blocking and Unblocking

When a well-established CS (CS1, conditioned by the US) and a novel stimulus (CS2)
are both paired with the US, the new learning on CS2 will be blocked, because CS1
itself has already completely predicted the US, and no new learning occurs on either
CS1 or CS2.

Unblocking the learning on CS2 can be achieved by pairing the well-established CS1
and the novel CS2 with a stronger US (US value bigger than 1), so that the unexpected
stronger US results in learning of both CS1 and CS2.

• Conditioned Inhibition

If a novel stimulus (CS2) is presented along with well-established CS (CS1), the
absence of the US results in a negative surprise, causing both the CS1 and CS2 reduce
their predictive value of the US (V). Because the initial V is 0, CS2 then predicts a
negative value of the US, becoming a conditioned inhibitor. Repeating the presentation
of CS1 with no US, the predictive value of CS2 reaches a V =−1, becoming a predictor
of the absence of the US.

• Protection from Extinction

If a well-established CS is presented without the US but with a well-established
conditioned inhibitor (CI), that is, a stimulus that predicts the absence of the US
(V =−1), the Rescorla-Wagner model predicts that the CS will not undergo extinction,
due to the lack of surprise, because the CI itself is enough to well predict the absence
of the US.

• Over Expectation

Suppose there are two CSs (CS1 and CS2) already conditioned with the same US
separately, and each by itself can fully predict the US, i.e., each with a V = 1. If the
two CSs are presented together, and paired with the original US, together they will
predict a V = 1+1 = 2, which over expects the actual value of the US, that is λ = 1.
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Here, the surprise will be negative, and will cause both of the two CSs’ predictive
values decline.

If the two CSs are presented along with a novel stimulus (CS3), and followed with the
original US, CS1 and CS2 together will predict a stronger US, giving rise to a negative
surprise to all the CSs including CS3. The predictive value V for CS1 and CS2 declines
on the basis of the negative surprise, while the predictive value V for CS3 goes from a
initial V = 0 to a V that is negative, which makes CS3 act as a conditioned inhibitor.

2.2.2 Limitations of the Rescorla-Wagner model

Although as we discussed above, the Rescorla-Wagner model successfully explains the
basic acquisition and extinction behaviors, and predicts some unexpected but experimentally
provable behaviors, there are still significant limitations of the model [47]. As we introduced
in the Chapter 1, extinction is not a simple reversal of the conditioned learning, but a
newly learned inhibition of the previously learned memory. In the Rescorla-Wagner model,
extinction is achieved by reducing the predictive value V, which cannot be recovered once
extinguished unless new conditioning is applied. Therefore, the Rescorla-Wagner model fails
in explaining the issues that related with the ’new learning’ feature of extinction.

• Spontaneous Recovery

Spontaneous recovery is a phenomenon that the conditioned response that is extin-
guished will recur when a CS is presented after a rest period.

The Rescorla-Wagner model explains extinction as a reduction of the predictive value
V of the CS, which makes V reduce to 0 after extinction. A rest period is incapable to
change the value of V, so that the CS no longer predict the US again.

• Rapid reacquisition

If a well-established CS has undergone extinction, pairing the CS again with the US
will result in the reacquisition of the conditioned response to the CS more rapidly than
the initial acquisition.

In the Rescorla-Wagner model, extinction makes V reduce to 0, so that the reacquisition
starts from V = 0 again, same as the initial condition of the original acquisition,
therefore, the reacquisition should proceed at the same rate as it did in the original
acquisition.

• Latent Inhibition
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If a CS has been presented alone prior to its pairing with a US, the acquisition of
the conditioned response to the CS will be slower than that without the CS-alone
presentation before conditioning. Hence, the CS that prior to the conditioning works
as a inhibitor to the subsequent conditioning.

However, according to the Rescorla-Wagner model, the CS presentation prior to
conditioning will not affect the changing rate of the predictive value V of the CS,
therefore, has no effect on the acquisition speed in the subsequent conditioning.

2.3 The TD model

The temporal-difference model (TD model) is an realtime extension of the Rescorla-Wagner
model, and is a reinforcement learning algorithm proposed by Sutton & Barton [48] in
artificial intelligence and robotics field for real-time learning.

The TD model utilizes the estimation of the value function (V) in the context of reinforce-
ment learning theory to represent learning amount, which is equivalent to the associative
strength in the Rescorla-Wagner model.

Vt(x) = wT
t x =

n

∑
i=1

wt(i)xt(i), (2.3)

where V is the value function, which is regarded as the US prediction in the TD model; w(i)
is a modifiable weight corresponding to x(i), the elements of the input stimulus.

Same as the Rescorla-Wagner model, the TD model achieves associative learning through
updating the weight w on the basis of the prediction error δ ,

∆wt = αδtet , (2.4)

where α is a learning-rate parameter and et is eligibility trace levels for each of the stimulus
elements, which is a term in the context of reinforcement learning theory, representing the
memory parameters associated with the event as eligible for undergoing learning changes.

2.3.1 Differences between the Rescorla-Wagner model and TD model

Compared with the Rescorla-Wagner model, applying the TD model to classical conditioning
problem has several key differences:

• Real-time prediction
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As opposed to the trial-by-trial calculation basis in the Rescorla-Wagner model, the TD
model is a realtime algorithm, it includes a time-step in the calculation, which allows
the model to predict the US in real-time, and deal with some effects of the CS-US
inter-stimulus interval in the conditioning [49].

• Representation of prediction error

In the Rescorla-Wagner model, the prediction error is represented by the difference
of the US prediction (associative strength) from the actual US value, while in the TD
model, prediction error δ is represented by

δt = rt + γVt(xt)−Vt(xt−1), (2.5)

where rt is the sum of the US intensity that associatived with all inputs xt ; Vt(xt) is the
new US prediction from the current time step t, γ is the discount factor, and Vt(xt−1) is
the old US prediction from the previous time step t −1. Note that, the US prediction
Vt(xt)does not refer to as the prediction of the next US occurrence, but actually as the
prediction of accumulative future punishments, with the discount rate γ .

So instead of comparing the US prediction directly with the US intensity in the
Rescorla-Wagner model, the TD model compares the US prediction with the sum of
the US intensity and an influence from the new prediction.

The prediction error δ can be alternatively interpreted as the difference between the
US intensity and the change in US prediction:

δt = rt − [Vt(xt−1)− γVt(xt)]. (2.6)

The prediction error is then used to update the weights w.

• Representation of the conditioned response

In the Rescorla-Wagner model, the US prediction, or associative strength, is directly
interpreted as the conditioned response. The TD model adopts a slightly more complex
response rule that only US prediction above a certain threshold can be used to generate
the conditioned response.

at = νat−1 +[Vt(xt)]θ , (2.7)

where at represents the conditioned response at time step t, ν is a small decay constant,
showing a small consistency with the previous conditioned response at−1, and θ is the
threshold for US prediction to be integrated with the conditioned response.
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2.3.2 Successes of the TD model

As a real-time model, the TD model learns whenever prediction does not match the actual
observation , capturing subtle differences that can make empirical predictions beyond the
possibility of the Rescorla-Wagner model.

The TD model is also able to capture subtle changes in inter-trial behaviours, such as the
inter-stimulus-interval dependency of the conditioning behaviors [50].

• Inter-stimulus-interval dependency: Delay conditioning

The inter-stimulus interval (ISI) is the temporal interval between the onset of the CS
and the onset of the US in one pairing of CS-US.

Based on the relationship between the timing of the CS offset and the timing of the US
onset, classical conditioning patterns fall into two categories: delay conditioning, in
which the offset of CS is the same time as the onset of the US, i.e., the CS duration
is equal to the ISI; and fixed-CS conditioning, in which the CS duration is fixed, and
independent of ISI.

The TD model successfully accounts for the empirical results that the effectiveness of
conditioning reduces as the ISI increases in delay conditioning. However, as shown
later, the TD model fails predict the inter-stimulus-interval dependency in the fixed-CS
conditions.

• Intratrial effects

One of the best-known demonstrations of the intratrial effects is an experiment by
Egger-Miller [1962] in which two overlapping CSs conditioned by a US, and ISI of
CS1 is longer than that of CS2 . Although CS2 is in a better temporal relationship with
the US, the presence of the CS1 reduces conditioning to CS2 as compared to controls
in which CS1 is absent.

The simulation using the TD model under the same conditions reproduces the empirical
results above.

• Second-order conditioning

The procedure of the second-order conditioning is similar to that of the conditional
inhibitor experiments discussed in the section of the Rescorla-Wagner model above,
in which a novel stimulus (CS2) and a well-established CS (CS1, conditioned by the
US) are presented without the US. As with the Rescorla-Wagner model, the TD model
predicts the negative association of CS2 and US.
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2.3.3 Limitations of the TD model

Although the TD model provide a real-time understanding of the classical conditioning,
there are also some limitations exist, including most of the phenomena under discrimination,
preexposure, and recovery [50, 49].

• Inter-stimulus-interval dependency: Fixed-CS conditioning

Fixed-CS conditioning includes trace conditioning, in which the ISI is greater than the
CS duration, but also includes shorter and backward intervals.

Empirically, backward conditioning (the US occurs before the CS) and simultaneous
conditioning (the CS and the US presented together) have occasionally been found to
produce weak inhibitory conditioning (associative strength is negative), but more often
they produce weak excitatory conditioning (associative strength is positive).

However, inconsistent with the empirical data, the TD model predicts strong inhibitory
conditioning whenever the CS and US overlaps in fixed-CS conditioning .

• Extinction issues

Same as the Rescorla-Wagner model, the lack of representation of the parallel extinc-
tion learning, the TD model fails in explaining these phenomenons that related with
the new learning feature of extinction, such as spontaneous recovery, reinstatement
and renewal.



Chapter 3

The Basic Neural Circuit Model
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3.1 Lessons from the previous models

As we discussed in Chapter 2, the Rescorla-Wagner model and the TD model cannot explain
PREE, because they cannot account for the key feature of extinction, that is, extinction is a
‘new learning’ of a inhibitory memory, paralleling the learning process of conditioned fear.

Both of the RW and TD models only contain one learning process, either going forward,
to increase the associative strength of the US prediction, representing the learning of the
conditioned fear, or going backward, to decrease the associative strength or the US prediction,
representing extinction. Therefore, the fear conditioning and extinction are not able to be
processed parallel in the RW and TD models. The learning process undergone previously
does not count for the following extinction speed, which makes whether the effect comes
from the full reinforcement or from the partial reinforcement can not be distinguished by the
models.

There are also many studies of neural-circuit-based models that addressed the ‘new
learning’ feature of the extinction. A representative work is done by Morén et. al. [51].
Although their model contains both the excitatory and inhibitory learning modules, which
allows the fear conditioning and extinction to be processed separately, it does not involve
another feature of the fear memory, that is, fear conditioning leaves a indelible trace of the
fear memory. In contrast, in Morén et. al.’s model, the inhibitory memory is kept by the
inhibitory learning module, while the fear memory can be erased by the inhibitory memory.
In partial reinforcement conditioning, the fear memory can be fully erased by the increasing
inhibitory learning from the no-US trials even before extinction phase begins.

Taking into consideration the successes and limitations of the previous models, a good
model of fear conditioning that is able to account for the partial reinforcement extinction
effect needs to include the following features:

• A representation of the conditioned fear response

• A storage that keeps the fear memory

• A parallel extinction process

The existence of the three types of the neurons in the amygdala just meet this requirements.
Therefore, the basic model is built on the basis of the three units, as discussed below.
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3.2 The basic neural circuit model

3.2.1 Components of the basic model

The basic neural circuit model consists of three units (Fig. 3.1): the fear neural unit (F),
which represents the population of the fear neurons in the amygdala; the persistent neural unit
(P), which represents the persistent neurons population in the amygdala; and the extinction
neural unit (E), which corresponds to the population of extinction neurons in the mPFC.

Note that, the extinction neurons are also interspersed in the amygdala, receiving input
from the extinction neurons in the mPFC. In other words, the extinction neurons in the mPFC
interact with the fear and persistent neurons in the amygdala via the extinction neurons in
the amygdala. In the basic model, the effect of the extinction neurons is equivalent to that
of those in the mPFC, thus the extinction neurons in the amygdala are assimilated into the
extinction neural unit.

Corresponding to their neural behaviors, the three neural units meet the requirement of a
good model we discussed above:

• Fear neural unit

Fear neurons are activated by the CS in the conditioning phase, and gradually become
silent in the extinction phase, which agrees with the conditional fear behavior [37],
indicating that fear neural unit is an appropriate candidate to represent the conditional
fear response.

• Persistent neural unit

Persistent neurons keep the activation to the CS acquired in the conditioning even
during the extinction phase [37], suggesting that the persistent neural unit stores the
short-term fear memory trace.

• Extinction neural unit

Extinction neurons are silent to the CS in the conditioning phase, but starts to be
activated by the CS during the extinction phase [37], indicating the extinction neural
unit undergoes inhibitory learning during the trials without the presentation of the US.

3.2.2 Two types of circuits

In the basic model, two types of circuits are composed by the three neural units, being
regulated by either neural activities or learning signals.
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Fig. 3.1 The basic neural circuit model. The basic model consists of the fear (F), persistent
(P) and extinction (E) neural units. The CS-related input activates all the neural units;
the activity of the fear neural unit determines the fear expression, and is inhibited by the
extinction neural unit (black lines) (equations (3.1-3.3)). The CS-related synaptic weights
of the fear, persistent and extinction neural units are mediated by the learning signals (blue
lines) (equations (3.4-3.6)).

Neural-activity-regulating circuit

In the neural-activity-regulating circuit, all three of the units are activated by the CS. The
fear neural unit, which represents the conditioned fear response [52], is inhibited by the
extinction neural unit (black line in Fig 3.1D). The activities of the three neural units at trial t
are described by:

• Fear neural unit (F)
F(t) = wFCS(t)−wF,EE(t), (3.1)

where wF denotes the synaptic weight of fear neural unit; wF,E is the inhibitory synapse
weight from the extinction to the fear neural unit.

The fear neural unit receives two inputs: the excitatory input CS, and the inhibitory
input from the extinction neural unit. It is activated by the CS according to wF , and
inhibited by the extinction neural unit according to wF,E .

• Persistent neural unit (P)
P(t) = wPCS(t), (3.2)
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where wP denotes the synaptic weight of the persistent neural unit.

The persistent unit receives the excitatory input from the CS, and conditionally responds
to the CS according to the synaptic weight wP .

• Extinction neural unit (E)
E(t) = wECS(t), (3.3)

where wE denotes the synaptic weight of the extinction neural unit.

The extinction unit is activated by the CS according to the synaptic weight wE .

Learning signal-regulating circuit

Learning in the basic model is accomplished through changing the synaptic weight, which
refers to the connection strength between the input from the presynaptic neuron and the
activity of postsynaptic neuron, playing a essential role in representing learning and memory.
Similar to the associative strength in the RW model and the US prediction in the TD model,
the synaptic weights are updated on the basis of the prediction errors, which are referred to
as learning signals to the corresponding neural units. Each neural unit represents a unique
prediction, forming a learning-signal-regulating circuit to drive the change of the synaptic
weight.

In the learning-signal-regulating circuit, the synaptic weights of the fear (wF ), persistent
(wP) and extinction (wE) neural units are updated after each the presentation of the CS-US
pairing trial-by-trial, according to the synaptic plasticity rules as follows:

• Fear neural unit
∆wF = αFCS(t)

[
US(t)−F(t)

]
+
, (3.4)

where αF is the learning rate of the fear neural unit; and the bracket []+ is a rectifier
that treats the negative values as zero, i.e., the learning rule does not take the negative
prediction errors into account.

The model assumes the activity of the fear neural unit predicts the US, i.e., the severity.
The prediction error of the severity is then represented by

[
US(t)−F(t)

]
+

, forming
the learning signal to drive the synaptic plasticity of the fear neural unit.

• Persistent neural unit

∆wP = αPCS(t)
[
US(t)−P(t)

]
+
, (3.5)

where the αP is the learning rate of the persistent neural unit.
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Table 3.1 Parameters using in the basic model

The persistent neural unit stores the fear memory trace, which also stores the intensity
of the US presentation. Therefore, the activity of the persistent neural unit can be
interpreted as the prediction of the US intensity, and the corresponding prediction error
is
[
US(t)−P(t)

]
+

, which forms the learning signal regulating the synaptic plasticity
of the synaptic weight wP.

• Extinction neural unit

∆wE = αECS(t)
[
F(t){P(t)−US(t)−E(t)}

]
+
, (3.6)

where the αE is the learning rate of the extinction neural unit.

The extinction neural unit inhibits the activity of the fear neural unit, comforting the
conditioned fear response, which indicates that the activity of the extinction neural unit
can be interpreted as the prediction of safety. The prediction error of the safety then is
described by

[
P(t)−US(t)−E(t)

]
+

.

3.3 Simulation result

3.3.1 Simulation conditions

To ensure that the chance to get reinforced by the US remains the same throughout , the
simulation fixes the numbers of trials that CS is followed by the US to 10 trials during
the full and partial reinforcement conditioning. In the full reinforcement conditioning , the
conditional probability P(US|CS) = 1, meaning all 10 trials in the conditioning are reinforced
by the US. In the partial reinforcement conditioning, I performed simulations on the scenario
where the conditional probability is P(US|CS) = 0.5, in which, the CS is followed by the US
in random half trials, and is presented alone in the rest trials.
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Both full and partial reinforcement conditioning are followed by an extinction phase with
20 trials without US presence. In the simulation, both CS and US are set to be 1 when present
is presented and 0 when absent. The parameters of the basic model used in simulation are
shown in Table 3.1.

3.3.2 Full reinforcement

In the simulation of the full reinforcement conditioning and the subsequent extinction (Fig.
3.2A), the CS-evoked activities of the fear, persistent and extinction neural units are consistent
with the respective properties of fear, persistent and extinction neurons in the amygdala (Fig.
3.2C) [28, 37, 42] . In addition, the activity of the fear neural unit well represented the
behavioral freezing rate as observed in fear conditioning and extinction [37]. Thus, the basic
model reproduced the behaviors of the fear, persistent and extinction neurons.

3.3.3 Partial reinforcement

In the partial reinforcement simulation (Fig. 3.2B), during the fear conditioning with partial
pairing of the US, the activity of the fear neural unit increased when the US was presented
and decreased when it was not (no-US), but the overall activity tended to increase; in contrast,
the activities of the persistent and extinction neural units increased only when US and no-
US were presented, respectively (Fig. 3.2D). During the subsequent extinction phase, we
observed the PREE (Fig. 3.2D): the activity of the fear neural unit slowly decreased with
residual activity, in contrast to what was observed in the full reinforcement case (Fig. 3.2C).
Residual neural firing has been consistently observed in the amygdala after the extinction
training of partially reinforced fear memory [28].

3.3.4 The role of the learning signals

What are the reasons for the difference between the extinction of the fear memory acquired
in full and partial reinforcement conditioning?

After full reinforcement conditioning, the CS-evoked activity of the fear and persistent
neural units converge at the peak of US prediction and intensity, respectively, i.e., E = 1,P =

1, whereas the extinction neural unit is still silent, i.e., E = 0 (Fig. 3.2C). Thus, the absence
of the US (no-US, US = 0) at the beginning of the extinction causes the maximal level of the
learning signal to the extinction neural unit, F(P−US−E), leading the extinction neural
unit to learn the extinction memory at a high rate.
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Fig. 3.2 Reproducing PREE using the basic model. Simulation results using the basic
model with full (P(US|CS) = 1) and partial reinforcement (P(US|CS) = 0.5) schedules are
presented in the left (A, C and E) and right (B, D and F) columns, respectively. (A, B) The
CS and US schedules during fear conditioning and extinction. Same number of the CS-US
pairings are presented in both the full (A) and partial reinforcement conditioning (B). (C, D)
The black, blue and red lines represent the activities of the fear, persistent and extinction
neural units, respectively. (E, F) The black, blue and red lines represent the CS-related
synaptic weights of the fear, persistent and extinction neural units, respectively. (G, H) The
black, blue and red lines represent the learning signals that regulate the CS-related synaptic
weights of the fear, persistent and extinction neural units, respectively. Note that overlapping
lines are changed to dashed lines to make them visible.

On the other hand, after partial reinforcement conditioning, although the CS-evoked
activity of the persistent neural units also reaches the US intensity, P = 1, the fear neural
activity cannot predict the definite appearance of the incoming US, F < 1, and the extinction
neural already shows a certain level of activity, E ≥ 0 (Fig. 3.2D). Thus, the US = 0 at the
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beginning of the extinction makes the learning signal to the extinction unit, F(P−US−E),
weaker than that in the extinction after full reinforcement conditioning, and causes the slower
extinction speed, giving rise to the PREE.

Therefore, the difference between the learning signals to extinction neural unit that are
regulated by the different process in the full and partial reinforcement conditioning causes
the partial reinforcement effect.

3.3.5 Inhibitory synapse weight wF,E

The strength of GABAA receptor-mediated inhibition in the BLA, which receives inputs from
the mPFC, controls extinction of conditioned fear memory [53].

There is a popular belief that the plasticity of brain mainly relies on the plasticity of
the glutamatergic excitatory synapses, whereas the GABAergic inhibitory synapses are
generally regarded as relatively invariant. Although some recent reports have demonstrated
the existence of the plasticity of the GABAergic synapses [54], in this model, I still assume
the plasticity of the inhibitory synapses to be negligible compared with the predominant
plasticity of the excitatory synapses in the fear conditioning.

Although the plasticity of the inhibitory synaptic is ignored in this model, the potency
of inhibition is still controllable by physiological properties of the GABAergic neurons and
synapses, as well as extracellular factors. Thus in the simulation, the inhibitory synapse
weight wF,E is set to be a constant (Table 3.1). To investigate how the inhibitory potency of
extinction to the fear neural unit affects PREE, wF,E also is manually modulated to represent
individual differences in physiological properties (Fig.3.3).

The simulation first demonstrates the ability of the inhibitory synapse weight from the
extinction neural unit to the fear neural unit in regulating the extinction after partial and full
reinforcement (Fig.3.3A, B).

The simulation also shows how the changes of the the inhibitory synapse weight wF,E

affects extinction: as wF,E increases, the time constant (Fig.3.3C) and the residual fear
memory (Fig.3.3D) of the extinction decreases.

Taken together, the simulation results indicate that the resistance to extinction is ag-
gravated as the inhibitory synapse weight wF,E decreases, and alleviated as wF,E increases.
Therefore, the inhibitory synapse weight from the extinction neural unit to the fear neural
uint plays a critical role on the PREE .
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Fig. 3.3 The inhibitory synaptic weight from the extinction to fear neural units affects PREE.
(A, B) The activity of the fear neural unit during the partial (P(US|CS) = 0.5) and full
reinforcement conditioning (P(US|CS) = 1) and subsequent extinction is shown with various
changes in wF,E . Note that αE is also changed accordingly so that αEwF,E = const.. (C)
The blue and red lines represent the time constant of extinction after the partial and full
reinforcement conditioning, respectively, with changes in wF,E . (D) The blue and red lines
indicate the final activity level of the fear neural unit after the extinction following the partial
and full reinforcement conditioning, respectively, with changes in wF,E .

3.3.6 Uncertainty affects PREE

To test how uncertainty affects PREE, I first evaluate the uncertainty in conditioning using
the Shannon entropy. The uncertainty of the next US is defined as the the Shannon entropy
of the probability distribution of the waiting time (number of trials: n ∈ {1,2, ...}) until the
next US observation,

P(n) = P(US = 1|CS = 1)(1−P(US = 1|CS = 1))n−1. (3.7)



3.3 Simulation result 29

Fig. 3.4 Uncertainty affects PREE in the basic model. (A) The black line represents the
uncertainty of the subsequent US occurrence varying the US probability. (B) The time
constant of the extinction, which is measured by the decline of the fear neural unit activity,
decreases as the US probability increases. (C)The final activity level of the fear neural unit
decreases as the US probability increases. (D)The learning signal to the extinction neural
unit increases as the US probability decreases.

Next, to evaluate the extinction behavior, I fit the activity of the fear neural unit to the
following function:

F = F0 +F1e−
t
τ . (3.8)

Here, I assume the probability distribution of the fear neural unit activity is belong to the
exponential family, based on a common view that the neural activity can be regarded as a
Poinsson process with variable means. And the time constant τ is referred to as the τ in the
equation above (equation (3.8)), and is used to measure the degree of increase/decline of
neural activities.

The simulation result first demonstrates that the uncertainty P(n) is a monotonic decreas-
ing function of the US probability P(US|CS) (Fig. 3.4A).

As US probability varies in the conditioning phase, both the time constant of the extinc-
tion, which is measured as the decline of the fear neural unit activity (Fig. 3.4B), and the
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final activity level of the fear neural unit (Fig. 3.4B), which represents the final level of fear
memory, decrease as the US probability increases, suggesting that the resistance to extinction
is alleviated by the increase of the US probability, i.e., the decrease of the uncertainty.

Finally, by investigating the changes of learning signals as the US probability varying, I
found that the learning signal to the extinction neural unit at the beginning of the extinction
increases as the US probability increases, indicating that the inhibitory potency of the
extinction to the fear neural unit also increases to make the PREE alleviated.

Taken together, the uncertainty of the US in the conditioning affects PREE by changing
the learning signal to the extinction neural unit.

3.4 Discussion

Extinction as inhibitory learning

It has been generally accepted that extinction is a form of inhibitory learning, which is
the opposite of an erasure or forgetting of fear memory [1]. In fact, extinguished fear
responses recover under various circumstances. For example, an extinguished fear response
spontaneously recovers after a long time, e.g. several days [6], and also reappears after
exposure to the US without the CS, known as reinstatement [9]. It has been reported that
extinction training could inhibited the fear response but could not erase the fear memory
in adult rat, although erasure of fear memory may occur during early stages of postnatal
development [55, 56]. Consistently, conditioned fear memory in our model was not erased
by a decrease in synaptic weights but was inhibited by extinction neurons.

Encoding

Recent physiological studies have identified neural populations with distinct firing charac-
teristics, such as fear, persistent and extinction neurons, in the amygdala [42, 38] . These
findings suggest that information processing in the amygdala may take place through these
neural populations. However, the computational role of each neural population in fear con-
ditioning and extinction has not been well studied. In this study, we presented the neural
implementation based on these neural populations and proposed the types of information
that are encoded and processed through interactions between these neural populations: the
fear, persistent, and extinction neurons encode the prediction of net severity, of US intensity
and of safety (no-US), respectively, and the weights of their synaptic inputs are modulated
by the corresponding prediction errors.
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Consistent with the persistent neurons in our model, a previous report showed that CS-
evoked activity of the (extinction-resistant) persistent neurons in the LA does not further
increase after reconditioning, suggesting that persistent neurons represent the memory of
the US intensity [40]. Consistent with the extinction neuron in our model, a human fMRI
study showed that the vmPFC uniquely encodes safety accompanied by the CS during extinc-
tion [24], suggesting that the CS synaptic input to the vmPFC could be plastically regulated
by prediction error of safety. This proposed encoding mechanism could be further validated
by experiments, such as electrophysiological recording of neural firing or the labeling of
cFos immunoreactivity during partial reinforcement fear conditioning and extinction.

Learning signals & neuromodulators

We can speculate that the learning signals in our model could be implemented through
neuromodulators such as: dopamine, serotonin, noradrenaline, acetylcholine, norepinephrine
and oxytocin [57] . In general, the release of neuromodulators is associated with particu-
lar mental states including:reward, positive and negative emotions, happiness, motivation,
attention and arousal [58]. Neuromodulators regulate neuronal firing and the quality of
synaptic plasticity [59]. In particular, dopamine has been extensively studies, and it is widely
accepted that dopamine release is a specific response to reward-related prediction error, i.e.,
the acquisition of a greater reward than expected [60, 61] and that dopamine release facilitates
the synaptic plasticity that underlies the association between sensory input (the CS) and
response (the US) [62, 63]. Based on these facts, reinforcement learning theory has suggested
that animals perform temporal difference (TD) learning [64, 49] because the basal ganglia,
which is involved in decision making, receives dense axonal projections from the VTA and
exhibits dopamine-dependent plasticity of synaptic inputs from the cortex [65]. However, it
has been known that dopaminergic neurons show firing responses not only to rewards but
also to aversive stimuli [66] and, moreover, show diverse firing patterns that may encode
prediction errors of other valences [67, 68]. In addition, the VTA was recently suggested to
be composed of anatomically and functionally heterogeneous dopaminergic neurons whose
axons project to different regions, including the amygdala and mPFC [69] . Taken together,
dopamine signals to different neural populations may represent different meanings, such as
the prediction error of net severity, of US intensity and of safety, as assumed in our model.
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The Extended Neural Circuit Model
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4.1 Background

A brain subdivision that plays the same function as the extinction neural unit, being an
inhibition source of the fear memory, is the infralimbic (IL) subregion of mPFC [37, 70],
whose CS-evoked activity increases during fear extinction training, and activation of IL
during extinction facilitates extinction of fear responses [44, 45].

In a recent optogenetic study in rats [36] , it was shown that activating the IL during
extinction reduces fear expression and enhances extinction retrieval the next day, indicating
that the IL regulates fear suppression and influences the extent of retrieval, which is consistent
with the common view of the IL function; However, it was also shown that silencing the
IL during extinction and retrieval had no within-session effect, but silencing the IL during
extinction impaired retrieval the following day.

4.2 The extended neural circuit model

The result that activation of the IL enhances extinction formation and retrieval suggests that
the IL plays a role in fear suppression, i.e., the IL can be interpreted as the extinction neural
unit in the basic model; But silencing the IL has no within-session effect during extinction
and retrieval indicating fear expression must be inhibited by an another fear suppression
substrate besides the IL. i.e., another extinction neural unit should be included in the model.

The immediate enhanced fear extinction when activating the IL during extinction and
the delayed effect of silencing the IL during extinction on retrieval the next day suggests
multiple timescales of synaptic plasticity exist in the new extinction neural unit.

Therefore, the basic model needs to be extended by introducing two features: another
extinction neural unit and multiple timescales of synaptic plasticity.

4.2.1 Another extinction neural unit

As we discussed above, besides keeping the fear and persistent neural units in the basic
model, the extended neural circuit model needs to include two extinction neural units. the
infralimbic (IL) subregion of mPFC can be regarded as one of the extinction neural unit in
the extended model.

A candidate of the second extinction neural unit is the intercalated (ITC) cells in the
amygdala, located between the basolateral (BLA) and central nuclei (CEA) of the amygdala.
ITC consists of a group of GABAergic neurons, receiving inputs from the IL , and projecting
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Fig. 4.1 The extended neural circuit model. Extended model includes subregions of the
amygdala (the LA, CEA and ITC), as well as the IL in the mPFC. In this model, the LA
and CEA correspond to the persistent and fear neural units, respectively, and the ITC and IL
correspond to two extinction neural units. The CS input activates all the neural units; the IL
sends excitatory input to the ITC, and the activation of the ITC inhibits the CEA (black lines)
(equations (4.1-4.4)). Activity of the CEA determines the behavioral fear expression. The
weights of the plastic synapses (black open circles) are modulated according to their learning
signals (blue lines) (equations (4.5-4.9)).

to the BLA and CEA to suppress fear expression [71, 72]. Thus, the ITC can be considered
as another extinction neural unit in the extended model.

Corresponding the rest of the neural units in the model to the brain subdivisions, fear
neural unit can be compared to the CEA, due to the CEA’s role in determining fear expression;
and the persistent neural unit can be compared to the LA, due to the fact that persistent-firing
neurons are found in the LA [73].

In the extended model, the LA, i.e., the persistent neural unit (P), is activated by the
CS input, as well as the rest neural units in the model; the activity of the CEA, i.e., fear
neural unit (F), is directly inhibited by the ITC, i.e., one of the extinction units (E2), which
is regulated by the IL, i.e., the other extinction unit (E1), due to the fact that the IL sends
projections to the ITC, then transfers to the fear and persistent neurons in the BA,

Thus, the neural-activity-regulating circuit ( black lines in the Fig. 4.1) in the extended
model can be described as follows:

F(t) = wF(t)CS(t)−wF,E2E2(t), (4.1)
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P(t) = wP(t)CS(t), (4.2)

E1(t) = wE1(t)CS(t), (4.3)

E2(t) = wE2(t)CS(t)+wE2,E1E1(t), (4.4)

where wF ,wP,wE1,andwE2 indicate the activity-dependent plastic synaptic weights of the
CEA, LA, IL and ITC, respectively; wF,E2 indicates the constant inhibitory synapse weight
of the ITC onto CEA; and wE2,E1 indicates the constant synaptic weight projected from the
IL to ITC.

4.2.2 Multiple timescales of synaptic plasticity

Same as the basic model, the synaptic weights of the CEA, LA and IL are modified by the
learning-signal-regulating circuit (blue lines in the Fig. 4.1)according to the Rescorla-Wagner
rule:

∆wF = αFCS(t)
[
US(t)−F(t)

]
+
, (4.5)

∆wP = αPCS(t)
[
US(t)−P(t)

]
+
, (4.6)

∆wE1 = αE1CS(t)
[
F(t){P(t)−US(t)−E1(t)}

]
+
, (4.7)

where αF ,αP, and αE1 indicate the learning rates of the CEA (F), LA(P) and IL(E1),
respectively; contents in the brackets

[]
+

indicate the learning signals to the corresponding
neural units.

As for the ITC (E2), two different timescales are necessary to be introduced to the ITC
(E2) to describe the early- and late-phase plasticities [74, 75] :

∆wE2(t) = αE2CS(t)
[
F(t){P(t)−US(t)−E2(t)}

]
+
−βE2(wE2 −w∞

E2), (4.8)

where the first term represents the dynamics of the early-phase plasticity, and the second term
indicates the late-phase dynamics; αE2 indicates the learning rates of the ITC in the early-
phase plasticity; −βE2 indicates the the relaxation rate of wE2 in the late-phase plasticity;
w∞

E2 indicates the capacity of the weight wE2, whose dynamics is described as follows:

∆w∞
E2 = α

∞
E2CS(t)E1(t)−β

∞
E2(wE2(t)−w∞

E2(t)), (4.9)

where α∞
E2 indicates the learning rates of the ITC in the late-phase plasticity; β ∞

E2 indicates
the the relaxation rate of w∞

E2 .
According to eqs (4.8) and (4.9), wE2 is consolidated to w∞

E2, and w∞
E2 is also relaxed to

wE2 depending on the IL activity, E1(t).
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Table 4.1 Parameters using in the extended model

4.3 Simulation results

4.3.1 Simulation conditions

Two simulations are implemented in this section.
First, the results of silencing the IL during extinction and retrieval is simulated, in which,

the fear conditioning employs the full reinforcement conditioning paradigm (CS-US) for
10 trials, followed by 20 CS-only trials for extinction, and a long resting phase (1 day;
approximately represented by 100 trials in simulation) with the absence of both the CS
and US, then at the end, 10 CS-only trials are presented to test the retrieval of the fear and
extinction memories.

The partial reinforcement extinction effect is also simulated using the exactly same setting
as that used in the basic model simulations in Chapter 3.

The parameters of the extended model used in the simulations are shown in Table 4.1.

4.3.2 Effects of silencing IL during extinction and retrieval

The extended model consistently reproduced the experimental results observed when activat-
ing and silencing of the IL during extinction and retrieval (Fig. 4.2C-F).

This extended model first shows the essential behaviors of the acquisition and extinction
of fear memory through full reinforcement conditioning paradigm (Fig. 4.2B). At the retrieval
of the extinction memory after the resting phase, spontaneous recovery of the fear memory
occurred to a small extent, as commonly observed after long intervals [5, 7]. This is because



38 The Extended Neural Circuit Model

Fig. 4.2 Effects of activation and silencing the IL using the extended model. (A) The CS and
US schedules; the presentation of the CS and US in the conditioning and extinction phases
accords with the full reinforcement conditioning schedule, which is the same as those used
in the basic model (Fig. 3.2A); followings are the resting phase, during which both the CS
and the US are absent, and the retrieval phase, during which only the unreinforced CSs are
presented to test the retrieval of the extinction memory. (B-F) Simulated neural activity of the
CEA (black lines), LA (blue lines), IL (green lines) and ITC (red lines) using the extended
model for the control condition (B), IL activation during extinction (C), IL activation during
retrieval (D), IL silencing during extinction (E) and IL silencing during retrieval (F). The
blue, green, red and black lines indicate the activity of the LA (persistent neural unit), IL
(extinction neural unit), ITC (another group of extinction neural unit) and CEA (fear neural
unit), respectively. Note that the dashed lines are used to represent overlaps to keep all the
results visible. The synaptic weights of each neural unit are shown in Fig. 4.3.

.

during the resting phase, the synaptic weight to the ITC, wE2, settled down to the weight
capacity, w∞

E2 , due to the slow dynamics of the late-phase LTP.
Activation of the IL during both extinction (Fig. 4.2C) and retrieval (Fig. 4.2D) reduces

the within-session fear expression, and the IL activation during extinction also facilitated the
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Fig. 4.3 Changes in the synaptic weights in Fig. 4.2. (A) The CS and US schedules, same as
Fig. 4.2A. (B-F) The blue, green, black lines represent the CS-related synaptic weight of the
LA, IL and CEA, respectively; the red and gray lines represent CS-related synaptic weights
of the ITC regulated by the early- and late-phase plasticity, respectively.

subsequent consolidation of the extinction memory, impairing the following retrieval of the
fear memory in the next day (Fig. 4.2C).

Silencing the IL during both extinction (Fig. 4.2E) and retrieval (Fig. 4.2F) has no effect
on the within-session extinction behavior. However, silencing the IL during extinction causes
the absence of the consolidation of the extinction memory during the resting phase, leading
to a significant recovery of the fear memory (Fig. 4.2E).

The simulation results are consistent with recent optogenetic studies [36, 76], and also
suggest that extinction learning is regulated by separate multiple timescales synaptic plasticity
mechanisms consisting of fast early-phase memory formation that is independent of the IL
and slow late-phase memory consolidation that depends on the IL, as assumed in our model.
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Fig. 4.4 Reproducing PREE using the extended model. Simulation results using the extended
model with full and partial reinforcement schedules are presented in the left (A, C and E) and
right (B, D and F) columns, respectively. (A, B) US schedules during fear conditioning and
extinction, same as those settings in Fig. 3.2A, B. (C, D) The blue, green, red and black lines
represent the activities of the LA (persistent neural unit), IL (extinction neural unit), ITC
(another group of extinction neural unit) and CEA (fear neural unit), respectively. (E, F) The
blue, green, red and black lines represent the learning signals that regulate the CS-related
synaptic weights of the LA, IL, ITC and CEA, respectively.

4.3.3 Partial reinforcement extinction effect

Consistent with the basic model, the extended model also reproduces the resistant to extinction
after the partial reinforcement conditioning (Fig. 4.4).

To compare with the basic model, in the simulation, the same conditioning schedules
with full and partial reinforcement and the model parameters are adopted in the simulation.
Without a long resting time, the ITC is mainly mediated by the early-phase plasticity rule.
Therefore, the degree of the PREE generated by the extinction model are quite similar to the
basic model results.
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4.4 Discussion

Early- and late-phase plasticity

What are the molecular substrates of early- and late-phase plasticity?
The early-phase long-term potentiation (LTP) is regulated by Ca2+ signaling-regulated

phosphorylation of AMPA-R on endosomes, which induces the exocytosis and membrane
accumulation of AMPA-R [77]. In contrast, late-phase LTP is thought to be regulated by gene
expression with slow dynamics, in which proteins are newly synthesized in the soma, actively
transported to spines and inserted into the postsynaptic density (PSD) [78, 79] . Thus, wE2

and w∞
E2 in equations correspond to the total number of AMPA-Rs on membrane and the size

of PSD, i.e., AMPA-R capacity, respectively. Then, each term in equations (4.8, 4.9) can be
interpreted as the following biological processes: The first term in equation (4.8) represents
the early-phase LTP, i.e., an increase in the total AMPA-Rs, regulated by the learning signal.
The first term in equation (4.9) represents an increase in the AMPA-R capacity, regulated by
the IL. The second term in equation (4.8) represents spontaneous cycling (i.e., exocytosis and
endocytosis) of the total AMPA-Rs, converging to the AMPA-R capacity. The second term
in equation (4.9) represents spontaneous cycling of the AMPA-R capacity (i.e., synthesis and
degradation of proteins in the PSD) depending on the total AMPA-Rs.





Chapter 5

Model Prediction
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Fig. 5.1 Shock procedure using the basic model. (A, B) The CS and US schedules; a paradigm
of partial reinforcement conditioning and extinction is first presented, the schedule of which
is set the same as those used in the PREE simulations using the basic and extended model,
Fig. 3.2A and 4.4A; following is an additional presentation of the CS, reinforced by a three
times stronger US (A) and a US with original intensity (B), and another extinction phase. (C,
D) The black, red and blue lines represent the activities of the fear, persistent and extinction
neural units, respectively. (E, F) The black, red and blue lines represent the learning signals
to the fear, persistent and extinction neural units, respectively. (G) The final neural activity
level of the fear neural unit after re-extinction training is mediated by the intensity of the US
used to reinforce the additional CS in the shock procedure.

5.1 Shock procedure extinguishes residual fear memory suf-
fers PREE

The resistance to extinction after partial reinforcement conditioning leaves certain level of
residual fear memory. To fully extinguish the fear memory that undergoes PREE, I propose a
shock procedure following the partial reinforcement conditioning and extinction.

Extinguishing the fear memory needs to strengthen the extinction memory, which is
regulated by the learning signal to the extinction neural uint,

[
F(t){P(t)−US(t)−E(t)}

]
+

.
We therefore need to find a way to increase the learning signal. A bigger learning signal
to the extinction neural uint implies a bigger surprise when meet the absence of the US,
suggesting that the subject need to experience a stronger US to induce a bigger expectation
of US before the trial.
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Following the partial reinforcement conditioning and extinction that induces PREE, in
the shock procedure, a one-trial full reinforced conditioning is presented, in which the CS
reinforced by a stronger US, followed by an another extinction training.

We then tested this shock procedure by using the basic model. The activity of the fear
neural unit is first rapidly elevated due to high intensity of the US (Fig. 5.1A) and then
rapidly decreased to almost 0 during the subsequent extinction (black line in Fig. 5.1C),
indicating that the extinction-resistant fear memory has been completely inhibited. When
the shock procedure employing an US of the same intensity is applied (Fig. 5.14B), the
fear memory is conversely reinforced (Fig. 5.1D), suggesting that the intensity of the US is
a critical determinant for the effectiveness of the shock procedure. The differences in the
outcomes of these cases are due to different levels of learning signals to two extinction neural
units (E1 and E2) at the beginning of the second extinction (Fig. 5.1E and F).

By testing the shock procedure using various US intensities, the effectiveness of the
shock procedure, which is measured by the final activity level of the fear neural unit after
re-extinction training, is shown in Fig. 5.1G, by (Fig. 5.1G). The result shows that changing
the intensity of the US used to reinforce the additional CS affects the result of the shock
procedure: a weaker US in the shock produce actually enhances the fear memory, while a
stronger US strengthens the extinction memory, and are able to extinguish the residual fear
memory.

The success of the shock procedure is also confirmed in the extended model (Fig. 5.2).
The fear memory is represented by the CEA activity (black line in Fig. 5.2C), and shows
a overt reduction after shock procedure. The extended model also demonstrated that the
intensity of the US used in the shock procedure is crucial for its effectiveness in extinguishing
the fear memory.

5.2 Repeating full reinforcement conditioning and extinc-
tion causes PREE-like results

In addition, the neural circuits model predict a PREE-like effect during successive full
reinforcement conditioning and extinction, which is equivalent to partial reinforcement
conditioning overall (Fig.5.3 and 5.4). As conditioning and extinction repeat, the residual
activity of the fear neural unit accumulates and becomes saturated. In fact, it has been
seen in the literature that the re-conditioned fear memory exhibited substantial resistance to
re-extinction [80–83]. The inhibitory synaptic weight from the extinction neural unit to the
fear neural unit also plays a crucial role in the PREE-like effect.
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Fig. 5.2 Shock procedure using the extended model. (A, B) The CS and US schedules; same
as that used in Fig. 5.2. (C, D) The black, blue, green and red lines represent the neural
activities of the CEA (fear neural unit), LA (persistent neural unit), IL (extinction neural unit),
and ITC (another group of extinction neural unit), respectively. (E, F) The black, blue, green
and red lines represent the learning signals that regulates the CS-related synaptic weights of
the CEA, LA, IL and ITC, respectively. Note that overlapped lines are changed to dashed
lines to make them visible. (G) The final neural activity levels of the CEA (fear neural unit)
after re-extinction training are mediated by the intensity of the US used to reinforce the
additional CS in the shock procedure.

5.3 Discussion

Anxiety disorders

Post-traumatic stress disorder (PTSD) is a disorder that occur in some people who have
experienced a shocking, scary, or horror events. PTSD patients have difficulty in forgetting
the strong fear memory acquired in the event, and undergo a number of symptoms, such as
nightmares, insomnia, irritability, impaired concentration, and unconscious avoidance the
situation related with the event. Nearly 8% of the general population suffers the symptoms
of PTSD [84, 85], and this number increases to roughly 30% in the veterans [86].

The avoidance symptom indicates that PTSD can be regarded as a Pavlovian classical
conditioning, during which patients acquire the conditioned fear memory to the original
neutral situation.
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Fig. 5.3 Successive conditioning and extinction induces PREE using the basic model. (A) The
activity of the fear neural unit during successive conditioning and extinction with changes in
wF,E . Note that αE is also concurrently changed so that αEwF,E = const. (B) The residual
fear memory represented by the final activity level of the fear neural unit after each extinction
session is plotted with changes in wF,E .

Exposure therapy is considered as an effective treatment on PTSD. It exposes the situation
that reminds of the fear memory to the patients. It is similar as the extinction phase used in
the fear conditioning.

Fear conditioning has been used as a model system for anxiety disorders such as panic
disorder, PTSD and obsessive-compulsive disorder (OCD) [87–89]. Traditional exposure
therapy, which corresponds to extinction training, is an effective cure for anxiety disorders
in some patients [90], but some severe patients also show strong resistance to exposure
therapy [88, 89]. Moreover, anxiety disorders may be worsened by occasionally experienced
negative social reactions [91, 92], which are akin to partial reinforcement experiences, and
become strongly resistant to exposure therapy, similar to the PREE. Thus, we think that the
widely used fear conditioning with full reinforcement, in which the acquired fear memory can
be easily diminished by extinction training, is rare in real life and thus is not a good model for
understanding anxiety disorders; instead, fear conditioning with partial reinforcement, which
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Fig. 5.4 Successive conditioning and extinction induces PREE using the extended model. (A)
The activity of CEA during successive conditioning and extinction with changes in wF,E2.
Note that αE2 is also changed accordingly so that wF,E2αE2 = const. (B) The residual fear
memory, which is represented by the final activity level of the CEA, after each extinction
session is plotted with changes in wF,E2.

results in an extinction-resistant fear memory, is a more realistic model for neuroscience
research on anxiety disorders and should improve the translatability of results [20, 28].

To relieve extinction-resistant fear memory, we proposed a shock procedure based on
our models. The fear memory was diminished by extinction if a stronger US was paired
with the CS before the extinction procedure (Fig. 5.1 and 5.2). In the shock procedure,
although the fear memory is temporarily strengthened by the stronger US, the subsequent
extinction training becomes effective, suggesting that an increase in activity in the amygdala
(persistent and fear neurons) or in the learning signal to the vmPFC is key for effective
extinction training. The shock procedure can be tested in animal experiments, but employing
a stronger US as part of the shock procedure may raise ethical concerns for humans. It can be
intuitively interpreted that the animal cannot comprehend the rule change to extinction after
fear conditioning with partial reinforcement, whereas after the shock procedure with a strong
US, in contrast, the animal can internalize the pronounced rule change to extinction, thus
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allowing the fear memory to be extinguished. The proposed shock procedure may provide
insight not only for the development of new therapies but also for understanding the neural
mechanisms of fear memory extinction.





Chapter 6

Statistical Inference Model
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6.1 Introduction

What type of statistical processing do animals perform during fear conditioning with partial
reinforcement and subsequent extinction?

The fact that extinction learning largely depends on the US probability during fear
conditioning (Fig. 3.4), which reflects the uncertainty, suggests that the uncertainty must be
encoded in the brain. Thus, animals may process the statistical properties of sequential US
observations.

6.2 Statistical Inference model

To quantify the degree of surprise from the perspective of inferring whether the US would
occur, I developed a statistical model based on logistic regression with sequential Bayesian
updating [93]. We assumed that the animals inferred the probability that the US would occur
based on the previous observation of the US as

πt = σ(wt,0 +wt,1USt−1), (6.1)

and sequentially updated wt+1 = [wt+1,0,wt+1,1] to predict the probability based on a new
instance of the US, where USt denotes a binary variable, i.e.,US = 0 and US = 1 US=0
represent the presence and absence of the US, respectively; wt,0 and wt,1 are internal vari-
ables in animals, representing the effects of inferring the probability that the US would
occur independent of and dependent on the previous US, respectively; σ(·)is the logistic
functionσ(x) = 1

1+e−x ; πt represents the probability of the US occurrence that the animals
infer based on the previous US, USt−1. We also assumed that the degree of surprise (S) that
animals feel in response to the US or no-US is quantified by the amount of information [94]:

S(US) =−logπt , (6.2)

S(no-US) =−log(1−πt). (6.3)

We considered wt+1 to be updated by sequential Bayesian updating as

P(wt |US1:t) ∝ P(USt |wt ,US1:t−1P(wt |US1:t−1) (6.4)

= P(USt |wt ,USt−1

∫
P(wt |wt−1)P(wt−1|US1:t−1)dwt−1, (6.5)
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where P(wt |US1:t−1) and P(wt |US1:t) represent the prior and posterior distributions, respec-
tively. The animals were assumed to think that instances of the US were simply generated by
a Bernoulli process as

P(USt |wt ,USt−1) = π
USt
t (1−πt)

1−USt . (6.6)

In addition, the animals were assumed to believe that wtremained almost constant with
a small degree of noise as wt = wt−1 + εt , where εt represents independent and identically
distributed Gaussian noise with a mean of zero and a low variance, s. Then,

P(wt |wt−1 = N(wt |wt−1,sI), (6.7)

where I represents the unit matrix.
The Bayesian belief update was implemented as an extended Kalman filter, in which the

prior and posterior distributions are approximated by Gaussian distributions. P(wt−1|US1:t−1)

was represented by
P(wt−1|US1:t−1) = N(wt−1|µt−1,Σt−1), (6.8)

where N represents the function of the Gaussian distribution parameterized by Σt and µt ,
which are the variance-covariance matrix and mean vector of wt , respectively. Then, equation
(6.6) can be transformed into

P(wt |US1:t) ∝ P(USt |wt ,US1:t−1)N(wt |µt−1,s+Σt−1). (6.9)

Note that the prior and posterior distributions in equation (6.9) do not have conjugate
relationship. Thus, the posterior distribution, P(wt |US1:t), can be approximated by a Gaussian
distribution using Laplace approximation as

P(wt |US1:t) = N(wt |µt ,Σt), (6.10)

where µt and Σt are updated as

µt = argwt
maxE(wt), (6.11)

Σ
−1
t =−∆∆E(wt) = (s+Σt−1)

−1 +σ(µT
t φt−1)(1−σ(µT

t φt−1))φt−1φ
T
t−1, (6.12)
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where φ indicates (1,USt−1)
T and

E(wt) =− 1
2
(wt −µt−1)

T (s+Σt−1)
−1(wt −µt−1) (6.13)

+USt logσ(wT
t φt−1)+(1−USt)log(1−σ(wT

t φt−1))+ const. (6.14)

To calculate µt requires numerical optimization because E(wt) is a non-linear function of wt .

6.3 Simulation results

6.3.1 Fear memory as a statistical inference

Because continuous and discontinuous presentation of the US during full and partial rein-
forcement paradigms leads to fear memories that differ in their resistance to extinction, the
effect of US continuity is incorporated into the model; the probability that the US would
occur is inferred based on the previous observation of the US (equation (6.1)). Then, the
simulation demonstrated that, as the basic model, the sequentially predicted US probability
reproduced, (Fig. 3.2) the characteristics of the extinction of fear memory acquired through
both the full and partial reinforcement schedules (Fig. 6.1C adn D) in a manner consistent
with biological fear neurons.

6.3.2 Uncertainty affects PREE

This statistical model also generated several properties that depended on the US probability,
as obtained in the neural circuit model. These properties included the time constant of
extinction (Fig. 6.2B), the amount of residual fear memory that remained after extinction
(S4C Fig), and the degree of surprise to the no-US (Fig. 6.2D), which was quantified as the
amount of information (Fig. 6.1E and F). Moreover, we compared the measure of surprise in
the neural circuit model (the learning signals) with the measure of surprise in the statistical
model (amount of information) when the same US pattern was applied, and we found a
high degree of correlation, providing additional evidence that the learning signal in the
neural circuit model represents the degree of surprise in terms of statistics (Fig. 6.2E and
F). Taken together, these commonalities between the two models suggest that the neural
circuit model that consisted of fear, persistent and extinction neurons effectively processed
the statistical property of the occurrence of the US through sequential updating of Bayesian
logistic regression.
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Fig. 6.1 Estimated US probability in the full and partial conditioning using the statisti-
cal inference model. Simulation results using the statistical inference model with full
(P(US|CS) = 1and partial (P(US|CS) = 0.5 reinforcement schedules are presented in the
left (A, C, and E) and right (B, D, and F) columns, respectively. (A, B) The CS and US
schedules; same as those used in Fig. 3.2A,B and Fig. 4.4A,B. (C, D) The black lines present
the estimated US probability by the statistical model. (E, F) The blue and red lines present
the degree of surprises to the US and no-USs (i.e., the absence of the US), respectively. The
surprises are measured by the amount of information gained when encountering a US and
no-US input, according to logP(US) and log(1−P(US)), respectively.

6.3.3 Relations between statistical surprise and learning signals

In addition, we found that the learning signal to the extinction neural unit was correlated
with the degree of surprise from a statistical standpoint; after fear conditioning with full
reinforcement, the no-US input at the beginning of the extinction phase was unpredictable,
leading to a relatively large degree of surprise (red line in Fig. 3.2G). In contrast, after fear
conditioning with partial reinforcement, the no-US input at the beginning of the extinction
phase was predictable, leading to a relatively small degree of surprise (red line in Fig. 3.2H).
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Fig. 6.2 Uncertainty-depended PREE using both the neural circuit model and the statistical
inference model (A) The black line represents the uncertainty of the subsequent US occur-
rence varying the US probability. (B) The black and blue lines represent the time constant
of the extinction varying the US probability, in the forms of the decline of the fear neural
unit activity in the basic model and the estimated US probability in the statistical inference
model, respectively. (C) The black and blue lines represent the final level of the fear memory
varying the US probability, in the forms of the fear neural unit activity and the estimated
US probability in the statistical inference model, respectively. (D) The black and blue lines
indicate the surprise associated with the no-US, i.e., the learning signal to the extinction
neural unit in the basic neural circuit model and the amount of information associated with
a no-US observation in the statistical inference model, respectively, as a function of US
probability during fear conditioning.
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Fig. 6.3 Correlations of the learning signals and the statistical surprises. The same CS and
US schedules are applied in the both model. (A) Each dot represents a relationship between
the surprise for US in the statistical inference model and the learning signal to the fear neural
unit in the basic model at each trial in the conditioning phase. (B) Each dot represents a
relationship between the surprise for no-US in the statistical inference model and the learning
signal to the extinction neural unit in the basic model at each trial in the extinction phase.





Chapter 7

Conclusion
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7.1 Summary

In this dissertation, I mainly focus on providing an explanation of the neural mechanisms of
uncertainty-dependent resistance to extinction after partial reinforcement fear conditioning,
which is known as the partial reinforcement extinction effect (PREE).

In Chapter 1, I introduced the background of classical conditioning, fear response, PREE,
and the brain regions that are related to the fear neural circuit. I also introduced a finding
of three types of neurons in the amygdala: fear, extinction and persistent neurons, which
constitute the basis of the models I proposed.

In Chapter 2, I reviewed two classical models of classical conditioning, which are the
Rescorla-Wagner model, and the TD model. Both of these models can explain learning
and extinction of fear responses but lack the ability to explain the inhibition memory that is
observed in experiments. The models have other strengths and weaknesses in explaining the
properties of classical learning, and provide a good framework for developing the models
proposed in this thesis.

In Chapter 3, I proposed a basic neural circuit model, which consists of the fear, extinction
and persistent neural units. The three components are regulated by the synaptic-weight-
updating rules based on the Rescorla-Wagner model, and their activities predict the US
occurrence, US intensity and the safety. The simulation results of this model demonstrate its
success in reproducing the PREE, and reveal that the learning signal to the extinction neural
unit gained in the no-US trials in the partial reinforcement conditioning is the key factor
causing PREE. The simulation results also indicate that the inhibitory synaptic weight from
the extinction neural unit to the fear neural unit and the uncertainty during the conditioning,
which is correlated with the US probability, are also crucial to PREE.

In Chapter 4, I first interpreted the three neural units in the basic model to correspond
to the subdivisions of the brain: the fear neural unit corresponds to the central nucleus of
amygdala (CEA), the persistent neural unit corresponds to the lateral nucleus of amygdala
(LA), and the extinction neural unit corresponds to the infralimbic cortex (IL) of the mPFC.
A recent research shows that silencing IL does not affect the within-session behaviors, but
changes the retrieval of the extinction memory after a long resting phase, suggesting that the
IL is not the only inhibiting complex in the brain. Therefore, I extended the basic model
to include another extinction unit, which corresponds to the intercalated cells (ITC) in the
amygdala. The new extinction unit (ITC) has different synaptic regulating rules from the
other three units; the CS-related input synaptic weight is regulated by the early- and late-
phase plasticity. The simulation results of the extended model first reproduces the effects of
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silencing and activating IL, consistent with the experiment reports, and also demonstrated
the PREE, due to the regulating rule of the learning signals as the basic model.

In Chapter 5, I made some predictions based on the basic and extended neural circuit
models proposed in Chapter 3 and Chapter 4. To fully extinguished the residual fear
memory that suffers PREE, I proposed a shock procedure, which is presented after the partial
reinforcement and extinction that still leaves a certain level of fear memory. In the shock
procedure, a CS paired with a stronger US is presented, and followed by another extinction
phase. The simulation results in both basic and extended neural circuit model show the
success of extinguishing the residual fear memory by using shock procedure, and also pointed
out that the US intensity in the shock procedure affects the effectiveness of extinguishing
the residual fear memory. Using the two models, I also predict a PREE-like effect during
successively repeating the full reinforcement conditioning and extinction.

In Chapter 6, I developed a statistical inference model to estimated the probability of
US occurrence, implementing a Bayesian logistic regression algorithm. Using this statistics
model, I defined the statistical surprise when encountering a US or no-US (the absence of
the US) input, which is highly correlated with the learning signals to the fear and extinction
neuron units, respectively. The simulation indicates that the neural-circuit based learning
signals encode the statistical surprise.

7.2 Comparison with previous theoretical models

Classical conditioning has been computationally modeled in a number of ways. In the field
of behavioral psychology, former learning theory, which defines mathematical embodiments
to describe learning and behavioral phenomena, has been tested [86]. The Rescorla-Wagner
model was a seminal former learning theory that described an association between CS and
US controlled by prediction error as a learning signal [43]. Since then, many alternative
models have been proposed to reproduce many observed phenomena in classical conditioning
and extinction [95–99] . However, these models failed to explain the PREE. Moreover, these
models did not fully describe their neural mechanisms, although several models can be
implemented using neural networks [100, 101].

Reinforcement learning was proposed as an extension of the Rescorla-Wagner model;
in this system, which animals explore optimal behavioral strategies by interacting with
their environment to maximize the accumulated reward over time [48]. Sutton and Barto
proposed temporal difference (TD) learning, in which the prediction of expected cumulative
future reward was updated by its prediction error, called TD error [48]. The framework
of TD learning reproduced classical conditioning and extinction [49] but not the PREE.
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To account for the PREE, TD learning was extended by two models [102, 103]. Redish
et al. [102] introduced a categorization process for inexperienced observations into new
latent states, whereas Song et al. [103] introduced arousal signal-dependent learning to
the existing TD learning model [104]. Although these TD learning-based models were
successful in reproducing the PREE, how neural computation is performed by fear, persistent
and extinction neurons has remained unclear.

Another aspect of computational modeling is statistical decision theory [105]. The
PREE has been addressed by Bayesian estimation of the US probability per trial or unit
time [106–108]. This framework was extended to introduce latent causes [109]. Related
to latent causes, Gershman et al. [110] developed a Bayesian inference model based on a
categorization process of contexts [102]. This model was further extended by introducing
a hidden Markov model (HMM), in which a particular context tended to persist over time,
and this model successfully generated the PREE [111] . Although these models provided
important concepts in light of statistical decision making, they did not describe the underlying
neural mechanisms.

There have also been two types of approaches to computational models of neural circuits
consisting of the amygdala and other brain regions. One approach is the firing-rate model, in
which neural units represent the average firing rate of neurons, neural populations or brain
regions [112–114]. Balkenius et al. [114] first developed a mathematical model in which fear
memory was extinguished by inhibition of amygdalar activity by the orbitofrontal cortex,
which is subdivision of the vmPFC, but their model did not focus on and hence failed to
reproduce the PREE. Moustafa et al. [113] developed a neural circuit model consisting of
the BLA, CEA, ITC and vmPFC (i.e., IL), combined with TD learning, in which synaptic
plasticity was regulated by the TD error as a learning signal. In their study, however, the
PREE was not explicitly addressed, though it was mentioned that their model exhibited the
PREE only when extensive training trials were performed in the acquisition phase, with no
detailed results.

The other approach is based on a spiking-neuron model, in which action potentials are
simulated based on membrane voltage dynamics. Nair’s group has extensively developed
biophysically realistic conductance-based models that express several types of firing patters
that have been experimentally observed [115–118] . These studies addressed fear condition-
ing only with full reinforcement, not with partial reinforcement, while investigating the roles
of synaptic input from the vmPFC to the ITC [115], interaction between prelimbic cortex
(PC) in the mPFC and the BA [116], and synaptic inputs from thalamus and cortex to the
LA [117]. On the other hand, Vlachos et al. [119] first proposed a large-scale neural network
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model of the BA by introducing populations of fear, persistent and extinction neurons, but
that work did not address the PREE.

7.3 Conclusion

Compared with these previous models, the basic and the extended neural circuit models
proposed in this dissertation are the first neural network models of the amygdala/mPFC
circuits that could satisfactorily explain the PREE.

The key unique feature of our models is the constitution of the fear, extinction, and the
persistent neural units. Especially, the proposal of the inclusion of the persistent model. To
my knowledge, it is the first time a neural circuit model that addresses fear conditioning is
able to keep the memory trace of the US intensity, which is measured by the activity of the
persistent neural unit and the actual received US input.

Also, although the concept that the safety prediction is not original, our proposal of the
degree of safety , which is represented by the difference between memory of the US intensity
and the US that actually observed, P−US, is the first time to be applied in a model that
addresses fear conditioning.

Based on crosstalk between the fear, persistent and extinction neurons, the basic and
extended model gain the ability to process the probabilistic nature of the CS-US pairing, the
uncertainty.
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