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On the Hardy type inequality in critical
Sobolev-Lorentz spaces

By

Shuji MACHIHARA®, Tohru OzAwA** and Hidemitsu WADADE***

Abstract

In this paper, we establish the Hardy inequality of the logarithmic type in the critical
Sobolev-Lorentz spaces. More precisely, we generalize the Hardy type inequality obtained in
Edmunds-Triebel [8]. The generalized inequality allows us to take the exponents appearing in
the inequality more flexibly and their optimality is discussed in detail. O’Neil’s inequality and
its reverse play an essential role for the proof.

§1. Introduction and main theorem

In this paper, we shall give a systematic treatment concerning the Hardy type
inequalities on the critical Sobolev-Lorentz spaces H,; q(R”) withneN, seR, 1 <p<
oo and 1 < ¢ < oo, where the space H,  (R™) can be characterized in terms of the Bessel
potential such as Hy (R") := (1 - A)~%L, ,(R™) with the Lorentz space L, ,(R"). We
collect precise definitions of those function spaces and related properties in Section 2.

We recall the Sobolev embedding theorem on ﬁ, po (R™) which states that the
continuous inclusions Hlﬁ p2(R™) = Lg, 4, (R™) hold for all g1 € [p1,00) and g2 €
[p2,00]. However, the limiting case ¢ = oo in this embedding fails provided that
(p2,q2) # (1,00). This implies that functions in the space Hlfl, pa (R™) can have a local

singularity at some point in R™. In fact, the critical Sobolev space Hp; (R™), which is
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identical with the critical Sobolev-Lorentz space Hﬁ, po (R™) with p; = pa =: p, admits
a singularity of the logarithmic order, see Adams-Fournier [1] and Maz’ya[20]. As a
characterization of Hp% (R™), Edmunds-Triebel [8] proved the corresponding Hardy type
inequality with a logarithmic correction as follows:

Theorem A (Edmunds-Triebel [8, Theorem 2.8]). Letn €N and1l <p<
oo. Then there exists a positive constant C such that the inequality

b\
(11) [ () ) <l
{lz|<3} |10g|:c|| |x|n Hy

holds for all u € Hy (R™).

The main purpose in this paper is to generalize (1.1) into two directions. First, we
shall prove the COEl“eSpOIldiIlg logarithmic Hardy type inequality in the critical Sobolev
Lorentz space H7',,(R™), which coincides with (1.1) when p; = py =: p. Furthermore,
we investigate the possibility whether the exponents appearing in the inequalities can
be taken more flexibly including the consideration on its optimality. Indeed, our main
result now reads:

Theorem 1.1. LetneN, 1<p<oo,1<qg<ooandl < a,f < ooc. Then the
inequality

1

« (3
(1.2) / Mﬂﬁd_x < Clfu]| =
{lzl<4} [log |z||” |2] Hlq

holds for all u € H;;,q(R”) if and only if one of the following conditions (i), (ii) and
(i) is fulfilled :

(i) 1+a—08<0;

.. (07
(13) (’L’L) 1+05—BZO andq<m,

(¢ii) 1+4a—06>0, g= and o > f.

o
1+a—p

Remark.  The condition (ii) in (1.3) allows us to take 1 +a— 8 = 0, which implies

ﬁ = oo. In the special case of p = ¢ = a = 3, the inequality (1.2) is precisely
the inequality (1.1) by Edmunds-Triebel [8]. Also note that the value ¢ = ﬁ
a E—

is the critical exponent in the sense that the inequality (1.2) holds or not. Moreover,

Theorem 1.1 states that when ¢ = ﬁ’ the inequality (1.2) holds if « > 8 and
a E—
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fails if @ < B. In particular, the inequality (1.2) fails for the marginal case ¢ = oo and
14+ a— 8 = 0. Indeed, the function uy defined by ug(z) := n(x) |log|z|| belongs to

Hlf oo (R™), where 7 is a cut-off function supported near the origin, while

/ lug(z)|*  dx
(o<1} [log|z|[' T [=["

There is a number of both mathematical and physical applications of Hardy type in-

equalities. Among others, we refer the reader to Adimurthi-Chaudhuri-Ramaswamy [2],
Beckner [4], Bradley [6], Brézis-Marcus [7], Edmunds-Triebel [8], Garcia-Peral [9], Gurka-
Opic [10], Herbst [11], Kalf-Walter [12], Kerman-Pick [13, 14, 15], Ladyzhenskaya [17],
Machihara-Ozawa-Wadade [18], Matsumura-Yamagata [19], Nagayasu-Wadade [22],
Ozawa-Sasaki [24], Pick [25], Reed-Simon [26], Triebel [28] and Zhang[29]. Especially, in
Bradley [6] and Edmunds-Triebel [8], the inequalities of the type similar to (1.2) were
considered in terms of Besov type spaces.

This paper is organized as follows. Section 2 is devoted to the definition of the
Sobolev-Lorentz space as well as several lemmas needed for the proof of Theorem 1.1.
We shall prove Theorem 1.1 in Section 3 and Section 4.

§2. Preliminaries

In this section, we first recall the definition of the Lorentz spaces. To this end, we
define the rearrangement of measurable functions. For a measurable function f on R"
with n € N, f, : [0,00) — [0, 00] denotes the distribution function of f given by

f«A) = {x e R"; |f(x)] > A\}| for A >0,
and then the rearrangement f* : [0, 00) — [0, 00] of f is defined by
fr(@t) :=inf{\A>0; f.(\) <t} for t>0.

Moreover, f**:(0,00) — [0, 00| denotes the average function of f* defined by

@) = %/t f*(r)dr for t > 0.
0

In what follows, we assume f*(t) < oo for all t > 0. Then f* is right-continuous and
non-increasing on (0,00), and hence, f** is continuous and non-increasing on (0, 00)
with f*(t) < f**(¢) for all ¢ > 0. We now introduce the Lorentz space by using the
rearrangement. Let 1 < p < oo and 1 < ¢ < oo. Then the Lorentz space L, ,(R") is
defined as a function space equipped with the following norm,

o « q dt 7 ) .
(2.1) ||f||prq — (/0 (tpf (t)> ?) if 1<qg<oo;

ili}g (t%f*(t)> if ¢ = o0.
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We can take f** replaced by f* in the definition (2.1) as another equivalent norm on
L, ,(R™) if p # 1. Indeed, the following Hardy inequality guarantees its equivalence,

(L) %) oo ()

for non-negative measurable functions f for which the integral on the right-hand side
in (2.2) is finite. Remark that the inequality (2.2) is still valid for the case ¢ = oo by
replacing the integral by the supremum. For the proof of (2.2), see O’Neil [23, Lemma
2.3] and references therein. Furthermore, since f* and f** are both monotonically non-
increasing functions in (0,00), we easily get the following decay estimates. For any
t > 0, we have

Q=

23) ro<(2) i,

and if p > 1, together with the inequality (2.2), we also have for any ¢ > 0,

* % / q é -1
(2.4) [ <p o)t 1f11Ly .0
Note that the inequalities (2.3) and (2.4) are also valid for the marginal case ¢ = oo
and we will utilize them frequently for the proof of the main theorem in Section 3.

We also make use of the celebrated Hardy-Littlewood inequality :

(25) | @i < [

for all measurable functions f and g. The proof of (2.5) can be found in Bennett-
Sharpley [5, Theorem 2.2].

Next, we recall the pointwise rearrangement inequality for the convolution of func-
tions proved by O’Neil [23, Theorem 1.7]. In fact, for measurable functions f and g on
R"™, we have

(2.6) (f % 9)™ (1) < t F™(1)g™( / PP (F)dr for £ > 0.

Moreover, we make use of the reverse O’Neil inequality established in Kozono-Sato-
Wadade [16, Lemma 2.2]. Indeed, there exists a positive constant C such that the
inequality

2.7) U*W%)>CGF* "0+ [ )
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holds for all ¢ > 0 and for all measurable functions f and g on R™ which are both
non-negative, radially symmetric and non-increasing in the radial direction.

In this paper, we frequently use the Bessel potential Gy := (1 — A)~3 and the
Riesz potential I x := (—A)~2 for 0 < s < n. More precisely, the kernel functions I,
and G are defined respectively by

(@) = b2 )yt
F 7T (3
1 o0 _7.l.|93|2 4t n;sﬂ
Gs( ) (47T)§F(§)/0 (& 7

for x € R™\ {0}, where I" denotes the Gamma function. Based on the Lorentz space, we
define the Sobolev-Lorentz space H, ,(R") by Hy  (R") := (I — A) 2L, ,(R") = Gy *
Ly q(R") equipped with the norm [lul[gs = |/(I - A)zul|r, . The space Hy (R")is a
generalization of the usual Sobolev space Hy (R™) since we have Ly, ,(R") = L,(R") due
to the norm-invariance of [|ul[z, , = ||u/z,. We now collect the elementary properties
of Iy and G in the following lemma.

Lemma 2.1. Letn e N and 0 < s < n.

(i) Is and G are non-negative, radially symmetric and non-increasing in the radial
1

direction, so that I}(t) = Is(z) and G%(t) = Gs(x) if x| = (i) " >0, where wy, :=
ijé) denotes the volume of the unit ball in R™.

(ii) Gs(z) < Ig(x) for all z € R™\ {0}, which implies G%(t) < I:(t), GE*(t) < I *(t)
for allt > 0, and lim Go@) = lim G (1) =1

lz140 Ig(x)  tlo I:(t)

(iii) |Gs|lL, =1 and there ezists a positive constant C such that the following inequal-
ities hold,

Clz|~ ") forz e R™\ {0};

Gu(x) < || f \ {0}

Ce 1 forz e R"  with |z| > 1.
Since the facts in Lemma 2.1 are well-known, we omit the detailed proof here, see
Stein [27] for instance. Furthermore, we refer to Almgren-Lieb [3] and Bennett-Sharpley [5]
for further information about the rearrangement theory.

At the end of this section, we shall show the following one-dimensional Hardy

inequality of logarithmic type:

Lemma 2.2. Let 1l < o, < oo. Then there exists a positive constant C' such
that the inequality

1

(28) (/ (/fw(s)ws) |logt|—5%> §C</O§|¢(t)|a|logt|_ﬂ%>
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holds for all measurable functions ¢ such that the integral on the right-hand side of (2.8)
is finite.

Furthermore, we can show the following dual variant of the inequality (2.8).

Lemma 2.3. ILetl<f<a<ooandq:= ﬁ Then there exists a positive

constant C' such that the inequality

[

(2.9) (/ (/fw(snds) |1ogt|—ﬂ%> sc(/j(ﬂaﬁ(t)bq%)

holds for all measurable functions ¢ such that the integral on the right-hand side of (2.9)
is finite.

We shall apply Lemma 2.3 for the proof of the sufficiency part of Theorem 1.1 in Section
3, and Lemma 2.2 will be used for the proof of the necessity part of Theorem 1.1 in
Section 4. Lemma 2.2 and Lemma 2.3 can be obtained as corollaries of the following
weighted inequalities obtained in Bradley [6] and Muckenhoupt [21]:

Theorem B (Bradley [6], Muckenhoupt [21]). Let 1 < p < o < oo and let
U and V' be measurable weights.

(i) There exists a positive constant C such that the inequality

(2.10) ( / N ]U(t) / (e)lds| dt) e ( / N |v<t>w<t>|f’dt>%

holds for all measurable functions 1 such that the integral on the right-hand side of
(2.10) s finite if and only if

1

sup (/OO |U(t)|°dt> ’ (/O |V(t)|—f>’dt> 7 < too.

(ii) There exists a positive constant C' such that the inequality

(2.11) (/OOO ’U(t) /too o(s)lds| dt) ’ <C (/Ooo |V(t)¢(t)|pdt) '

holds for all measurable functions 1 such that the integral on the right-hand side of
(2.11) s finite if and only if

sup (/0 |U(t)|°'dt> ’ (/Oo |V(t)|_p/dt> < +o0.

S
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Now we shall show Lemma 2.2 and Lemma 2.3 by applying Theorem B (i) and Theorem
B (ii), respectively.

Proof of Lemma 2.2. Define the weights U; and V; by

_a OL 1
[logt| =t~ for 0 <t < 3;

Ul(t):z
0 fortZ%
and
lo t_ t—= for 0<t<i:
Vl(t):: |g| 2
1 fort 2%

Then the direct calculation shows

sup (/ |U1(t)|adt> i (/ |V1(t)|_a/dt> T < +o00.
’I">0 r 0

Thus Theorem B (i) implies
dt) <c( [ movora)”.
0

( [ e [ ecoas

(/ (3 [ wioas) os ﬁdt>1
<o ( / ool ogd 2+ | |¢<t>|“dt> %

2

namely,

for all measurable functions . Taking ¢ = X(o,%ﬂb yields the desired inequality (2.8).
O

Proof of Lemma 2.3. Define the weights Us and V5 by

llog t| o for 0<t< g,

and
q=1 1
t7e for 0<t<35;
2g—1 1
t fort2§

Then the direct calculation shows

sw ([ |U2<t>|%zt>é ([ mora)” <.

Um
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Since a > f implies a > ¢, by applying Theorem B (ii), we obtain

( [ ([ wioias) g~ %) é

<c ( [ e G [ th—1|¢<t>|th>

for all measurable functions . Taking ¢ = X (0, %)@b yields the desired inequality (2.9).
O

83. Proof of the sufficiency part of Theorem 1.1

In this section, we consider the sufficiency part of Theorem 1.1. To this end, it
suffices to show the following key lemmas.

Lemma 3.1. LetneN, 1 <p<oo,l1<g<ooandl < a,f < oo. Assume
one of the conditions (i), (ii) and (iii) in (1.3) holds. Then there exists a positive
constant C' such that the inequality

LR AN
(3.1) [0S <ol
0 |10gt| t Hp.q

holds for all u € HEq(R”).

Lemma 3.2. LetneN, 1<p<oo,l<g<ocandl < a,f < oo. Assume
one of the conditions (i), (i) and (iii) in (1.3) holds. Then there exists a positive
constant C' such that the inequality

32 ([ )

holds for all u € Hpﬁ‘:q(R”) and for all measurable function w satisfying

Q=

1 £ *
< C’( sup te [logt|* w (t)> ||U||H%

0<t<% P,q

1 8
lsuppw| < = and  sup t= |logt|~ w*(t) < oo.
2 0<t<3

B n
Remark. By taking w(z) := [log|z||” * |2|7% x{|g|<c}(2) with small € > 0 in
Lemma 3.2, we can prove the sufficiency part of Theorem 1.1, where x{jz|<c} is a
characteristic function on {|x| < e}.
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First, we shall prove Lemma 3.2 by applying Lemma 3.1.

Proof of Lemma 3.2. By using the inequality (2.5) with |suppw| < 3 and

applying Lemma 3.1, we see

2

| @tz = [ w0 < ARG

N

o ¥ () dt

1 B
= te |logt|e w* (¢ —
J) (o) B
1
5 k(1
< ( sup t|logt|’ w*(t)o‘> /2 ur(0) dt
0

0<t<i |10gt|B t

<C| sup tllogt/® w @) | ul®» |
pr,q

0<t<3

which is exactly the inequality (3.2). O

We are now in a position to prove Lemma 3.1.

.

Proof of Lemma 3.1. First, by letting (1 — A)?»u = f € L, ,(R"), Lemma 3.1
can be rewritten as the following equivalent form,

a

(53) / (Gs20) 0},

logt|” 1

for f € L, 4(R™). Hence, we concentrate our attention on the proof of (3.3) below. By
the O’Neil inequality (2.6) and decay estimates (2.3) and (2.4), we have for 0 < ¢t < %,

(3.4)

Gaxf) (< (Ganr) @)
<tGEOF 0+ [ G (s

= LGE (W) + / h G () f*(s)ds + /t §G*% (s)F*(s)ds

N

<cC (nagn%,,wnfu%,q +1Galz S, /

1
2

Ty 5 (s)f(s)d
s s) -l-/t ;(S)f (s)ds

= Clley, + [ G0 ()
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Thus from (3.4), we obtain

1

(3.5) / (61) @ §O</ log | Bdt) £z,

logt|” ¢

N NN i —pdt :
+(/0 (/t G%(S)f (s)ds) llog ¢ t) ,

where the integral of the first term on the right-hand side of (3.5) is finite since g > 1.
We further estimate the integral of the second term below.

Note that the conditions (i), (ii) and (iii) in (1.3) can be rewritten equivalently as
follows :

(3.6) (i) B>1—|—§ or (i) 1—}—3:5 and a > .

Case 1. Assume (i) in (3.6). For 0 < ¢ < 3, by Lemma 2.1 (ii) and Holder’s inequality,
we see

sc(/j ) (/ (% )@) < Cllog |7 ||,

Note that the above calculation is also valid for the case ¢ = oo. Thus we have

(3.7) (/05 (/j G*% (s)f*(s)d.s,‘) [log 1| -8 dt)

3 o _gdt
sc( | gt t) 19120 < CU Lz
0

=

where we have used the condition g > 1+ & 7 which ensures that the integral on the
middle-hand side of (3.7) is finite. Thus combining (3.5) with (3.7), we obtain the
desired estimate.
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Case 2. Assume (ii) in (3.6). By Lemma 2.1 (ii) and Lemma 2.3, we have

338) ( / : ( f *%(s)f*(S)d8>a flog] ™" %) E
<c (/ (tG*%(t)f*(t)Y%)E
<c (/ (1) %) "<l

Thus combining (3.5) with (3.8), we obtain the desired estimate. O

[

[

8§4. Proof of the necessity part of Theorem 1.1

In this final section, we shall prove the necessity part of Theorem 1.1. To this end,
we shall construct a concrete function in the critical Sobolev-Lorentz space H o (R™).

Proof of the necessity part of Theorem 1.1. First, by putting (l—A)%u = f,
the inequality (1.2) can be rewritten as

Gs  F@)° o
(4.) ( / A T
(o<t} loglz[|” |zl

Therefore, it is enough to show the breakdown of the inequality (4.1) under the following

Q-

conditions which are the negations of (1.3) or (3.6).

(i) B<1—|—%andq<oo;
(4.2) (i) <1+ S(=14a) and ¢=o0;

(iii) =14+, q<ocoand a<p.
Case 1. Assume (i) in (4.2). In this case, we define the function f. by

+e

(4.3) fo(@) == log ]| T [2]7F X ja) <c (@)

for small € > 0. Then we see that for sufficiently small € > 0, f. becomes non-negative
and non-increasing with repect to the radial direction |z|. Thus we have for small ¢ > 0,

(4.4 fr) = 7. ((g)) ~ flog |5 175 =2 g.(1),

n

where f5(|x|) := fe(x). More precisely, (4.4) implies that there exist positive constants
¢ small enough, C' and C such that the inequalities

(4'5) ng(t) < f:(t) < ége(t)
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hold for all 0 < ¢ < §. By using (4.5), it is easy to see f. € L, ,(R™). Indeed, from
(4.5), we obtain

1 o 1
1 q dt 1 q dt ~ _1+€)dt
tr fX(t —<C’/ trg.(t —=C’/ logt ( — < 00.
/0 ( ()) ! ( ()) / | Nost| t

On the other hand, since f. is non-negative and non-increasing with respect to the radial
direction, so is Gz * f.. Thus noting G fe(x) = (G% * fa) (wpr™) if |z| =r > 0, we
see by changing a varla,ble wpr™ =1,

‘G%*ﬁ@ﬂ i
wo NET
{lzl<tr  loglz||” 12

) e (o) 0
_nwn/o . /0

llog 7|” T llog t|” t

for small § > 0. Furthermore, by using Lemma 2.2 and the reverse O’Neil inequality
(2.7), we have

) n i @
(Ga e ) O gy
(1) /0 llog ¢|” t
) n
(Gast) g
2C/o log t|” t
)
(tez fz 0 + [T Ganfzmdr) g
ZC/o |lo;t|B t

>C/ (ft i )dT> a
0 |logt|B

o t

Thus by Lemma 2.1 (i) and (4.5), we have for small § > 0,

(Ko@) g (0 g
(4.8) /0 /O |logt|ﬁ

|logt|ﬁ t t

7'10g6 T)dT
o[ U ) a

llog t|” t

Take € > 0 small enough so that 1 — 1+5 > (0, which is possible since ¢ > 1. Thus we
have for any 0 < t < % with small § > O

6
_1 q
4.9 ¥ ge(r)dr = ———— ([logt log3|'~"7) > C'[logt
(4.9) /tT ge(T)dr q_(1+)(|0g| — [log ] ) [log#]"~
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Summing up all estimates (4.6), (4.7), (4.8), and (4.9), we obtain

o
G f2(o)] g 8
(4.10) / - 3 dxn > 0/2 |1ogt|(1—%)a—ﬂ dt.
(o<t [loglz[|” ] 0 t

However, the integral on the right-hand side of (4.10) diverges provided that € > 0 is
taken small enough so that (1 — %) a—pF+1 > 0, which is possible since % —B+1>0
by the assumption. Thus the inequality (4.1) fails under the condition (i) in (4.2).

Case 2. Assume (ii) in (4.2). In this case, we utilize fo(x) := |z| ™7 instead of f.(z)
used in Case 1. Then it is easily seen fo € Ly oo(R™). On the other hand, in a quite
similar way carried out in Case 1, we see

os b0l (G
/{le<%} /0

log [z||®  lal" = logt” ¢
o [6% 5 *k *k @
s (Gaeh) g po (@) 4
> C/ B -2 C/ - B t
0 log t| t 0 |log t| t

5
1 f IZ (T)fg(T)dT dt 2 dt
_0/(t } B —ZC/2|10gt|“_B—

0 llog t| t 0 t

for small §, where the last integral diverges if « — 8+ 1 > 0, that is, 8 < 1+ «. Thus
the inequality (4.1) fails under the condition (ii) in (4.2).

Case 3. Assume (iii) in (4.2), which implies % =1+4+a—pF <1, namely, ¢ > «. In this
case, we make use of the function f. with small € > 0 defined by

_1 _1lte _n
fe(@) := |log |z]| " [log [log x| = 2|7 X{jz|<} (2)-

Since f. is non-negative and non-increasing in the radial direction |x| with small £ > 0,

wWe see
_1 _1te 1
JZ(t) ~ |logt| 4 [log|logt|| "« t™ 7 =: g.(t)

for small ¢ > 0, namely, there exist positive constants ¢ small enough, C' and C such

that the inequalities
(4.11) Cge(t) < f2(t) < Cye(t)

hold for all 0 < t < 6. By using (4.11), it is easy to see f. € L, (R™). Indeed,

A%ﬁﬁwf%séAYﬁ%wY%

=C | |logt| " |log|logt|| - <o
0
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On the other hand, in the quite same estimates from below as in (4.6), (4.7) and (4.8)
in Case 1, we obtain

‘G% *fe(x)‘ dr ) (ft T gg(T)dT) dt
| Lo i)
{lzl<iy  [log|zl|”  [7] 0 log t|

Furthermore, we can easily see

5 5 1+e d Lte
/ T_ige(T)dT = / |10g7'|_% |log [log 7|« S |logt|1_% [log [log t[| "
t t !

for small ¢ > 0. In particular, for any 0 < t < g with small § > 0, we have
0 _1 1—1 _1te
(4.13) / 7 ¥ ge(T)dT > C'|logt|” ¢ |log |logt|| < .
t

Thus combining (4.12) with (4.13), we see

[ V]
/N

(e
‘Gﬂ *f (CC)’ s
(4.14) / L dr Zc/ . dt
{lol<iy  [loglzl|?  [z]” 0 log t| t

20/
0
dt

)
2 e
= C’/ log |~ [log |logt||_%a -
0

[N

o _lte
llog |~ |log [log #]| ™+ * —

However, the last integral in (4.14) diverges provided that € > 0 is taken small so that
—l—j;ea + 1 > 0, which is possible since ¢ > «. Thus the inequality (4.1) fails under the
condition (iii) in (4.2). O

Remark.  (3.1) in Lemma 3.1 is equivalent to (1.2) in Theorem 1.1. Indeed, we
have already seen in Section 3 that Lemma 3.1 implies Theorem 1.1. On the other
hand, (1.2) is equivalent to (4.1), and since the weighted norm in the left-hand side of
(4.1) is non-decreasing under the rearrangement, (4.1) can be reduced to (3.3), which
is equivalent to (3.1).
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