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A variation of McShane�s identity for 2‐bridge links

and its possible generalization

By

Hirotaka \mathrm{A}\mathrm{K}\mathrm{I}\mathrm{Y}\mathrm{O}\mathrm{S}\mathrm{H}\mathrm{I}^{*} Donghi \mathrm{L}\mathrm{E}\mathrm{E}^{**} and Makoto SAKUMA***

In his doctoral thesis [21], G. McShane proved the following striking identity con‐

cerning the lengths of simple closed geodesics on a once‐punctured torus T with a

complete hyperbolic structure of finite area:

\displaystyle \sum\frac{1}{1+e^{l( $\gamma$)}}=\frac{1}{2}.
 $\gamma$

Here  $\gamma$ runs over all simple closed geodesics on  T and l() denotes the length of  $\gamma$.

This identity has been generalized to cusped hyperbolic surfaces by McShane him‐

self [22]. Since then numerous variations of the identity have been obtained (see
[2, 4, 7, 8, 9, 15, 20, 23, 28, 29, 30, 32]), and a wonderful application to the Weil‐

Petersson volume of the moduli spaces of bordered hyperbolic surfaces was established

by Mirzakhani [20]. In [3], the first and the third authors, together with H. Miyachi,

gave a review of this topic up to 2003, laying emphasis on [4], which gives a variation

of McShane�s identity for hyperbolic surface bundles.

The purpose of this note is to give a review of the joint work of the second and the

third authors [15], which gives a variation of McShane�s identity for 2‐bridge links, and

to report an experimental study by the first and the last authors aiming at a geometric
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proof of the variation, by generalizing it to a certain continuous family of hyperbolic
cone manifolds.

The first and the last authors would like to thank Toshiyuki Sugawa for teaching
them the idea of the work [26], which gives a supporting evidence to their conjecture.
The authors would also like to thank the referee for careful reading and valuable sug‐

gestions.

§1. Bowditch�s generalization of McShane�s identity

In this section, we recall a generalization of McShane�s identity established by
Bowditch [8] and slightly extended by [2] and [29].

Let T:=(\mathbb{R}^{2}-\mathbb{Z}^{2})/\mathbb{Z}^{2} be the once‐punctured torus. Then the curve complex of

T is identified with the Farey tessellation \mathcal{D}
,

the tessellation of the hyperbolic plane
\mathbb{H}^{2} obtained from the ideal triangle \langle 0 , 1, \infty\rangle by successive reflection in its edges. The

vertex set of the Farey tessellation is equal to \hat{\mathbb{Q}}:=\mathbb{Q}\cup\{1/0\}\subset\partial \mathbb{H}^{2} and is identified

with the set of the isotopy classes of essential simple loops in T by the following rule: \mathrm{a}

representative of the isotopy class corresponding to r\in \mathcal{D}^{(0)}=\hat{\mathbb{Q}} is the projection of a

line in \mathbb{R}^{2}-\mathbb{Z}^{2} of slope r . The element r\in\hat{\mathbb{Q}} associated to a loop or an arc is called its

slope, and an essential simple loop of slope r in T is denoted by $\beta$_{r} . We abuse notation

to denote by $\beta$_{s} an element of $\pi$_{1}(T) represented by the simple loop $\beta$_{s} of slope s.

Let  $\rho$ :  $\pi$_{1}(T)\rightarrow \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C}) be a type‐preserving representation, namely  $\rho$ is irre‐

ducible and sends peripheral elements to parabolic transformations. Since  $\pi$_{1}(T) is a

free group,  $\rho$ lifts to a representation \tilde{ $\rho$} : $\pi$_{1}(T)\rightarrow \mathrm{S}\mathrm{L}(2, \mathbb{C}) . Let  $\phi$=$\phi$_{\overline{ $\rho$}} be the map

from \mathcal{D}^{(0)}=\hat{\mathbb{Q}} to \mathbb{C} defined by  $\phi$(s)=\mathrm{t}\mathrm{r}(\tilde{ $\rho$}()) . Then it is aMarkoff map in the sense

of [8]:

(i) For any Farey triangle \langle s_{0}, s_{1},  s_{2}\rangle ,
the triple ( $\phi$(s_{0}),  $\phi$(s_{1}),  $\phi$(S)) is a Markoff

triple, that is, it is a nontrivial solution of the Markoff equation

x^{2}+y^{2}+z^{2}=xyz.

(ii) For any pair of Farey triangles \langle s_{0}, s_{1},  s_{2}\rangle and \langle s_{1}, s_{2},  s_{3}\rangle of \mathcal{D} sharing a com‐

mon edge \langle s_{1},  s_{2}\rangle ,
we have

 $\phi$(s_{0})+ $\phi$(s_{3})= $\phi$(s_{1}) $\phi$ (s2).

Let \mathcal{T} be a binary tree (a countably infinite simplicial tree all of whose vertices

have degree 3) properly embedded in \mathbb{H}^{2} dual to \mathcal{D}. A directed edge, \vec{e}
,

of \mathcal{T} can be

thought of as an ordered pair of adjacent vertices of \mathcal{T}
,

referred to as the head and tail

of \vec{e}. Following [8], we use the notation \vec{e}\leftrightarrow(s_{1}, s_{2};s_{0}, s_{3}) to mean that s_{0}, s_{1}, s_{2} and

S3 are the ideal vertices of \mathcal{D} such that
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(i) the Farey edge \langle s_{1},  s_{2}\rangle is the dual to \vec{e}
,

and

(ii) the Farey triangle \langle s_{0}, s_{1},  s_{2}\rangle ( \langle s_{1}, s_{2},  s_{3}\rangle , respectively) is dual to the head

(tail, respectively) of \vec{e}.

If  $\phi$(s_{1}) $\phi$(s_{2})\neq 0 ,
then we set

$\psi$_{ $\phi$}(\displaystyle \vec{e}):=\frac{ $\phi$(s_{0})}{ $\phi$(s_{1}) $\phi$(s_{2})}.
We regard  $\psi$=$\psi$_{ $\phi$} as a map from the set of oriented edges \vec{e}\leftrightarrow(s_{1}, s_{2};s_{0}, s_{3}) of

\mathcal{T} such that  $\phi$(s_{1}) $\phi$(s_{2})\neq 0 ,
and we call it the complex probability map associated

with the Markoff map  $\phi$ . We note that this map is determined by the type‐preserving

representation  $\rho$ :  $\pi$_{1}(T)\rightarrow \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C}) ,
from whose lift \tilde{ $\rho$} : $\pi$_{1}(T)\rightarrow \mathrm{S}\mathrm{L}(2, \mathbb{C}) the

Marokoff map  $\phi$ is constructed. So we also call  $\psi$ the complex probability map associated

with  $\rho$.

By a complementary region of \mathcal{T}
,

we mean the closure of a connected component

of \mathbb{H}^{2}-\mathcal{T} . Let  $\Omega$ be the set of complementary regions of \mathcal{T} . Then there is a natural

bijection from  $\Omega$ to \hat{\mathbb{Q}} . In the following we identify  $\Omega$ with \hat{\mathbb{Q}} . Let \vec{e}\leftrightarrow(s_{1}, s_{2};s_{0}, s_{3})
be a directed edge of \mathcal{T} . If we remove the interior of e from \mathcal{T}

,
we are left with two

disjoint subsets, which we denote by \mathcal{T}^{\pm}(\vec{e}) ,
so that e\cap \mathcal{T}^{+}(\vec{e}) is the head of \vec{e} and

e\cap \mathcal{T}^{-}(\vec{e}) is its tail. Let  $\Omega$^{\pm}(\vec{e})\subset $\Omega$ be the set of regions whose boundaries lie in

\mathcal{T}^{\pm}(\vec{e}) ,
and set $\Omega$^{0}(e)=\{s_{1}, s_{2}\} . We see that  $\Omega$ can be written as the disjoint union:

 $\Omega$=$\Omega$^{0}(e)\cup$\Omega$^{+}(\vec{e})\cup$\Omega$^{-}(\vec{e}) . Set $\Omega$^{0-}(\vec{e})=$\Omega$^{0}(e)\cup$\Omega$^{-}(\vec{e}) and $\Omega$^{0+}(\vec{e})=$\Omega$^{0}(e)\cup$\Omega$^{+}(\vec{e}) .

The following result obtained by [2, Proposition 5.2] is a slight extension of a result

obtained by Bowditch [8, Proposition 3.13], where the condition $\Omega$^{0-}(\vec{e})\cap$\phi$^{-1}[-2, 2] =\emptyset,
which is stronger than (ii), was required (see [29] for further extension).

Theorem 1.1. Let  $\phi$ be a Markoff map and \vec{e} a directed edge of \mathcal{T} which satisfy
the �extended BQ‐condition� on $\Omega$^{0-}(\vec{e}) , namely  $\phi$ satisfies the fo llowing conditions.

(i) The set \{s\in$\Omega$^{-}(\vec{e})|| $\phi$(s)|\leq 2\} is finite.

(ii) $\Omega$^{0-}(\vec{e})\cap$\phi$^{-1}(-2,2)=\emptyset.

Then the following identity holds:

 $\psi$(\displaystyle \vec{e})=\sum_{s\in$\Omega$^{0}(e)}h( $\phi$(s))+2\sum_{s\in $\Omega$-(\vec{e})}h( $\phi$(s))
.

Here, h : \mathbb{C}-[-2, 2]\rightarrow \mathbb{C} is defined by h(x)=\displaystyle \frac{1}{2}(1-\sqrt{1-4/x^{2}}) ,
where we adopt

the convention that the real part of a square root is always non‐negative. For each

s\in $\Omega$=\hat{\mathbb{Q}} ,
let l( $\rho$($\beta$_{s}))\in \mathbb{C}/2 $\pi$\sqrt{-1}\mathbb{Z} be the complex translation length of the isometry
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 $\rho$($\beta$_{s}) of \mathbb{H}^{3}
, i.e., \Re(l( $\rho$($\beta$_{s})))\geq 0 is the translation length of  $\rho$($\beta$_{s}) along its axis and

\Im is the rotation angle of  $\rho$($\beta$_{s}) around its axis. Then the following holds (see
[8, p.721]):

h( $\phi$(s))=\displaystyle \frac{1}{1+e^{l( $\rho$($\beta$_{\mathrm{s}}))}}.
Thus Theorem 1.1 can be regarded as a refined generalization of McShane�s identity. In

fact, the theorem implies the following theorem (see [8, Theorem 3], [2], [29]).

Theorem 1.2. Let  $\phi$ be a Markoff map which satisfies the �extended  BQ‐condition�,

namely  $\phi$ satisfies the following conditions.

(i) The set \{s\in\hat{\mathbb{Q}}|| $\phi$(s)|\leq 2\} is finite.

(ii) $\phi$^{-1}(-2,2)=\emptyset.

Then the following identity holds:

\displaystyle \sum_{s\in\hat{\mathbb{Q}}}\frac{1}{1+e^{l( $\rho$($\beta$_{\mathrm{s}}))}}=\frac{1}{2}.
Proof. Let \{\vec{e}_{i}\}_{i=0,1,2} be a set of the oriented edges of \mathcal{T} sharing the same head.

Let  $\phi$ be a Markoff map satisfying the extended BQ‐condition, and let  $\psi$ be the complex

probability map associated with  $\phi$ . Then the Markoff identity implies  $\psi$(\vec{e}_{0})+ $\psi$(\vec{e}_{1})+
 $\psi$(\vec{e}_{2})=1 . By the assumption,  $\phi$ satisfies the extended BQ‐condition on  $\Omega$^{0-}(\vec{e}_{i}) for

each i=0 , 1, 2. Hence we obtain the desired identity by applying Theorem 1.1 to the

left hand side of the above identity. \square 

If  $\rho$ :  $\pi$_{1}(T)\rightarrow \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C}) is a type‐preserving quasifuchsian representation, then the

corresponding Markoff map  $\phi$ satisfies the extended BQ‐condition and so the identity in

Theorem 1.2 holds. Thus Theorem 1.2 gives a generalization of the original McShane�s

identity.

Remark. Bowditch [8, Conjecture \mathrm{A} ] proposed a very interesting conjecture that

a type‐preserving representation  $\rho$ :  $\pi$_{1}(T)\rightarrow \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C}) is quasifuchsian if and only
if the corresponding Markoff map  $\phi$ satisfies the BQ‐condition, namely  $\phi$ satisfies the

following conditions.

(i) The set \{s\in\hat{\mathbb{Q}}|| $\phi$(s)|\leq 2\} is finite.

(ii) $\phi$^{-1}[-2, 2] =\emptyset.

§2. A variation of McShane�s identity for 2‐bridge links

In this section, we explain a variation of McShane�s identity for 2‐bridge links

obtained by the second and the third authors in [15].
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Let S and O , respectively, be the 4‐times punctured sphere and the S^{2}(2,2,2, \infty)-
orbifold (i.e., the orbifold with underlying space a once‐punctured sphere and with three

cone points of cone angle  $\pi$ ). Then  T, S and O have \mathbb{R}^{2}-\mathbb{Z}^{2} as a common covering

space. To be precise, let H and \tilde{H}
, respectively, be the groups of transformations on

\mathbb{R}^{2}-\mathbb{Z}^{2} generated by  $\pi$‐rotations about points in \mathbb{Z}^{2} and (\displaystyle \frac{1}{2}\mathbb{Z})^{2} . Then T=(\mathbb{R}^{2}-\mathbb{Z}^{2})/\mathbb{Z}^{2},
S=(\mathbb{R}^{2}-\mathbb{Z}^{2})/H and O=(\mathbb{R}^{2}-\mathbb{Z}^{2})/\tilde{H} . In particular, there are a \mathbb{Z}_{2} ‐covering T\rightarrow O

and a \mathbb{Z}_{2}\oplus \mathbb{Z}_{2} ‐covering S\rightarrow O : the pair of these coverings is called the Fricke diagram
and each of T, S ,

and O is called a Fricke surfa ce.

As for the punctured torus T
,

the isotopy classes of essential simple loops in a

Fricke surface are in one‐to‐one correspondence with \mathcal{D}^{(0)}=\hat{\mathbb{Q}} : a representative of the

isotopy class corresponding to r\in\hat{\mathbb{Q}} is the projection of a line in \mathbb{R}^{2} . The element

r\in\hat{\mathbb{Q}} associated to a loop or an arc is called its slope. An essential simple loop of

slope r in T or O is denoted by $\beta$_{r} ,
while that in S is denoted by $\alpha$_{r} . The notation

reflects the following fact: after an isotopy, the restriction of the projection T\rightarrow O to

$\beta$_{r}(\subset T) gives a homeomorphism from $\beta$_{r}(\subset T) to $\beta$_{r}(\subset O) ,
while the restriction of

the projection S\rightarrow O to $\alpha$_{r} gives a two‐fold covering from $\alpha$_{r}(\subset S) to $\beta$_{r}(\subset O) .

Now we recall the definition of a 2‐bridge link. To this end, set (S^{2}, P)= (; \mathbb{Z}^{2})/H
and call it the Conway sphere. Then S^{2} is homeomorphic to the 2‐sphere, P consists of

four points in S^{2} ,
and S^{2}-P is the 4‐punctured sphere S . We also call S the Conway

sphere. A trivial tangle is a pair (B^{3}, t) ,
where B^{3} is a 3‐ball and t is a union of two

arcs properly embedded in B^{3} which is parallel to a union of two mutually disjoint arcs

in @B. By a rational tangle, we mean a trivial tangle (B^{3}, t) which is endowed with

a homeomorphism from \partial(B^{3}, t) to (S^{2}, P) . Through the homeomorphism we identify
the boundary of a rational tangle with the Conway sphere. Thus the slope of an es‐

sential simple loop in \partial B^{3}-t is defined. We define the slope of a rational tangle to

be the slope of an essential loop on @B3—t which bounds a disk in B^{3} separating the

components of t . (Such a loop is unique up to isotopy on @B3—t and so the slope of a

rational tangle is well defined.)
For each r\in\hat{\mathbb{Q}} ,

the 2‐bridge link K(r) of slope r is defined to be the sum of

the rational tangles of slopes \infty and  r
, namely, (S^{3}, K(r)) is obtained from (B^{3}, t

and (B^{3}, t(r)) by identifying their boundaries through the identity map on the Conway

sphere (S^{2}, P) . (Recall that the boundaries of rational tangles are identified with the

Conway sphere.) K(r) has one or two components according to whether the denomina‐

tor of r is odd or even.

For each r\in\hat{\mathbb{Q}} ,
let $\Gamma$_{r} be the group of automorphisms of \mathcal{D} generated by reflections

in the edges of \mathcal{D} with an endpoint r
,

and let \hat{ $\Gamma$}_{r} be the group generated by $\Gamma$_{r} and

$\Gamma$_{\infty} . Then the region, R ,
bounded by a pair of Farey edges with an endpoint \infty and a

pair of Farey edges with an endpoint  r forms a fundamental domain of the action of $\Gamma$_{r}
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on \mathbb{H}^{2} (see Figure 1). Let I(r) and I(r) be the closed intervals in \mathrm{R} obtained as the

intersection with \mathrm{R} of the closure of R.

Figure 1. A fundamental domain of $\Gamma$_{r} in the Farey tessellation (the shaded domain)
for r=5/17=[3 , 2, 2 ] . In this case, I_{1}(r)=[0 , 2/7] and I_{2}(r)=[3/10, 1].

Now assume r=q/p ,
where p and q are relatively prime positive integers such that

q\not\equiv\pm 1(\mathrm{m}\mathrm{o}\mathrm{d} p) . This is equivalent to the condition that K(r) is hyperbolic, namely
the link complement S^{3}-K(r) admits a complete hyperbolic structure of finite volume.

Let $\rho$_{r} be the \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C}) ‐representation of $\pi$_{1}(S) obtained as the composition

$\pi$_{1}(S)\rightarrow$\pi$_{1}(S)/\langle\langle$\alpha$_{\infty}, $\alpha$_{r}\rangle\rangle\cong$\pi$_{1}(S^{3}-K(r))\rightarrow \mathrm{I}\mathrm{s}\mathrm{o}\mathrm{m}^{+}(\mathbb{H}^{3})\cong \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C}) ,

where the last homomorphism is the holonomy representation of the complete hyperbolic
structure of S^{3}-K(r) . Since  $\pi$(S^{3}-K(r)) is generated by two meridians, $\rho$_{r}((S)) is

generated by two parabolic transformations. Hence the hyperbolic manifold S^{3}-K(r)
admits an isometric \mathbb{Z}/2\mathbb{Z}\oplus \mathbb{Z}/2\mathbb{Z}‐action, and so the \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C}) ‐representation $\rho$_{r} of

$\pi$_{1}(S) extends to that of $\pi$_{1}(O) . Moreover, this extension is unique (see [5, Proposition

2.2]). So we obtain, in a unique way, a \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C}) ‐representation of $\pi$_{1}(T) by restriction.

We continue to denote it by $\rho$_{r}.

We define the complex number,  $\lambda$(K(r)) ,
which expresses the Euclidean structure

of the cusp tori of S^{3}-K(r) . To be precise, each cusp of the hyperbolic manifold

S^{3}-K(r) carries a Euclidean structure, well‐defined up to similarity, and hence it is

identified with the quotient of \mathbb{C} (with the natural Euclidean metric) by the lattice

\mathbb{Z}\oplus \mathbb{Z} $\lambda$ , generated by the translations [ $\zeta$\mapsto $\zeta$+1] and [ $\zeta$\mapsto $\zeta$+ $\lambda$] corresponding to

the meridian and \mathrm{a} (suitably chosen) longitude, respectively. This  $\lambda$ does not depend
on the choice of the cusp, because when  K(r) is a two‐component 2‐bridge link there is

an orientation‐preserving isometry of S^{3}-K(r) interchanging the two cusps. We call  $\lambda$

the modulus of the cusp and denote it by  $\lambda$(K(r)) . Then we have the following formula

which describes the modulus  $\lambda$(K(r)) in terms of the complex translation lengths of
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the images by $\rho$_{r} of essential simple loops on T (see [15, Theorem 2.2]). This proves a

conjecture anticipated by [24].

Theorem 2.1. For a hyperbolic 2‐bridge link K(r) ,
the following identity holds:

2 \displaystyle \sum \displaystyle \frac{1}{1+e^{l($\rho$_{r}($\beta$_{\mathrm{s}}))}}l($\rho$_{r}($\beta$_{s}))+2 \displaystyle \sum \displaystyle \frac{1}{1+e^{l($\rho$_{r}($\beta$_{\mathrm{s}}))}}
s\in\hat{\mathbb{Q}}\cap \mathrm{i}\mathrm{n}\mathrm{t}I_{1}(r) s\in\hat{\mathbb{Q}}\cap \mathrm{i}\mathrm{n}\mathrm{t}I_{2}(r)

+\displaystyle \sum_{s\in\partial I_{1}(r)\cup@I_{2}(r)}\frac{1}{1+e^{l($\rho$_{r}($\beta$_{\mathrm{s}}))}}=-1,
where l denotes the complex translation length of the hyperbolic isometry $\rho$_{r}($\beta$_{s}) .

Furthermore, the modulus  $\lambda$(K(r)) of the cusp torus of the cusped hyperbolic manifold

S^{3}-K(r) with respect to a suitable choice of a longitude is given by the following

formula:

 $\lambda$(K(r))=\displaystyle \frac{4}{|K(r)|}\{2\sum_{s\in\hat{\mathbb{Q}}\cap \mathrm{i}\mathrm{n}\mathrm{t}I_{1}(r)}\frac{1}{1+e^{l($\rho$_{r}($\beta$_{\mathrm{s}}))}}+\sum_{s\in\partial I_{1}(r)}\frac{1}{1+e^{l($\rho$_{r}($\beta$_{\mathrm{s}}))}}\}
=\displaystyle \frac{-4}{|K(r)|}\{2\sum_{s\in\hat{\mathbb{Q}}\cap \mathrm{i}\mathrm{n}\mathrm{t}I_{2}(r)}\frac{1}{1+e^{l($\rho$_{r}($\beta$_{\mathrm{s}}))}}+\sum_{s\in\partial I_{2}(r)}\frac{1}{1+e^{l($\rho$_{r}($\beta$_{\mathrm{s}}))}}+1\},

where |K(r)| denotes the number of components of K(r) .

For the choice of the longitude in the above theorem, see [15, Proposition 7.1].

§3. Outline of the proof of Theorem 2.1

Let K(r) be a hyperbolic 2‐bridge link. Then we may assume r=q/p ,
where p

and q are relatively prime integers such that 2\leq q<p/2 ,
and so r has the continued

fraction expansion

r=\displaystyle \frac{1}{1}=:[a_{1}, a_{2}, . . . , a_{n}],
a_{1}+-

a_{2}+\cdot. 1
. +-

a_{n}

where n\geq 1, (\mathrm{a}_{1}, \ldots, a_{n})\in and  a_{n}\geq 2 . Set c=\displaystyle \sum_{i=1}^{n}a_{i} ,
and let  $\Sigma$(r)=

(; $\sigma$_{2}, \ldots, $\sigma$_{c}) be the chain of Farey triangles which intersect the hyperbolic geodesic

joining \infty with  r in this order (see Figure 2).
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Figure 2. The chain  $\Sigma$(r) of Farey triangles.

Let $\rho$_{r}:$\pi$_{1}(O)\rightarrow \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C}) denote the type‐preserving representation induced by
the holonomy representation of the complete hyperbolic structure of S^{3}-K(r) , $\phi$_{r}\mathrm{a}
Markoff map determined by a lift \tilde{ $\rho$}_{r} : $\pi$_{1}(T)\rightarrow \mathrm{S}\mathrm{L}(2, \mathbb{C}) of the restriction of $\rho$_{r} to $\pi$_{1}(T) ,

and $\psi$_{r} the complex probability map determined by $\rho$_{r} . We note that the Markoff map

$\phi$_{r} satisfies the condition $\phi$_{r}(\infty)=$\phi$_{r}(r)=0 (cf. [15, Lemma 4.5]).
Let \mathcal{T}_{0}(r) be the subtree of \mathcal{T} dual to the chain $\Sigma$_{0}(r) := (; $\sigma$_{3}, . ::, $\sigma$_{c-1}) obtained

from  $\Sigma$(r) by removing $\sigma$_{1} and $\sigma$_{c} . Let \vec{E}(r) be the set of the oriented edges of \mathcal{T}-\mathcal{T}_{0}(r)
whose head is contained in \mathcal{T}_{0}(r) . For each interval I_{j}(r)(j=1,2) ,

we consider the

following set of oriented edges:

\vec{E}_{j}(r)=\{\vec{e}\in\vec{E}(r)|$\Omega$^{0-}(\vec{e})\subset I_{j}(r)\}.

It should be noted that \vec{E}(r)=\vec{E}_{1}(r)\sqcup\vec{E}_{2}(r)\sqcup\{\vec{e}_{-}, \vec{e}_{+}\} ,
where \vec{e}_{-} and \vec{e}+ are the

elements of \vec{E}(r) with tails dual to $\sigma$_{1} and $\sigma$_{c} , respectively (see Figure 3).

Figure 3. Dual oriented edges.

We now use the fact that the topological ideal triangulation constructed by [25] is

isotopic to a geometric triangulation (see [11, 5 From this fact, we can see that the

induced cusp triangulation can be described by using the values of $\psi$_{r} on \vec{E}(r) ,
and we

can see that the cusp shape  $\lambda$(K(r)) with respect to a suitable choice of a longitude is
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given by the following formula (see Figure 4 and [15, Proposition 5.2]):

(3.1) \displaystyle \frac{|K(r)|}{4} $\lambda$(K(r))=\sum_{\vec{e}\in\vec{E}_{1}(r)}$\psi$_{r}(\vec{e})=-1-\sum_{\vec{e}\in\vec{E}_{2}(r)}$\psi$_{r}(\vec{e}) .

By the formula (3.1), the proof of Theorem 2.1 is reduced to the following key
lemma.

Key Lemma 3.1. The Markoff map $\phi$_{r} satisfies the extended BQ‐condition on

I_{1}(r)\cup I_{2}(r) , namely the following conditions hold.

(i) The set \{s\in I_{1}(r)\cup I_{2}(r)||$\phi$_{r}(s)|\leq 2\} is finite.

(ii) (I_{1}(r)\cup I_{2}(r))\cap$\phi$_{r}^{-1}(-2,2)=\emptyset.

Proof of Theorems 2.1 assuming Key Lemma 3.1. Note that Key Lemma 3.1

implies that the Markoff map $\phi$_{r} satisfies the extended BQ condition on $\Omega$^{0-}(\vec{e}) for

every member \vec{e} of \vec{E}_{1}(r)\cup\vec{E}_{2}(r) . Hence Theorem 1.1 implies the following identity for

each j=1 ,
2:

\displaystyle \sum_{\vec{e}\in\vec{E}_{j}(r)}$\psi$_{r}(\vec{e})=\sum_{\vec{e}\in\vec{E}_{j}(r)}\{\sum_{s\in$\Omega$^{0}(e)}h($\phi$_{r}(s))+2\sum_{s\in $\Omega$-(\vec{e})}h( $\phi$(s))\}
=2 \displaystyle \sum \frac{1}{1+e^{l($\rho$_{r}($\beta$_{\mathrm{s}}))}}+ \sum \frac{1}{1+e^{l($\rho$_{r}($\beta$_{\mathrm{s}}))}}.

s\in \mathrm{i}\mathrm{n}\mathrm{t}I_{j}(r) s\in\partial I_{j}(r)

By applying this identity to the formula (3.1), we obtain the desired results. \square 

§4. Convergence of the series ‐ Proof of Key Lemma 3. 1-

In the proof of Theorem 2.1, the most difficult part is the proof of Key Lemma 3.1,
which in particular implies the absolute convergence of the series, by virtue of Theo‐

rem 1.1. Its proof is based on the results obtained in the series of joint work [13, 14] by
the second and the third authors (see also the announcement [12]), which gives a com‐

plete answer to the following question concerning the simple loops in 2‐bridge sphere S

of a 2‐bridge link K(r) .

(1) Which simple loop on S is null‐homotopic or peripheral in S^{3}-K(r) ?

(2) For given two simple loops on S ,
when are they homotopic?

In particular, we have the following theorem.
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Figure 4. The actual cusp triangulation of S^{3}-K([3,2,2]) . The vectors in the oriented

zigzag line segment correspond to the complex numbers $\psi$_{r}(\vec{e}) in the formula (3.1).

Theorem 4.1. For a hyperbolic 2‐bridge link K(r) ,
the following hold.

(1) For any rational number s in I_{1}(r)\cup I_{2}(r) , $\alpha$_{s} is not null‐homotopic in S^{3}-

K(r) .

(2) There are at most two rational numbers s in I_{1}(r)\cup I(r) such that $\alpha$_{s} is

peripheral.

(3) Except for at most two pairs of rational numbers in I_{1}(r)\cup I_{2}(r) ,
the simple

loops \{$\alpha$_{s}|s\in I_{1}(r)\cup I_{2}(r)\} are not mutually homotopic in S^{3}-K(r) .

Proof of Key Lemma 3.1. We first prove the condition (ii). Let s be a rational

number contained in I_{1}(r)\cup I_{2}(r) . Then, by Theorem 4.1(1), $\alpha$_{s} determines a non‐

trivial element of $\pi$_{1}(S^{3}-K(r)) . Since $\rho$_{r} is induced by the holonomy representation of

the complete hyperbolic structure of S^{3}-K(r) ,
we see that $\rho$_{r}($\alpha$_{s})=$\rho$_{r}($\beta$_{s}^{2}) is neither

trivial nor elliptic. Thus $\rho$_{r}($\beta$_{s}) is not elliptic, and so $\phi$_{r}(s)=\mathrm{t}\mathrm{r}(\tilde{ $\rho$}_{r}()) is not contained

in (-2,2) . Hence we obtain (ii).
Next we prove the condition (i). Suppose on the contrary that the set \{s\in I_{1}(r)\cup

 I_{2}(r)||$\phi$_{r}(s)|\leq 2\} contains infinitely many elements \{s_{j}\}_{j\in \mathbb{Z}} . By Theorem 4.1(1) and

(2), we may assume that  $\rho$($\alpha$_{s_{j}}) is neither trivial nor parabolic, and hence, the simple

loop $\alpha$_{s_{j}} is homotopic to a closed geodesic in the hyperbolic manifold S^{3}-K(r) . By
Theorem 4.1(3), we may also assume that no two of the $\alpha$_{s_{j}} are mutually homotopic in

S^{3}-K(r) and so the corresponding closed geodesics are mutually distinct. On the other

hand, the condition | $\phi$(s_{j})|\leq 2 implies that the real length L( $\rho$($\alpha$_{s_{j}}))=2L( $\rho$($\beta$_{s_{j}})) is

bounded from above. This contradicts the discreteness of marked length spectrum of
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geometrically finite hyperbolic 3‐manifolds (see, for example, [1, Theorem 1 in p.73] and

[10]). Hence we obtain (i). This completes the proof of Key Lemma 3.1. \square 

We note that computer experiments show that the convergence of the series in

Theorem 2.1 is very slow whereas the convergence of the original McShane�s identity is

quite fast (see [15, Section 10] and [33]).

§5. Extended BQ‐conditions for the holonomy representations of certain

families of hyperbolic cone manifolds

In the joint work of the first and the third authors with Masaki Wada and Yasushi

Yamashita [5], it is announced that, for each hyperbolic 2‐bridge link K(r) ,
there is a

continuous family of hyperbolic cone manifolds \{M(r;$\theta$^{-}, $\theta$^{+})\}_{0\leq$\theta$^{\pm}\leq 2 $\pi$} satisfying the

following conditions.

(1) The underlying space of M(r;$\theta$^{-}, $\theta$^{+}) is S^{3}-K(r) .

(2) The cone axis of M(r;$\theta$^{-}, $\theta$^{+}) consists of the core tunnel of (B^{3}, t and that

of (B^{3}, t(r)) ,
where the cone angles are $\theta$^{-} and $\theta$^{+}

, respectively. In particular,

M(r;2 $\pi$, 2 $\pi$) corresponds to the complete hyperbolic structure on S^{3}-K(r) .

The first and the third authors have been trying to prove Theorem 2.1, by estab‐

lishing the following natural generalization of Key Lemma 3.1. (This project actually
started a few years before the second and the third authors started the project to prove

Theorem 2.1 by using the small cancellation theory.)

Conjecture 5.1. Let $\rho$_{(r; $\theta$-, $\theta$+} ) : $\pi$_{1}(T)\rightarrow \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C}) be the type‐preserving

\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C}) ‐representation induced by the holonomy representation of the hyperbolic cone

manifold M(r;$\theta$^{-}, $\theta$^{+}) with  0\leq $\theta$\pm\leq 2 $\pi$ . Then the Markoff map  $\phi$_{(r; $\theta$-, $\theta$+} ) correspond‐

ing to $\rho$_{(r; $\theta$-, $\theta$+}) satisfies the extended BQ condition on I_{1}(r)\cup I_{2}(r) .

Consider the subset, J ,
of [0, 2 $\pi$]\times[0, 2 $\pi$] consisting of those points ($\theta$^{-}, $\theta$^{+}) for

which the conjecture is valid. It is obvious that (0,0) belongs to J and so J is non‐

empty. Ser Peow Tan pointed out that [27] implies that the set J is open. So what we

need to show is that J is closed. Though we have not been able to accomplish this,

Conjecture 5.1 for the case when ($\theta$^{-}, $\theta$^{+})=(2 $\pi$, 2 $\pi$/d) ,
with d\geq 2 a positive integer,

are proved in the series of joint work [17, 18, 19] by the second and the third authors

(see also the announcement [16]).
Through computer experiments toward the above conjecture, the first and the last

authors came to the following conjecture.
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Conjecture 5.2. Let K(r) be a hyperbolic 2‐bridge link. Then for any rational

number s\in I_{1}(r)\cup I_{2}(r) ,
the function ($\theta$^{-}, $\theta$^{+})\mapsto|$\phi$_{(r; $\theta$-, $\theta$+} ) (s)| on [0, 2 $\pi$]\times[0, 2 $\pi$] is

monotone decreasing, i.e., if $\theta$_{1}^{-}\leq$\theta$_{2}^{-} and $\theta$_{1}^{+}\leq$\theta$_{2}^{+} ,
then |$\phi$_{(r;$\theta$_{1}^{-},$\theta$_{1}^{+})}(s)|\geq|$\phi$_{(r;$\theta$_{2}^{-},$\theta$_{2}^{+})}(s)|.

Since Conjecture 5.1 for the case ($\theta$^{-}, $\theta$^{+})=(2 $\pi$, 2 $\pi$) is already established by Key
Lemma 3.1, Conjecture 5.2 implies Conjecture 5.1. This conjecture is based on an

intuition that hyperbolic cone manifolds become �smaller� as the cone angles grow. This

intuition is justified for 2‐dimensional hyperbolic cone manifolds with a fixed conformal

structure by [26, Proposition 2.4]. The following computer experiments made by the

first and the third authors also seem to support Conjecture 5.2.

Experiment 5.3. Consider the figure‐eight knot K(2/5) . Then for each rational

number s in one of the following sets

\displaystyle \{\frac{0}{1}, \frac{1}{6}, \frac{1}{5}, \frac{2}{9}, \frac{1}{4}, \frac{3}{11}, \frac{2}{7}, \frac{3}{10'}\frac{1}{3}\}\subset I_{1}(\frac{2}{5})=[\frac{0}{1}, \frac{1}{3}]
\displaystyle \{\frac{1}{2}, \frac{4}{7}, \frac{3}{5'}\frac{5}{8}, \frac{2}{3}, \frac{5}{7}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}\}\subset I_{2}(\frac{2}{5})=[\frac{1}{2}, \frac{1}{1}],

Figures 5, 6 and 7 support Conjecture 5.2 for the slope s . The graphs in Figure 5 show

that the functions  $\theta$\mapsto|$\phi$_{(r; $\theta,\ \theta$)}(s)| on [0, 2 $\pi$] are monotone decreasing for all such slopes
s . Each figure in Figures 6 and 7 contains the graphs of the 16 functions |$\phi$_{(2/5;$\theta$_{j}^{-}, $\theta$)}+(s)|
of the variable $\theta$^{+}\in[0, 2 $\pi$] ,

where $\theta$_{j}^{-}=2 $\pi$ j/15 for j\in\{0 , 1, .

::, 15. It shows that

each function |$\phi$_{(2/5;$\theta$_{j}^{-}, $\theta$)}+(s)| is monotone decreasing and that the following inequality
holds for any $\theta$^{+}\in[0, 2 $\pi$] :

|$\phi$_{(2/)}5;$\theta$_{0}^{-}, $\theta$+(s)|<|$\phi$_{(2/)}5;$\theta$_{1}^{-}, $\theta$+(s)|<. . . <|$\phi$_{(2/)}5;$\theta$_{15}^{-}, $\theta$+(s)|.

Moreover, we are convineced that we can prove Conjecture 5.1 for K(2/5) if we

assume the above experimental results. We hope to discuss this on another occasion.

We finally note that Conjecture 5.2 does not hold if we drop the condition that

s\in I_{1}(r)\cup I_{2}(r) . In fact, for r=2/5 and s=-4/1, 9/22\not\in I_{1}(r)\cup I(r) the function

 $\theta$\mapsto|$\phi$_{(r; $\theta,\ \theta$)}(s)| is not monotone decreasing, as shown in Figure 8.
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