<table>
<thead>
<tr>
<th>Title</th>
<th>Boundedness of Littlewood-Paley operators (Harmonic Analysis and Nonlinear Partial Differential Equations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>SATO, Shuichi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu (2014), B49: 75-101</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/226235</td>
</tr>
<tr>
<td>Right</td>
<td>© 2014 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Boundedness of Littlewood-Paley operators

By

Shuichi SATO*

Abstract

We survey some results related to L^p boundedness of Littlewood-Paley operators on homogeneous groups. Also, we give proofs of some results in the survey.

§1. Introduction

Let $f \in L^p(\mathbb{T})$ $(1 < p < \infty)$, where \mathbb{T} is the one-dimensional torus, which is identified with \mathbb{R}/\mathbb{Z} (\mathbb{Z} denotes the integer group), and let

$$
\sum_{k=-\infty}^{\infty} c_k e^{2\pi i k \theta}
$$

be the Fourier series of f, where

$$c_k = \int_{\mathbb{T}} f(x) e^{-2\pi i k x} \, dx
$$

is the Fourier coefficient.

The Littlewood-Paley function $\gamma(f)$ is defined as

$$
\gamma(f)(\theta) = \left(\sum_{m=0}^{\infty} |\Delta_m(\theta)|^2 \right)^{1/2},
$$

where

$$
\Delta_m(\theta) = \sum_{2^{m-1} \leq |k| < 2^m} c_k e^{2\pi i k \theta}
$$
if m is a positive integer and $\Delta_0 = c_0$. Then Littlewood and Paley proved

$$A_p \|f\|_{L^p} \leq \|\gamma(f)\|_{L^p} \leq B_p \|f\|_{L^p}$$

for some positive constants A_p, B_p. This can be applied in proving the multiplier theorems of Marcinkiewicz type and in studying the lacunary convergence of the Fourier series.

A result analogous to (1.1) for the g function on \mathbb{T} defined by

$$g(f)(\theta) = \left(\int_0^1 (1-t)|\partial f/\partial t| P_t * f(\theta)|^2 dt \right)^{1/2}$$
was also shown by Littlewood and Paley, where

$$P_t(\theta) = \frac{1-t^2}{1-2t\cos(2\pi \theta) + t^2}$$
is the Poisson kernel for the unit disk. (See Littlewood and Paley [22, 23, 24] and also Zygmund [43, Chap. XV] for the results above).

In this note we consider analogues on the Euclid spaces \mathbb{R}^n and on the homogeneous groups of the Littlewood-Paley function $g(f)$ in (1.2). We survey a paper [10] and some back ground results in Sections 2–4. (See [37, 39, 43] for relevant results.) Also, in Sections 5–7, we shall give proofs of three results stated in Sections 2 and 3. Finally, in Section 8, we shall see some results related to Littlewood-Paley operators arising from the Bochner-Riesz means and the spherical means.

§2. Littlewood-Paley functions on \mathbb{R}^n

Let ψ be a function in $L^1(\mathbb{R}^n)$ such that

$$\int_{\mathbb{R}^n} \psi(x) dx = 0.$$

We consider the Littlewood-Paley function on \mathbb{R}^n defined by

$$S_\psi(f)(x) = \left(\int_0^\infty |f * \psi_t(x)|^2 \frac{dt}{t} \right)^{1/2} ,$$
where $\psi_t(x) = t^{-n} \psi(t^{-1}x)$.

Let $Q(x) = [(\partial/\partial t)P_t(x)]_{t=1}$, where

$$P_t(x) = c_n \frac{t}{(|x|^2 + t^2)^{(n+1)/2}}$$
is the Poisson kernel on the upper half space $\mathbb{R}^n \times (0, \infty)$. Then $S_Q(f)$ is a version on \mathbb{R}^n of the Littlewood-Paley function $g(f)$.
If $H(x) = \chi_{[-1,0]}(x) - \chi_{[0,1]}(x)$ is the Haar function on \mathbb{R}, then $S_H(f)$ coincides with the Marcinkiewicz integral

$$
\mu(f)(x) = \left(\int_{0}^{\infty} |F(x+t) + F(x-t) - 2F(x)|^2 \frac{dt}{t^3} \right)^{1/2},
$$

where $F(x) = \int_{0}^{x} f(y) dy$. Here χ_E denotes the characteristic function of a set E. We can easily see that S_Q and S_H are L^p $(1 < p < \infty)$ bounded on \mathbb{R}^n and \mathbb{R}, respectively, from the following well-known result of Benedek, Calderón and Panzone [2].

Theorem A. Suppose that ψ satisfies (2.1) and

\begin{align*}
(2.2) & \quad |\psi(x)| \leq C(1 + |x|)^{-n-\epsilon}, \\
(2.3) & \quad \int_{\mathbb{R}^n} |\psi(x-y) - \psi(x)| \, dx \leq C |y|^\epsilon
\end{align*}

for some positive constant ϵ. Then

1. S_ψ is bounded on $L^p(\mathbb{R}^n)$ for all $p \in (1, \infty)$;
2. S_ψ is of weak type $(1,1)$ on \mathbb{R}^n.

It is known that for the L^p boundedness, the condition (2.3) is superfluous, which can be seen from the following result when $p = 2$.

Theorem B. S_ψ is bounded on $L^2(\mathbb{R}^n)$ if ψ satisfies (2.1) and (2.2) with $\epsilon = 1$.

We refer to Coifman and Meyer [8, p. 148] for this. A proof can be found in Journé [20]; see [20, pp. 81-82].

Let $H_\psi(x) = \sup_{|y| \geq |x|} |\psi(y)|$ be the least non-increasing radial majorant of ψ. Also, define

$$
B_\epsilon(\psi) = \int_{|x| > 1} |\psi(x)| |x|^\epsilon \, dx \quad \text{for} \quad \epsilon > 0,
$$

$$
D_u(\psi) = \left(\int_{|x| < 1} |\psi(x)|^u \, dx \right)^{1/u} \quad \text{for} \quad u > 1.
$$

In [28], part (1) of Theorem A and Theorem B are improved as follows.

Theorem C. Let $\psi \in L^1(\mathbb{R}^n)$. Suppose that ψ satisfies (2.1) and the conditions

1. $B_\epsilon(\psi) < \infty$ for some $\epsilon > 0$;
(2) $D_u(\psi) < \infty$ for some $u > 1$;

(3) $H_\psi \in L^1(\mathbb{R}^n)$.

Then

$$\|S_\psi(f)\|_{L^p_w} \leq C_{p,w}\|f\|_{L^p_w}$$

for all $p \in (1, \infty)$ and $w \in A_p$.

As usual $L^p_w(\mathbb{R}^n)$ denotes the weighted L^p space of those functions f which satisfy $\|f\|_{L^p_w} = \|fw^{1/p}\|_p < \infty$. Also, here we recall the weight class A_p of Muckenhoupt. We say that $w \in A_p$ ($1 < p < \infty$) if

$$\sup_B \left(|B|^{-1} \int_B w(x) \, dx \right) \left(|B|^{-1} \int_B w(x)^{-1/(p-1)} \, dx \right)^{p-1} < \infty,$$

where the supremum is taken over all balls B in \mathbb{R}^n and $|B|$ denotes the Lebesgue measure. Let M be the Hardy-Littlewood maximal operator defined by

$$M(f)(x) = \sup_{x \in B} |B|^{-1} \int_B |f(y)| \, dy,$$

where the supremum is taken over all balls B containing x. We then say that $w \in A_1$ if there exists a constant C such that $M(w)(x) \leq C w(x)$ for almost every x.

We now see some applications of Theorem C from [28].

Corollary 1. Suppose that $\psi \in L^1$ satisfies (2.1) and (2.2). Let $b \in BMO$ and $w \in A_2$. We define the measure ν on the upper half space $\mathbb{R}^n \times (0, \infty)$ by

$$d\nu(x,t) = |b \ast \psi_t(x)|^2 \frac{dt}{t} w(x) \, dx.$$

Then, the measure ν is a Carleson measure with respect to the measure $w(x) \, dx$, that is,

$$\nu(S(Q)) \leq C_w \|b\|^2_{BMO} \int_Q w(x) \, dx$$

for all cubes Q in \mathbb{R}^n, where

$$S(Q) = \{(x,t) \in \mathbb{R}^n \times (0, \infty) : x \in Q, 0 < t \leq \ell(Q)\}$$

with $\ell(Q)$ denoting sidelength of Q.

This follows from the L^2_w-boundedness of the operator S_ψ. See [20, pp. 85–87]. From Corollary 1 we get the following (see [20, p. 87]).
Corollary 2. Let $b \in \text{BMO}$. Suppose that φ satisfies (2.2) and that ψ satisfies (2.1), (2.2). Then
$$
\|T_b(f)\|_{L_p^w} \leq C_{p,w} \|b\|_{\text{BMO}} \|f\|_{L_p^w}
$$
for all $p \in (1, \infty)$ and $w \in A_p$, where
$$
T_b(f)(x) = \left(\int_0^{\infty} |b \ast \psi_t(x)|^2 |f \ast \varphi_t(x)|^2 \frac{dt}{t}\right)^{1/2}.
$$

We note that the conditions (2.1), (2.2) only are required for ψ in Corollaries 1, 2 (no additional regularity condition for ψ is needed).

By Corollary 2 and Theorem C we have the following.

Corollary 3. We assume that ψ satisfies (2.1), (2.2) and that φ satisfies (2.2). Let $b \in \text{BMO}$. Furthermore, let η be a function in $L^1(\mathbb{R}^n)$ satisfying all the conditions of Theorem C imposed on ψ. Define a paraproduct π_b by the equation
$$
\pi_b(f)(x) = \int_0^{\infty} \eta_t \ast ((b \ast \psi_t)(f \ast \varphi_t))(x) \frac{dt}{t}.
$$
Then
$$
\|\pi_b(f)\|_{L_p^w} \leq C_{p,w} \|b\|_{\text{BMO}} \|f\|_{L_p^w}
$$
for all $p \in (1, \infty)$ and $w \in A_p$.

The class $L(\log L)^{\alpha}(\mathbb{R}^n)$, $\alpha > 0$, is defined to be the collection of the functions f on \mathbb{R}^n such that
$$
\int_{\mathbb{R}^n} |f(x)||\log(2 + |f(x)|)|^\alpha \, dx < \infty.
$$
Similarly, let $L(\log L)^{\alpha}(S^{n-1})$ be the class of the functions Ω on S^{n-1} satisfying
$$
\int_{S^{n-1}} |\Omega(\theta)||\log(2 + |\Omega(\theta)|)|^\alpha \, d\sigma(\theta) < \infty,
$$
where $d\sigma$ denotes the Lebesgue surface measure on $S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$.

For the rest of this section we consider the cases where ψ is compactly supported. In [31] the following result was proved.

Theorem D. The operator S_{ψ} is bounded on $L_p(\mathbb{R}^n)$ for all $2 \leq p < \infty$ if ψ is a function in $L(\log L)^{1/2}(\mathbb{R}^n)$ with compact support and satisfies (2.1).

This improves on a previous result of [17] which guarantees L_p boundedness of S_{ψ} for $p \in [2, \infty)$ under a more restrictive condition that $\psi \in L^q(\mathbb{R}^n)$ with some $q > 1$.

For $p < 2$, Duoandikoetxea [12] proved the following result.
Theorem E. We assume that ψ has compact support.

(1) Suppose that $1 < q \leq 2$ and $0 < 1/p < 1/2 + 1/q'$. Then S_ψ is bounded on $L^p(\mathbb{R}^n)$ if ψ is in $L^q(\mathbb{R}^n)$ and satisfies (2.1).

(2) Let $1 < q < 2$ and $1/p > 1/2 + 1/q'$. Then there exists $\psi \in L^q(\mathbb{R}^n)$ such that S_ψ is not bounded on $L^p(\mathbb{R}^n)$.

Here q' denotes the exponent conjugate to q. See also [6] for a previous result for $p < 2$. Theorem E (1) was shown by arguments involving a theory of weights (see also [14]).

Let $\psi^{(\alpha)}$ be a function on \mathbb{R} defined by

$$\psi^{(\alpha)}(x) = \begin{cases} \alpha(1 - |x|)^{\alpha-1} \text{sgn}(x), & x \in (-1, 1), \\ 0, & \text{otherwise}. \end{cases}$$

Suppose that $1 < p < 2$, $1 < q < 2$ and $1/q' < \alpha < 1/p - 1/2$. Then $\psi^{(\alpha)} \in L^q(\mathbb{R})$; also, Remark 2 of [17] implies that $S_{\psi^{(\alpha)}}$ is not bounded on L^p and $S_{\psi^{(\alpha)}}$ is of weak type (p, p) if $\alpha = 1/p - 1/2$.

The following result is a particular case of part (1) of Theorem E.

Proposition 1. If ψ is compactly supported and belongs to $L^2(\mathbb{R}^n)$, then S_ψ is bounded on $L^p(\mathbb{R}^n)$ for all $p \in (1, \infty)$.

This can be proved by combining results of [28] and the weight theory of [12]. We shall give the proof in Section 5.

The Marcinkiewicz integral $\mu_\Omega(f)$ of Stein [36] (see also Hörmander [19]) is defined by $\mu_\Omega(f) = S_\psi(f)$ with

$$\psi(x) = |x|^{-n+1} \Omega(x') \chi_{(0, 1)}(|x|) \quad \text{for } x \in \mathbb{R}^n \setminus \{0\},$$

where $x' = x/|x|$, $\Omega \in L^1(S^{n-1})$, $\int_{S^{n-1}} \Omega \, d\sigma = 0$.

Al-Salman, Al-Qassem, Cheng and Pan [1] proved the following.

Theorem F. μ_Ω is bounded on $L^p(\mathbb{R}^n)$ for all $p \in (1, \infty)$ if $\Omega \in L(\log L)^{1/2}(S^{n-1})$.

See Walsh [42] for the case $p = 2$. In Section 3, we shall consider an analogue of Theorem F on homogeneous groups.

§ 3. Littlewood-Paley functions on homogeneous groups

We consider Littlewood-Paley functions on homogeneous groups. We also regard \mathbb{R}^n, $n \geq 2$, as a homogeneous group with multiplication given by a polynomial mapping.

So, we have a dilation family $\{A_t\}_{t > 0}$ on \mathbb{R}^n such that

$$A_t x = (t^{a_1} x_1, t^{a_2} x_2, \ldots, t^{a_n} x_n), \quad x = (x_1, \ldots, x_n),$$
with some real numbers a_1, \ldots, a_n satisfying $0 < a_1 \leq a_2 \leq \cdots \leq a_n$ and such that each A_t is an automorphism of the group structure (see [18], [41] and [25, Section 2 of Chapter 1]). We also write $\mathbb{H} = \mathbb{R}^n$. \mathbb{H} is equipped with a homogeneous nilpotent Lie group structure; the underlying manifold is \mathbb{R}^n itself. We recall that Lebesgue measure is a bi-invariant Haar measure, the identity is the origin 0 and $x^{-1} = -x$. Multiplication xy, $x, y \in \mathbb{H}$, satisfies the following.

(1) $A_t(xy) = A_txA_ty$, $x, y \in \mathbb{H}$, $t > 0$;
(2) $(ux)(vx) = ux + vx$, $x \in \mathbb{H}$, $u, v \in \mathbb{R}$;
(3) if $z = xy$, $z = (z_1, \ldots, z_n)$, $z_k = P_k(x, y)$, then

$$P_1(x, y) = x_1 + y_1,$$
$$P_k(x, y) = x_k + y_k + R_k(x, y) \text{ for } k \geq 2,$$

where $R_k(x, y)$ is a polynomial depending only on $x_1, \ldots, x_{k-1}, y_1, \ldots, y_{k-1}$.

We have a norm function $r(x)$ satisfying the following.

(1) $r(A_{t}x) = tr(x)$, for all $t > 0$ and $x \in \mathbb{R}^n$;
(2) r is continuous on \mathbb{R}^n and smooth in $\mathbb{R}^n \setminus \{0\}$;
(3) $r(x + y) \leq N_1(r(x) + r(y))$, $r(xy) \leq N_2(r(x) + r(y))$ for some positive constants N_1, N_2;
(4) $r(x^{-1}) = r(x)$;
(5) if $\Sigma = \{x \in \mathbb{R}^n : r(x) = 1\}$, Σ coincides with S^{n-1};
(6) there exist positive constants $c_1, c_2, c_3, c_4, \alpha_1, \alpha_2, \beta_1, \beta_2 > 0$ such that

$$c_1|x|^\alpha \leq r(x) \leq c_2|x|^\alpha \text{ if } r(x) \geq 1,$$
$$c_3|x|^\beta \leq r(x) \leq c_4|x|^\beta \text{ if } r(x) \leq 1.$$

Let $\gamma = a_1 + \cdots + a_n$ (the homogeneous dimension of \mathbb{H}). Then $dx = t^{\gamma-1} dS dt$, that is,

$$\int_{\mathbb{R}^n} f(x) dx = \int_0^\infty \int_{\Sigma} f(A_t\theta)t^{\gamma-1} dS(\theta) dt$$

with $dS = \omega d\sigma$, where ω is a strictly positive C^∞ function on Σ and $d\sigma$ is the Lebesgue surface measure on Σ as above.

The Heisenberg group \mathbb{H}_1 is an example of the homogeneous groups. Let

$$(x, y, u)(x', y', u') = (x + x', y + y', u + u' + (xy' - yx')/2)$$
for \((x, y, u), (x', y', u') \in \mathbb{R}^3\). Then, with this group law, \(\mathbb{R}^3\) is the Heisenberg group \(\mathbb{H}_1\).

A dilation is defined by

\[A_t(x, y, u) = (tx, ty, t^2u) \quad (2\text{-step}). \]

Also, we can adopt

\[A'_t(x, y, u) = (tx, t^2y, t^3u) \quad (3\text{-step}) \]

as an automorphism dilation.

For a function \(f\) on \(\mathbb{H}\), let

\[f_t(x) = \delta_t f(x) = t^{-\gamma} f(A_t^{-1}x). \]

Convolution on \(\mathbb{H}\) is defined as

\[f * g(x) = \int_{\mathbb{H}} f(y)g(y^{-1}x) \, dy. \]

Then \((f * g) * h = f * (g * h), (f * g)^\sim = \tilde{g} * \tilde{f}\) if \(\tilde{f}(x) = f(x^{-1})\).

We consider the Littlewood-Paley function on \(\mathbb{H}\) defined by

\[S_\psi(f)(x) = \left(\int_0^\infty |f * \psi_t(x)|^2 \frac{dt}{t} \right)^{1/2}, \]

where \(\psi\) is in \(L^1(\mathbb{H})\) and satisfies (2.1). Let \(\Omega\) be locally integrable in \(\mathbb{H} \setminus \{0\}\). We assume that \(\Omega\) is homogeneous of degree 0 with respect to the dilation group \(\{A_t\}\), which means that \(\Omega(A_t x) = \Omega(x)\) for \(x \neq 0, t > 0\). Also, we assume that

\[\int_{\Sigma} \Omega(\theta) \, dS(\theta) = 0. \tag{3.1} \]

Let \(\mu_\Omega = S_\Psi\) with

\[\Psi(x) = r(x)^{-\gamma + a} \Omega(x') \chi_{(0,1]}(r(x)), \quad a > 0, \tag{3.2} \]

where \(x' = A_{r(x)^{-1}} x\) for \(x \neq 0\). The spaces \(L^p(\Sigma), L(\log L)^a(\Sigma)\) are defined with respect to the measure \(dS\).

We recall a result of Ding and Wu [11].

Theorem G. We assume in (3.2) that \(a = 1\) and that \(\Omega\) is a function in \(L \log L(\Sigma)\) satisfying (3.1). Then \(\mu_\Omega\) is bounded on \(L^p(\mathbb{H})\) for \(p \in (1, 2]\) and is of weak type \((1, 1)\).

The result on the \(L^p\) boundedness of Theorem G was improved by [10] as follows.

Theorem 1. \(\mu_\Omega\) is bounded on \(L^p(\mathbb{H})\) for all \(p \in (1, \infty)\) if \(\Omega\) is in \(L(\log L)^{1/2}(\Sigma)\) and satisfies (3.1).
To prove Theorem 1 we decompose $\Psi(x) = \sum_{k<0} 2^{ka} \Psi^{(k)}(x)$, where
\[
\Psi^{(k)}(x) = 2^{-ka} r(x)^{a-\gamma} \Omega(x') \chi_{[1,2]}(2^{-k} r(x)).
\]
A change of variables and the property $\delta_s \delta_t = \delta_{st}$ of operators δ_t imply
\[
S_{\Psi^{(k)}} f(x) = S_{r^{-k} \Psi^{(k)}} f(x) = S_{\Psi^{(0)}} f(x).
\]
Thus, by the sublinearity we have
\[
S_\Psi f(x) \leq \sum_{k<0} 2^{ka} S_{\Psi^{(k)}} f(x) = c_a S_{\Psi^{(0)}} f(x).
\]
(See [16] for this observation.) So, we consider a function of the form
\[
(3.3) \quad \Psi(x) = \ell(r(x)) \frac{\Omega(x')}{r(x)^{\gamma}},
\]
where ℓ is in Λ^η_∞ (see [33]) for some $\eta > 0$ and supported in the interval $[1, 2]$.

Now we recall the definition of Λ^η_q (the definition of Λ^η_q, $1 \leq q \leq \infty$, can be found in [33]). Let h be a locally integrable function on $\mathbb{R}_+ = \{t \in \mathbb{R} : t > 0\}$. For $t \in (0, 1]$, define
\[
\omega(h, t) = \sup_{|s|<tR/2} \int_{R}^{2R} |h(r-s) - h(r)| \frac{dr}{r},
\]
where the supremum is taken over all s and R such that $|s| < tR/2$ (see [34]). Define Λ^η, $\eta > 0$, to be the family of the functions h such that
\[
\|h\|_{\Lambda^\eta} = \sup_{t \in (0, 1]} t^{-\eta} \omega(h, t) < \infty.
\]
Let $\Lambda^\eta_\infty = L^\infty(\mathbb{R}_+) \cap \Lambda^\eta$ with $\|h\|_{\Lambda^\eta_\infty} = \|h\|_{\infty} + \|h\|_{\Lambda^\eta}$ for $h \in \Lambda^\eta_\infty$. Then $\Lambda^\eta_\infty \subset \Lambda^\eta_\infty$ if $\eta_2 \leq \eta_1$.

Theorem 1 is a consequence of the following.

Theorem 2. Let Ψ be as in (3.3). Then S_Ψ is bounded on $L^p(\mathbb{H})$ for all $p \in (1, \infty)$ if Ω is in $L(\log L)^{1/2}(\Sigma)$ and satisfies (3.1).

Extrapolation arguments using the following estimates can prove Theorem 2 (see [32]).

Theorem 3. Suppose that Ψ is as in (3.3) with Ω belonging to $L^s(\Sigma)$ for some $s \in (1, 2]$ and satisfying (3.1). Let $1 < p < \infty$. Then
\[
\|S_\Psi f\|_p \leq C_p (s - 1)^{-1/2} \|\Omega\|_s \|f\|_p,
\]
where the constant C_p is independent of s and Ω.
For $F \in L(\log L)^a(\Sigma)$, $a > 0$, recall that

$$\|F\|_{L(\log L)^a} = \inf \left\{ \lambda > 0 : \int_{\Sigma} \frac{|F|}{\lambda} \left[\log \left(2 + \frac{|F|}{\lambda} \right) \right]^a dS \leq 1 \right\}.$$

Then, under the assumptions of Theorem 2, we can in fact prove that

$$\|S \Psi f\|_p \leq C_p \|\Omega\|_{L(\log L)^{1/2}} \|f\|_p$$

for a constant C_p independent of Ω, which is not stated explicitly in Theorem 2. We shall give a proof of (3.4) in Section 6 by applying Theorem 3.

To prove Theorem 3 we apply certain vector valued inequalities, which will be controlled by a maximal function of the form

$$M_\psi(f)(x) = \sup_{t > 0} |f * |\psi|_t(x)|.$$

Lemma 1. Let Ψ be as in (3.3) and $p > 1$. Suppose that Ω is in $L^1(\Sigma)$. Then

$$\|M_\Psi f\|_p \leq C_p \|\Omega\|_{1} \|f\|_p.$$

For $\theta \in \Sigma$, let

$$M_\theta f(x) = \sup_{s > 0} \frac{1}{s} \int_{0}^{s} |f(x(A_{st}\theta)^{-1})| dt$$

be the maximal function on \mathbb{H} along a curve homogeneous with respect to the dilation A_t. To prove Lemma 1, we apply a result of M. Christ [7].

Lemma 2. Let $p > 1$. Then, there exists a constant C_p independent of θ such that

$$\|M_\theta f\|_p \leq C_p \|f\|_p.$$

We can easily prove Lemma 1 by applying Lemma 2.

Proof of Lemma 1. By a change of variables, we have

$$f * |\psi|_t(x) = \int f(xy^{-1})|\psi|_t(y) dy$$

$$= \int_1^2 \int_{\Sigma} f(x(A_{st}\theta)^{-1})|\Omega(\theta)\ell(s)|s^{-1} dS(\theta) ds.$$

It follows that

$$M_\psi f(x) \leq C\|\ell\|_\infty \int_{\Sigma} M_\theta f(x)|\Omega(\theta)| dS(\theta).$$

Thus, Minkowski’s inequality and Lemma 2 imply the conclusion. \square
As indicated in [7], if we consider the Heisenberg group with 2-step dilation, then Lemma 2 can be proved by the boundedness of a maximal function along a curve in \mathbb{R}^2 (see (7.5)), which was studied by [40]. In Section 7, we shall give a straightforward proof of this fact.

Let $\mathcal{H} = L^2((0, \infty), dt/t)$. For each $k \in \mathbb{Z}$ and $\rho \geq 2$ we consider an operator T_k defined by

$$(T_k(f)(x))(t) = T_k(f)(x, t) = f * \Psi_t(x) \chi_{(1, \rho)}(\rho^{-k}t),$$

where Ψ is as in (3.3). The operator T_k maps functions on \mathbb{H} to \mathcal{H}-valued functions on \mathbb{R} and we see that

$$|T_k(f)(x)|_{\mathcal{H}} = \left(\int_{\rho^k}^{\rho^{k+1}} |f * \Psi_t(x)|^2 \frac{dt}{t} \right)^{1/2} = \left(\int_{1}^{\rho} |f * \Psi_{\rho^k t}(x)|^2 \frac{dt}{t} \right)^{1/2}.$$

By Lemma 1, we have the following vector valued inequality, which will be useful in proving Theorem 3.

Lemma 3. Let $1 < s < \infty$. Then

$$\left\| \left(\sum_k |T_k(f_k)|_{\mathcal{H}}^2 \right)^{1/2} \right\|_s \leq C(\log \rho)^{1/2} \| \Omega \|_1 \left\| \left(\sum_k |f_k|^2 \right)^{1/2} \right\|_s.$$

We can apply the converse of Hölder’s inequality and Lemma 1 to prove this (see [13]).

§ 4. Outline of the proof of Theorem 3

Let ϕ be a C^∞ function supported in $\{1/2 < r(x) < 1\}$ such that $\int \phi = 1$, $\phi(x) = \tilde{\phi}(x)$, $\phi(x) \geq 0$ for all $x \in \mathbb{H}$. For $\rho \geq 2$, we define

$$\Delta_k = \delta_{\rho^{k-1}} \phi - \delta_{\rho^k} \phi, \quad k \in \mathbb{Z}.$$

Then, supp$(\Delta_k) \subset \{\rho^{k-1}/2 < r(x) < \rho^k\}$, $\Delta_k = \tilde{\Delta}_k$ and

$$\sum_k \Delta_k = \delta,$$

where δ is the delta function.

We decompose

$$f * \Psi_t(x) = \sum_{j \in \mathbb{Z}} F_j(x, t),$$

where

$$F_j(x, t) = \sum_{k \in \mathbb{Z}} f * \Delta_{j+k} * \Psi_t(x) \chi_{(\rho^k, \rho^{k+1})}(t).$$
Define
\[U_j f(x) = \left(\int_0^\infty |F_j(x,t)|^2 \frac{dt}{t} \right)^{1/2} = \left(\sum_{k \in \mathbb{Z}} \int_1^\rho |f \ast \Delta_{j+k} \ast \Psi_{\rho^k t}|^2 \frac{dt}{t} \right)^{1/2} \]
\[= \left(\sum_k |T_k(f \ast \Delta_{j+k})|^2_{\mathcal{H}} \right)^{1/2}. \]

Lemma 4. Let \(1 < s \leq 2 \) and \(\rho = 2^s \). Then, there exist positive constants \(C, \epsilon \) independent of \(s \) and \(\Omega \in L^s(\Sigma) \) such that
\[\|U_j f\|_2 \leq C(s-1)^{-1/2} 2^{-\epsilon |j|} \|\Omega\|_s \|f\|_2. \]

We choose \(\psi_j \in C_0^\infty(\mathbb{R}) \), \(j \in \mathbb{Z} \), such that
\[
\operatorname{supp}(\psi_j) \subset \{t \in \mathbb{R} : \rho^j \leq t \leq \rho^{j+2}\}, \quad \psi_j \geq 0, \\
\log 2 \sum_{j \in \mathbb{Z}} \psi_j(t) = 1 \quad \text{for } t > 0, \\
|\frac{d}{dt}^m \psi_j(t)| \leq c_m |t|^{-m} \quad \text{for } m = 0, 1, 2, \ldots ,
\]
where \(c_m \) is a constant independent of \(\rho \geq 2 \). Decompose
\[\frac{\Omega(x')}{r(x)^\gamma} = \sum_{j \in \mathbb{Z}} S_j(x), \]
where
\[S_j(x) = \int_0^\infty \psi_j(t) \delta_t K_0(x) \frac{dt}{t} = \frac{\Omega(x')}{r(x)^\gamma} \int_{1/2}^1 \psi_j(tr(x)) \frac{dt}{t} \]
with
\[K_0(x) = \frac{\Omega(x')}{r(x)^\gamma} \chi_{[1,2]}(r(x)). \]

We observe that \(S_j \) is supported in \(\{\rho^j \leq r(x) \leq 2\rho^{j+2}\} \). Let
\[L_{m}^{(t)}(x) = \ell(t^{-1}r(x))S_m(x). \]
Then by the restraint of the support of \(\ell \) we have
\[\Psi_t(x)\chi_{[\rho^k, \rho^{k+1}]}(t) = \sum_{m=k-3}^{k+3} L_{m}^{(t)}(x)\chi_{[\rho^k, \rho^{k+1}]}(t). \]
Consequently,
\[F_j(x, t) = \sum_{k \in \mathbb{Z}} \sum_{m=k-3}^{k+3} f \ast \Delta_{j+k} \ast L_{m}^{(t)}(x)\chi_{[\rho^k, \rho^{k+1}]}(t). \]
Using this expression of F_j and an analogue of the estimates in Lemma 1 of [33] (see also [9] for related results on product homogeneous groups), which can be proved by methods based on Tao [41], we can prove Lemma 4.

Now we are able to prove Theorem 3. First we recall the Littlewood-Paley inequality
\[
\left\| \left(\sum_k |f * \Delta_k|^2 \right)^{1/2} \right\|_r \leq C_r \|f\|_r, \quad 1 < r < \infty,
\]
where C_r is independent of ρ. Let $1 < p < \infty$, $\rho = 2^{s'}, 1 < s \leq 2$. By Lemma 3 and the Littlewood-Paley inequality we have
\begin{align*}
\| U_j(f) \|_r & = \left\| \left(\sum_k |T_k(f * \Delta_{j+k})|^2 \right)^{1/2} \right\|_r \\
& \leq C (\log \rho)^{1/2} \| \Omega \|_1 \left\| \left(\sum_k |f * \Delta_k|^2 \right)^{1/2} \right\|_r \\
& \leq C (\log \rho)^{1/2} \| \Omega \|_1 \| f \|_r
\end{align*}
for all $r \in (1, \infty)$. Also, by Lemma 4
\begin{align*}
\| U_j f \|_2 & \leq C (\log \rho)^{1/2} 2^{-\epsilon |j|} \| \Omega \|_s \| f \|_2.
\end{align*}
Thus, interpolating between (4.1) and (4.2), we have
\[
\| U_j f \|_p \leq C (\log \rho)^{1/2} 2^{-\epsilon |j|} \| \Omega \|_s \| f \|_p
\]
with some $\epsilon > 0$, which implies
\[
\| S_{\Psi} f \|_p \leq \sum_j \| U_j f \|_p \leq C_p (s-1)^{-1/2} \| \Omega \|_s \| f \|_p.
\]
This completes the proof of Theorem 3.

§ 5. A proof of Proposition 1

Let
\[
\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi i \langle x, \xi \rangle} \, dx
\]
be the Fourier transform of f, where
\[
\langle x, \xi \rangle = \sum_{j=1}^n x_j \xi_j, \quad x = (x_1, \ldots, x_n), \quad \xi = (\xi_1, \ldots, \xi_n).
\]
To prove Proposition 1 we apply the following Fourier transform estimates.
Lemma 5. Let $\psi \in L^2(\mathbb{R}^n)$. Suppose that ψ is compactly supported and satisfies (2.1). Then

$$\int_1^2 |\hat{\psi}(t\xi)|^2 dt \leq C \min \left(|\xi|^{\epsilon}, |\xi|^{-\epsilon} \right) \quad \text{for all} \quad \xi \in \mathbb{R}^n$$

with some $\epsilon \in (0, 1)$.

Also, we need the following.

Lemma 6. Suppose that ψ is a function in $L^2(\mathbb{R}^n)$ with compact support. Let $w \in A_1$. If $v = w$ or w^{-1}, then we have

$$\sup_{k \in \mathbb{Z}} \int_{\mathbb{R}^n} \int_1^2 |f \ast \psi_{t2^k}(x)|^2 dt \, v(x) \, dx \leq C \|f\|_{L^2_v}^2.$$

For a proof of Lemma 5 see [28].

Proof of Lemma 6. When $v = w$, Lemma 6 was proved in [28] (the author has learned from [12] that Lemma 6 is also valid for $v = w^{-1}$ and that it is useful for application). Now we recall the proof. We may assume that $\text{supp}(\psi) \subset \{|x| \leq 1\}$. Then, by Schwarz’s inequality we see that

$$|f \ast \psi_t(x)|^2 \leq t^{-n} \|\psi\|_2^2 \int_{|y|<t} |f(x-y)|^2 dy.$$

Since $w \in A_1$, integration with respect to the measure $w(x) \, dx$ gives

$$\int |f \ast \psi_t(x)|^2 w(x) \, dx \leq \|\psi\|_2^2 \int |f(y)|^2 t^{-n} \int_{|x-y|<t} w(x) \, dx \, dy \leq C_w \|\psi\|_2^2 \int |f(y)|^2 w(y) \, dy$$

uniformly in t. Also, by duality we can prove the uniform estimate

$$\int |f \ast \psi_t(x)|^2 w^{-1}(x) \, dx \leq C_w \|\psi\|_2^2 \int |f(y)|^2 w^{-1}(y) \, dy.$$

The conclusion easily follows from the estimates (5.1) and (5.2).

We choose $\Psi \in C^\infty$ that is supported in $\{1/2 \leq |\xi| \leq 2\}$ and satisfies

$$\sum_{j \in \mathbb{Z}} \Psi(2^j \xi) = 1 \quad \text{for} \quad \xi \neq 0.$$

Define

$$\hat{D_j(f)}(\xi) = \Psi(2^j \xi) \hat{f}(\xi) \quad \text{for} \quad j \in \mathbb{Z},$$
and decompose
\[f * \psi_t(x) = \sum_{j \in \mathbb{Z}} F_j(x, t), \]
where
\[F_j(x, t) = \sum_{k \in \mathbb{Z}} D_{j+k}(f * \psi_t)(x) \chi_{[2^k, 2^{k+1})}(t). \]
Let
\[T_j(f)(x) = \left(\int_{0}^\infty |F_j(x, t)|^2 \frac{dt}{t} \right)^{1/2}. \]

We write \(A_j = \{2^{-1-j} \leq |\xi| \leq 2^{1-j}\} \). Then, by the Plancherel theorem and Lemma 5 we see that

\[\Vert T_j(f) \Vert_2^2 = \sum_{k \in \mathbb{Z}} \int_{\mathbb{R}^n} \int_{2^k}^{2^{k+1}} |D_{j+k}(f * \psi_t)(x)|^2 \frac{dt}{t} dx \]
\[\leq \sum_{k \in \mathbb{Z}} C \int_{A_{j+k}} \left(\int_{2^k}^{2^{k+1}} \left| \hat{\psi}(t \xi) \right|^2 \frac{dt}{t} \right) \left| \hat{f}(\xi) \right|^2 d\xi \]
\[\leq \sum_{k \in \mathbb{Z}} C \int_{A_{j+k}} \min(|2^k \xi|^\epsilon, |2^k \xi|^{-\epsilon}) \left| \hat{f}(\xi) \right|^2 d\xi \]
\[\leq C 2^{\epsilon+j} \sum_{k \in \mathbb{Z}} \int_{A_{j+k}} \left| \hat{f}(\xi) \right|^2 d\xi. \]

Since the sets \(A_j \) are finitely overlapping, (5.3) implies that

\[\Vert T_j(f) \Vert_2^2 \leq C 2^{\epsilon+j} \left| \hat{f} \right|_2^2 = C 2^{\epsilon+j} \left| f \right|_2^2. \]

Let \(w \in A_1 \). If \(v = w \) or \(w^{-1} \), by Lemma 6 and the Littlewood-Paley inequality for \(L_v^2 \) (note that \(v \in A_2 \)) we see that

\[\Vert T_j(f) \Vert_{L_v^2}^2 = \sum_{k \in \mathbb{Z}} \int_{\mathbb{R}^n} \int_{2^k}^{2^{k+1}} |D_{j+k}(f) * \psi_t(x)|^2 \frac{dt}{t} v(x) dx \]
\[\leq \sum_{k \in \mathbb{Z}} C \int_{\mathbb{R}^n} |D_{j+k}(f)(x)|^2 v(x) dx \]
\[\leq C \left| f \right|_{L_v^2}^2. \]

Thus, by interpolation with change of measures between (5.4) and (5.5)

\[\Vert T_j(f) \Vert_{L_{v^a}^2} \leq C 2^{-\epsilon(1-a)\left| j \right|/2} \left| f \right|_{L_{v^a}^2}, \]

for \(a \in (0, 1) \). Choosing \(a \) so that \(w^{1/a} \in A_1 \), by (5.6) we have

\[\Vert T_j(f) \Vert_{L_v^2} \leq C 2^{-\epsilon(1-a)\left| j \right|/2} \left| f \right|_{L_v^2}. \]
From this it follows that

\[(5.7) \quad \|S_{\psi}(f)\|_{L^{p}_{v}} \leq \sum_{j \in \mathbb{Z}} \|T_{j}(f)\|_{L^{p}_{v}} \leq C \|f\|_{L^{p}_{v}}.\]

Let \(M\) be the Hardy-Littlewood maximal operator (see Section 2) and \(M_{s}(f) = (M(|f|^{s})(x))^{1/s}\). To prove Proposition 1, by Theorem D we may assume that \(p < 2\). Now we apply the idea of [12]. If \(1 < s < p/(2 - p)\), then \(M_{s}(|f|^{2-p})\) is in \(A_{1}\) (we may assume that \(0 < M_{s}(|f|^{2-p}) < \infty\)) and \(M_{s}\) is bounded on \(L^{p/(2-p)}\). Thus by Hölder’s inequality and (5.7) with \(v = M_{s}(|f|^{2-p})^{-1}\), we have

\[
\int S_{\psi}(f)(x)^{p} dx = \int S_{\psi}(f)(x)^{p} M_{s}(|f|^{2-p})(x)^{p/2} M_{s}(|f|^{2-p})(x)^{-p/2} dx \leq \left(\int S_{\psi}(f)(x)^{2} M_{s}(|f|^{2-p})(x)^{-1} dx \right)^{p/2} \left(\int M_{s}(|f|^{2-p})(x)^{p/(2-p)} dx \right)^{1-p/2} \leq C \left(\int |f(x)|^{2} M_{s}(|f|^{2-p})(x)^{-1} dx \right)^{p/2} \|f\|^{p(1-p/2)} = C \|f\|^{p}.
\]

This completes the proof of Proposition 1.

§ 6. Proof of (3.4)

We can prove Theorem 2 by extrapolation arguments using Theorem 3. More specifically, we can prove the estimate (3.4).

Let \(a > 0\). We define the space \(N_{a}(\Sigma)\) to be the class of the functions \(F \in L^{1}(\Sigma)\) for which we can find a sequence \(\{F_{m}\}_{m=1}^{\infty}\) of functions on \(\Sigma\) and a sequence \(\{b_{m}\}_{m=1}^{\infty}\) of non-negative real numbers such that

1. \(F = \sum_{m=1}^{\infty} b_{m} F_{m},\)
2. \(\sup_{m \geq 1} \|F_{m}\|_{1+1/m} \leq 1,\)
3. \(\int_{\Sigma} F_{m} dS = 0,\)
4. \(\sum_{m=1}^{\infty} m^{a} b_{m} < \infty.\)

For \(F \in N_{a}(\Sigma)\), let

\[\|F\|_{N_{a}} = \inf_{\{b_{m}\}} \sum_{m=1}^{\infty} m^{a} b_{m},\]

where the infimum is taken over all such non-negative sequences \(\{b_m\} \). We note that \(\int_{\Sigma} F \, dS = 0 \) if \(F \in \mathcal{N}_a(\Sigma) \).

By well-known arguments we have the following (see [43, Chap. XII, pp. 119–120] for relevant results).

Proposition 2. Suppose that \(F \in L^1(\Sigma) \) and \(a > 0 \). Then, the following two statements (1), (2) are equivalent:

1. \(F \in L(\log L)^a(\Sigma) \) and \(\int_{\Sigma} F \, dS = 0 \);
2. \(F \in \mathcal{N}_a(\Sigma) \).

Moreover,

3. there exist positive constants \(A, B \) such that
 \[
 \|F\|_{L(\log L)^a} \leq A\|F\|_{\mathcal{N}_a}, \quad \|F\|_{\mathcal{N}_a} \leq B\|F\|_{L(\log L)^a}
 \]
 for \(F \in \mathcal{N}_a(\Sigma) \).

To prove Proposition 2 we use the following two elementary results.

Lemma 7. Let \(1 < p < \infty, a > 0, x \geq 2 \). Then, there exists a positive constant \(C_a \) depending only on \(a \) such that
 \[
 x(\log x)^a \leq C_a(p-1)^{-a}x^p.
 \]
 This was also used in [32].

Lemma 8. Let \(f \) be a continuous, non-negative, convex function on \([0, \infty)\) such that \(f(0) = 0 \). Suppose that a series \(\sum_{k=1}^{\infty} c_k a_k \) converges, where \(c_k \geq 0, \sum_{k=1}^{\infty} c_k \leq 1, a_k \in \mathbb{C} \). Then
 \[
 f\left(\sum_{k=1}^{\infty} c_k a_k\right) \leq \sum_{k=1}^{\infty} c_k f(|a_k|).
 \]

Proof of Proposition 2. We first see that part (1) follows from part (2). Let \(F \in \mathcal{N}_a(\Sigma) \). We have already noted that \(\int_{\Sigma} F \, dS = 0 \). For any \(\epsilon > 0 \) there exist a sequence \(\{b_m\} \) of non-negative real numbers and a sequence \(\{F_m\} \) of functions on \(\Sigma \) with the properties required in the definition of \(\mathcal{N}_a(\Sigma) \) such that
 \[
 \|F\|_{\mathcal{N}_a} \leq \sum_{m=1}^{\infty} m^a b_m < \|F\|_{\mathcal{N}_a} + \epsilon.
 \]

Let \(\lambda = \|F\|_{\mathcal{N}_a} + \epsilon \). By Lemma 8 with \(f(x) = x[\log(2 + x)]^a \) and \(c_k = b_k/\lambda \), we have
 \[
 \int_{\Sigma} \frac{|F|}{\lambda} \left[\log \left(2 + \frac{|F|}{\lambda}\right)\right]^a \, dS \leq \sum_{m=1}^{\infty} \lambda^{-1} b_m \int_{\Sigma} |F_m| \left[\log (2 + |F_m|)\right]^a \, dS.
 \]
It follows from Lemma 7 with \(p = 1 + 1/m \) that
\[
|F_m| \left(\log (2 + |F_m|) \right)^a \leq C_a m^a (2 + |F_m|)^{1+1/m} \\
\leq C_a m^a 2^{1/m} (2^{1+1/m} + |F_m|^{1+1/m}) \\
\leq 2C_a m^a (4 + |F_m|^{1+1/m}).
\]

Thus
\[
\int_{\Sigma} \frac{|F|}{\lambda} \left[\log \left(2 + \frac{|F|}{\lambda} \right) \right]^a dS \leq \sum_{m=1}^{\infty} \lambda^{-1} b_m 2C_a m^a \int_{\Sigma} (4 + |F_m|^{1+1/m}) dS \\
= \sum_{m=1}^{\infty} \lambda^{-1} b_m 2C_a m^a (4S(\Sigma) + \|F_m\|_{1+1/m}^{1+1/m}) \\
\leq \sum_{m=1}^{\infty} \lambda^{-1} b_m 2C_a m^a (4S(\Sigma) + 1) \\
\leq 2C_a (4S(\Sigma) + 1).
\]

This implies that \(F \) belongs to \(L(\log L)^a(\Sigma) \) and
\[
\|F\|_{L(\log L)^a} \leq A\lambda = A(\|F\|_N + \epsilon)
\]
for some \(A > 0 \). Letting \(\epsilon \) tend to 0, we see that the first inequality of part (3) holds.

Next we prove that part (1) implies part (2). We take \(\lambda > 0 \) such that
\[
\int_{\Sigma} \frac{|F|}{\lambda} \left[\log \left(2 + \frac{|F|}{\lambda} \right) \right]^a dS \leq 1.
\]

Let \(F_\lambda = F/\lambda \). We define
\[
U_m = \{ \theta \in \Sigma : 2^{m-1} < |F_\lambda(\theta)| \leq 2^m \} \quad \text{for} \quad m \geq 2, \\
U_1 = \{ \theta \in \Sigma : |F_\lambda(\theta)| \leq 2 \}
\]
and decompose \(F_\lambda = \sum_{m=1}^{\infty} \tilde{F}_{\lambda,m} \), where
\[\tilde{F}_{\lambda,m} = F_\lambda \chi_{U_m} - S(\Sigma)^{-1} \int_{U_m} F_\lambda dS. \]

Note that \(\int \tilde{F}_{\lambda,m} dS = 0 \). If we put \(e_m = S(U_m), \) \(m \geq 1 \), then
\[
(6.1) \quad \|\tilde{F}_{\lambda,m}\|_{1+1/m} \leq 22^m e_m^{m/(m+1)} \quad \text{for} \quad m \geq 1.
\]

Define
\[
F_{\lambda,m} = \begin{cases}
2^{-m-1} e_m^{-m/(m+1)} \tilde{F}_{\lambda,m}, & \text{if} \ e_m \neq 0, \\
0, & \text{if} \ e_m = 0.
\end{cases}
\]
Let \(b_m = 2^{m+1}e_m^{m/(m+1)} \) for \(m \geq 1 \). Then
\[
F_\lambda = \sum_{m=1}^{\infty} b_m F_{\lambda,m}, \quad \int_{\Sigma} F_{\lambda,m} \, dS = 0.
\]

Also, by (6.1) we see that \(\sup_{m \geq 1} \|F_{\lambda,m}\|_{1+1/m} \leq 1 \). Furthermore, applying Young’s inequality, we have

\[
\begin{align*}
\sum_{m=1}^{\infty} m^a b_m &= \sum_{m=1}^{\infty} m^a 2^{m+1} e_m^{m/(m+1)} \\
&\leq 2 \sum_{m=1}^{\infty} \frac{m}{m+1} m^a 2^{(m+1)(1+1/m)} e_m + 2 \sum_{m=1}^{\infty} m^a 2^{-m-1/(m+1)} \\
&\leq C \sum_{m=1}^{\infty} m^a 2^m e_m + C \\
&\leq C \int_{\Sigma} |F_\lambda| (\log(2 + |F_\lambda|))^a \, dS + C \\
&\leq C.
\end{align*}
\]

Collecting results, we see that \(F \in \mathcal{N}_a \) and, since \(F = \sum_{m=1}^{\infty} \lambda b_m F_{\lambda,m} \),
\[
\sum_{m=1}^{\infty} m^a b_m \geq \lambda^{-1} \|F\|_{\mathcal{N}_a},
\]
which combined with (6.2) implies that \(\|F\|_{\mathcal{N}_a} \leq B\lambda \) for some \(B > 0 \). So, taking the infimum over \(\lambda \), we get the second inequality of part (3). \(\square \)

Let \(\Omega \) and \(\Psi \) be as in Theorem 2. By Proposition 2 we can decompose \(\Omega \) as
\[
\Omega = \sum_{m=1}^{\infty} b_m \Omega_m,
\]
where \(\sup_{m \geq 1} \|\Omega_m\|_{1+1/m} \leq 1 \) and each \(\Omega_m \) satisfies (3.1), while \(\{b_m\} \) is a sequence of non-negative real numbers such that \(\sum_{m=1}^{\infty} m^{1/2} b_m < \infty \). Accordingly,
\[
\Psi = \sum_{m=1}^{\infty} \Psi_m, \quad \Psi_m(x) = b_m \ell(r(x)) \frac{\Omega_m(x')}{r(x)^{\gamma}}.
\]

Let \(1 < p < \infty \). By Theorem 3 with \(s = 1 + 1/m \) we have
\[
\|S_{\Psi_m} f\|_p \leq C_p m^{1/2} b_m \|\Omega_m\|_{1+1/m} \|f\|_p \leq C_p m^{1/2} b_m \|f\|_p,
\]
which implies
\[
\|S\Psi f\|_p \leq \sum_{m=1}^{\infty} \|S_{\Psi_m} f\|_p \leq C_p (\sum_{m=1}^{\infty} m^{1/2} b_m) \|f\|_p.
\]
Taking the infimum over \(\{b_m\} \) and applying Proposition 2, we get
\[
\|S_{\Psi}f\|_p \leq C_p\|\Omega\|_{N_{1/2}}\|f\|_p \leq C_p B\|\Omega\|_{L(\log L)^{1/2}}\|f\|_p.
\]
This completes the proof of (3.4).

§ 7. Maximal functions on the Heisenberg group with two-step dilation

We give a proof of Lemma 2 for the maximal function \(M_\theta \) on the Heisenberg group \(\mathbb{H}_1 \) with 2-step dilation by applying the boundedness of the maximal function \(\mathfrak{M}_g \) on \(\mathbb{R}^2 \) (see (7.5)).

Let \(\theta = (\theta_1, \theta_2, \theta_3) \in S^2 \) and \(d_\theta = |\theta_1 \theta_2 \theta_3| \). We may assume that \(d_\theta \neq 0 \). Let
\[
T_\theta x = (\theta_1^{-1}x_1, \theta_2^{-1}x_2, \theta_3^{-1}x_3).
\]
It is convenient to define a group law \(u \circ_{\theta} v \) on \(\mathbb{R}^3 \) so that
\[
T_\theta x \circ_{\theta} T_\theta y = T_\theta (xy).
\]
If \(u = T_\theta x, \ v = T_\theta y \), this requires that
\[
u \circ_{\theta} v = T_\theta x \circ_{\theta} T_\theta y = T_\theta (xy)
\]
\[
= T_\theta (x_1 + y_1, x_2 + y_2, x_3 + y_3 + (x_1y_2 - y_1x_2)/2)
\]
\[
= (\theta_1^{-1}(x_1 + y_1), \theta_2^{-1}(x_2 + y_2), \theta_3^{-1}(x_3 + y_3) + \theta_3^{-1}(x_1y_2 - y_1x_2)/2)
\]
\[
= (u_1 + v_1, u_2 + v_2, u_3 + v_3 + (2\theta_3)^{-1}\theta_1 \theta_2(u_1v_2 - v_1u_2)).
\]

Since \(A_t x = (tx_1, tx_2, t^2x_3) \), if \(a(t) = (t, t, t^2) \),
\[
f(x(A_t \theta)^{-1}) = f(T_\theta^{-1}((T_\theta x) \circ_{\theta} a(t)^{-1})) = f_\theta((T_\theta x) \circ_{\theta} a(t)^{-1}),
\]
where \(f_\theta(x) = f(T_\theta^{-1}x) \) and \(a(t)^{-1} = (-t, -t, -t^2) \). Thus, by a change of variables, we have
\[
(7.1) \quad \int_{\mathbb{H}_1} \left(\sup_{r>0} \frac{1}{r} \int_0^r |f(x(A_t \theta)^{-1})| \, dt \right)^p \, dx
\]
\[
= d_\theta \int_{\mathbb{H}_1} \left(\sup_{r>0} \frac{1}{r} \int_0^r |f_\theta(y \circ_{\theta} a(t)^{-1})| \, dt \right)^p \, dy.
\]
Let \(c_\theta = (2\theta_3)^{-1}\theta_1 \theta_2 \). Then we note that
\[
y = (y_1, y_2, y_3) = (0, y_2 - y_1, 0) \circ_{\theta} (y_1, y_1, y_3 + c_\theta y_1(y_2 - y_1)).
\]
The thus
\[
y \circ_{\theta} a(t)^{-1} = ((0, y_2 - y_1, 0) \circ_{\theta} (y_1, y_1, y_3 + c_\theta y_1(y_2 - y_1))) \circ_{\theta} a(t)^{-1}
\]
\[
= (0, y_2 - y_1, 0) \circ_{\theta} ((y_1, y_1, y_3 + c_\theta y_1(y_2 - y_1)) \circ_{\theta} a(t)^{-1}).
\]
By (7.1) and (7.2), applying a change of variables, we have

\[(7.3)\]
\[
\int_{\mathbb{H}_{1}} \left(\sup_{r>0} \frac{1}{r} \int_{0}^{r} |f(x(A_t \theta)^{-1})| \, dt \right)^p \, dx
\]
\[= d_\theta \int_{\mathbb{H}_{1}} \left(\sup_{r>0} \frac{1}{r} \int_{0}^{r} |f_\theta((0, y_2 - y_1, 0) \circ \theta ((y_1, y_1, y_3 + c_\theta y_1(y_2 - y_1)) \circ \theta a(t)^{-1}))| \, dt \right)^p \, dy
\]
\[= d_\theta \int_{\mathbb{H}_{1}} \left(\sup_{r>0} \frac{1}{r} \int_{0}^{r} |f_\theta((0, y_2, 0) \circ \theta ((y_1, y_1, y_3) \circ \theta a(t)^{-1}))| \, dt \right)^p \, dy.
\]

We observe that

\[
(y_1, y_1, y_3) \circ \theta a(t)^{-1} = (y_1 - t, y_1 - t, y_3 - t^2).
\]

Thus (7.3) implies that

\[(7.4)\]
\[
\int_{\mathbb{H}_{1}} \left(\sup_{r>0} \frac{1}{r} \int_{0}^{r} |f(x(A_t \theta)^{-1})| \, dt \right)^p \, dx
\]
\[= d_\theta \int_{\mathbb{H}_{1}} \left(\sup_{r>0} \frac{1}{r} \int_{0}^{r} |f_\theta((0, y_2, 0) \circ \theta (y_1 - t, y_1 - t, y_3 - t^2))| \, dt \right)^p \, dy
\]
\[= d_\theta \int_{\mathbb{R}} \left(\int_{\mathbb{R}^{2}} (\mathfrak{M} f_{\theta, y_2}(y_1, y_3))^p \, dy_1 \, dy_3 \right) \, dy_2,
\]

where \(f_{\theta, y_2}(y_1, y_3) = f_\theta((0, y_2, 0) \circ \theta (y_1, y_1, y_3)) \) and

\[(7.5)\]
\[
\mathfrak{M} g(y_1, y_3) = \sup_{r>0} \frac{1}{r} \int_{0}^{r} |g(y_1 - t, y_3 - t^2)| \, dt.
\]

It is known that

\[
\|\mathfrak{M} g\|_{L^p(\mathbb{R}^2)} \leq C_p \|f\|_{L^p(\mathbb{R}^2)}, \quad p > 1
\]

(see [40]). Applying this and a change of variables, we see that

\[(7.6)\]
\[
d_\theta \int_{\mathbb{R}} \left(\int_{\mathbb{R}^{2}} (\mathfrak{M} f_{\theta, y_2}(y_1, y_3))^p \, dy_1 \, dy_3 \right) \, dy_2
\]
\[\leq C_p^p d_\theta \int_{\mathbb{R}} \left(\int_{\mathbb{R}^{2}} |f_{\theta, y_2}(y_1, y_3)|^p \, dy_1 \, dy_3 \right) \, dy_2
\]
\[= C_p^p d_\theta \int_{\mathbb{H}_{1}} |f_{\theta}(y_1, y_1 + y_2, y_3 - c_\theta y_1 y_2)|^p \, dy_1 \, dy_2 \, dy_3
\]
\[= C_p^p d_\theta \int_{\mathbb{H}_{1}} |f_{\theta}(y)|^p \, dy
\]
\[= C_p^p \int_{\mathbb{H}_{1}} |f(y)|^p \, dy.
\]
Combining (7.4) and (7.6), we get the conclusion.

§ 8. Littlewood-Paley operators related to Bochner-Riesz means and spherical means

Let

\[S_R^\delta(f)(x) = \int_{|\xi|<R} \hat{f}(\xi)(1 - R^{-2}|\xi|^2)^\delta e^{2\pi i\langle x, \xi \rangle} d\xi = H_{R-1}^\delta * f(x) \]

be the Bochner-Riesz mean of order \(\delta \) on \(\mathbb{R}^n \), \(\delta > -1 \), where

\[H^\delta(x) = \pi^{-\delta} \Gamma(\delta + 1)|x|^{-(n/2+\delta)} J_{n/2+\delta}(2\pi|x|) \]

with \(J_\nu \) denoting the Bessel function of the first kind of order \(\nu \).

For \(\beta > 0 \), let

\[M_t^\beta(f)(x) = c_\beta t^{-n} \int_{|y|<t} (1 - t^{-2}|y|^2)^{\beta-1} f(x-y) dy, \]

where

\[c_\beta = \frac{\Gamma(\beta + \frac{n}{2})}{\pi^{\frac{n}{2}} \Gamma(\beta)}. \]

By taking the Fourier transform, we can embed these operators in an analytic family of operators in \(\beta \) so that

\[M_t^0(f)(x) = c \int_{S^{n-1}} f(x-ty) d\sigma(y). \]

Now we define a Littlewood-Paley operator \(\sigma_\delta, \delta > 0 \), from the Bochner-Riesz means as

\[\sigma_\delta(f)(x) = \left(\int_0^\infty |(\partial/\partial R)S_R^\delta(f)(x)|^2 R dR \right)^{1/2} \]

\[= \left(\int_0^\infty |(-2\delta (S_R^\delta(f)(x) - S_R^{\delta-1}(f)(x))|^2 \frac{dR}{R} \right)^{1/2}, \]

and also another Littlewood-Paley operator \(\nu_\beta, \beta + n/2 - 1 > 0 \), from the spherical means as

\[\nu_\beta(f)(x) = \left(\int_0^\infty |(\partial/\partial t) M_t^\beta(f)(x)|^2 t dt \right)^{1/2} \]

\[= \left(\int_0^\infty |(-2(\beta + n/2 - 1) (M_t^\beta(f)(x) - M_t^{\beta-1}(f)(x))|^2 \frac{dt}{t} \right)^{1/2}. \]

These Littlewood-Paley functions are related as follows.
Theorem H. Suppose that $\delta = \beta + n/2 - 1 > 0$. Then, there exist positive constants A, B such that for all $x \in \mathbb{R}^n$ and $f \in \mathcal{S}(\mathbb{R}^n)$ (the Schwartz space) we have
\[
\sigma_\delta(f)(x) \leq A \nu_\beta(f)(x), \quad \nu_\beta(f)(x) \leq B \sigma_\delta(f)(x).
\]
This was proved by Kaneko and Sunouchi [21].

Also, we recall a result of Carbery, Rubio de Francia and Vega [5].

Theorem I. If $\delta > 1/2$ and $-1 < \alpha \leq 0$, then
\[
\int_{\mathbb{R}^n} |\sigma_\delta(f)(x)|^2 |x|^{\alpha} \, dx \leq C_{\delta, \alpha} \int_{\mathbb{R}^n} |f(x)|^2 |x|^{\alpha} \, dx.
\]
See Rubio de Francia [27] for a different proof. Theorems H and I imply the following.

Proposition 3. Suppose that $\beta > 3/2 - n/2$ and $-1 < \alpha \leq 0$. Then
\[
\int_{\mathbb{R}^n} |\nu_\beta(f)(x)|^2 |x|^{\alpha} \, dx \leq C_{\beta, \alpha} \int_{\mathbb{R}^n} |f(x)|^2 |x|^{\alpha} \, dx.
\]

Let
\[
M_\alpha^\beta(f)(x) = \sup_{t>0} |M_t^\alpha(f)(x)|.
\]
The following weighted L^2 estimate can be deduced from Proposition 3.

Proposition 4. Suppose that $\text{Re}(\beta) > 3/2 - n/2$ and $-1 < \alpha \leq 0$. Then
\[
\int_{\mathbb{R}^n} \left|M_\alpha^{\beta-1/2}(f)(x)\right|^2 |x|^{\alpha} \, dx \leq C_{\beta, \alpha} \int_{\mathbb{R}^n} |f(x)|^2 |x|^{\alpha} \, dx.
\]
This is due to [38] when $\alpha = 0$.

To prove Proposition 4 we use the following relation.

Lemma 9. If $\text{Re}(\alpha) > \text{Re}(\alpha') > -n/2$,
\[
M_t^\alpha(f)(x) = \frac{2\Gamma(\alpha + n/2)}{\Gamma(\alpha - \alpha') \Gamma(\alpha' + n/2)} \int_0^1 M_t^{\alpha'}(f)(x)(1 - s^2)^{\alpha - \alpha'-1} s^{\alpha' + 2\alpha' - 1} \, ds.
\]
See [38] and [40, p. 1270].

Proof of Proposition 4. Let k be the smallest non-negative integer such that $1 < \text{Re}(\beta) + k$. Let $3/2 - n/2 < \eta < \text{Re}(\beta)$. Then, by Lemma 9 and the Schwarz inequality we have
\[
M_\alpha^{\beta-1/2}(f)(x) \leq CM^{\eta - 1}(f)(x),
\]
where

\[M^{\eta-1}(f)(x) = \sup_{t>0} \left(\frac{1}{t} \int_{0}^{t} |M^{\eta-1}_s(f)(x)|^2 \, ds \right)^{1/2}. \]

Also, we easily see that

\[M^{\eta-1}(f)(x) \leq C\nu_{\eta}(f)(x) + C\nu_{\eta+1}(f)(x) + \cdots + C\nu_{\eta+k}(f)(x) + CM^{\eta+k}(f)(x). \]

Note that \(M^{\eta+k}(f) \) is bounded by the Hardy-Littlewood maximal function if \(\eta \) is sufficiently close to \(\text{Re}(\beta) \). Thus, applying Proposition 3, we get the weighted inequality as claimed.

Define the spherical maximal operator \(\mathcal{M} \) by

\[\mathcal{M}(f)(x) = \sup_{t>0} \left| \int_{S^{n-1}} f(x-ty) \, d\sigma(y) \right|. \]

We note that \(\mathcal{M}(f)(x) = cM^{0}_*(f)(x) \). The following weighted norm inequality for \(\mathcal{M} \) is due to Duoandikoetxea and Vega [15].

Theorem J. Suppose that \(n \geq 2 \) and \(n/(n-1) < p \). Then the inequality

\[\int_{\mathbb{R}^n} |\mathcal{M}(f)(x)|^p |x|^\alpha \, dx \leq C \int_{\mathbb{R}^n} |f(x)|^p |x|^\alpha \, dx \]

holds for \(1-n < \alpha < p(n-1)-n \).

This was partly proved by Rubio de Francia [26].

When \(\alpha = 0 \), Theorem J was proved by Stein [38] for \(n \geq 3 \) and by Bourgain [3] for \(n = 2 \). We can find in Sogge [35] a proof of the result of Bourgain which has some features in common with a proof, also given in [35], of Carbery’s result [4] for the maximal Bochner-Riesz operator on \(\mathbb{R}^2 \).

We can give a different proof of Theorem J when \(n \geq 3, \ 1-n < \alpha \leq 0 \) and \(p > n/(n-1) \) by applying Proposition 4. To see this, first we note that

(8.1) \[\int_{\mathbb{R}^n} |M^{\beta}_*(f)(x)|^p |x|^\alpha \, dx \leq C \int_{\mathbb{R}^n} |f(x)|^p |x|^\alpha \, dx \]

when \(1 < p < \infty, \ -n < \alpha < n(p-1) \) and \(\text{Re}(\beta) \geq 1 \), since \(M^{\beta}_*(f) \) is pointwise bounded by the Hardy-Littlewood maximal function. On the other hand, by Proposition 4 we have

(8.2) \[\int_{\mathbb{R}^n} |M^{\beta}_*(f)(x)|^2 |x|^\alpha \, dx \leq C \int_{\mathbb{R}^n} |f(x)|^2 |x|^\alpha \, dx, \]
if $\text{Re}(\beta) > (2-n)/2$ and $-1 < \alpha \leq 0$. By an interpolation argument involving (8.1) and (8.2), we see that for any $p > n/(n-1)$ and $\alpha \in (1-n, 0)$, there exist $r \in (n/(n-1), p)$ and $\tau \in (1-n, \alpha)$ such that

$$
\int_{\mathbb{R}^n} |\mathcal{M}(f)(x)|^r |x|^\tau \, dx \leq C \int_{\mathbb{R}^n} |f(x)|^r |x|^\tau \, dx.
$$

Interpolating between this estimate and the unweighted L^r estimate for \mathcal{M}, since $\tau < \alpha < 0$, we have

$$
\int_{\mathbb{R}^n} |\mathcal{M}(f)(x)|^r |x|^\alpha \, dx \leq C \int_{\mathbb{R}^n} |f(x)|^r |x|^\alpha \, dx.
$$

Since $r < p < \infty$, interpolating between this and the obvious $L^\infty(|x|^\alpha)$ estimate for \mathcal{M}, we get the $L^p(|x|^\alpha)$ boundedness of \mathcal{M} as claimed. (A similar argument can be found in [29]; see also [30].)

Finally, we prove Theorem J when $n \geq 2$, $0 \leq \alpha < p(n-1)-n$ and $p > n/(n-1)$ by the methods of [15]. We write $w_\alpha(x) = |x|^\alpha$. It is known that the pointwise inequality $\mathcal{M}(w_\alpha) \leq Cw_\alpha$ holds if and only if $\alpha \in (1-n, 0]$ (see [15]). Let

$$
T_\alpha(g) = w_\alpha^{-1} \mathcal{M}(w_\alpha g)
$$

for $\alpha \in (1-n, 0]$. Then, T_α is bounded on L^∞, as we see that

(8.3) \[\|T_\alpha(g)\|_\infty \leq \|g\|_\infty \|w_\alpha^{-1} \mathcal{M}(w_\alpha)\|_\infty \leq C\|g\|_\infty. \]

Let $r \in (n/(n-1), p)$. Since \mathcal{M} is bounded on L^r, we have

(8.4) \[\int_{\mathbb{R}^n} |T_\alpha(g)(x)|^r w_\alpha^r(x) \, dx = \int_{\mathbb{R}^n} |\mathcal{M}(w_\alpha g)(x)|^r \, dx \leq C \int_{\mathbb{R}^n} |g(x)|^r w_\alpha^r(x) \, dx. \]

Interpolation between (8.3) and (8.4) will imply that

$$
\int_{\mathbb{R}^n} |T_\alpha(g)(x)|^p w_\alpha^r(x) \, dx \leq C \int_{\mathbb{R}^n} |g(x)|^p w_\alpha^r(x) \, dx.
$$

This can be expressed as

$$
\int_{\mathbb{R}^n} |\mathcal{M}(f)(x)|^p w_\alpha^{r-p}(x) \, dx \leq C \int_{\mathbb{R}^n} |f(x)|^p w_\alpha^{r-p}(x) \, dx
$$

for any $\alpha \in (1-n, 0]$ and $r \in (n/(n-1), p)$, which implies the result as claimed.

References

LITTLEwood-Paley operators

