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Abstract

We discuss the notion of the universal relatively hyperbolic structure on a group which

is used in order to characterize relatively hyperbolic structures on the group. We also study
relations between relatively hyperbolic structures on a group and relative quasiconvexity for

subgroups of the group.

§1. Introduction

The notion of relatively hyperbolic groups was introduced in [13] and has been

studied by many authors (see for example [5], [8], [10] and [27]). When a countable

group is relatively hyperbolic, relative quasiconvexity for subgroups can be dened.

There are several equivalent denitions of relative hyperbolicity for countable groups

and those of relative quasiconvexity for subgroups (see [16, Section 3 and Section 6

In this paper we adopt denitions in terms of geometrically finite convergence actions.

We regard a conjugacy invariant collection of subgroups of a countable group rel‐

ative to which the group is hyperbolic as a structure on the group and call such a
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collection a relatively hyperbolic structure on the group. In this paper we discuss the

notion of the universal relatively hyperbolic structure on a group which is used in order

to characterize relatively hyperbolic structures on the group. In particular we give a

characterization of the universal relatively hyperbolic structure on a finitely generated

group (Corollary 7.3). We also study relations between relatively hyperbolic structures

on a group and relative quasiconvexity for subgroups of the group. Indeed we give two

theorems:

\bullet (Theorem 6.3) when a countable group is not virtually cyclic and admits a proper

relatively hyperbolic structure, it has two families of innitely many relatively hy‐

perbolic structures such that structures in one family have pairwise distinct collec‐

tions of relatively quasiconvex subgroups while structures in the other family have

the same collection of relatively quasiconvex subgroups;

\bullet (Theorem 8.1) two relatively hyperbolic structures on a finitely generated group

have the same collection of relatively quasiconvex subgroups if and only if these

structures are equal when we ignore virtually innite cyclic subgroups.

The following are contents of this paper. Section 2 gives preliminaries. We recall

several facts about convergence actions, and give denitions of relatively hyperbolic
structures on a countable group and relatively quasiconvex subgroups. In Section 3,

blow‐ups and blow‐downs of relatively hyperbolic structures are dened. By using
these notions, we dene a partial order on the set of all relatively hyperbolic structures

on a countable group. In Section 4, the universal relatively hyperbolic structure is

dened in order to characterize relatively hyperbolic structure on a countable group. In

Section 5, we consider how relative quasiconvexity for subgroups varies when we blow

up and down a relatively hyperbolic structure. In Section 6, cardinality of the set of

relatively hyperbolic structures is studied and Theorem 6.3 is proved. In section 7, when

we consider a finitely generated group, it is shown that the partially ordered set of all

relatively hyperbolic structures on the group is a directed set (Proposition 7.1). Also

Corollary 7.3 is proved. In section 8, we show Theorem 8.1. In Appendix \mathrm{A}
, examples

of torsion‐free countable groups without the universal relatively hyperbolic structure

are given. In Appendix \mathrm{B}
,

we discuss a condition for a characterization of relatively

hyperbolic structures by using mapping class groups.

Here we introduce several notations. In this paper G denote a countable group with

the discrete topology. Let L be a subgroup of G . Let \mathfrak{H} and \mathfrak{K} be two conjugacy invariant

collections of innite subgroups of G . We dene L‐conjugacy invariant collections \mathfrak{H}_{L}

and L\wedge \mathfrak{H} of innite subgroups of L
,

and G‐conjugacy invariant collections \mathfrak{H}_{\mathrm{n}\mathrm{e}} and
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\mathfrak{H}\wedge \mathfrak{K} of innite subgroups of G as

\mathfrak{H}_{L}=\{H\in \mathfrak{H}|H\subset L\} ;

L\wedge \mathfrak{H}= {P|P is an innite subgroup of L, P=L\cap H for some H\in \mathfrak{H} };

\mathfrak{H}_{\mathrm{n}\mathrm{e}}=\{H\in \mathfrak{H}|H is non‐elementary;

\mathfrak{H}\wedge \mathfrak{K}= {P|P is an innite subgroup of G, P=H\cap K for some H\in \mathfrak{H} and K\in \mathfrak{K} }.

Here a group is said to be non‐elementary if it is not virtually cyclic. Since \mathfrak{H} consists

of innite subgroups, we have \mathfrak{H}_{\mathrm{n}\mathrm{e}}=\mathfrak{H}\backslash { H\in \mathfrak{H}|H is virtually innite cyclic}.

§2. Relatively hyperbolic structures on a group and relative

quasiconvexity for subgroups

First we recall some denitions and properties related to convergence actions (refer
to [12], [31], [32], [5] and [4]). Let G have a continuous action on a compact metrizable

space X . We say that X is a G‐space. The action is called a convergence action if

X has innitely many points and for each innite sequence \{g_{i}\} of mutually different

elements of G ,
there exist a subsequence \{g_{i_{j}}\} of \{g_{i}\} and two points r, a\in X such

that g_{i_{j}}|_{X\backslash \{r\}} converges to a uniformly on each compact subset of X\backslash \{r\} and also

g_{i_{j}}^{-1}|_{X\backslash \{a\}} converges to r uniformly on each compact subset of X\backslash \{a\} . The sequence

\{g_{i_{j}}\} is called a convergence sequence and also the points r and a are called the repelling

point of \{g_{i_{j}}\} and the attracting point of \{g_{i_{j}}\} , respectively.
We fix a convergence action of G on a compact metrizable space X . The set of

all repelling points and attracting points is equal to the limit set  $\Lambda$(G, X) ([31, Lemma

2\mathrm{M}]) . The cardinality of  $\Lambda$(G, X) is 0 , 1, 2 or \infty ([31, Theorem  2\mathrm{S} ,
Theorem 2\mathrm{T}] ). If

\# $\Lambda$(G, X)=\infty ,
then the action of  G on X is called a non‐elementary convergence action

and also the induced action of G on  $\Lambda$(G, X) is a minimal non‐elementary convergence

action. We remark that \# $\Lambda$(G, X)=0 if G is finite by denition. Also G is virtually
innite cyclic if \# $\Lambda$(G, X)=2 (see [31, Lemma 2\mathrm{Q} ,

Lemma 2\mathrm{N} and Theorem 2\mathrm{I}] ). An

element l of G is said to be loxodromic if it is of innite order and has exactly two fixed

points. For a loxodromic element l\in G ,
the sequence \{l^{i}\}_{i\in \mathbb{N}} is a convergence sequence

with the repelling point r and the attracting point a
,

which are distinct and fixed by l.

We call a subgroup H of G a parabolic subgroup if it is innite, fixes exactly one point
and has no loxodromic elements. Such a point is called a parabolic point. A parabolic

point is said to be bounded if its maximal parabolic subgroup acts cocompactly on its

complement. We call a point r of X a conical limit point if there exists a convergence

sequence \{g_{i}\} with the attracting point a\in X such that the sequence \{g_{i}(r)\} converges

to a different point from a . The convergence action is said to be geometrically finite if

every point of X is either a conical limit point or a bounded parabolic point. Since X has
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innitely many points, every geometrically finite convergence action is non‐elementary.
Also since all conical limit points and all bounded parabolic points belong to the limit

set, every geometrically finite convergence action is minimal.

Based on [5, Denition 1] and [33, Theorem 0.1] (see also [16, Denition 3.1]), we

dene relatively hyperbolic structures on a countable group from a dynamical viewpoint.

Denition 2.1. Let \mathfrak{H} be a conjugacy invariant collection of innite subgroups
of G . The group G is said to be hyperbolic relative to \mathfrak{H} if there exists a convergence

action of G on a compact metrizable space satisfying the following:

(1) the set of all maximal parabolic subgroups of the action is equal to \mathfrak{H} ;

(2) one of the following holds:

(i) the limit set of the action is a finite set;

(ii) the limit set of the action is an innite set and the induced convergence action

of G on the limit set is geometrically finite.

Such a collection \mathfrak{H} is called a relatively hyperbolic structure on G . We remark that any

relatively hyperbolic structure on G has only finitely many conjugacy classes (see [32,
Theorem 1\mathrm{B}]). A relatively hyperbolic structure is said to be trivial (resp. proper) if it

is (resp. is not) equal to \{G\} . We denote the set of all relatively hyperbolic structures

on G by \mathrm{R}\mathrm{H}\mathrm{S}(G) .

Let G be endowed with a relatively hyperbolic structure \mathfrak{H} and consider a conver‐

gence action of G satisfying the conditions in Denition 2.1. It essentially follows from

[5, Theorem 9.4] and [33, Theorem 0.1] that the limit set of such a convergence action is

uniquely determined as a G‐space independently of the choice of a convergence action.

We denote such a G‐space by @ (G; \mathfrak{H}) ,
which is called the Bowditch boundary. Indeed

we have the following:

Proposition 2.2. Let \mathfrak{H} be a relatively hyperbolic structure on G. Consider a

convergence action of G on a compact metrizable space X satisfy ing the following:

(1) the set of all maximal parabolic subgroups of the action is equal to \mathfrak{H} ;

(2) one of the following holds:

(i) the limit set of the action is a finite set;

(ii) the limit set of the action is an innite set and the induced convergence action

of G on the limit set is geometrically finite.

Then the limit set  $\Lambda$(G, X) of the action is uniquely determined as a G ‐space indepen‐

dently of the choice of a convergence action and a compact metrizable space X.
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Proof. If  $\Lambda$(G, X) is an innite set, then the assertion follows from [5, Theorem

9.4] and [33, Theorem 0.1]. Now we suppose that the limit set  $\Lambda$(G, X) is a finite set.

Under this assumption, the proof is divided into the following three cases.

In the case where  $\Lambda$(G, X) is empty, the group G is finite and \mathfrak{H} is empty. Hence

the limit set of every convergence action of G satisfying the conditions above is empty.
In the case where  $\Lambda$(G, X) consists of one point, \mathfrak{H} is equal to \{G\} . The limit set

of every convergence action of G satisfying the conditions above consists of one point.
In the case where  $\Lambda$(G, X) consists of two points, it follows from [31, Theorem 2\mathrm{Q}

and Theorem 2\mathrm{I} ] that there exists a loxodromic element l\in G such that the subgroup

\langle l\rangle generated by  l is of finite index. Replacing l by its power if necessary, we may assume

that \langle l\rangle is a finite index normal subgroup of  G . For every convergence action of G such

that the limit set consists of two points, l is loxodromic and the limit set consists of the

two fixed point of l . For each element g\in G ,
either glg^{-1}=l or glg^{-1}=l^{-1} holds.

If the former holds, then g acts trivially on the limit set. If the latter holds, then g

interchanges the two points. Thus the action of G on the limit set is independent of a

choice of the convergence action and a compact metrizable space X. \square 

The following are special examples of relatively hyperbolic structures.

\bullet  G is innite if and only if it has the trivial relatively hyperbolic structure \{G\}.
Moreover, @(G;G) consists of a single point.

\bullet  G is hyperbolic if and only if the empty collection \emptyset is a relatively hyperbolic
structure on  G . Moreover, @(G;) is the Gromov boundary of G (see [13,8.2] and

also [11, Theorem 3.4 and Theorem 3.7]).

We can rene Proposition 2.2 for the case of virtually innite cyclic groups. We

note that a virtually innite cyclic group G has the maximal finite normal subgroup K

and G/K is isomorphic to either \mathbb{Z} or \mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z} (see for example [15, Lemma 11.4]).

Corollary 2.3. Let G be a virtually innite cyclic group and K be the maximal

finite normal subgroup of G. Then G/K is isomorphic to \mathbb{Z} if and only if the action of
G on @(G;) is trivial.

Proof. We put G_{0}=G/K and dene a generating set S_{0} of G_{0} as follows.

S_{0}=\left\{\begin{array}{ll}
\{t\} & \mathrm{i}\mathrm{f} G_{0} \mathrm{i}\mathrm{s} \mathrm{i}\mathrm{s}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}\mathrm{c} \mathrm{t}\mathrm{o} \mathbb{Z}\\
\{a, b\} & \mathrm{i}\mathrm{f} G_{0} \mathrm{i}\mathrm{s} \mathrm{i}\mathrm{s}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}\mathrm{c} \mathrm{t}\mathrm{o} \mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z},
\end{array}\right.
where a, b\in G_{0} satisfy a^{2}=b^{2}=1 . The Cayley graph  $\Gamma$(G_{0}, S_{0}) is hyperbolic and the

Gromov boundary \partial $\Gamma$(G_{0}, S_{0}) consists of two points. We consider a compact metrizable

space \overline{ $\Gamma$(G_{0},S_{0})}= $\Gamma$(G_{0}, S_{0})\cup\partial $\Gamma$(G_{0}, S_{0}) and the action of G on \overline{ $\Gamma$(G_{0},S_{0})} which is
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induced from the action of G_{0} on  $\Gamma$(G_{0}, S_{0}) . This action is a convergence action and

the limit set  $\Lambda$(G, \overline{ $\Gamma$(G_{0},S_{0})}) is equal to \partial $\Gamma$(G_{0}, S_{0}) . If G_{0} is isomorphic to \mathbb{Z}
,

then the

action of G on \partial $\Gamma$(G_{0}, S_{0}) is trivial. If G_{0} is isomorphic to \mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z} ,
then the element

a\in G_{0} acts on  $\Gamma$(G_{0}, S_{0}) as an inversion and hence the action of G on \partial $\Gamma$(G_{0}, S_{0}) is

nontrivial. Since \partial $\Gamma$(G_{0}, S_{0}) is @(G;) by Proposition 2.2, the assertion follows. \square 

We recall the notion of relative quasiconvexity for subgroups of a countable group

with a relatively hyperbolic structure in accordance with [6, Denition 1.6]. Also we

recall denitions of strongly relatively quasiconvex subgroups ([27, Denition 4.11]) and

hyperbolically embedded subgroups ([28, Denition 1.4]).

Denition 2.4. Let G be endowed with a relatively hyperbolic structure \mathfrak{H} and

L be a subgroup.
The subgroup L is said to be quasiconvex relative to \mathfrak{H} in G if one of the following

holds:

(1) @ (G; \mathfrak{H}) is a finite set;

(2) @ (G; \mathfrak{H}) is an innite set and  $\Lambda$(L, @(G; \mathrm{H})) is a finite set;

(3) Both @ (G; \mathfrak{H}) and  $\Lambda$(L, @(G; \mathrm{H})) are innite sets and the induced convergence action

of L on  $\Lambda$(L, @(G; \mathrm{H})) is geometrically finite.

We denote the set of all subgroups of G that are quasiconvex relative to \mathfrak{H} in G by

\mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{H}) .

The subgroup L is said to be strongly quasiconvex relative to \mathfrak{H} in G if L is quasi‐
convex relative to \mathfrak{H} in G and satises that L\wedge \mathfrak{H}=\emptyset.

The subgroup L is said to be hyperbolically embedded into G relative to \mathfrak{H} if

\mathfrak{H}\cup {  P|P=gLg^{-1} for some g\in G}

is another relatively hyperbolic structure on G.

Remark. Let G be endowed with a relatively hyperbolic structure \mathfrak{H}.

(I) It immediately follows from the denition that for every H\in \mathfrak{H} , every subgroup of

H is quasiconvex relative to \mathfrak{H} in G . Also since the limit set of a convergence action

of a virtually abelian group is a finite set (see [31, Theorem 2\mathrm{U} every virtually
abelian subgroup of G is quasiconvex relative to \mathfrak{H} in G . In particular every finite

subgroup of G is quasiconvex relative to \mathfrak{H} in G.

(II) When \mathfrak{H}=\emptyset ,
a subgroup  L of G is quasiconvex relative to \emptyset in  G if and only if it

is quasiconvex in the ordinary sense (see [4, Proposition 4.3]).

(III) If a subgroup L of G is quasiconvex relative to \mathfrak{H} ,
then L\wedge \mathfrak{H} is a relatively hyperbolic

structure on L by [16, Theorem 9.1].



The universal relatively hyperbolic structure and relative quasiconvexity 79

§3. A partial order on the set of relatively hyperbolic structures

We dene a relation \rightarrow \mathrm{o}\mathrm{n} the set of conjugacy invariant collections of innite

subgroups of G as follows. For two conjugacy invariant collections \mathfrak{H} and \mathfrak{K} of innite

subgroups of G, \mathfrak{K}\rightarrow \mathfrak{H} holds if for every K\in \mathfrak{K} , there exists H\in \mathfrak{H} such that K\subset H.

When \mathfrak{K}\rightarrow \mathfrak{H} holds, \mathfrak{K} is called a blow‐up of \mathfrak{H} and \mathfrak{H} is called a blow‐down of \mathfrak{K}

(compare with [20]). We show the following.

Proposition 3.1. The relation \rightarrow defines a partial order on \mathrm{R}\mathrm{H}\mathrm{S}(G) .

Note that the outer automorphism group Out (G) of G acts naturally on \mathrm{R}\mathrm{H}\mathrm{S}(G)
and that this action preserves the order \rightarrow.

Denition 3.2. Let G be a group and let \mathfrak{H} be a conjugacy invariant collection

of innite subgroups of G . The collection \mathfrak{H} is said to be almost malnormal in G if the

following hold:

(1) the intersection of every pair of two elements of \mathfrak{H} is finite.

(2) every element of \mathfrak{H} is equal to its normalizer in G.

A subgroup H of G is said to be almost malnormal in G if H\cap gHg^{-1} is finite for

every g\in G\backslash H . Condition (2) above can be replaced by the following:

(2) every element of \mathfrak{H} is almost malnormal in G.

Indeed since every element of \mathfrak{H} is innite, condition (2) implies condition (2). Also

conditions (1) and (2) imply condition (2)

Lemma 3.3. Let G have a convergence action on a compact metrizable space

X. Then the collection of maximal parabolic subgroups is almost malnormal in G.

Proof. Let H be a maximal parabolic subgroup fixing a parabolic point p . We

have Fix (H)=\{p\} and Stab(p) =H . Suppose that g\in G normalizes H . Then we

have Fix (H)=\{g(p)\} and hence g belongs to H.

Take two different maximal parabolic subgroups H_{1} and H_{2} fixing parabolic points

p_{1} and p_{2} , respectively. Then the intersection H_{1}\cap H_{2} contains no loxodromic elements

and fixes two different points p_{1} and p_{2} . Hence H_{1}\cap H_{2} is finite by [32, Lemma 3\mathrm{B} ]. \square 

Lemma 3.4. The relation \rightarrow defines a partial order on the set of almost mal‐

normal and conjugacy invariant collections of innite subgroups of  G.

Proof. The relation \rightarrow \mathrm{i}\mathrm{s} obviously reexive and transitive. We show that it is

antisymmetric. Let \mathfrak{H} and \mathfrak{K} be almost malnormal and conjugacy invariant collections
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of innite subgroups of G such that \mathfrak{H}\rightarrow \mathfrak{K} and \mathfrak{K}\rightarrow \mathfrak{H} . We prove that \mathfrak{H}= K. It

suffices to show that \mathfrak{H}\subset \mathfrak{K} . Let H be an element of \mathfrak{H} . Then there exists an element

K of \mathfrak{K} containing H . Since \mathfrak{K}\rightarrow \mathfrak{H} by the assumption, there exists an element H' of

\mathfrak{H} containing K . We have H\subset K\subset H' . Since \mathfrak{H} is almost malnormal in G and H is

innite, this implies that H=K=H' . Therefore H belongs to K. \square 

Proposition 3.1 immediately follows from Lemma 3.3 and Lemma 3.4.

When we consider sets of representatives of conjugacy classes of almost malnormal

and conjugacy invariant collections of innite subgroups of G ,
the following is conve‐

nient:

Lemma 3.5. Let \mathfrak{K} and \mathfrak{H} be almost malnormal and conjugacy invariant col‐

lections of innite subgroups of G such that \mathfrak{K}\rightarrow \mathfrak{H} . If \{H_{ $\lambda$}  $\lambda$\in $\Lambda$\} is a set of

representatives of conjugacy classes of \mathfrak{H} , then the following hold:

(1) if we take a set \{K_{ $\lambda,\ \mu$}| $\mu$\in M_{ $\lambda$}\} of representatives of H_{ $\lambda$} ‐conjugacy classes of \mathfrak{K}_{H_{ $\lambda$}}
for each  $\lambda$\in $\Lambda$ , then the set \{K_{ $\lambda,\ \mu$}| $\lambda$\in $\Lambda$,  $\mu$\in M_{ $\lambda$}\} is a set of representatives of

conjugacy classes of K.

(2) if the set of conjugacy classes of \mathfrak{K} is finite, then the set of H_{ $\lambda$} ‐conjugacy classes of

\mathfrak{K}_{H_{ $\lambda$}} is finite for each  $\lambda$\in $\Lambda$.

Proof. (1) Suppose that there exist  $\lambda$, $\lambda$'\in $\Lambda$,  $\mu$\in M_{ $\lambda$} and $\mu$'\in M_{$\lambda$'} such that

gK_{ $\lambda,\ \mu$}g^{-1}=K_{$\lambda$',$\mu$'} for some g\in G . Then the intersection gH_{ $\lambda$}g^{-1}\cap H_{$\lambda$'} is innite.

Since \mathfrak{H} is almost malnormal in G ,
this implies that  $\lambda$=$\lambda$' and g\in H_{ $\lambda$} . Since \mathfrak{K}_{H_{ $\lambda$}} is

also almost malnormal in H_{ $\lambda$} for every  $\lambda$\in $\Lambda$ ,
we have  $\mu$=$\mu$' and g\in K_{ $\lambda,\ \mu$}.

On the other hand, since \mathfrak{K}\rightarrow \mathfrak{H} and \{H_{ $\lambda$}  $\lambda$\in $\Lambda$\} is a set of representatives
of conjugacy classes of \mathfrak{H} ,

for every K\in \mathfrak{K} , there exist g\in G and  $\lambda$\in $\Lambda$ such that

 gKg^{-1}\subset H_{ $\lambda$} . Hence there exist h\in H_{ $\lambda$} and  $\mu$\in M_{ $\lambda$} such that hgK(hg)^{-1}=K_{ $\lambda,\ \mu$}.
(2) It follows from (1) that if the set of H_{ $\lambda$} ‐conjugacy classes of \mathfrak{K}_{H_{ $\lambda$}} is innite for some

 $\lambda$\in $\Lambda$ ,
then the set of conjugacy classes of \mathfrak{K} is innite. \square 

§4. The universal relatively hyperbolic structure on a group

B. Bowditch [5, Theorem 7.11] characterized relatively hyperbolic structures on a

hyperbolic group among conjugacy invariant collections of innite subgroups. If G is

a hyperbolic group, then every relatively hyperbolic structure is a blow‐down of the

empty collection \emptyset . Taking this into account, we introduce the following notion.

Denition 4.1. A relatively hyperbolic structure \mathfrak{K} on G is called a universal

relatively hyperbolic structure on G if every relatively hyperbolic structure on G is a

blow‐down of K.
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Since a universal relatively hyperbolic structure on G is the greatest structure

with respect to the order \rightarrow
,
it is unique if it exists. The universal relatively hyperbolic

structure is characterized in Corollary 7.3 for the case of finitely generated groups and we

have several finitely generated groups with the universal relatively hyperbolic structure

(see Remark (II) in Section 7).
Now we state a characterization of relatively hyperbolic structures on a countable

group with the universal relatively hyperbolic structure as follows. This is a consequence

of [34, Theorem 1.1] (refer to Lemma 3.5).

Proposition 4.2. Let  G have the universal relatively hyperbolic structure \mathfrak{K} and

let \mathfrak{H} be a conjugacy invariant collection of innite subgroups of G. Then \mathfrak{H} is a relatively

hyperbolic structure on G if and only if the fo llowing are satised:

(0) \mathfrak{K}\rightarrow \mathfrak{H} ;

(1) \mathfrak{H} is almost malnormal in G ;

(2) \mathfrak{H} has only finitely many conjugacy classes;

(3) every element of \mathfrak{H} is quasiconvex relative to \mathfrak{K} in G.

Before we give remarks on the above, we recall the notion of undistorted subgroups.
Consider a finitely generated subgroup H of a finitely generated group G . Take finite

generating sets T and S of H and G , respectively. We endow H and G with word

metrics with respect to T and S , respectively. Then H is said to be undistorted in

G if the inclusion from H into G is a quasi‐isometrically embedding. This notion is

independent of choice of T and S.

Remark. We make remarks about conditions (0) and (3) in Proposition 4.2.

(I) Proposition 4.2 extends Bowditch�s characterization of relatively hyperbolic struc‐

tures on a hyperbolic group [5, Theorem 7.11]. Indeed, when G is a hyperbolic

group, the universal relatively hyperbolic structure of G is the empty collection \emptyset

and thus condition (0) in Proposition 4.2 can be omitted. However, we cannot omit

condition (0) in Proposition 4.2 in general (see Proposition B.1).

(II) If  G is a finitely generated group, then condition (3) in Proposition 4.2 can be

replaced by the following condition:

(3) every element of \mathfrak{H} is finitely generated and undistorted in G.

Indeed if \mathfrak{H} is a relatively hyperbolic structure on G ,
then every element of \mathfrak{H} is

finitely generated by [27, Proposition 2.29] and it is undistorted in G by [27, Lemma

5.4]. On the other hand, if we suppose that condition (3) holds, then it follows

from [16, Theorem 1.5] that every element of \mathfrak{H} is quasiconvex relative to \mathfrak{K} in G.
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(III) There exist finitely generated groups G with the universal relatively hyperbolic
structure \mathfrak{K} such that every finitely generated subgroup of G is quasiconvex relative

to \mathfrak{K} in G (see Remark (III) in Section 7). For such groups, we can replace condition

(3) in Proposition 4.2 by the following condition:

(3)
''

every element of \mathfrak{H} is finitely generated.

We do not know whether (3) in Proposition 4.2 can be replaced by (3)
'' whenever

G is a finitely generated group with the universal relatively hyperbolic structure.

§5. Relative quasiconvexity under blowing up and down a relatively

hyperbolic structure

We characterize how relative quasiconvexity for subgroups varies when we blow up

and down a relatively hyperbolic structure as follows:

Proposition 5.1. Let \mathfrak{K} and \mathfrak{H} be two relatively hyperbolic structures on G such

that \mathfrak{K}\rightarrow \mathfrak{H} . Then for every subgroup L of G ,
the following conditions (i), (ii), (iii) are

equivalent:

(i) L is quasiconvex relative to \mathfrak{K} in G ;

(ii) L is quasiconvex relative to \mathfrak{H} in G and L\cap H is quasiconvex relative to \mathfrak{K} in G for

every H\in \mathfrak{H} ;

(iii) L is quasiconvex relative to \mathfrak{H} in G and L\cap H is quasiconvex relative to \mathfrak{K}_{H} in H

for every H\in \mathfrak{H}.

The equivalence of conditions (i) and (ii) follows from [34, Theorem 1.3] and Lemma

3.5. The equivalence of conditions (ii) and (iii) is implied by the following:

Lemma 5.2. Let \mathfrak{K} and \mathfrak{H} be relatively hyperbolic structures on G such that

\mathfrak{K}\rightarrow \mathfrak{H} . Fix an element H of \mathfrak{H} . Then for every subgroup L of H
,

the following
conditions (i), (ii) are equivalent:

(i) L is quasiconvex relative to \mathfrak{K} in G ;

(ii) L is quasiconvex relative to \mathfrak{K}_{H} in H.

Proof. First we remark that \mathfrak{K}_{H} is a relatively hyperbolic structure on H by [34,
Corollary 3.4]. It follows from the denition that \mathfrak{K}_{H}\subset H\wedge \mathfrak{K} . Let K be an element

of \mathfrak{K} such that H\cap K is innite. Since \mathfrak{K}\rightarrow \mathfrak{H} ,
there exists H'\in \mathfrak{H} containing K.

Then H\cap H' is innite. Since \mathfrak{H} is a relatively hyperbolic structure on G ,
this implies
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that H=H' . Hence K is contained in H and it belongs to \mathfrak{K}_{H} . Thus we showed that

\mathfrak{K}_{H}=H\wedge \mathfrak{K} . Hence the assertion follows from [16, Corollary 9.3]. \square 

In order to give a criterion for two relatively hyperbolic structures on a countable

group to give the same set of relatively quasiconvex subgroups, we show the following:

Proposition 5.3. Let G be endowed with a relatively hyperbolic structure K.

Then every subgroup of G is quasiconvex relative to \mathfrak{K} in G if and only if either G is

virtually cyclic or \mathfrak{K} is trivial.

Proof. The �if� part follows from Remark (I) in Section 2. We prove the (only if�

part. Suppose that G is not virtually cyclic and that \mathfrak{K} is proper. Then it follows from

[19, Corollary 3.2] that there exists a subgroup L of G which is a free group of rank

two and strongly quasiconvex relative to \mathfrak{K} in G . Then L has a subgroup L' which is

not finitely generated. Assume that L' is quasiconvex relative to \mathfrak{K} in G . Then L'\wedge \mathrm{K}

is a relatively hyperbolic structure on L' by [16, Theorem 1.2 (1)]. Since L is strongly

quasiconvex relative to \mathfrak{K} in G ,
we have  L\wedge \mathfrak{K}=\emptyset and hence  L'\wedge \mathfrak{K}=\emptyset . This implies

that  L' is a hyperbolic group, which contradicts the fact that hyperbolic groups are

finitely generated. Therefore L' is not quasiconvex relative to \mathfrak{K} in G. \square 

For a relatively hyperbolic structure \mathfrak{H} on G ,
note that \mathfrak{H}_{\mathrm{n}\mathrm{e}} is a relatively hyperbolic

structure on G (see [27, Theorem 2.40]). If two relatively hyperbolic structures \mathfrak{K} and

\mathfrak{H} on G satisfy \mathfrak{K}_{\mathrm{n}\mathrm{e}}=\mathfrak{H}_{\mathrm{n}\mathrm{e}} ,
then we have \mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{K})=\mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{H}) ([21, Corollary 1.3]).

On the other hand we have the following:

Corollary 5.4. Let \mathfrak{K} and \mathfrak{H} be two relatively hyperbolic structures on G. If
\mathfrak{K}\rightarrow \mathfrak{H} and \mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{K})=\mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{H}) , then we have \mathfrak{K}_{\mathrm{n}\mathrm{e}}=\mathfrak{H}_{\mathrm{n}\mathrm{e}}.

For the case of finitely generated groups, this is rened as in Theorem 8.1.

Proof of Corollary 5.4. We suppose that \mathfrak{K}\rightarrow \mathfrak{H} and \mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{K})=\mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{H}) .

Note that \mathfrak{K}_{\mathrm{n}\mathrm{e}}\rightarrow \mathfrak{H}_{\mathrm{n}\mathrm{e}} . We prove that \mathfrak{H}_{\mathrm{n}\mathrm{e}}\rightarrow \mathfrak{K}_{\mathrm{n}\mathrm{e}} . Take any element H\in \mathfrak{H}_{\mathrm{n}\mathrm{e}} . Since

every subgroup of H belongs to \mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{H}) ,
it also belongs to \mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{K}) . It follows

from the implication from condition (i) to condition (iii) in Proposition 5.1 that every

subgroup of H is quasiconvex relative to \mathfrak{K}_{H} in H . Since H is not virtually cyclic, we

have \mathfrak{K}_{H}=\{H\} by Proposition 5.3. This implies that \mathfrak{H}_{\mathrm{n}\mathrm{e}}\rightarrow \mathfrak{K}_{\mathrm{n}\mathrm{e}} . Hence we have

\mathfrak{K}_{\mathrm{n}\mathrm{e}}=\mathfrak{H}_{\mathrm{n}\mathrm{e}} by Proposition 3.1. \square 

§6. Cardinality of the set of relatively hyperbolic structures

First we consider virtually innite cyclic groups.
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Proposition 6.1. The group G is virtually innite cyclic if and only if \mathrm{R}\mathrm{H}\mathrm{S}(G)=
\{\emptyset, \{G\}\}.

In order to prove this, we need the following:

Lemma 6.2. Let \mathfrak{H} be an almost malnormal and conjugacy invariant collection

of innite subgroups of G. If \mathfrak{H} is not equal to \{G\} ,
then \mathfrak{H} consists of innite index

subgroups of G.

Proof. Assume that an element H\in \mathfrak{H} is a finite index subgroup of G . Then H

contains a finite index normal subgroup H' of G . Since G is innite, H' is also innite.

For every g\in G ,
we have H\cap gHg^{-1}\supset H' . In particular for every g\in G\backslash H, H\cap gHg^{-1}

is innite. This contradicts the assumption that \mathfrak{H} is almost malnormal in G. \square 

Proof of Proposition 6.1. Suppose that G is virtually innite cyclic. Then \{G\}
and \emptyset are elements of RHS() . Take \mathfrak{H}\in \mathrm{R}\mathrm{H}\mathrm{S}(G)\backslash \{\emptyset\} . Since G is virtually innite

cyclic, every element of \mathfrak{H} is a finite index subgroup of G . Hence \mathfrak{H} is trivial by Lemma

6.2.

Suppose that G is not virtually innite cyclic. Assume that \mathrm{R}\mathrm{H}\mathrm{S}(G)=\{\emptyset, \{G\}\}.
By \mathrm{R}\mathrm{H}\mathrm{S}(G)\supset\{\emptyset, \{G\}\}, G is hyperbolic and innite. Then it follows from [28, Corollary

1.7] that G has a virtually innite cyclic subgroup H which is hyperbolically embedded

into G relative to the empty collection \emptyset . This contradicts the assumption that we have

RHS(G) \subset\{\emptyset, \{G\}\}. \square 

Second we consider countable groups which are not virtually cyclic.

Theorem 6.3. Suppose that G is not virtually cyclic and admits a proper rela‐

tively hyperbolic structure \mathfrak{H} . Then there exists a sequence (\mathfrak{H}_{n})_{n\in \mathbb{N}\cup\{0\}} of proper rela‐

tively hyperbolic structures on G satisfy ing the following:

(1) \mathfrak{H}_{0}=\mathfrak{H} and \mathfrak{H}_{n}\neq^{\mathfrak{H}_{n+1}}\subset for every  n\in \mathbb{N}\cup\{0\} ;

(2) if i<j ,
then \mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{H}_{i}) is a proper subset of \mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{H}_{j}) .

On the other hand there exists a sequence (\mathrm{K}_{n})_{n\in \mathbb{N}\cup\{0\}} of proper relatively hyperbolic
structures on G satisfy ing the following:

(1) \mathrm{K}_{0}=\mathfrak{H} and \mathrm{K}_{n}\neq\subset \mathrm{K}_{n+1} for every n\in \mathbb{N}\cup\{0\} ;

(2) \mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathrm{K}_{n})=\mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{H}) for every n\in \mathbb{N}\cup\{0\}.

In particular RHS(G)/Out(G) has innitely many elements.
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Proof. We construct \mathfrak{H}_{n} inductively. We put \mathfrak{H}_{0}=\mathfrak{H} . Suppose that \mathfrak{H}_{n} is con‐

structed. Since \mathfrak{H}_{n} is proper, it follows from [19, Theorem 1.2] that there exists a finitely

generated and virtually non‐abelian free subgroup V of G which is hyperbolically em‐

bedded into G relative to \mathfrak{H}_{n} . We put \mathfrak{H}_{n+1}=\mathfrak{H}_{n}\cup {  P|P=gVg^{-1} for some g\in G }.
If i<j ,

then it follows from [21, Theorem 1.1(1) and Corollary 1.3] that \mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{H}_{i})
is a proper subset of \mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{H}_{j}) .

Also we have a sequence (\mathrm{K}_{n})_{n\in \mathbb{N}\cup\{0\}} with the desired properties by using [28,
Corollary 1.7] instead of [19, Theorem 1.2] on the above argument. \square 

For finitely generated groups, we have the following.

Proposition 6.4. If G is a finitely generated group, then RHS(G) is countable.

Proof. For a set A
,
we denote by F(A) the set of all finite subsets of A . We suppose

that G is a finitely generated group and construct an injective map  i:\mathrm{R}\mathrm{H}\mathrm{S}(G)\rightarrow
 F(F(G)) as follows.

Let \mathfrak{H} be a relatively hyperbolic structure on G . We take a finite set \{H_{i}  i\in

\{ 1, .

::, n\}\} of representatives of conjugacy classes of \mathfrak{H} . Since G is finitely generated,
\mathfrak{H} consists of finitely generated subgroups of G by [27, Proposition 2.29]. Hence we can

choose a finite generating set S_{i} of H_{i} for each i\in\{1, . . :; n\} . We dene  i(\mathfrak{H})=\{S_{i}|i\in
{1, . . .

,
 n

Since G is finitely generated, it is countable and hence F(F(G)) is also countable.

Therefore \mathrm{R}\mathrm{H}\mathrm{S}(G) is also countable. \square 

On the other hand we have the following:

Proposition 6.5. Let G_{k} be an innite countable group for each positive integer
k and let G=*k\in \mathbb{N}G_{k} . Then \mathrm{R}\mathrm{H}\mathrm{S}(G) is uncountable. Moreover if we suppose that for

every k\in \mathbb{N}, G_{k} is freely indecomposable and not isomorphic to G_{j} for every j\in \mathbb{N}\backslash \{k\},
then RHS(G)/Out(G) is also uncountable.

Proof. We denote by \{0, 1\}^{\mathbb{N}} the set of all maps from \mathbb{N} to \{0 ,
1 \} . For each  $\sigma$\in

\{0, 1\}^{\mathbb{N}} ,
we consider a relatively hyperbolic structure \mathfrak{H}_{ $\sigma$} represented by \{*_{ $\sigma$(k)=0}G_{k}, *_{ $\sigma$(k)=1}G_{k}\}.

Since we have \mathfrak{H}_{$\sigma$_{1}}\neq \mathfrak{H}_{$\sigma$_{2}} for $\sigma$_{1}, $\sigma$_{2}\in\{0, 1\}^{\mathbb{N}} such that $\sigma$_{1}\neq$\sigma$_{2} ,
the former assertion

follows from the fact that \{0, 1\}^{\mathbb{N}} is uncountable. Moreover if we suppose that for every

k\in \mathbb{N}, G_{k} is freely indecomposable and not isomorphic to G_{j} for every j\in \mathbb{N}\backslash \{k\},
then it follows from the Kurosh subgroup theorem (see for example [18, Chapter IV,
Theorem 1.10]) that no automorphisms of G transform \mathfrak{H}_{$\sigma$_{1}} to \mathfrak{H}_{$\sigma$_{2}}. \square 

§7. A common blow‐up of two relatively hyperbolic structures

In the case of finitely generated groups, we have the following:
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Proposition 7.1. Let G be a finitely generated group. If \mathfrak{H} and \mathfrak{K} are relatively

hyperbolic structures on G ,
then \mathfrak{H}\wedge \mathfrak{K} is also a relatively hyperbolic structure on G.

In the above, \mathfrak{H}\wedge \mathfrak{K} is a common blow‐up of two relatively hyperbolic structures \mathfrak{H}

and K. In particular, the partially ordered set (\mathrm{R}\mathrm{H}\mathrm{S}(G), \rightarrow) is a directed set.

In order to prove Proposition 7.1, we need the following:

Lemma 7.2. Let G be a finitely generated group with two relatively hyperbolic
structures \mathfrak{H} and K. Then for every H\in \mathfrak{H}, H\wedge \mathfrak{K} is a relatively hyperbolic structure

on H.

Proof. Since H is finitely generated by [27, Proposition 2.29], it follows from [27,
Lemma 5.4] that H is undistorted in G . Therefore H\wedge \mathfrak{K} is a relatively hyperbolic
structure on H by [8, Theorem 1.8] (see also [16, Theorem 1.5 and Theorem 9.1]). \square 

Proof of Proposition 7.1. We denote the conjugacy classes of \mathfrak{H} by \mathfrak{H}_{1} ,
. . .

; \mathfrak{H}_{n}.

Then we have \mathfrak{H}=\sqcup_{i=1}^{n}\mathfrak{H}_{i} and \sqcup_{i=1}^{n}(\mathfrak{H}_{i}\wedge \mathfrak{K})=\mathfrak{H}\wedge \mathfrak{K} . We show that for each  l\in

\{1, . ::, n+1\}, (\sqcup_{i=1}^{l-1}(\mathfrak{H}_{i}\wedge \mathrm{K}))\cup(\sqcup_{i=l}^{n}\mathfrak{H}_{i}) is a relatively hyperbolic structure on G . The

proof is done by induction on l . When l=1
,

the assertion obviously holds. Suppose
that m\in\{1, . . . , n\} and that (\sqcup_{i=1}^{m-1}(\mathfrak{H}_{i}\wedge \mathrm{K}))\cup(\sqcup_{i=m}^{n}\mathfrak{H}_{i}) is a relatively hyperbolic
structure on G . Each element H of \mathfrak{H}_{m} is hyperbolic relative to H\wedge \mathfrak{K} by Lemma 7.2.

Since we have \sqcup_{H\in \mathfrak{H}_{m}}(H\wedge \mathfrak{K})=\mathfrak{H}_{m}\wedge \mathfrak{K} , it follows from [8, Corollary1.14] that G is

hyperbolic relative to (\sqcup_{i=1}^{m}(\mathfrak{H}_{i}\wedge \mathrm{K}))\cup(\sqcup_{i=m+1}^{n}\mathfrak{H}_{i}) . \square 

Now we can characterize the universal relatively hyperbolic structure for the case

of finitely generated groups.

Corollary 7.3. Let G be a finitely generated group and let \mathfrak{K} be a relatively

hyperbolic structure on G. Then the following are equivalent:

(i) \mathfrak{K} is the universal relatively hyperbolic structure on G ;

(ii) every element of \mathfrak{K} has no proper relatively hyperbolic structures;

(iii) no relatively hyperbolic structure on G other than \mathfrak{K} is a blow‐up of K.

Proof. The implication (i)\Rightarrow(iii) follows from Proposition 3.1.

We prove that (iii)\Rightarrow(i) . Suppose that no relatively hyperbolic structure on G

other than \mathfrak{K} is a blow‐up of K. Let \mathfrak{H} be an arbitrary relatively hyperbolic structure on

G . Then it follows from Proposition 7.1 that \mathfrak{H}\wedge \mathfrak{K} is a relatively hyperbolic structure

on G such that \mathfrak{H}\wedge \mathfrak{K}\rightarrow \mathfrak{H} and \mathfrak{H}\wedge \mathfrak{K}\rightarrow \mathfrak{K} . We have \mathfrak{H}\wedge \mathfrak{K}=\mathfrak{K} by the assumption and

hence \mathfrak{H} is a blow‐down of K.
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Next we prove that (ii)\Rightarrow(iii) . Suppose that every element of \mathfrak{K} has no proper

relatively hyperbolic structures. Let \mathfrak{H} be an arbitrary relatively hyperbolic structure

on G with \mathfrak{H}\rightarrow \mathfrak{K} . We prove that \mathfrak{K}\rightarrow \mathfrak{H} . Let K be an arbitrary element of K. It

follows from [34, Corollary 3.4] that \mathfrak{H}_{K} is a relatively hyperbolic structure on K . The

assumption on \mathfrak{K} implies that \mathfrak{H}_{K}=\{K\} . Hence K is an element of \mathfrak{H} and this implies
that \mathfrak{K}\rightarrow \mathfrak{H} . Hence we have \mathfrak{H}=\mathfrak{K} by Proposition 3.1.

Finally we prove that (iii)\Rightarrow(ii) . Suppose that there exists an element K of \mathfrak{K}

which has a proper relatively hyperbolic structure \mathfrak{K}' . We set \mathfrak{H}=(\mathrm{K}\backslash \{L|L=gKg^{-1}
for some g\in G}) \cup {  P|P=gQg^{-1} for some Q\in \mathfrak{K}' and g\in G}. It follows from

[8, Corollary 1.14] that \mathfrak{H} is a relatively hyperbolic structure on G . It follows from the

construction of \mathfrak{H} that \mathfrak{H}\neq \mathfrak{K} and \mathfrak{H} is a blow‐up of K. \square 

Remark. We make remarks on the universal relatively hyperbolic structure.

(I) Since the action of the outer automorphism group Out(G) on \mathrm{R}\mathrm{H}\mathrm{S}(G) preserves the

order \rightarrow
,

the universal relatively hyperbolic structure on  G is invariant under the

action of Out (G) (see also [9, Lemma 4.23(4)] ). For finitely generated groups, the

property of having no proper relatively hyperbolic structures is a quasi‐isometric
invariant by [7, Theorem 1.2]. In view of [3, Theorem 4.8], Corollary 7.3 implies
that for finitely generated groups the existence of the universal relatively hyperbolic
structure is invariant under quasi‐isometry. For a finitely generated group G with

the universal relatively hyperbolic structure, relationship between splitting of G and

Out (G) is described in [9, Theorem 1.12].

(II) If G is innite and has no proper relatively hyperbolic structures, then the trivial

relatively hyperbolic structure \mathfrak{K}=\{G\} is a unique relatively hyperbolic structure

on G and hence it is universal. The examples of such groups are \mathbb{Z}^{n}(n\geq 2) ,

\mathrm{S}\mathrm{L}(n, \mathbb{Z})(n\geq 3) and the mapping class group of an orientable surface of genus g

with p punctures, where 3g+p\geq 5 (see [3, Theorem 1.2 and p.557] and [17, Section

8] for details and other examples). There exists a criterion for countable groups to

have no proper relatively hyperbolic structures (see [17, Theorem 1] together with

[5, Denition 1], and also [1, Theorem 2]).

On the other hand, Corollary 7.3 enables us to recognize that each of the following

finitely generated groups has the universal relatively hyperbolic structure \mathfrak{K} , which

is proper:

\bullet each hyperbolic group with \mathfrak{K}=\emptyset ;

\bullet each geometrically finite Kleinian group with the collection \mathfrak{K} of all maxi‐

mal parabolic subgroups that are not virtually innite cyclic (note that every

maximal parabolic subgroup of a Kleinian group is virtually abelian (see for

example [24, Proposition 2.2]));
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\bullet each free product  A*B with the collection \mathfrak{K} of all conjugates of A and B
,
where

A and B are finitely generated groups having no proper relatively hyperbolic

structures;

\bullet each one‐relator product  A*B/\langle\langle r^{m}\rangle\rangle with the collection \mathfrak{K} of all conjugates
of A and B

,
where A and B are finitely generated groups having no proper

relatively hyperbolic structures, r is a cyclically reduced word of length at least

2 and m\geq 6 (see [23, Theorem 4.1]);
\bullet each limit group with the collection \mathfrak{K} of all maximal abelian non‐cyclic sub‐

groups ([6, Theorem 0.3]).

(III) The following are examples of finitely generated groups G with the universal rel‐

atively hyperbolic structure \mathfrak{K} such that every finitely generated subgroup of G is

quasiconvex relative to \mathfrak{K} in G (refer to the above (II)):

\bullet each finitely generated free group ([30, Section 2]) and the fundamental group

of each closed hyperbolic surface ([29, Proposition 2]);
\bullet each geometrically finite Kleinian group of the second kind acting on \mathbb{H}^{3} ([25,

Proposition 7.1]);
\bullet each free product  A*B where A and B are finitely generated groups having

no proper relatively hyperbolic structures;

\bullet each one‐relator product  A*B/\langle\langle r^{m}\rangle\rangle where  A and B are finitely generated

groups having no proper relatively hyperbolic structures, r is a cyclically re‐

duced word of length |r|\geq 2 and m>3|r| ([23, Theorem 1.7]);
\bullet each limit group ([6, Proposition 4.6]).

(IV) There exist finitely generated groups which do not have the universal relatively hy‐

perbolic structure. An example of such groups is so‐called Dunwoody�s inaccessible

group (see [3, Section 6]). Note that Dunwoody�s inaccessible group is finitely gen‐

erated, not finitely presentable and has torsions. We can also obtain torsion‐free

countable non‐finitely generated groups without the universal relatively hyperbolic
structure (see Proposition A.1). However, it is unknown whether every finitely

presented (resp. torsion‐free finitely generated) group has the universal relatively

hyperbolic structure (see [3, Question 1.5]).

§8. Relatively hyperbolic structures with the same set of relatively

quasiconvex subgroups

We determine when two relatively hyperbolic structures have the same collection

of relatively quasiconvex subgroups.
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Theorem 8.1. Let  G be a finitely generated group and let \mathfrak{K} and \mathfrak{H} be two rela‐

tively hyperbolic structures on G. Then we have the following:

(1) \mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{K})\cap \mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{H})=\mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{K}\wedge \mathfrak{H}) .

(2) The following conditions are equivalent:

(i) \mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{K})=\mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{H}) ;

(ii) \mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{K})=\mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{H})=\mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{K}\wedge \mathfrak{H}) ;

(iii) \mathfrak{K}_{\mathrm{n}\mathrm{e}}=\mathfrak{H}_{\mathrm{n}\mathrm{e}}.

We remark that the equivalence between (i) and (iii) in (2) follows from [21, Corollary

1.3] when \mathfrak{K} is a subcollection of \mathfrak{H}.

Proof. (1) Let L be a subgroup of G . First we suppose that L is quasiconvex
relative to \mathfrak{K}\wedge \mathfrak{H} in G . Since both \mathfrak{K} and \mathfrak{H} are blow‐downs of \mathfrak{K}\wedge \mathfrak{H} ,

it follows from

Proposition 5.1 (\mathrm{i})\Rightarrow(\mathrm{i}\mathrm{i}) that L is quasiconvex relative to \mathfrak{K} in G and quasiconvex
relative to \mathfrak{H} in G.

Next we suppose that L is quasiconvex relative to \mathfrak{K} in G and quasiconvex relative

to \mathfrak{H} in G . Let H be an element of \mathfrak{H} . Since G is finitely generated, H is undistorted in

G by [27, Lemma 5.4]. It follows from [16, Theorem 1.5] that H is quasiconvex relative

to \mathfrak{K} in G . Therefore we have L\cap H is also quasiconvex relative to \mathfrak{K} in G by [16,
Theorem 1.2 (2)]. Since H and L\cap H are quasiconvex relative to \mathfrak{K} in G and L\cap H is a

subgroup of H, L\cap H is quasiconvex relative to H\wedge \mathfrak{K} in H by [16, Corollary 9.3] (see
also Lemma 5.2). Since we have H\wedge \mathfrak{K}=(\mathfrak{K}\wedge \mathfrak{H})_{H}, L\cap H is quasiconvex relative to

(\mathfrak{K}\wedge \mathfrak{H})_{H} in H . Hence it follows from Proposition 5.1 (\mathrm{i}\mathrm{i}\mathrm{i})\Rightarrow(\mathrm{i}) that L is quasiconvex
relative to \mathfrak{K}\wedge \mathfrak{H} in G.

(2) Since we have \mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{K})\cap \mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{H})=\mathrm{R}\mathrm{Q}\mathrm{C}(G, \mathfrak{K}\wedge \mathfrak{H}) ,
conditions (i) and

(ii) are equivalent.
Condition (iii) implies condition (i) by [21, Corollary 1.3].
Finally we prove that condition (ii) implies condition (iii). Since we have \mathrm{K}\wedge \mathfrak{H}\rightarrow \mathfrak{H}

and \mathfrak{K}\wedge \mathfrak{H}\rightarrow \mathfrak{K} , it follows from Corollary 5.4 that \mathfrak{H}_{\mathrm{n}\mathrm{e}}=(\mathfrak{K}\wedge \mathfrak{H})_{\mathrm{n}\mathrm{e}}=\mathfrak{K}_{\mathrm{n}\mathrm{e}}. \square 

§ Appendix A. Torsion‐free countable groups without the universal

relatively hyperbolic structure

We give examples of torsion‐free countable groups without the universal relatively

hyperbolic structure. Note that these are not finitely generated.

Proposition A.1. Let G_{l} be an innite countable group for each l\in \mathbb{N} and put

G=*l\in \mathbb{N}G_{l} . Then G has no universal relatively hyperbolic structures. In particular,
innite countably generated fr ee groups have no universal relatively hyperbolic structures.
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Proof. Assume that G has the universal relatively hyperbolic structure K. For

each m\in \mathbb{N} ,
we put A_{m}=*^{m}G_{l}l=1 and Z_{m}=*^{\infty}G_{l}l=m+1 . We have G=A_{m}*Z_{m} and

hence G has a relatively hyperbolic structure \mathfrak{H}_{m} represented by \{A_{m}, Z_{m}\} . Since \mathfrak{K} is

universal, it is a blow‐up of \mathfrak{H}_{m} for every m\in \mathbb{N} . Hence it follows from [34, Corollary

3.4] that \mathfrak{K}_{Z_{m}} is a relatively hyperbolic structure on Z_{m} for each m\in \mathbb{N} . Since Z_{m}
is not finitely generated, it is not hyperbolic. Therefore \mathfrak{K}_{Z_{m}}\neq\emptyset for every  m\in \mathbb{N}.

Since \mathfrak{K} has only finitely many conjugacy classes, there exists a conjugacy class \mathfrak{K}' of

\mathfrak{K} such that \mathfrak{K}'\cap \mathrm{K}_{Z_{m}}\neq\emptyset for every  m\in \mathbb{N} . Let K' be a representative of \mathfrak{K}' and

let k' be a nontrivial element of K' . There exists n\in \mathbb{N} such that k' belongs to A_{n}.
Since \mathfrak{K}'\cap \mathrm{K}_{Z_{n}}\neq\emptyset ,

there exist an element  g of G such that gk�g‐l belongs to Z_{n}.
Thus we have gA_{n}g^{-1}\cap Z_{n}\neq\{1\} . However, this contradicts the fact that we have

G=A_{n}*Z_{n}. \square 

§ Appendix B. A remark on Proposition 4.2

We give a finitely generated group G with a conjugacy invariant collection of innite

subgroups \mathfrak{H} such that \mathfrak{H} satises conditions (1), (2) in Proposition 4.2 and condition

(3) in Remark (II) in Section 4 and it is not a relatively hyperbolic structure on G.

Let G be the mapping class group of an orientable surface of genus g with p punc‐

tures, where 3g+p\geq 5 . Then G has no proper relatively hyperbolic structures and

the trivial relatively hyperbolic structure \mathfrak{K}=\{G\} is the universal relatively hyperbolic
structure on G (see Remark (II) in Section 7). Let P be a subgroup of G generated by
a pseudo‐Anosov element and let V_{G}(P) be the virtual normalizer of P in G ,

that is,

V_{G}(P)= {  g\in G|[P:P\cap gPg^{-1}]<\infty and [gPg^{-1}:P\cap gPg^{-1}]<\infty }. We denote by
\mathfrak{H} the set of all conjugates of V_{G}(P) in G . Since every pseudo‐Anosov element of G is

of innite order, \mathfrak{H} is a conjugacy invariant collection of innite subgroups of G.

Proposition B.1. \mathfrak{H} satises conditions (1), (2) in Proposition 4.2 and condi‐

tion (3)� in Remark (II) in Section 4.

In order to prove this, we need the following:

Lemma B.2. Let L be a group and let M be an innite subgroup of L. Suppose
that the virtual normalizer V_{L}(M) of M is virtually innite cyclic. Then V_{L}(M) is an

almost malnormal subgroup of L.

Proof. It follows from the assumption that M is a finite index subgroup of V_{L}(M) .

It follows that for every l\in L ,
we have [V_{L}(M)\cap lV_{L}(M)l^{-1}:M\cap lMl^{-1}]<\infty.

Suppose that l belongs to V_{L}(V_{L}(M)) . Then we have [V_{L}(M):V_{L}(M)\cap lV_{L}(M)l^{-1}]<
\infty and [lV_{L}(M)l^{-1}:V_{L}(M)\cap lV_{L}(M)l^{-1}]<\infty . It follows that we have [V_{L}(M):M\cap
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 lMl^{-1}]<\infty and [lV_{L}(M)l^{-1}:M\cap lMl^{-1}]<\infty . This implies that  l belongs to V_{L}(M) .

Thus we have V_{L}(V_{L}(M))=V_{L}(M) .

Now suppose that l belongs to L\backslash V_{L}(M) . Then neither l nor l^{-1} belongs to V_{L}(M) .

Hence the equality V_{L}(V_{L}(M))=V_{L}(M) implies that V_{L}(M)\cap lV_{L}(M)l^{-1} is an innite

index subgroup of V_{L}(M) . Since V_{L}(M) is virtually innite cyclic, V_{L}(M)\cap lV_{L}(M)l^{-1}
is finite. \square 

Proof of Proposition B.1. It is known that V_{G}(P) is a virtually innite cyclic

subgroup of G (see for example [26, Theorem 3.5]) and hence P is a finite index subgroup
of V_{G}(P) . Hence condition (1) holds by Lemma B.2. Since \mathfrak{H} consists of all conjugates
of a single subgroup V_{G}(P) ,

condition (2) also holds. Every free abelian subgroup of G

is undistorted in G (see [14, Corollary 5.3 (1)]) and hence P is undistorted in G . Since

P is a finite index subgroup of V_{G}(P) , V_{G}(P) is also undistorted in G . Hence condition

(3) holds. \square 

On the other hand, G has no proper relatively hyperbolic structure as we mentioned

above and hence \mathfrak{H} is not a relatively hyperbolic structure on G.
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