RECENT RESEARCH ACTIVITIES

Demonstration of Multicopter Assisted Wireless Batteryless Sensing System (WBLS)

(Laboratory of Applied Radio Engineering for Humanosphere, RISH, Kyoto University)

Naoki Shinohara, Tomohiko Mitani, Yohei Ishikawa, Junji Miyakoshi, and Shin Koyama

A wireless sensor application by using a flying drone is proposed by Kyoto University in 2015. One of weak point of the WPT is a miss match between a required power and system size of the WPT which includes an antenna size and a transmitting radio wave power. When a distance between a transmitting antenna and a receiving antenna of the WPT becomes longer, beam efficiency becomes lower than a user expectation. Even for the WPT sensor, it sometimes happens. By using the flying drone, the distance between a transmitting antenna and a receiving antenna of the WPT becomes shorter and WPT system can be smaller than that without the drone. The proposed WPT system is named a "Multicopter Assisted Wireless Batteryless Sensing System (WBLS)". The first experiment was carried out on July, 2015 at Advanced Microwave Energy Transmission Laboratory (A-METLAB) of RISH, Kyoto University by WiPoT, Kyoto Univ., Mini-Surveyor Consortium, and Autonomous Control Systems Laboratory Ltd. 5.8 GHz, 8.74W microwave power was transmitted from 8×8 array antenna (21 dBi) on a flying drone (multicopter) as shown in Fig. 1. Received and rectified 6.1 mW DC power drives a sensor. Hopeful applications of the Multicopter Assisted WBLS are rescue of victims, WPT-powered sensors at volcano, and inspection of infrastructures (bridges, tunnels), etc.

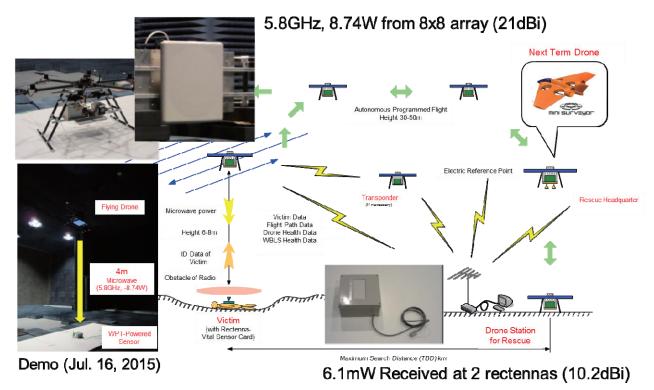


Fig.1. Concept of Multicopter Assisted WBLS and its demonstration on July, 2015 at A-METLAB

Acknowledgements

Part of this research was carried out by use of Microwave Energy Transmission Laboratory (METLAB) as collaborative inter-university research facility.