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ABSTRACT:  We found a very fast benzylation of cellulose in a tetraalkyl-onium hydroxide 

solvent system, 47% tetra-n-butylphosphonium hydroxide aqueous solution.  Benzyl cellulose 

(BC) with a degree of substitution (DS) above 2.5 was obtained within 10 min at ambient 

temperature (20–25 °C) using ~9 molar equivalents of benzyl bromide to the anhydroglucose 
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unit.  The highly efficient benzylation proceeded in the transiently stabilized emulsion state of 

the reaction system, and the product precipitated out as a solid sediment in the liquid medium.  

At 20 °C, the benzyl DS was 1.92 after 2 min, and reached 2.40 and 2.53 after 5 and 10 min, 

respectively.  The reaction temperature had a negative correlation with the maximum DS in the 

explored range of 10–50 °C.  No significant degradation of the cellulosic main chain was 

observed for highly substituted BCs (DS > 2.5).  The solubility of BC in common organic 

solvents was also examined for products with various DSs.  

 

 

INTRODUCTION 

    Cellulose is the most abundant natural polymer on earth and is widely available from plant 

sources.  It can even be an attractive candidate to replace petroleum-based organic materials.  An 

intrinsic problem of cellulose is the intractability in materialization: cellulose cannot be melt-

processed in itself and has limited industrially viable solvents.  The reactivity of three hydroxyl 

groups in each glucose residue certainly permits a wide range of modifications of cellulose for 

different functionalities.1–4  However, to derivatize the molecule, the hydroxyl groups must be 

activated and easily accessible by the reactant; hence, proper swelling or dissolution of pristine 

cellulose is generally required, and the reaction often needs a significant excess of solvents or 

intense pretreatments, such as ball milling, to increase the amount of the amorphous phase.  Thus, 

the total production cost of the cellulose derivatives can be relatively high despite the availability 

of the primary resource.1–4 

    Recently, Abe et al. reported that tetraalkyl-onium hydroxide aqueous (aq.) solutions 

dissolved cellulose at ambient temperature.5,6  Tetra-n-butylphosphonium hydroxide 
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([P4,4,4,4]OH) and tetra-n-butylammonium hydroxide aq. solutions dissolved over 15 wt % 

cellulose within a few minutes at 25 °C, without pretreatment.  In the present paper, we would 

like to demonstrate that a [P4,4,4,4]OH aq. solution is employable as an excellent medium for 

facile etherification of cellulose.  

    Cellulose ethers, such as alkyl cellulose, hydroxyalkyl cellulose, and carboxyalkyl cellulose, 

are used as auxiliaries in food, cosmetics, pharmaceuticals, adhesives, etc.7–14 (e.g., as a 

thickener or stabilizer for suitable rheological properties in fluid states).  Among many possible 

etherifications, we chose benzylation as a model reaction of cellulose etherification in a 

[P4,4,4,4]OH aq. solution; rapid benzyl substitution is a comparatively difficult and challenging 

reaction in various derivatives of cellulose.15  Practically, benzyl cellulose (BC) has some 

potential applications that have been claimed in technical patents: BC can be used for 

hemodialysis in medical treatments16 and for commodities involving coatings, tubes, adhesives, 

inks, and binder compositions.17  

    Conventionally, cellulose etherification is done with a halogenated reagent under 

heterogeneous conditions using a concentrated NaOH aq. solution that swells cellulose fibers and 

simultaneously activates the hydroxyl groups of the polymer molecule.  Gomberg et al. 

conducted benzylation of cotton and filter paper cellulose with benzyl chloride in a NaOH aq. 

solution at 100 °C and obtained BC products with benzyl degrees of substitution (DSs) of 0.43 

and 1.41, respectively.18  The molar ratio of the in-fed benzyl chloride to the anhydroglucose unit 

(AGU) of cellulose was 8.  

    Alternatively, etherification can be achieved in homogeneous cellulose solutions, often on the 

laboratory scale.  Isogai et al. carried out benzylation of cellulose in LiCl/N,N-

dimethylacetamide as a reaction medium (85 °C) mixed with powdered NaOH as an activation 
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agent.  The addition of a large excess of benzyl chloride (45 times in mol to AGU) produced a 

BC with DS = 2.8.19  They also attained a complete tri-O-benzylation of cellulose in aprotic polar 

solvent systems, N2O4/N,N-dimethyl sulfoxide (DMSO) and SO2/diethylamine/DMSO,19,20 again 

using a high molar excess of benzyl chloride and NaOH.  A more recently discovered solvent, 

DMSO/tetrabutylammonium fluoride trihydrate, worked in a similar way.21,22  However, the 

trouble with these solvent systems is the long reaction time (commonly >4 h) at elevated 

temperatures (>70 °C).  Instead of such organic solvent systems, a NaOH/urea aq. solution was 

recently used as another cellulose solvent and homogeneous reaction medium for benzylation.15  

However, lower substituted BCs (DS = 0.29–0.54) were solely obtained by a 4 h reaction at 

70 °C.  The large volume fraction of water (~90%) is probably an obstacle to achieve higher DS 

because the water would compete with cellulose hydroxyls to react with the halide reagent.  

    In the present study, we applied a strong base, [P4,4,4,4]OH aq. solution, to the reaction medium 

with the aim of achieving faster and more efficient cellulose benzylation.  This solvent dissolves 

cellulose with an appreciably lower content of water (<50%) compared to the NaOH/urea aq. 

solution and therefore is expected to be more suitable for cellulose etherification.  

 

 

EXPERIMENTAL SECTION 

    Original Materials.  A 40% [P4,4,4,4]OH aq. solution was purchased from Sigma-Aldrich Co. 

LLC and was concentrated to 47% by evaporation at 30 °C under vacuum before use.  NaOH, 

urea, benzyl bromide (BnBr), ethanol, pyridine (dehydrated), 4-dimethylaminopyridine (DMAP), 

acetic anhydride (Ac2O), chloroform, toluene, tetrahydrofuran (THF), acetone, DMSO, and 

chloroform-d (CDCl3) were purchased from Sigma-Aldrich Co. LLC; all were guaranteed 
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reagent-grade and used as received.  Microcrystalline cellulose Avicel® PH-302, purchased from 

FMC Europe N. V., Belgium, was dried under vacuum for 24 h at 25 °C before use.  

    Synthesis of Benzyl Cellulose.  The 47% [P4,4,4,4]OH aq. solution was tentatively adopted as 

the benzylating reaction medium because this was the optimum concentration to dissolve 

cellulose.5,6  Cellulose powder (0.09 g) was dissolved at 3.0 wt % in the [P4,4,4,4]OH aq. solution 

(2.91 g) with gentle stirring for 30 min at 25 °C.  BnBr was added dropwise to the cellulose 

solution, and the mixture was gently stirred under a N2 atmosphere.  The addition of BnBr was 

completed within 15 s, and the reference time of the reaction was counted from the end of the 

addition.  In the termination of the cellulose benzylation, an excess amount of ethanol (5 mL) 

was poured into the reaction system to consume the unreacted BnBr.  The resulting BC was 

purified by dissolution in pyridine (1 mL) and reprecipitation in ethanol (30 mL).  Finally, the 

purified BC was collected by filtration with ethanol washing and vacuum-dried at 25 °C for 24 h.  

The in-fed amount of BnBr was varied from 3 to 15 molar equivalents to AGU.  The reaction 

temperature and time were controlled in the range of 10–50 °C and 2–180 min, respectively.  We 

usually prepared three BC samples for a set of variables of the BnBr:AGU ratio, reaction 

temperature, and time to confirm the reproducibility of the DS evaluation.  

    Post-acetylation of BC.  Post-acetylation was conducted to dissolve BC in CDCl3 according 

to previous papers23,24 as follows: BC (0.05 g) and DMAP (0.025 g) were dissolved in 5 mL of 

pyridine under a N2 atmosphere without heating.  Ac2O (0.75 mL) was added into the BC 

solution, and the mixture was gently stirred at 60 °C for 4 h.  Then, 30 mL of ethanol was added 

to stop the acetylation reaction.  The resulting acetylated BC (a-BC) precipitated as a white 

powder, which was purified by dissolution–reprecipitation with pyridine and ethanol.  Finally, 

the purified a-BC was dried under vacuum at 25 °C for 24 h.   
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    Fourier Transform Infrared (FT-IR) Spectroscopy.  An FT-IR spectrum of the original 

cellulose was measured using a Shimadzu IRPrestige-21 spectrometer.  The cellulose was dried 

at 80 °C under vacuum for 24 h and a standard KBr pellet method was employed.  For BC and a-

BC products, cast thin films were prepared from their 2 wt % solutions in pyridine to collect FT-

IR spectra, which were recorded using a Perkin-Elmer Spectrum RXI FT-IR spectrometer.   

    Nuclear Magnetic Resonance (NMR) Spectroscopy.   400-MHz 1H NMR spectra were 

recorded for a-BCs in CDCl3 using a Bruker UltraShield 400 NMR spectrometer.  The polymer 

concentration was 30 mg/mL.  Tetramethylsilane was used as an internal standard.  The 

temperature was 25 °C, and the number of scans was 16.  

    Size Exclusion Chromatography (SEC).  SEC measurements were performed for a-BCs and 

the starting Avicel (nitrated according to the literature25,26) at 30 °C using an Agilent 390-MDS 

system (parts: 290-LC pump injector, ProStar 510 column oven, 390-MDS refractive index 

detector) equipped with two Agilent PLgel 5m MIXED-D 300 × 7.5 mm columns (part No: 

PL1110-6504).  THF eluent was used at a flow rate of 1.0 mL/min.  Each sample of cellulose 

derivative was dissolved in THF (5 mg/mL) at 25 °C.  The solutions were filtered through a 

poly(tetrafluoro ethylene) syringe filter (pore size, 0.45 m) before the SEC measurement.  

    Solubility Test.  BC samples were vacuum-dried for 6 h at room temperature (~20 °C) before 

use.  The dried BC powder was added to several solvents at a concentration of 10 mg/mL, and 

the mixtures were gently stirred for 1 h at 25 °C.  The solubility was estimated by judging the 

amount of undissolved BC with the naked eye.  

 

 

RESULTS AND DISCUSSION 
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    General Aspect of Reaction and Characterization of BC Products.  When BnBr was added 

to the initially transparent solution of cellulose/[P4,4,4,4]OH aq., the solution became turbid.  

Within a few minutes, white precipitates were perceived.  The floating precipitates were either 

fluffy or sticky, depending on the quantity of the in-fed BnBr (stickier at BnBr/AGU ratios >9).  

After ~10 min had elapsed in the reaction progress, the supernatant became clear.  The yield of 

BC was 0.19 g (87%, when calculated based on AGU using the DS data of ~2.5), for example, 

with the following conditions: amount of starting cellulose, 0.09 g; BnBr feed, 9 molar 

equivalents to AGU; temperature, 25 °C; reaction time, 180 min.  When the molar ratio of 

BnBr:AGU was changed to 6, the yield of BC (DS ≈ 1.7) was 0.14 g (81% in AGU).  

    Figure 1 illustrates FT-IR spectra measured for BC and its acetylated form (a-BC), together 

with a spectrum of the original cellulose.  In the BC spectrum (Fig. 1B), the aromatic bands 

appearing at 1497 and 1454 cm−1 provide evidence of successful etherification of cellulose with 

the benzyl substituent.  The OH stretching band (3250–3750 cm−1), still observed for the BC, 

disappeared after the post-acetylation reaction (Fig. 1C); this confirms the full substitution of the 

remaining hydroxyl groups.  

 



 8 

 

Figure 1.  FT-IR spectra of (A) original cellulose (Avicel), (B) BC prepared from (A) in 

[P4,4,4,4]OH aq. solution with BnBr, and (C) a-BC obtained by full acetylation of (B) with Ac2O.  

 

    The benzyl DS of BC was determined using the 1H NMR spectrum of the corresponding a-BC 

sample (see Fig. 2), according to the following equation:  

 Benzyl DS  = 7A / (5B − 2A)                         (1) 

where A is the integration from 6.5 to 8.0 ppm (corresponding to the resonance intensity of the 

phenyl protons of the benzyl group) and B is the integration from 2.5 to 5.5 ppm (corresponding 

to the total intensity of the methylene protons of the benzyl group and the seven protons in AGU).  

The DS reported below is an average obtained for the evaluation of multiple similarly benzylated 

BCs.  Integral area A includes a signal of CDCl3, but this contribution was negligible to a 

tolerance (~0.05) of the DS quantification in the present study because BCs with high DS values 

(>1.5) were mainly produced.  
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Figure 2.  1H NMR spectrum of an a-BC, measured in CDCl3.  

 

    Using 9 molar equivalents of BnBr to AGU at 25 °C for 3 h, we obtained a BC product with a 

DS = 2.49 (±0.06).  We are not aware of any reports of such an efficient benzylation at ambient 

temperature.  Thus, the [P4,4,4,4]OH aq. solution is a promising medium for etherification of 

cellulose.  For comparison, we used a NaOH/urea aq. solution15 (~90 vol % water) as a reaction 

medium for cellulose benzylation.  Under the same conditions (BnBr:AGU = 9:1, 25 °C, and 3 h), 

the benzyl DS reached only 0.05, although the molarity of the alkali (NaOH) in the solution was 

similar to that in the [P4,4,4,4]OH aq. solution.  The reagent BnBr remained as a macroscopic 

liquid phase in the reaction system due to the immiscibility of the NaOH/urea solvent with BnBr, 

resulting in such a low efficiency for the benzylation.  In contrast, tetraalkylphosphonium has 

both a hydrophilic and a hydrophobic moiety, i.e., it is of amphiphilic character.  Therefore the 

cellulose/[P4,4,4,4]OH aq. solution assumed an emulsive state immediately after the initiation of 

benzyl substitution by BnBr addition, whereupon further benzylation would have rapidly 

proceeded in the dispersed microspheres (see Fig. 6).  
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    A SEC result for an a-BC (benzyl DS = 2.49) (Fig. 3B) was compared to that for a nitrated 

cellulose (NC) prepared from the original Avicel (Fig. 3A) to examine the potential 

depolymerization during the benzylation reaction.  The weight-average molar mass and 

polydispersity of the NC were ca. 9.6 × 104 and 3.1, respectively, when calculated based on 

monodisperse polystyrene.  The corresponding data for the a-BC were ca. 9.2 × 104 and 2.5.  In 

the SEC curve of the a-BC sample, a somewhat noticeable shoulder appeared at ~14 min, which 

might be due to a small amount of degradation product.  However, the overall elution profile was 

quite similar to that of the NC sample.  Therefore, we can conclude that no significant 

depolymerization occurred in the present benzylation process.  The ambient reaction temperature 

(25 °C for BC with DS = 2.49) might prevent degradation of the polymer chain.  

 

 

Figure 3.  SEC curve of (A) nitrated Avicel (starting cellulose) (NC) and (B) BC synthesized in 

[P4,4,4,4]OH aq. solution with BnBr (25 °C, 3 h), then post-acetylated (a-BC).  

 

    Effect of In-Feed Amount of BnBr.  Under fixed conditions of the reaction temperature 

(25 °C) and time (3 h), the DS value increased linearly with the added BnBr amount within a 

range of 0–9 in the molar ratio to AGU; e.g., DS = 0.68 (±0.01) and 2.49 (±0.06) for BnBr:AGU 
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= 3 and 9, respectively (Fig. 4).  However, a further increase of the molar ratio from 9 to 15 was 

essentially ineffective in raising the maximum DS; the reaction systems had transformed to a 

liquid–solid (sediment) bi-phasic one after more than 10 min without retaining the respective 

emulsion states (see below).  

 

 

Figure 4.  Benzyl DS of BC synthesized in [P4,4,4,4]OH aq. solution with 3 h stirring at 25 °C, 

showing the dependence on the molar ratio of BnBr to AGU. 

 

    Effects of Reaction Temperature and Time.  At a constant BnBr:AGU = 9:1 in-feed, the 

reaction temperature had a negative correlation with the benzyl DS (Fig. 5a).  The highest DS, 

2.69 (±0.04), was observed at 10 °C.  The DS value progressively decreased with increasing 

temperature.  We currently have two hypotheses to explain the temperature dependence: (1) The 

increased mobility of the hydrophobic n-butyl chains of the [P4,4,4,4] component at elevated 

temperature would reduce the surface activity to disperse the microspheres of partially 

benzylated cellulose.  Therefore, at higher temperatures, the BC polymers would flocculate and 

agglomerate into a compact solid sediment at a relatively earlier stage of the benzylation 
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progress.  (2) The selectivity of the reaction of BnBr might be reduced at higher temperatures.  In 

the present benzylation process, the bi-products, benzyl alcohol and dibenzyl ether, are formed 

by a side reaction of BnBr with water (see Supporting Information, Fig. S1).  As generally 

recognized, the hydroxyl groups in polysaccharides have a weakly acidic nature.27  Therefore, 

BnBr preferentially reacts with the cellulose hydroxyl groups.  However, the selectivity might be 

lowered as the temperature increases, resulting in unproductive consumption of BnBr by 

hydrolysis.  Below 10 °C, the cellulose/[P4,4,4,4]OH aq. solution was frozen and the benzylation 

was virtually unsuccessful.  
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Figure 5.  Benzyl DS of BC synthesized in [P4,4,4,4]OH aq. solution with a molar ratio of 

BnBr:AGU = 9:1 in feed: (a) the dependence on the reaction temperature with 3 h stirring, and 

(b) the dependence on the reaction time at 20 °C. 
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    Figure 5b shows the time dependence of the benzyl DS of the BC products obtained at 20 °C 

in a fixed ratio of BnBr:AGU = 9:1.  The DS was 1.92 (±0.04) within 2 min after completing the 

BnBr addition, and it reached 2.40 (±0.01) and 2.53 (±0.02) at 5 and 10 min, respectively.  This 

is a very fast reaction compared to the conventional benzylation protocols that require stirring for 

several hours at an elevated temperature to achieve a DS value >2.19–22  In the present system, 

however, further prolonged reaction up to 3 h had little impact on the DS growth.  Therefore it 

follows that the cellulose benzylation substantially finished within 10 min in the [P4,4,4,4]OH aq. 

solution.  

    Eventually, the highest DS attained in this reaction system by varying the temperature, time, 

and BnBr in-feed amount was 2.69 (±0.04).  The saturation of the benzyl substitution may be 

ascribed to the essentially poor compatibility of the product with the aqueous solvent; roughly, in 

a mild ambient condition (20–25 °C), BCs with DS > 2.4 precipitate from the emulsive reaction 

medium so as to form a compact sedimentation.  

 

    Model Scheme of Cellulose Benzylation in [P4,4,4,4]OH aq. Solution.  Using illustrations 

depicted in Figure 6, we summarize a possible scheme of the present benzylation as follows:  As 

soon as the BnBr reagent is added into the cellulose/[P4,4,4,4]OH aq. solution, the droplets are 

finely dispersed because of the good lyophilic nature of the cellulose solvent.  Consecutively, the 

BnBr reagent readily migrates to attack cellulose hydroxyls activated as alkoxide ions by the 

phosphonium cation; then, the benzylation reaction starts (Fig. 6a).  Within the first minute of the 

reaction, the lightly benzylated cellulose molecules become hydrophobic to some extent and the 

initial BC products huddle together to form a number of microspheres in the [P4,4,4,4]OH aq. 
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medium, whereupon the tetra-n-butylphosphonium component functions as a surfactant (Fig. 6b).  

The benzylating BnBr is partly trapped in and can also diffuse into the lipophilic BC micelles, 

and hence further benzylation proceeds with fast reaction kinetics in the confined space.  

However, the ascent of benzyl DS (e.g., approaching 2.5) diminishes the compatibility of BC 

with the tetraalkyl-onium hydroxide aq. solution, which collapses the BC spheres, followed by 

macroscopic separation into a solution–solid bi-phasic system (Fig. 6c).  In this final stage, the 

cellulose benzylation no longer occurs, except for a possible local reaction in the interfacial 

region of the two phases, because the BnBr liquid hardly penetrates into the aggregated BC 

sediment.  
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Figure 6.  Model scheme of the benzylation of cellulose in [P4,4,4,4]OH aq. solution: (a) 

beginning of benzylation after BnBr addition; (b) growth of benzylation in a temporarily 

stabilized micelle; (c) ending of benzylation accompanied by a solution–sediment separation.  

 

    Solubility of BC in Conventional Solvents.  The solubility of the BC products in organic 

solvents varied depending on the attained benzyl DS, as exemplified in Table 1.  BCs with 

relatively low DSs (e.g., BC-1 and BC-2) were only soluble in DMSO and pyridine.  With an 

increase in the DS, BCs became soluble in chloroform and THF.  Somewhat interestingly, 

however, the BC (BC-4) showing the highest DS of 2.69 was not soluble in DMSO.  Such a 

tendency in the solubility of BC is, in part, different from that of the previous reports: e.g., BCs 

of DS < 1.22 were not soluble in any of the conventional solvents,21 and a DS value ≥ 1.7 was 

necessary to solubilize BC prepared in a classical heterogeneous way.28  It may be taken by 

comparison that, in the present preparation, the solubility of BC was relatively high even at a 

considerably lower degree of benzylation.  The difference in the degree of polymerization 

between the starting celluloses could be partly responsible; the previous works used cotton linter 

as the cellulose material, while we used a microcrystalline Avicel.  The difference in the 

distribution patterns of the benzyl ether substituents may also influence the solubility.  Further 

characterization of BC and other cellulose ethers synthesized in the [P4,4,4,4]OH aq. medium, 

including specification of the substitution distribution, is under way.  Additionally, a preliminary 

thermal analysis indicated that a highly benzylated BC (DS = 2.5) exhibited a transition 

associated with an anisotropic phase above 130 °C besides the glass transition (Tg = ~90 °C), 

while a BC with DS = 1.7 only showed a Tg signal at ~120 °C in a temperature range below 
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200 °C.  In parallel with the structural characterization, detail studies on the thermal and optical 

properties are also now in progress.   

 

Table 1.  Solubility of BC samples having various benzyl DSs in conventional organic solvents. 

No. Preparation condition Benzyl 

DS 

Solubilityb (at 10 mg/mL) 

Feeda Temp. 

(°C) 

Time 

(min) 

DMSO Pyridine Chloroform THF Acetone Toluene 

BC-1 3 25 180 0.68 S S I I I I 

BC-2 6 25 180 1.70 S S I P I I 

BC-3 9 25 180 2.49 S S S S P P 

BC-4 9 10 180 2.69 I S S S I P 

a Molar ratio of in-fed BnBr to AGU for cellulose benzylation in [P4,4,4,4]OH aq. solution.  b 

Notations: S, soluble; P, partially soluble; I, insoluble. 

 

 

CONCLUSION 

    We found a new route for cellulose benzylation without the usual activation of the natural 

polymer with NaOH; that is, BCs with DSs ≥ 2.5 were readily obtained with BnBr in a 

[P4,4,4,4]OH aq. solution as the reaction medium, within 10 min at room temperature (20–25 °C) 

via an emulsion state.  The ionic solution is expected to be applicable as a good solvent for many 

other etherifications of cellulose.  
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Graphical Abstract 

 

Benzyl cellulose with a degree of substitution above 2.5 was obtained with benzyl bromide in a 

tetra-n-butylphosphonium hydroxide aqueous solution, within 10 min at room temperature. 
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