The clinical course of anesthetic induction in lung transplant recipients with pulmonary

complications after hematopoietic stem cell transplantation

Toshiyuki Mizota,¹ Shino Matsukawa,¹ Hiroshi Fukagawa,¹ Hiroki Daijo,¹

Tomoharu Tanaka,¹ Fengshi Chen,² Hiroshi Date,² Kazuhiko Fukuda¹

Departments of ¹Anesthesia and ²Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan

Corresponding author:

Toshiyuki Mizota

Department of Anesthesia,

Kyoto University Hospital,

54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto 606-8507, Japan

Tel: +81-75-751-3433, Fax: +81-75-752-3259

E-mail: mizota@kuhp.kyoto-u.ac.jp

Key words: lung transplantation, hematopoietic stem cell transplantation (HSCT), anesthesia,

dynamic compliance, oxygen desaturation

Word count including abstract: 2,576

Number of tables: 5

Number of figures: 1

Abstract

Purpose: We examined the clinical course of anesthetic induction in lung transplant recipients with pulmonary complications after hematopoietic stem cell transplantation (post-HSCT), focusing on ventilatory management. We aimed to determine the incidence of oxygen desaturation during anesthetic induction and severe respiratory acidosis after anesthetic induction in post-HSCT lung transplant recipients, and to explore factors associated with their development.

Methods: Nineteen consecutive patients who underwent lung transplantation post-HSCT at Kyoto University Hospital (Japan) were retrospectively studied. Data regarding patient characteristics, preoperative examination, and clinical course during anesthetic induction were analyzed.

Results: The incidence of oxygen desaturation (SpO₂ < 90%) during anesthetic induction and severe respiratory acidosis (pH < 7.2) after anesthetic induction were 21.1% and 26.3%, respectively. Reduced dynamic compliance (Cdyn) during mechanical ventilation was significantly associated with oxygen desaturation during anesthetic induction (P = 0.01), as well as severe respiratory acidosis after (P = 0.01). The preoperative partial pressure of carbon dioxide in arterial blood (PaCO₂; r = -0.743, P = 0.002) and body mass index (BMI; r

= 0.61, P = 0.021) significantly correlated with Cdyn, and multivariate analysis revealed that both PaCO₂ and BMI were independently associated with Cdyn.

Conclusion: Oxygen desaturation during anesthetic induction and severe respiratory acidosis after anesthetic induction frequently occur in post-HSCT lung transplant recipients. Low Cdyn may, at least partially, explain oxygen desaturation during anesthetic induction and severe respiratory acidosis after anesthetic induction. Moreover, preoperative hypercapnia and low BMI were predictive of low Cdyn.

Introduction

Late-onset pulmonary complications, including bronchiolitis obliterans (BO), are frequent critical issues after hematopoietic stem cell transplantation (HSCT) [1]. Bronchiolitis obliterans, part of the chronic graft versus host disease (cGVHD) spectrum of manifestations [2], affects 5.5% of allogeneic HSCT recipients and 14% of those who develop cGVHD [3]. So far, the prognosis of patients with moderate to severe BO is dismal [4].

Several studies have recently reported acceptable outcomes following lung transplantation for pulmonary complications post-HSCT. Thus, lung transplantation post-HSCT is considered to be a viable therapeutic option for patients cured of their hematologic disease and whose only significant morbidity is end-stage lung disease [5–9]. However, to the best of our knowledge, there are no reports regarding anesthetic management of lung transplant recipients post-HSCT.

In this study, we examined the clinical course of anesthetic induction in post-HSCT lung transplant recipients, focusing on ventilatory management. The purposes of the current study were as follows: (1) to examine the incidence of oxygen desaturation during anesthetic induction and severe respiratory acidosis after anesthetic induction in post-HSCT lung transplant recipients, and (2) to explore the factors associated with development of oxygen desaturation or severe respiratory acidosis. To the best of our knowledge, this is the first

report to investigate anesthetic management of lung transplant recipients post-HSCT.

Methods

This retrospective cohort study was approved by the ethics committee of Kyoto University Hospital, Japan (approval number: E2094). All patients who underwent lung transplantation post-HSCT at Kyoto University Hospital from January 1, 2008, to December 31, 2012, were eligible for this study. Medical records of eligible patients were reviewed with regard to patient characteristics, preoperative examination, and clinical course during anesthetic induction.

In all cases, preoperative arterial blood gas analysis was conducted during the period from one week before the surgery to the day before the surgery. Anesthetic induction of patients was managed using the following technique without premedication. Preoxygenation was performed at least 3 min prior to induction in all cases. Rapid induction with propofol or midazolam plus opioids was completed in all but one patient who had difficulty opening their mouth; in this case, we used semiconscious fiber-optic intubation. Rocuronium was used to facilitate endotracheal intubation following bag and mask ventilation. For mechanical ventilation after endotracheal intubation, Fabius Tiro (Dräger, Lübeck, Germany) or Apollo Anesthesia Workstation (Dräger) was used. The adjustment of ventilator settings was done by the attending anesthesiologist. The anesthetic induction period was defined as the period from administration of anesthetic drugs (propofol or midazolam) to 10 min after endotracheal intubation, and arterial oxygen saturation of hemoglobin (SpO₂) data during this period was collected. Oxygen desaturation was defined as SpO₂ of <90%. The peak inspiratory pressure (PIP), positive end-expiratory pressure (PEEP), respiratory rate (RR), and tidal volume (TV) at three time points (10, 20, and 30 min after intubation) were obtained directly from the ventilator. Dynamic compliance (Cdyn) was calculated with the following equation: Cdyn = TV/(PIP – PEEP). We then calculated the mean value of each variable (PIP, PEEP, RR, TV, and Cdyn) at each time point.

Because this study included 7 children under 20 years of age, TV and Cdyn were adjusted for ideal body weight (IBW). Ideal body weight was determined with the body mass index (BMI) method [10, 11]. For children under 20 years of age, the 50^{th} percentile BMI for age, height, and gender on the Centers for Disease Control BMI-for-age percentiles chart [12] was used. Arterial blood gas analysis was conducted after anesthetic induction and establishment of mechanical ventilation. The median time from endotracheal intubation to arterial blood gas analysis was 23 min (range: 10–60 min). Severe acidosis was defined as pH < 7.2.

Statistical analysis

Data were analyzed using the statistical program R (http://cran.r-project.org) and are

presented as median (range) and percentage unless stated otherwise. Differences between groups were compared using the Mann–Whitney U test for continuous variables. For categorical variables, the Pearson chi-square or Fisher exact test was used where appropriate. Linear regression analysis was used to assess correlations between continuous variables. Multivariate forward stepwise analysis was used to assess independent determinants of Cdyn. All statistical tests were two-tailed, and statistical significance was set at P < 0.05.

Results

Patient characteristics and preoperative examination

A total of 19 post-HSCT patients underwent lung transplantation during the study period; 14 (73.7%) patients underwent living-donor lobar lung transplantation and five (26.3%) underwent cadaveric lung transplantation (Table 1). Fifteen (78.9%) patients developed respiratory symptoms within 3 years of HSCT, and the median interval from respiratory symptom onset to lung transplantation was 38 months (range: 7–137 months). All except one patient were preoperatively diagnosed with BO. At the time of lung transplantation, eight patients (42.1%) could ambulate; two (10.5%) received noninvasive positive pressure ventilation (NPPV), and two (10.5%) received preoperative tracheostomy.

A pulmonary function test (PFT) was conducted in 15 (78.9%) patients from onset of

respiratory symptoms to lung transplantation. In the remaining four patients, PFT could not be performed because of pneumothorax (two patients), tracheostomy (one patient), or severe respiratory symptoms (one patient). The median interval from PFT to lung transplantation was 12 months (range: 0.5–52 month), and the interval was longer than 1 year in five patients. For these five patients, follow-up PFT could not be performed because of pneumothorax (three patients) or severe respiratory symptoms (two patients). In PFT, all patients exhibited reduction in forced expiratory volume in 1 s (FEV₁; range: 4–43% predicted) and forced vital capacity (FVC; range: 2–65% predicted). Ten patients exhibited typical obstructive lung defect (FEV₁/FVC < 0.7). In five patients, FEV₁ and FVC decreased concomitantly, whereas the FEV₁/FVC ratio remained >0.7.

Preoperative hypercapnia (PaCO₂ > 45 mmHg) was seen in 16 (84.2%) patients. Although nine (47.4%) patients exhibited severe preoperative hypercapnia (PaCO₂ > 60 mmHg), no patient exhibited severe acidosis (pH < 7.2) preoperatively.

Clinical course during anesthetic induction

Table 2 presents the main characteristics of anesthesia induction. Four (21.1%) patients experienced oxygen desaturation (SpO₂ < 90%) during anesthetic induction. Oxygen desaturation occurred during the period from administration of anesthetic drugs to endotracheal intubation in all cases, and the duration of oxygen desaturation ranged from 1 to

7 min. High PIP (median: 26.7 cmH₂O) and RR (median: 20/min) were required for mechanical ventilation after anesthetic induction. The median Cdyn per IBW was 0.21 mL/cmH₂O/kg, and three patients exhibited Cdyn < 0.1 mL/cmH₂O/kg. Five (26.3%) patients exhibited severe respiratory acidosis (pH < 7.2) after anesthetic induction. Although pH recovered to an acceptable range (pH \ge 7.2) after adjusting ventilator settings in three of these cases, two required emergency cardiopulmonary bypass because of hemodynamic instability related to acidemia, which resulted from hypercapnia after anesthetic induction.

We further explored factors associated with development of oxygen desaturation during anesthetic induction and severe respiratory acidosis after anesthetic induction. Characteristics of patients with/without oxygen desaturation during anesthetic induction are described in Table 3. All four patients with oxygen desaturation could not ambulate preoperatively; one received NPPV and another received tracheostomy. Dynamic compliance was significantly lower in patients with oxygen desaturation (P = 0.01), and all patients with oxygen desaturation exhibited severe respiratory acidosis after anesthetic induction. Although the ratio of partial pressure of oxygen in arterial blood to the fraction of inspired oxygen (PaO₂/F₁O₂) after anesthetic induction tended to be lower in those with oxygen desaturation, the difference did not reach statistical significance. Characteristics of patients with/without severe respiratory acidosis after anesthetic in Table 4. Four out of five patients with severe respiratory acidosis also experienced oxygen desaturation during anesthetic induction. Unability to ambulate, low FVC, high preoperative $PaCO_2$, and low Cdyn were significantly associated with development of severe respiratory acidosis after anesthetic induction. Among these factors, low Cdyn was the most significantly associated with development of severe respiratory acidosis (P = 0.01).

Predisposing factors of low Cdyn

Because low Cdyn was significantly associated with both oxygen desaturation during anesthetic induction and severe respiratory acidosis after anesthetic induction, we explored preoperative factors associated with low Cdyn. Bivariate analyses, performed to test the relationship between Cdyn and preoperative parameters (age, gender, BMI, preoperative PaCO₂, FEV₁, and FVC), showed preoperative PaCO₂ to be strongly associated with Cdyn (r = -0.743, P = 0.002). BMI was also significantly associated with Cdyn (r = 0.61, P = 0.021). However, neither FEV₁ nor FVC were significantly associated with Cdyn (Figure 1).

In order to assess the independent determinants of Cdyn, a forward stepwise regression analysis was conducted, which included age, gender, BMI, preoperative $PaCO_2$, ventilation mode (volume or pressure control ventilation), and type of tracheal tube (single or double lumen tube). Analysis revealed that preoperative $PaCO_2$ and BMI were significantly associated with Cdyn (Table 4).

Discussion

Analysis of our cohort revealed the following: (1) oxygen desaturation during anesthetic induction and severe respiratory acidosis after anesthetic induction frequently occurred in lung transplant recipients post-HSCT, (2) low Cdyn during mechanical ventilation was significantly associated with oxygen desaturation during anesthetic induction and severe respiratory acidosis after anesthetic induction, and (3) preoperative PaCO₂ and BMI were significantly associated with Cdyn.

Although anesthesia was induced after preoxygenation, four (21.1%) patients experienced oxygen desaturation during anesthetic induction. In all four cases, oxygen desaturation occurred during the period from anesthetic drug administration to endotracheal intubation. Moreover, low Cdyn was significantly associated with development of oxygen desaturation, and all of four patients with oxygen desaturation exhibited severe respiratory acidosis after anesthetic induction. Therefore, we concluded that difficulty in bag and mask ventilation after cessation of spontaneous breathing due to low lung-thorax compliance contributed, at least partially, to the development of oxygen desaturation during anesthetic induction. Lung transplant recipients post-HSCT should be considered as high risk for difficult bag and mask ventilation.

In this study, five (26.3%) patients exhibited severe respiratory acidosis after anesthetic

induction. As expected, low Cdyn was significantly associated with severe respiratory acidosis after anesthetic induction. Ventilator strategies that use low tidal volume and allow permissive hypercapnia have been shown to be beneficial in patients with adult respiratory distress syndrome, a disease characterized by low compliance [13]. Similarly, PaCO₂ levels as high as 60 mmHg are commonly accepted in ventilatory management during lung transplantation, and levels as high as 120 mmHg have been reported without adverse sequelae [14–16]. However, acute hypercapnia and acidosis can exacerbate pulmonary hypertension and cause hemodynamic instability [17,18]. Because most patients with severe lung disease have some degree of pulmonary hypertension and possibly a hyper-responsive pulmonary vascular wall [19], they may be susceptible to hypercapnia or acidosis. Therefore, close monitoring of PaCO₂ and adjustment of ventilatory settings are essential for safe anesthetic management of lung transplant recipients with reduced lung-thorax compliance. Continuous PaCO₂ monitoring [20] may be useful for real-time monitoring of PaCO₂ during anesthesia for lung transplant recipients.

The median Cdyn per IBW among our study population was 0.21 mL/cmH₂O/kg. Previous studies have reported Cdyn in mechanically ventilated adults without lung diseases to be 32.0–59.7 mL/cmH₂O [21,22]. In addition, in a study that examined the ventilatory mechanics of pediatric patients after cardiac surgery, Cdyn adjusted for weight was reported as 0.67 mL/cmH₂O/kg [23]. In our study population, Cdyn was substantially lower than those

reported in previous studies. Most patients in our study were diagnosed with BO, which is characterized by an obstructive PFT pattern and evidence of air trapping on chest computed tomography [24]. However, histological features post-HSCT are heterogeneous [25], and post-HSCT patients present several PFT phenotypes, including restrictive or combined ventilatory impairment [26]. In our study, all patients who underwent PFT presented a moderate to severe reduction in FVC. Reduced elasticity of the lungs combined with air trapping caused by positive pressure ventilation may have resulted in extremely low Cdyn values.

Preoperative PaCO₂ strongly correlated with Cdyn, whereas preoperative FEV₁ and FVC did not. PFT may not be suitable for assessment of respiratory status at the time of lung transplantation because it is difficult to perform just before surgery, especially in cadaveric lung transplantation, which is always conducted in emergent settings. Moreover, PFT cannot be performed in patients with pneumothorax, tracheostomy, or extremely bad respiratory status. In our study, PFT was not conducted in four patients, and the intervals from PFT to lung transplantation were longer than 1 year in five patients. In contrast, arterial blood gas analysis is very useful for assessing the respiratory status of very ill patients because it can be performed bedside and in a very short time. Patients with preoperative hypercapnia should be considered at risk of low lung-thorax compliance, and therefore, oxygen desaturation during anesthetic induction due to difficulty in bag and mask ventilation, as well as severe respiratory acidosis after anesthetic induction. It may be appropriate to consider prophylactic femoral cannulation in patients at highest risk.

BMI was positively correlated with Cdyn in both univariate and multivariate analyses. These results appear to be inconsistent with the well-known fact that respiratory compliance is reduced in obese patients [27]. However, this study did not include obese patients, but instead included twelve (63.2%) patients with a BMI < 17 kg/m². Thus, a low BMI may reflect the severity of respiratory dysfunction.

The major limitation of this study was its retrospective design and small sample size. Because our study included a small number of patients, there is a large chance of type II error, i.e., factors that affect the development of oxygen desaturation or severe respiratory acidosis may have been missed. Additional limitations included the fact that data collected in this study was derived from one institution and that ventilator settings after anesthetic induction were not uniform. Despite these limitations, our data provide new information regarding the anesthetic management of post-HSCT lung transplant recipients.

In conclusion, oxygen desaturation during anesthetic induction and severe respiratory acidosis after anesthetic induction frequently occur in post-HSCT lung transplant recipients. Low Cdyn may, at least partially, explain oxygen desaturation during anesthetic induction and severe respiratory acidosis after anesthetic induction. Furthermore, preoperative hypercapnia and low BMI were predictive of reduced Cdyn.

Acknowledgments

The authors would like to thank Enago (www.enago.jp) for the English language review.

References

1. Soubani AO, Uberti JP. Bronchiolitis obliterans following haematopoietic stem cell transplantation. Eur Respir J. 2007;29:1007–19.

 Solh M, Arat M, Cao Q, Majhail NS, Weisdorf D. Late-onset noninfectious pulmonary complications in adult allogeneic hematopoietic cell transplant recipients. Transplantation. 2011;91:798–803.

3. Au BK, Au MA, Chien JW. Bronchiolitis obliterans syndrome epidemiology after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2011;17:1072–8.

4. Nakaseko C, Ozawa S, Sakaida E, Sakai M, Kanda Y, Oshima K, Kurokawa M, Takahashi S, Ooi J, Shimizu T, Yokota A, Yoshiba F, Fujimaki K, Kanamori H, Sakai R, Saitoh T, Sakura T, Maruta A, Sakamaki H, Okamoto S. Incidence, risk factors and outcomes of bronchiolitis obliterans after allogeneic stem cell transplantation. Int J Hematol. 2011;93:375–82.

5. Pechet TV, de le Morena M, Mendeloff EN, Sweet SC, Shapiro SD, Huddleston CB. Lung transplantation in children following treatment for malignancy. J Heart Lung Transplant. 2003;22:154–60.

6. Yamane M, Sano Y, Toyooka S, Okazaki M, Date H, Oto T. Living-donor lobar lung

transplantation for pulmonary complications after hematopoietic stem cell transplantation. Transplantation. 2008;86:1767–70.

7. Chen F, Yamane M, Inoue M, Shiraishi T, Oto T, Minami M, Yanagisawa J, Fujinaga T, Shoji T, Toyooka S, Okumura M, Miyoshi S, Bando T, Date H. Less maintenance immunosuppression in lung transplantation following hematopoietic stem cell transplantation from the same living donor. Am J Transplant. 2011;11:1509–16.

 Vogl UM, Nagayama K, Bojic M, Hoda MA, Klepetko W, Jaksch P, Dekan S, Siersch V, Mitterbauer M, Schellongowski P, Greinix HT, Petkov V, Schulenburg A, Kalhs P, Rabitsch W. Lung transplantation for bronchiolitis obliterans after allogeneic hematopoietic stem cell transplantation: a single-center experience. Transplantation. 2013;95:623–8.

9. Cheng GS, Edelman JD, Madtes DK, Martin PJ, Flowers ME. Outcomes of lung transplantation after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20:1169–75.

10. Tokunaga K, Matsuzawa Y, Kotani K, Keno Y, Kobatake T, Fujioka S, Tarui S. Ideal body weight estimated from the body mass index with the lowest morbidity. Int J Obes. 1991;15:1–5.

Lemmens HJ, Brodsky JB, Bernstein DP. Estimating ideal body weight--a new formula.
 Obes Surg. 2005;15:1082–3.

12. Kuczmarski RJ, Ogden CL, Grummer-Strawn LM, Flegal KM, Guo SS, Wei R, Mei Z,

Curtin LR, Roche AF, Johnson CL. CDC growth charts: United States. Adv Data. 2000;(314):1–27.

13. De Campos T. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The ARDS Network. N Engl J Med. 2000;342:1301–8.

14. Quinlan JJ, Buffington CW. Deliberate hypoventilation in a patient with air trapping during lung transplantation. Anesthesiology. 1993;78:1177–81.

15. Myles PS, Ryder IG, Weeks AM, Williams T, Esmore DS. Case 1—1997 Diagnosis and management of dynamic hyperinflation during lung transplantation. J Cardiothorac Vasc Anesth. 1997;11:100–4.

16. Myles PS, Weeks AM, Buckland MR, Silvers A, Bujor M, Langley M. Anesthesia forbilateral sequential lung transplantation: Experience of 64 cases. J Cardiothorac Vasc Anesth.1997;11:177–83.

17. Enson Y, Giuntini C, Lewis ML, Morris TQ, Ferrer MI, Harvey RM. The influence of hydrogen ion concentration and hypoxia on the pulmonary circulation. J Clin Invest.

1964;43:1146-62.

18. Barer GR, Howard P, Shaw JW. Stimulus-response curves for the pulmonary vascular bed to hypoxia and hypercapnia. J Physiol. 1970;211:139–55.

19. Vizza CD, Lynch JP, Ochoa LL, Richardson G, Trulock EP. Right and left ventricular

dysfunction in patients with severe pulmonary disease. Chest. 1998;113:576-83.

20. Chen F, Chin K, Ishii H, Kubo H, Miwa S, Ikeda T, Bando T, Date H. Continuous carbon dioxide partial pressure monitoring in lung transplant recipients. Ann Transplant. 2014;19:382–88.

 Balick-Weber CC, Nicolas P, Hedreville-Montout M, Blanchet P, Stéphan F. Respiratory and hemodynamic effects of volume-controlled vs pressure-controlled ventilation during laparoscopy: a cross-over study with echocardiographic assessment. Br J Anaesth.
 2007;99:429–35.

22. Jo YY, Kim JY, Kwak YL, Kim YB, Kwak HJ. The effect of pressure-controlled ventilation on pulmonary mechanics in the prone position during posterior lumbar spine surgery: a comparison with volume-controlled ventilation. J Neurosurg Anesthesiol. 2012;24:14–8.

23. Scohy TV, Bikker IG, Hofland J, de Jong PL, Bogers AJ, Gommers D. Alveolar recruitment strategy and PEEP improve oxygenation, dynamic compliance of respiratory system and end-expiratory lung volume in pediatric patients undergoing cardiac surgery for congenital heart disease. Paediatr Anaesth. 2009;19:1207–12.

24. Filipovich AH, Weisdorf D, Pavletic S, Socie G, Wingard JR, Lee SJ, Martin P, Chien J, Przepiorka D, Couriel D, Cowen EW, Dinndorf P, Farrell A, Hartzman R, Henslee-Downey J, Jacobsohn D, McDonald G, Mittleman B, Rizzo JD, Robinson M, Schubert M, Schultz K, Shulman H, Turner M, Vogelsang G, Flowers ME. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol Blood Marrow Transplant. 2005;11:945–56.

25. Takeuchi Y, Miyagawa-Hayashino A, Chen F, Kubo T, Handa T, Date H, Haga H.
Pleuroparenchymal Fibroelastosis and Non-Specific Interstitial Pneumonia: Frequent
Pulmonary Sequelae of Hematopoietic Stem Cell Transplantation. Histopathology. (in press)
26. Bergeron A, Godet C, Chevret S, Lorillon G, Peffault de Latour R, de Revel T, Robin M,
Ribaud P, Socié G, Tazi A. Bronchiolitis obliterans syndrome after allogeneic hematopoietic
SCT: phenotypes and prognosis. Bone Marrow Transplant. 2013;48:819–24.

27. Littleton SW. Impact of obesity on respiratory function. Respirology. 2012;17:43-9.

	Number (percentage) or
	median (range)
Age (years)	26 (8–57)
Female gender	8 (42.1%)
Body mass index (kg/m ²)	14.5 (10.1–21.0)
Indications for HSCT	
Acute myeloid leukemia	11 (57.9%)
Myelodysplastic syndrome	2 (10.5%)
Neuroblastoma	1 (5.3%)
Acute lymphoblastic leukemia	1 (5.3%)
Primary macroglobulinemia	1 (5.3%)
SCID	1 (5.3%)
Aplastic anemia	1 (5.3%)
Chediak–Higashi syndrome	1 (5.3%)
Type of transplanted stem cells	
Allogenic bone marrow	8 (42.1%)
Allogenic peripheral blood stem cells	8 (42.1%)
Allogenic cord blood	3 (15.8%)
Primary diagnosis for pulmonary complications after	
HSCT	
Bronchilitis obliterans	18 (94.7%)
Pulmonary fibrosis	1 (5.3%)
Interval between HSCT and respiratory symptom onset	15 (7–120)
(mo)	15 (7 120)
Interval between respiratory symptom onset and LT (mo)	38 (7–137)
Type of LT	
LDLLT (bilateral / single)	10 / 4
CLT (bilateral / single)	3 / 2
Preoperative condition	
ambulatory	8 (42.1%)
NPPV	2 (10.5%)
Tracheostomy	2 (10.5%)
Pulmonary function test	
FEV ₁ (% predicted)	18 (4–43)
FVC (% predicted)	36 (2-65)
FEV ₁ /FVC	54.9 (27.5–100.0)
Resting arterial blood gas analysis	

Table 1. Clinical characteristics of the study population

	Number (percentage) or	
	median (range)	
pH	7.36 (7.27–7.43)	
PaCO ₂	57.0 (34.0–104.0)	

The pulmonary function test was not conducted preoperatively in four cases.

HSCT, hematopoietic stem cell transplantation; *SCID*, severe combined immunodeficiency; *LT*, lung transplantation; *LDLLT*, living-donor lobar lung transplantation; *CLT*, cadaveric lung transplantation; *NPPV*, noninvasive positive pressure ventilation; *FEV*₁, forced expiratory volume in 1 s; *FVC*, forced vital capacity; $PaCO_2$, partial pressure of carbon dioxide in arterial blood.

	Number (percentage) or
	median (range)
SpO ₂ during anesthetic induction	
SpO ₂ before anesthetic induction (%)	100 (95–100)
Oxygen desaturation	4 (21.1%)
Nadir SpO ₂ (%)	96 (70–100)
Endotracheal tube used	
Double lumen tube	11 (57.9%)
Single lumen tube	8 (42.1%)
Ventilatory parameters after anesthetic induction	
Ventilation mode (PCV/VCV/missed)	10/4/5
PIP (cmH ₂ O)	26.7 (15.7–36.7)
PEEP (cmH ₂ O)	2.2 (0.0-5.0)
Respiratory rate (/min)	20 (10-55)
Tidal volume (ml/kg)	4.3 (1.5–7.6)
Cdyn (ml/cmH ₂ O/kg)	0.21 (0.06-0.44)
Arterial blood gas analysis after anesthetic induction	
pH	7.32 (6.96–7.50)
PaCO ₂ (mmHg)	67.4 (35.0–192.1)
PaO_2/F_1O_2 ratio	518 (99–639)
Severe acidosis (pH $<$ 7.2)	5 (26.3%)

Table 2. Ventilatory and oxygenation parameters during anesthetic induction and after establishment of mechanical ventilation.

Ventilation parameters were not available in five patients.

 SpO_2 , arterial oxygen saturation of hemoglobin; *PCV*, pressure controlled ventilation; *VCV*, volume controlled ventilation; *PIP*, peak inspiratory pressure; *PEEP*, peak end expiratory pressure; *Cdyn*, dynamic compliance; *PaCO*₂, partial pressure of carbon dioxide in arterial blood; *PaO*₂, partial pressure of oxygen in arterial blood; *F*₁*O*₂, fraction of inspired oxygen.

Variable	No Oxygen	Oxygen desaturation	<i>P</i> value
	desaturation $(n = 15)$	(n = 4)	P value
Age (years)	29 (8-57)	11 (8–41)	0.064
Female gender	6 (31.6%)	2 (50.0%)	1.000
BMI (kg/m^2)	15.0 (11.1–21.0)	12.4 (10.1–19.6)	0.230
Able to ambulate preoperatively	8 (53.3%)	0 (0.0%)	0.103
Preoperative PFT			
FEV ₁ (% predicted)	18 (11–43)	8 (4–27)	0.190
FVC (% predicted)	38 (12–65)	13 (2–36)	0.083
Preoperative PaCO ₂	54.6 (34.0-77.3)	74.7 (55.8–104.0)	0.072
Cdyn	0.25 (0.11-0.44)	0.06 (0.06-0.09)	0.010
ABG analysis after			
anesthetic induction			
pН	7.35 (7.15–7.50)	7.12 (6.96–7.19)	0.004
PaCO ₂	62.7 (35.0–127.3)	140.3 (104.8–192.1)	0.004
PaO_2/F_1O_2 ratio	538 (256-639)	365 (99–586)	0.317

Table 3. Characteristics associated with oxygen desaturation during anesthetic induction.

The pulmonary function test (PFT) was not conducted preoperatively in one patient with oxygen desaturation and three patients without oxygen desaturation. Cdyn was not available in one patient with oxygen desaturation and four patients without because ventilation parameters were missing.

BMI, body mass index; FEV_1 , forced expiratory volume in 1 s; FVC, forced vital capacity; $PaCO_2$, partial pressure of carbon dioxide in arterial blood; Cdyn, dynamic compliance; ABG, arterial blood gas; PaO_2 , partial pressure of oxygen in arterial blood; F_1O_2 , fraction of inspired oxygen.

Variable	No severe acidosis $(n = 14)$	Severe acidosis $(n = 5)$	P value
Age (years)	28 (8–57)	11 (8-44)	0.210
Female gender	6 (42.9%)	2 (40.0%)	0.912
BMI (kg/m^2)	15.6 (11.1–21.0)	14.0 (10.1–19.6)	0.308
Able to ambulate preoperatively	8 (57.1%)	0 (0.0%)	0.026
Preoperative PFT			
FEV ₁ (% predicted)	18 (11–43)	11 (4–27)	0.087
FVC (% predicted)	38 (15-65)	13 (2–36)	0.019
Preoperative PaCO ₂	53.3 (34.0-77.3)	76.8 (55.8–104.0)	0.026
Cdyn	0.25 (0.11-0.44)	0.06 (0.06-0.09)	0.010
ABG analysis after			
anesthetic induction			
pН	7.35 (7.22–7.50)	7.13 (6.96–7.19)	0.001
PaCO ₂	59.8 (35.0-103.3)	134.8 (104.8–192.1)	0.001
PaO_2/F_IO_2 ratio	541 (309–639)	273 (99–586)	0.096

Table 4. Characteristics associated with severe respiratory acidosis after anesthetic induction.

The pulmonary function test (PFT) was not conducted preoperatively in one patient with severe acidosis and three patients without severe acidosis. Cdyn was not available in two patients with severe acidosis and three patients without because ventilation parameters were missing.

BMI, body mass index; FEV_1 , forced expiratory volume in 1 s; FVC, forced vital capacity; $PaCO_2$, partial pressure of carbon dioxide in arterial blood; Cdyn, dynamic compliance; ABG, arterial blood gas; PaO_2 , partial pressure of oxygen in arterial blood; F_1O_2 , fraction of inspired oxygen.

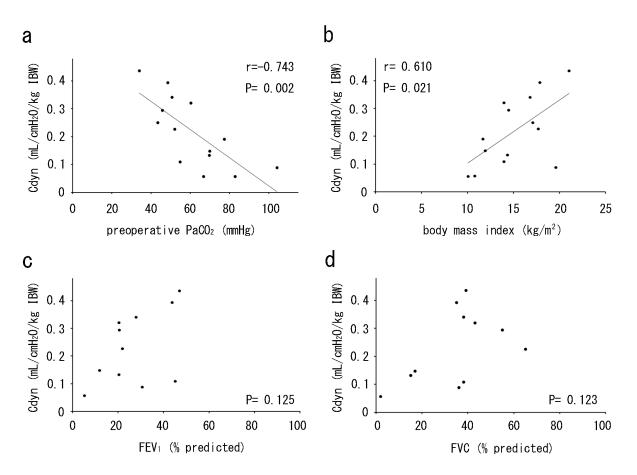

Variables	Regression coefficient	95% CI	P value
Preoperative PaCO ₂ (mmHg)	-0.004	-0.007 to -0.001	0.006
BMI (kg/m^2)	0.014	0.0001 to 0.030	0.049

Table 5. Multivariate linear regression analysis of dynamic compliance during mechanical ventilation.

Five patients were excluded from analysis because their Cdyn value was not available.

PaCO₂, partial pressure of carbon dioxide in arterial blood; BMI, body mass index; CI, confidence interval.

Figure 1. Bivariate linear correlation between dynamic compliance (Cdyn) after establishment of mechanical ventilation and preoperative partial pressure of carbon dioxide in arterial blood [PaCO₂] (**a**), body mass index (**b**), forced expiratory volume in 1 s [FEV₁] (**c**), and forced vital capacity [FVC] (**d**). Five patients were excluded from analysis because their Cdyn values were not available. The pulmonary function test was not conducted in three patients.

