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Rényi‐Parry germs of curves and dynamical zeta functions

associated with real algebraic numbers

By

Jean‐Louis VERGER−GAUGRY *

Abstract

Let  $\beta$>1 be an algebraic number. The relations between the coefficient vector of its minimal

polynomial and the digits of the Rényi  $\beta$‐expansion of unity are investigated in terms of the germ of curve

associated with  $\beta$ ,
which is constructed from the Salem parametrization, and the Parry Upper function

 f_{ $\beta$}(z) . If  $\beta$ is a Parry number, the Parry Upper function  f(z) is simply related to the dynamical zeta

function $\zeta$_{ $\beta$}(z) of the dynamical system ([0,1], T_{ $\beta$}) where T_{ $\beta$} is the  $\beta$‐transformation. Using the theory of

Puiseux several results on the zeros of  f(z) and a classification of  $\beta$ \mathrm{s} off Parry numbers are suggested.

§1. Introduction: digits and algebraicity

The Rényi‐Parry numeration system [Re] [Pa] [Fr] uses a real number  $\beta$>1 as base of

numeration and inherits the properties of the dynamical system ([0,1], T_{ $\beta$}) ,
where T_{ $\beta$} :  x\rightarrow

\{ $\beta$ x\}= $\beta$ x mod1 is the  $\beta$‐transformation, for instance given by its dynamical zeta function

 $\zeta$_{ $\beta$}(z) [AM] [Bo2] [FLP] [PP] [Po] [V4] or by the Rényi  $\beta$‐expansion \mathrm{d}_{ $\beta$}(1)=0.t_{1}t_{2}t_{3} . :. of 1 which

controls the language in base  $\beta$ [B‐T] [Bl] [Lo]. The analytic function  f_{ $\beta$}(z)=-1+\displaystyle \sum_{i\geq 1}t_{i}z^{i}
is then fundamental and called the Parry Upper function (at  $\beta$ ). When the base of numeration

 $\beta$>1 is an algebraic number a basic question is then to find the relations between the coefficient

vector of its minimal polynomial and the string of digits (ti). The present study gives new

solutions and directions for this study in the geometrical setting of germs of curves. A Parry
number is by definition a real number  $\beta$>1 such that \mathrm{d}(1) is finite (ends in infinitely many

zeros), then called simple, or eventually periodic. Parry numbers are algebraic integers which

are Perron numbers, and the collection of Parry numbers is dense in (1, +\infty) [Pa]. To  $\beta$>1
an algebraic number, given by its minimal polynomial P_{ $\beta$}(X) ,

assumed to be a Parry number,
is associated its Parry polynomial P_{ $\beta$,P}(X)\in P(X)[X] (with P_{ $\beta$,P}^{*} denoting its reciprocal
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polynomial), as

(1.1) f_{ $\beta$}(z)=-\displaystyle \frac{1}{$\zeta$_{ $\beta$}(z)}=-\frac{P_{ $\beta$,P}^{*}(z)}{(1-z^{p+1})} nonsimple  $\beta$

where  p+1 is the period length, and

(1.2) f_{ $\beta$}(z)=-\displaystyle \frac{1-z^{m}}{$\zeta$_{ $\beta$}(z)}=-P_{ $\beta$,P}^{*}(z) simple  $\beta$

where  m is the length of d_{ $\beta$}(1) . The Dynamical Norm Conjecture (S. Akiyama) states: that, if  $\beta$
is a nonsimple Parry number, then the algebraic norm  N() of  $\beta$ satisfies |N( $\beta$)|=|t_{m}-t_{m+p+1}|
if m the preperiod length and p+1 the period length of \mathrm{d}_{ $\beta$}(1) . Other relations are observed

between the coefficients of P(X) and (ti), for instance for some Pisot numbers and Salem

numbers [Bo2] [Bo3] [V2], but their origin remains still obscure in general, for instance with the

distibution of palindromic motives, the asymptotic strings of zeros, the repetitions, in (ti), with

some Diophantine Approximation questions [AB] [Bu] [Ds] [S] and the Mahler measure of the

base  $\beta$ [V1] (cf Akiyama and Kwon [AD] for a review).
For nonParry numbers  $\beta$ ,

relations between  f(z) and $\zeta$_{ $\beta$}(z) are obscure; and the unit circle

is the natural boundary of f(z) by the Szegó‐Carlson‐Polya Theorem. The approach which is

followed here was introduced in [V4] and overcomes this difficulty. It is addressed to noninteger

algebraic numbers  $\beta$>1 , Parry or nonParry: it amounts to write the Parry Upper function f(z)
as a two‐variable Taylor series G_{ $\beta$}(U, Z)\in \mathbb{C}[[U, Z]] parametrized by the Salem parametrization

[P_{ $\beta$}^{*}(z), z-1/ $\beta$] ,
then to use the theory of Puiseux [C] to deduce its decomposition as a finite

product of factors and the coefficients involved in the formal series and Puiseux series in them,

relating (t) and the values of the derivatives of the minimal polynomial of  $\beta$ . The adding of

a second variable, most notably introduced differently by Boyd in several articles, is typical
of studies on moduli of curves in algebraic geometry (Lefshetz [Lf], Duval [Dl]). The theory
of Puiseux is used for desingularizing curves locally, for instance for algebraic functions (i.e.
polynomiality with the two variables). Here, the canonical method we follow gives rise to a germ

of curve (the �Rényi‐Parry germ of curve associated with  $\beta$ �) whose equation  G_{ $\beta$} is analytic in

U and polynomial in Z ; this method uses the Salem parametrization introduced by Salem in his

1945 article, inthere as a basic ingredient in the so‐called �Salem construction� for convergent
families of Salem numbers (M.J. Bertin, M. Pathiaux‐Delefosse [BPD]).

This note is conceived as a short introduction, without proofs, to [V5].

§2. Rényi‐Parry germ of curve

§2.1. Equation

Let  $\beta$>1 be an algebraic number and P_{ $\beta$}(X)=a_{d}(X-$\beta$^{(0)})(X-$\beta$^{(1)})\ldots(X-$\beta$^{(d-1)})=
\displaystyle \sum_{j=0}^{d}a_{j}X^{j} its minimal polynomial, with  $\beta$=$\beta$^{(0)}, P_{ $\beta$}^{*}(X)=X^{\deg $\beta$}P_{ $\beta$}(1/X) ,

its reciprocal

polynomial, \mathrm{d} :=\deg $\beta$ assumed \geq 2, \mathrm{d}_{ $\beta$}(1)=0.t_{1}t_{2}t_{3}\ldots the Rényi  $\beta$‐expansion of unity,

equivalently  $\beta$=t_{1}+\displaystyle \sum_{i\geq 2}t_{i}$\beta$^{-i+1} with t_{1}=\lceil $\beta$-1\rceil=\lfloor $\beta$\rfloor, t_{i} :=\lfloor $\beta$ T_{ $\beta$}^{i-1}(1)\rfloor, i\geq 2,
and T_{ $\beta$}^{i} :=T_{ $\beta$}(T_{ $\beta$}^{i-1}) , i\geq 1, T_{ $\beta$}^{0}:=\mathrm{I}\mathrm{d} . The digits t_{i} belong to \{0, 1, . . . , \lfloor $\beta$\rfloor\} . The subrings
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\mathbb{C}\{U\}[Z]\subset \mathbb{C}\{U, Z\}\subset \mathbb{C}[[U, Z]] denote the sets of convergent formal series, the first one with

polynomiality in Z . For g=\displaystyle \sum_{n\geq 0,m\geq 0}c_{n,m}U^{n}Z^{m}\in \mathbb{C}[[U, Z]], \mathrm{o}\mathrm{r}\mathrm{d}_{U}g denotes the greatest inte‐

ger j\geq 0 such that g=\displaystyle \sum_{n\geq j,m\geq 0}c_{n,m}U^{n}Z^{m} (i.e. with no nonzero term c_{n,m}U^{n}Z^{m} indexed by

n<j) .

Theorem 2.1. There exists a unique G_{ $\beta$}(U, Z)\in \mathbb{C}\{U[Z] such that

G_{ $\beta$}(P_{ $\beta$}^{*}(z), z-\displaystyle \frac{1}{ $\beta$})=f_{ $\beta$}(z)
for z in a neighbourhood of  1/ $\beta$ ,

with \deg_{Z}G_{ $\beta$}(U, Z)<\deg $\beta$. G_{ $\beta$}(U, Z) decomposes into one

of the four following possibilities : (i) either G_{ $\beta$}(U, Z)=U\times e ,
where e=e(U, Z) is a unit

in \mathbb{C}\{U, Z\} , (ii) or it is equal to e\times W ,
where e=e(U, Z) is a unit in \mathbb{C}\{U, Z\} ,

and (ii‐l)
deg_{Z}W(U, Z)=1, \mathrm{o}\mathrm{r}\mathrm{d}_{U}W(U, Z)>1 ,

or (ii‐2) deg_{Z}W(U, Z)=1, \mathrm{o}\mathrm{r}\mathrm{d}_{U}W(U, Z)=1 ,
or (ii‐3)

deg_{Z}W(U, Z)>1, \mathrm{o}\mathrm{r}\mathrm{d}_{U}W(U, Z)=1 and W is an irreducible Weierstrass polynomial.

Denote

(2.1) G_{ $\beta$}(U, Z) :=b_{d-1}(U)Z^{d-1}+b_{d-2}(U)Z^{d-2}+ . . :+b_{1}(U)Z+b_{0}(U) ,

with b_{j}(U) :=\displaystyle \sum_{r\geq 0}b_{j,r}(U)U^{s} . The four possibilities define four types of Newton polygon of

G_{ $\beta$} . The last three cases come from the Weierstrass preparation theorem applied to G_{ $\beta$} and the

fact that  1/ $\beta$ is a simple zero of  f_{ $\beta$} . In the last case, the theory of Puiseux applies to provide a

unique decomposition of the Weierstrass polynomial W as a finite product

W=\displaystyle \prod_{ $\xi$}(Z-\sum_{i\geq 0}$\alpha$_{i}$\xi$^{i}U^{\frac{i}{w}})
over all the Puiseux factors forming a unique conjugacy class. The Puiseux series, involved in

the Puiseux factors, deduced from the Newton polygon,

\displaystyle \sum_{i\geq 0}$\alpha$_{i}U^{\frac{i}{w}} with conjugates \displaystyle \sum_{i\geq 0}$\alpha$_{i}$\xi$^{i}U^{\frac{i}{w}}
are fractionary power series for which the exponents are rational integers with common denom‐

inator w:=\deg_{Z}W ,
with  $\xi$ running over the wth‐roots of unity. The polynomial  G_{ $\beta$} defines a

plane affine curve

C_{ $\beta$}:=\displaystyle \{(U, Z)\in \mathbb{C}^{2}|G_{ $\beta$}(U, Z)= \sum_{m,n\underline{>}0}A_{m,n}U^{n}Z^{m}=0\}
with coefficients A_{m,n} in a field extension of \mathbb{Q}( $\beta$) , along with a ramified covering $\pi$_{ $\beta$} : C_{ $\beta$}\rightarrow \mathbb{C},
the first projection map, of \mathbb{C} (i.e. the U‐plane).

§2.2. Perron‐Frobenius operator and Eigenvalues

\text{∪Let \mathbb{C}((U)) :=\displaystyle \bigcup_{n\in \mathbb{N}^{*}} U^{-n}\mathbb{C}[[U]] be the field of formal Laurent series of the variable

U ,
and denote \mathbb{C}((U))^{*} :=\displaystyle \bigcup_{m\in \mathbb{N}^{*}}\mathbb{C}((U^{1/m})) the field of Laurent‐Puiseux series with coef‐

ficients in \mathbb{C} . The ring \mathbb{C}[[U]]^{*} := \displaystyle \bigcup_{m\in \mathbb{N}^{*}}\mathbb{C}[[U^{1/m}]] of the Puiseux series contains the
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ring of formal series \mathbb{C}[[U]] . By the Theorem of Puiseux [C] \mathbb{C}((U))^{*} is algebraically closed,
and any polynomial in \mathbb{C}[[U]][X] has at least one X‐root in \mathbb{C}[[U]]^{*} . By the change of ori‐

gin, with \overline{f_{ $\beta$}}(Z) :=f(z) and \overline{P_{ $\beta$}^{*}}(Z) :=P_{ $\beta$}^{*}(z) ,
we obtain new coefficients vectors. Denoting

\mathrm{K}_{ $\beta$}:=\mathbb{Q}( $\beta$) ,
and by \mathrm{K}_{ $\beta$}^{\mathcal{G}} the smallest Galois extension containing \mathrm{K}_{ $\beta$}, \displaystyle \overline{f_{ $\beta$}}(Z)=\sum_{j\geq 1}$\lambda$_{j}Z^{j} with

$\lambda$_{j}=$\lambda$_{j}( $\beta$) :=\displaystyle \sum_{q\geq 0}t_{j+q}\left(\begin{array}{l}
j+q\\
j
\end{array}\right)(\frac{1}{ $\beta$})^{q}, j\geq 1 ,
and \overline{P_{ $\beta$}^{*}}(Z)=Z($\gamma$_{1}+$\gamma$_{2}Z+\ldots+$\gamma$_{d}Z^{d-1}) ,

with

$\gamma$_{q}=\displaystyle \sum_{j=q}^{d}a_{d-j}\left(\begin{array}{l}
j\\
q
\end{array}\right)(\frac{1}{ $\beta$})^{j-q}\in \mathrm{K}_{ $\beta$} . Let

(2.2) M=M_{U}:= \left(\begin{array}{lllll}
0 & 0 & \cdots & 0 & \frac{U}{$\gamma$_{d}}\\
1 & 0 & \cdots & 0 & -\frac{$\gamma$_{1}}{$\gamma$_{d}}\\
0 & 1 &  &  & \\
0 & 0 & 1 &  & -\frac{$\gamma$_{d-1}}{$\gamma$_{d}}
\end{array}\right)
The d\times d square matrix M

,
with coefficients in \mathbb{Q}($\gamma$_{1}^{\pm 1}, $\gamma$_{2}^{\pm 1}, \ldots, $\gamma$_{d}^{\pm 1})[U]=\mathrm{K}_{ $\beta$}[U] ,

is the matrix

of an operator on the vector space (\mathbb{C}[[U]]^{*})^{d} . This vector space splits into a direct sum of d

Eigenspaces of dimension one, with a priori Puiseux series as Eigenvalues, since F=F(U, X)=
\det(X\mathrm{I}\mathrm{d}-M_{U})\in \mathrm{K}_{ $\beta$}[U][X] . In fact, only one Eigenvalue of M_{U} lies in the maximal ideal

U\mathbb{C}[[U]]^{*} (this Eigenvalue even belongs to U\mathrm{K}_{ $\beta$}[[U]] ).

Theorem 2.2. With the above‐mentioned notations, the characteristic polynomial

(2.3) F(U, X)=X^{d}+\displaystyle \frac{$\gamma$_{d-1}}{$\gamma$_{d}}X^{d-1}+\ldots+\frac{$\gamma$_{2}}{$\gamma$_{d}}X^{2}+\frac{$\gamma$_{1}}{$\gamma$_{d}}X-\frac{1}{$\gamma$_{d}}U
is uniquely decomposed as e_{M}\times W_{M} ,

with e_{M}\in \mathrm{K}_{ $\beta$}[[U]][X] a unit and W_{M}(U, X) :=(X-$\sigma$_{1}(U))
the corresponding Weierstrass polynomial, with $\sigma$_{1}\in \mathrm{K}_{ $\beta$}[[U]],

(2.4) $\sigma$_{1}(U)=(\displaystyle \frac{1}{$\gamma$_{1}})U-(\frac{$\gamma$_{2}}{$\gamma$_{1}^{3}})U^{2}+(\frac{2$\gamma$_{2}^{2}-$\gamma$_{1}$\gamma$_{3}}{$\gamma$_{1}^{5}})U^{3}+\ldots
The other  X ‐roots $\sigma$_{2}, $\sigma$_{3} ,

. .

:; $\sigma$_{d}\in \mathbb{C}[[U]]^{*} of F
,

as e_{M}=(X-$\sigma$_{2})(X-$\sigma$_{3})(\ldots)(X-$\sigma$_{d}) ,
are

distinct, have the respective constant terms

c_{0,j}:=$\sigma$_{j}(0)=\displaystyle \frac{1}{$\beta$^{(j-1)}}-\frac{1}{ $\beta$} for 2\leq j\leq d,

and are such that $\sigma$_{j}(U)\in\underline{\mathrm{K}}_{ $\beta$}^{\mathcal{G}}[[U]] ,
with coefficients in the algebra over \mathbb{Q} generated by the

derivatives of the polynomial P_{ $\beta$}^{*}(X) at c_{0,j} ,
as

(2.5) $\sigma$_{j}(U)=c_{0,j}+\displaystyle \frac{1}{\overline{P_{ $\beta$}^{*}}(c_{0,j})\prime}U-\frac{\overline{P_{ $\beta$}^{*}}(c_{0,j})\prime\prime}{2(\overline{P_{ $\beta$}^{*}}(c_{0,j}))^{3}\prime}U^{2}+\ldots
§3. Main Theorems

Let us turn to the explicit computation of the Rényi‐Parry germ of curve associated with

 $\beta$ . let us consider {}^{t}(0p_{j,1}p_{j,2::}. p_{j,d-1} ), j\geq 1 ,
the last column vector of the matrix $\gamma$_{d}^{j}M_{0}^{j}.
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By convention we put: p_{j,0}=0 ,
for all j\geq 1 . The polynomials p_{j,i}\in \mathbb{Z}[$\gamma$_{1}, $\gamma$_{2}, . . . , $\gamma$_{d}] are

homogeneous, of degree j ,
and satisfy, for i=1

, 2, . .

:, d-1,

p_{1,i}=-$\gamma$_{i},

Pj+1,i=- $\gamma$ iPj,d-1+ $\gamma$ dPj,i-1 j\geq 1.

Theorem 3.1. The constant coefficients of the Rényi‐Parry germ of curve given by (2.1)
are: b_{0,0}=0 and

b_{j,0}=$\lambda$_{j-1}+\displaystyle \sum_{q\geq d}$\lambda$_{q}\frac{p_{q-d+1,j-1}}{$\gamma$_{d}^{q-d}} ,
for all1 \leq j\leq d-1.

The other coefficients b_{j,r}, j\geq 0, r\geq 1 ,
are deduced from the derivatives of the characteristic

polynomial F and the formal series $\sigma$_{j}(U) .

The case (ii‐3) of Newton polygon, in Theorem 2.1, corresponds to the geometrical steming
of conjugated irreducible curves in a neighbourhood of the origin (U=0, z=1/ $\beta$) parametrized

by the conjugated Puiseux series involved in the decomposition of the germ of curve (2.1). When

these curves cross the U‐plane in \mathbb{C}^{2} of equation U=0 ,
then their intersection with this plane is

one point, for which the inverse is called a beta‐conjugate of  $\beta$ . The conjugation over irreducibles

curves transports onto the collection of the beta‐conjugates of  $\beta$ . Another consequence of the

decomposition of  G_{ $\beta$} as in Theorem 2.1 is the following.

Theorem 3.2. If  $\beta$>1 is an algebraic number, which is not a Parry number, the analytic

function f(z) does not cancel at the (Galois‐) conjugates of 1/ $\beta$.

§4. Diophantine Approximation and a possible classication of nonParry numbers

Case (i) in Theorem 2.1 exactly corresponds to  $\beta$ being a Parry number, and this case can

be expressed in terms of the constant coefficients  b_{j,0}.

Theorem 4.1. With the above‐mentioned notations, the algebraic number  $\beta$>1 , of de‐

gree d (assumed \geq 2), is a Parry number if and only if::

b_{j,0}=0 ,
for all 1\leq j\leq d-1.

Since 0 is an algebraic number and that the constant coefficients b_{j,0} are given by sum‐

mations, it means that the number and asymptotic density of the �missing terms� in these

summations, when equal to 0 ,
is �weak�, in some sense, by easy Liouville arguments. So that

if all the coefficients b_{j,0} are equal to 0 ,
then the eventual periodicity of the sequence (t) is

obtained: in this case, eventual periodicity is forced.

The other cases (ii‐1), (ii‐2), (ii‐3) in Theorem 2.1 correspond to weaker arguments. It

suggests to attribute the rational number

w_{ $\beta$}:=1-\displaystyle \frac{ $\delta$}{d}\in[0, 1]
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to the algebraic number  $\beta$ ,
where  $\delta$\in\{1, 2, . . :; d-1\} is the degree of the Weierstrass polynomial

associated with G_{ $\beta$} (it is the greatest integer \leq d-1 such that b_{ $\delta$,0}\neq 0 with b_{m,0}=0 for

1\leq m< $\delta$) . The rational integer w_{ $\beta$} is close to 0 if G_{ $\beta$} admits a Weierstrass polynomial of high

degree, and close to 1 if  $\beta$ is at large departure off the set of Parry numbers, i.e. with degrees  $\delta$

small, or equal to 1. By convention, say that  w_{ $\beta$}=0 if and only if  $\beta$ is a Parry number. These

conditions are not strong enough to force the eventual periodicity ot the sequence of digits (ti),
but certainly a possible ordering/correlation of (ti).

The topology of the set {  w_{ $\beta$}| $\beta$>1 nonParry algebraic number} probably merits attention,
in particular the subset of it formed when  $\beta$ runs over a neighbourhood of unity. The rational

number  w_{ $\beta$} may be used as a classifying parameter defined on the set of the real algebraic numbers

 $\beta$>1 . Let u/v be a rational number in [0 , 1). Interestingly, the set $\Lambda$_{u/v}:=\{ $\beta$>1|w_{ $\beta$}=u/v\}
would have to be characterized. It is just known that $\Lambda$_{0} is dense in (1, +\infty) [Pa].
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