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L?-stability of solitary waves for the KdV equation
via Pego and Weinstein’s method

By

Tetsu MizumMAcHI* and Nikolay TZVETKOV**

Abstract

In this article, we will prove L?(R)-stability of 1-solitons for the KdV equation by using
exponential stability property of the semigroup generated by the linearized operator. The
proof follows the lines of recent stability argument of Mizumachi ([25]) and Mizumachi, Pego
and Quintero ([29]) which show stability in the energy class by using strong linear stability of
solitary waves in exponentially weighted spaces.

This gives an alternative proof of Merle and Vega ([23]) which shows L?(R)-stability of 1-
solitons for the KdV equation by using the Miura transformation. Our argument is a refinement
of Pego and Weinstein ([34]) that proves asymptotic stability of solitary waves in exponentially
weighted spaces. We slightly improve the H!'-stability of the modified KAV equation as well.

§1. Introduction

In this article, we discuss stability of solitary waves for the generalized KdV equa-
tions

(1.1) Opu + 02u +30,(uP) =0 for (t,2) € R, x R.

The case p = 2 corresponds to the KAV equation and describes a motion of shallow water
waves. The case p = 3 corresponds to the modified KdV equation. The generalized KdV
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equations have a family of solitary wave solutions {¢.(x —ct+7) | ¢ > 0, v € R}, where

1 1/(p—1) 1
(1.2) Pe(T) = ac SeChQ/(p_l)(ch')v Qe = ((p—i_—fi)c) ;o Be= : 9 \/E,

and ¢, is a solution of
(1.3) or —cpe+ 302 =0 for x € R.

Solitary waves play an important role among the solutions of (1.1). Indeed, solutions
of the KdV equation resolve into a train of solitary waves and an oscillating tail if the
initial data are rapidly decreasing functions (see [37]).

Stability of solitary waves has been studied for many years since Benjamin ([2])
and Bona ([3]). Let us briefly introduce their result by Weinstein’s argument ([5, 38]).
Eq. (1.1) has conserved quantities

/ u?(x)dr  (the momentum),
R

E(u) = /R (%(8xu)2(a;) — ]%upﬂ(x)) dx (the Hamiltonian).

Let M. := {u € H'(R) | ||ulz> = ||@cllz2}. The set M, is invariant under the flow
generated by (1.1) and the fact that ¢, minimizes E|pq, for p = 2, 3 and 4 implies
orbital stability of ., that is, for any & > 0, there exists a § > 0 such that if u(0,z) =
ve(x) + vo(x) and ||vg||gr < J, then

sup inf |lu(t, - +7v) — pcllm <e.
teR 7ER

In order to study blow up problems of (1.1) with p = 5, Martel and Merle ([18])
established a Liouville theorem for solutions around solitary wave solutions of (1.1).
Using the Liouville theorem, they prove that solitary wave solutions are asymptotic
stabile in H} (R) if p = 2, 3 and 4. Later, they gave a more direct proof by using a
time global virial estimate around solitary wave solutions ([20]). We refer [21] for recent
developments such as inelastic collision of solitary waves for (1.1) with p = 4.

The L?(R)-stability of solitary wave solutions was first studied by Merle and Vega
([23]) for the KdV equation by using the Miura transformation and the fact that kink
solutions of the defocusing mKdV equation is stable to perturbations in H!(R). Indeed,
a combination of the Miura transformation and the Galilean transformation

ut,z) = M*(v)(t,x — 3ct) + g, M (v) = 0pv — 02,

is isomorphic between an L2-neighborhood of a 1-soliton ¢.(z — ct) and an H*(R) x R-
neighborhood of (¢.(z 4+ ct), ¢), where 1. = \/c/2tanh(y/c/2z) and 1 (x + ct) is a kink
solution of the defocusing mKdV 9;v + 03v — 20, (v?) = 0.
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Their result has been extended to prove L?(R, x T,)-stability of line solitons for
the KP-II equation ([31]), L?(IR)-stability of 1-solitons for the 1d-cubic NLS ([30]) and
L?(R)-stability of N-solitons for KAV ([1]) and the structural stability of 1-solitons for
KdV in H7}(R) ([6]). These results rely on the Bicklund transformations which are
peculiar to the integrable systems. In this article, we will show L?(R)-stability of KdV
1-solitons without using the integrability of the KdV equation.

It is common for the long wave models that the main solitary wave moves faster
than the other parts of the solution, which leads to strong linear stability of solitary
waves in exponentially weighted spaces (see e.g. [24, 32, 34, 35]). This property was
first used by Pego and Weinstein ([34]) to prove asymptotic stability of solitary waves
of the generalized KdV equations to exponentially localized perturbations. Their argu-
ment turns out to be useful especially when solitary waves cannot be characterized as
(constrained) minimizers of conserved quantities. Applying the idea of [34], Friesecke
and Pego ([9, 10, 11, 12]) proved that solitary waves to the FPU lattices are stable for
exponentially localized perturbations (see also [28]). Mizumachi ([25, 26]) extended [10]
and prove stability of N-soliton like solutions in the energy class by suitability decom-
posing the remainder part of the solution into a sum of small waves which moves much
slower than the main waves and exponentially localized parts. The argument has been
applied to the Benney-Luke equation which is one of bidirectional models of the water
waves whose solitary waves in the weak surface tension regime are infinitely indefinite
saddle point of the energy-momentum functional ([29]). Recently, Mizumachi (]27])
has proved transversal stability of line solitons for the KP-II equation in exponentially
weighted space. We expect the argument used in [25, 29] is useful to prove stability of
line solitons for the KP-II equation in unweighted spaces. In this article, we will apply
the argument used in [25, 29] to the KdV equation and give an alternative proof of the
following result by Merle and Vega ([23]).

Theorem 1.1 ([23]). Let p = 2 and ¢o > o > 0. Then there exist positive
constants C and 0 satisfying the following. Suppose that u(t,x) is a solution of (1.1)
satisfying u(0,z) = e, () + vo(xz) and ||vollrz < 6. Then there exist c.. > 0 and a
C-function x(t) such that

(1.4) up ut, ) = ea - = ()l 2 < Cluoll 15,

(1:5) e = Jim (1),

(1.6) lcx — co| +sup |E(t) — co| < Cllvolr2,
t>0

(17) tliglo ||u(t7 ) - 90C+(' - x(t))”Lz(mzat) =0.

Remark.  The L*(R) well-posedness of the KAV equation was proved by Bourgain
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([4])-

Remark.  We expect that stability argument of N-solitary wave solutions to the
FPU lattices ([26]) is applicable to N-solitary wave solutions of the long wave models
as well.

For the mKdV equation, we slightly improve orbital stability of 1-solitons in H*(RR).
Note that the mKdV equation is well-posed in H*(R) with s > 1/4. See [16, 17].

Theorem 1.2. Let p =3 and cg > o > 0. Then there exist positive constants
C and § satisfying the following. Suppose that u(t,z) is a solution of (1.1) satisfying
w(0,2) = @eo(x) + vo(x) and ||v0||?}4/24||v0||}-j{f1 < §. Then there exist c;. > 0 and a

C!-function x(t) such that

(1.8) up [[u(t, ) = e - = (1))l 2 < Clluoll 15,
(1.9) cy = tlgglo x(t),
(1.10) ey —col + Sup |(t) — co| < Cllvollre,

Finally, let us introduce several notations. Let L2 (1 < p < oo) and H* (k € N) be
exponentially weighted spaces, writing

12 ={g|ege LPR)}. HE={g|dgel?ior0<j<k},
with norms

1/2

lgllez = le“glrrey . Ngllas = | D 1029172
0<j<k

We define (-,-) and (-, )¢, as

(ug,usg) :/Rul(x)m(a:) dz , (vl,vg)t’x:/R/va(t,x)vg(t,x) dxdt .

For any Banach spaces X, Y, we denote by B(X,Y’) the space of bounded linear oper-
ators from X to Y. We abbreviate B(X, X) as B(X). We use a < b and a = O(b) to
mean that there exists a positive constant such that a < Cb. Various constants will be
simply denoted by C' and C; (i € N) in the course of the calculations.
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§ 2. Linear stability of 1-solitons

In this section, we recall strong linear stability of 1-soliton solutions in the expo-
nentially weighted space L2 for the sake of self-containedness. Let

u(t,x) = soc(y)—i_v(t)y)) y:J?—Ct
and linearize nonlinear terms of (1.1) around v = 0. Then we have
(2.1) ov+ Lv=0,

where L. = 0,(02 — ¢+ f'(¢c)) with f(u) = 3uP. The linearized operator L. has
a generalized kernel associated with the infinitesimal changes in the location and the
speed of the solitary waves. Let £!(y) = 0y¢c(y), £2(y) = Oepe(y) and

(2.2) <ﬂw=—mwx[’a%wu@u+%wwaw,<ﬂw=wu@%w»

2 : .
where 01 (c) = 1/ [5 0c(y)depe(y) dy and 62(c) = 01(c)? ([g Ocpe(y) dy)~ /2. Differenti-
ating (1.3) tW1ce with respect to y and ¢, we have

(2.3) Lfe =0, L&2=¢.
In view of (2.3) and the fact that (formally) 0,L} = —L.0,,
(2.4) Lot =2, L2 =o.
For 7, j=1, 2,

[ &=,

Since d||¢c||2./dc # 0 for p # 5, the algebraic multiplicity of the eigenvalue 0 is
two if p# 5. Let P.: L2 — L2 (0 < a < 1/c) be the spectral projection associated with
the generalized kernel of £. and let Q. = I — P,. Then

PC"U = <1), <c1>£c1 + <Ua Cc2>£§7
Range(L.P.) C Range(P,), Range(L.Q.) C Range(Q.).

Next we recall the spectrum of the linearized operator £.. The spectrum of L. in
L?(R) consists of iR (see [33]). However if 0 < a < +/c, the essential spectrum of £, in
L2 locates in the stable half plane. Indeed, the spectrum of L. in L? is equivalent to
the spectrum of e L.e~% in L?(R) and by Weyl’s essential spectrum theorem,

Oess(Le) = {ip(€ +ia) [E € R}, p(§) = —(€7 +c€).
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Since
(2.5) p(€ +ia) = —{€ 4 (c — 3a*)¢} — i{a(c — a®) + 3a€?},

we have 0os5(L:) C {N € C| R\ > a(c—a?) > 0} if a € (0,/<).

The complement of o.s5(L.) consists of two connected components. We denote
by €(a) one of these components which contains the unstable half plane. Pego and
Weinstein [34, Proposition 2.6, Theorem 3.1] prove spectral stability of £. in the expo-
nentially weighted space L?2.

Proposition 2.1 (Spectral stability of 1-solitons ([34])).  Let p = 2 or 3. Sup-
pose ¢ > 0 and a € (0,/c). Then the operator L. in L2 has no eigenvalue in Q(a) other
than 0 whose algebraic multiplicity is two and oess(L.) C {\ € C | RA > a(c—a?) > 0}.

Let R(\) = (ix+ L.)"! and ¥p := {\ € C | S\ < b}. The spectral stability of L.
implies that

(2.6) sup [|[R(A)Qcll g2y < oo  for b satisfying 0 < b < a(c— a?).
AED, @

Let Lo = 5 — cdy, Ro(A) = (ix+ Lo)" " and V = 9, (f'(¢.)-). By Plancherel’s theorem
and (2.5),

14 €+ ial?
Ro(\ <sup -
(2.7) RN g =800 e ay)

S+ A)"ERB for Ae Dy and 0 < k < 2.

In view of (2.7) and the fact that f/(¢.) is exponentially localized, we see that V Ry(\) is
compact on L2 and that I+V Rg()) has a bounded inverse unless \ is an eigenvalue of L..
Hence it follows from Proposition 2.1 that [|(I +V Ro(A)) "' Q¢ p(r2) is bounded on any
compact subset of 3. Moreover, Eq. (2.7) with k = 1 implies that |[VRo(A)|pz2) < 3
for large \. Thus we have

(2.8) sup [BO)Qell gy S 5up [RoMWpzsnz) < o0
)\EE{, @ @ )\EEb

since R(A\) = Ro(A\)(I + VRo(\)) L.
Once (2.6) is established, the Gearhart-Priiss theorem ([13, 36]) on Cy-semigroups
on Hilbert spaces implies exponential linear stability of e **<Q,.

Proposition 2.2 (Linear stability of 1-solitons ([34])). Letp =2 or 3, ¢ > 0
and a € (0,~/c). Then there exist positive constants K and b such that for every f € L?
andt >0,

(2.9) le Qe fllre < Ke || f||zz -
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Exponential stability of e~*“< Q. reflects that the largest solitary wave moves faster
to the right than any other waves.

Kato [15] tells us that ¢~1% has a strong smoothing effect on L2. We will use the
property to deal with nonlinear terms.

Corollary 2.3. Letp=2o0r3,c>0 and0 < a < +/c. Then there exist positive
constants K' and b’ such that

(2.10) [le™cQed fllrz < K'e V=V fllpn forj=0,1, f€ Ll and t >0,
(2.11) (e Qedy fllrz < K'e "t 2| f|l12  for f € L2 and t > 0.

Proof. By the definition of the Fourier transform and Plancherel’s theorem,

(2.12) 1z = IF(+ia)|ze for fe L3,

By (2.12) and (2.5), we have for j € Z>o,
‘ o 2\ /2
||8?]J€—tﬁof||Lg = (/ ’(f + ia)Je—ltP(ﬁ-l-m)f(é“ + ZCL)’ df)
R
, . - 9 1/2
<ealemal)t (/ ‘(5 +ia) e 39 f(¢ + ia)‘ dﬁ) :

R
Since [[¢Fe 3018 || 2 < t=@EHD/4 for > 0 and || f(- + ia)|| g < 11 Las
(213)  [[@le o fllps S e d a1 @V £y for § € Zso.
Similarly, we have

(2.14) l0e 50 fll e S e A4t I2)||fllp for j € Zao.

Now we will show (2.10) with j = 0. Let v(t) be a mild solution of (2.1) with
v(0) = Q.f and f € L, that is,

t
(2.15) v(t) = e Q. f — / e =90y (f'(we)u(s)) ds =: To(t).
0
Since Q. € B(L}) and f’(¢.) is bounded, it follows from (2.13) and (2.14) that
t
[Tl S e e gy + [ oo )2 (o) 1z ds.
0

By the contraction mapping theorem, there exists a unique solution of (2.15) satisfying

(2.16) sup t1/4||v(t)||L3 < oo forat; >0.
0<t<ty
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For t > t1, Proposition 2.2 and (2.16) imply

(2.17) le™ Qe fllzz < lle” ™ Qcllpayllv(t)rz S e ™ flzy -

Combining (2.16) and (2.17), we obtain (2.10) with j = 0. We can prove (2.10) with
j =1 and (2.11) in exactly the same way. Thus we complete the proof. O

Remark.  Suppose g(t) € C([0,T]; LL) and that v(t) is a solution of
(2.18) 0w+ Lov=0Q:0,f, v(0)=0,

in the class C([0,T7]; L2). Then v(t) can be represented as

(2.19) v(t) = /t e~ =)L g(s)ds for t € [0,T).
0

Indeed, Corollary 2.3 ensures that the right hand side of (2.19) is a solution of (2.18) in
the class C([0,T]; L?). Note that a solution to (2.18) is unique in the class C([0,T]; L?).
Applying Corollary 2.3 to (2.19) we have

t
(2.20) [o(®)llzz < K’/ (t =) ") lg(s)| 2y ds.
0
In Section 7, we will use (2.20) to estimate quadratic nonlinearities.
To deal with cubic terms of mKdV, we will use the following local smoothing effect

of .
Ag(t) = / e 7L Qeg(s) ds
0

in the exponentially weighted space.

Proposition 2.4. Letp=2 or3, ¢ >0 and 0 < a < \/c. Then there exists a
positive constant K1 such that for every g € L*(R.; L?),

(2:21) IAgllr2(rim2) < Kallgllzeey;r2) -

Because of parabolic nature of e~t% on exponential weighted spaces, Proposi-
tion 2.4 follows from the argument of [8]. However, we here follow the lines of the

proof of [7, Proposition 2.7].

Proof of Proposition 2.4. Fix T > 0 and define gr(t) to be equal to g(t) for
t € [0,7] and 0 elsewhere. Define

t
uT(t):/ e_(t_s)‘CCQCgT(S) ds.
0
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Then up(t) = Ag(t) for t € [0,T], u(t) = 0 for ¢t <0 and up(t) is a constant for ¢ > T
We have for t € R,

(8t + EC)UT(t) = chT(t) .

Thanks to the properties of gr and up, we can take the Fourier transform in time (in
the lower complex half plane) to get the relation

(i1 + Le)ur(T) = Qegr(r), Im(7) <O0.

Take 7 =\ —ig, € > 0 and A € R. Using the resolvent estimate (2.8), letting € to zero
and integrating over A\, we get

[ar (Mlz2@mz) S 190N 2 @iL2) -

Since the Fourier transform of a function from R to a Hilbert space H is an isometry
on L?(R; H), we obtain

lur|le a2y S l9rllrew;ce) -
This is turn implies

|Agllz2(0,11:2) S N9l L2 (rsz2) -

Observe that the implicit constant in the last inequality is independent of T'. Letting T’
tends to infinity, we complete the proof of Proposition 2.4. O

§3. Decomposition of solutions around 1-solitons

In this section, we will decompose a solution around 1-solitons into a sum of a
modulating solitary wave and the remainder part. Let

(3.1) u(t, ) = ey (y) +o(t,y), y=z—2(t).

Here ¢(t) and z(t) denote the modulating speed and the modulating phase shift of the
main solitary wave at time t and v(¢,y) denotes the remainder part of the solution.
Substituting (3.1) into (1.1), we obtain

(3.2) O + Leogyv — (&(t) — c(t))0yv + £(t) + O N =0,
where

N = f(pewy +v) = fleewy) — f(@ey)v
U(t) = (1) 0cpe(r)(y) — (@(t) — c(t))Oyper) () -

Suppose that u(t, z) satisfies the initial condition

u(0,2) = peo () + vo(2) -
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To apply the semigroup estimate directly to v as [34], the perturbation v(¢) should belong
to an exponentially weighted space. In order to extend Pego-Weinstein’s approach for
vo € L?(R) or vg € H*(R), we further decompose v(t,y) into a sum of a small L2-
solution of the KdV equation and an exponentially localized part. More precisely, let
01 be a solution of (1.1) satisfying ©1(0,-) = vy and let

vl(tay) = ’51(757'73) ’ U(tay) =Uu (tay) + UQ(tay) .

Then
33) { 01 — 2(t)0yv1 + Oovy + Oy f(v1) =0,
' v1(0,y) = vo(y + 2(0)),
and
{ Opva + Loryva — (E(t) — c(t)) Byva + £(t) + 0, N(t) = 0,
(3.4)
(%) (O, 33) =0 5

where N (t) = Ny(t) + Na(t),

Ni(t) = f(%(t) +w1) — f(@c(t)) — f(v1),
Na(t) = f(90c(t) +v) — f(@c(t) +v1) — f/(SDc(t))% .

The solutions of (3.3) will be evaluated by using a virial estimate first used in the
fundamental article by Kato ([15]). The solutions of (3.4) will be estimated by using
the linear estimates due to Pego-Weinstein in Section 2.

To begin with, we will show that v9(¢) remains in exponentially weighted spaces as
long as the decomposition (3.1) exists and ¢(t) — ¢p remains small.

Lemma 3.1. Letp=2 and vy € L*(R) or p =3 and vo € H'(R). Suppose that
u(t) is a solution to (1.1) satisfying w(0) = ¢, + vo and that and 01(t) is a solution to
(1.1) satisfying ©1(0) = vo. Then for u(t) — v1(t) € C([0,00); L2) for any a € [0, \/cp).

Proof.  Suppose p =2 and u(t,z) = u(t,x) — 01(¢,z). Then

(55) {8ta+8§a+33w{(u+171)ﬂ}:0 for t > 0 and z € R,

u(0,2) = @¢,(x) for z € R.

Thanks to the well-posedness of the KAV equation in L?(R) , we have u(t) = u(t) —
91(t) € C(R; LA(R)).

Next we will show that u(t) € L*(0,T;L2) for any a € (0,,/¢co) and T > 0.
Suppose in addition that vy € H?>(R) N L2 so that u € C(R; H?>(R)) and ;1 (¢), u(t) €
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C([0,00); L?). At least formally, we have

4
dt Ju

= / e**{(2a)*u* + Sau’}(t,z) dx + 1,

2@ (t, x) dx + 6a/ 2% (9,1)2(t, x) da
R

where I = 12 [, €2**(2au® + @0, u)01 dx. Since ||[01(t)||z2 = [Jvol|r2 and
la(®)llz> < llu@®)lz2 + 00Dz < ll@eyllz> + 2l|vol[z2  for every ¢ € R,

there exists a C' > 0 depending only on ¢y and ||vgl|z2 such that

d, _
—la®)llz: < Clla)|zs

Here we use a weighted Sobolev inequality ||w|[fs < ||w||2/22+1/q||w||}1{12_1/q for2<g¢<
oo (see (9.2) in Section 9). Thus we have

(3.6) la®)lIzs < e la(0)ll7s = ¢“llcllzz fort>0.

More precisely, let X,(x) = €2?"(1 + tanha(x — n))/2. We have ¥,(z) 1T €**® and
o () 1 2ae?*® as n — oo and 0 < Y, (x) < axn(z) and |X/(x)| < 4a®¥),(x) for any
x € R. Using the above properties of x,, and Lemma 9.1, we can easily justify (3.6) for
vo € H3(R) N L2.

For any vy € L?(R), there exists a sequence vg,, € H?(R)NL2 such that v, — vg in
L?(R) as n — oo. Let uy,(t) and @, () be a solution to (1.1) satisfying u, (0) = e, +von
and 0,,(0) = vo,. Then for any t € R, we have lim,, o0 [|un(t) — 05(t) — u(t)| L2r) = 0
and there exists a subsequence of {u, (t) — ¥,(t)} that converges to u(t) weakly in L2.
Thus we have

la(®)]lz2 < liminf fun(t) — 5a(Dllzz < [0z
By the variation of the constant formula,
t
a(t) = e, — 3 / e~ =999, (u(s) + Ty (s))u(s) ds.
0

. 493 . . 198 _ .
Since e 7% is a Cy-semigroup on L2 and ||0,e~ %= IBz1;z2) St 3/4 we easily see that

a(t) € C([0,00); L2).
The case p = 3 can be shown in the same way. Thus we complete the proof. O

Now we impose the symplectic orthogonality condition on wvs.

(3.7) [ et )y =0,
(38) [ )G dy =o.
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Note that Cg(t), Ccz(t) € L2, and vy(t) € L2 for a € (0,/co/2) by Lemma 3.1 as long
as |c(t) — co| remains small. In an L2-neighborhood of ¢,,, the speed and the phase
satisfying the orthogonality conditions can be uniquely chosen.

Lemma 3.2. Let co > 0, a € (0,,/co). Then there exist positive constants g
and 0y such that for each w € Uy(do) := {w € L | ||lw — @yl < do}, there exists a
unique (7, ¢) € U1 (61) :={(7, ¢) € R? | |y + |c — co| < 81} such that

(3.9) (W +9) = e, ¢y = (w(-+7) —¢c. () =0.

Proof. Let G:L? x R xR, — R? be a mapping defined by

W) — (w— (- =)
(3.10) G(w,,¢) <<w_%(,_7)

o
_—~
[
2 =2
N N
N~ N~
v

1
Since G(@e,,0,¢0) = 7(0,0) and V(4.0 G(@e,,0,c0) = (O 01> is invertible, Lemma 3.2

follows immediately from the implicit function theorem. O

Lemma 3.2 implies that the decomposition

(311) u(tax) - 'ﬁl(tax) = Pe(t) (y) + U2(t7 y) y Y= — x(t)

satisfying the orthogonality conditions (3.7) and (3.8) persists as long as ) (y) +
va(t,y) stays in Ugy(dp) and ¢(t) — ¢o remains small.

Lemma 3.3.  Let ¢y, 09 and 61 be as in Lemma 3.2. Suppose that u and 01 be
solutions of (1.1) satisfying u(0) = ¢, + vo and 91(0) = vo € L*(R). Then there exist
T >0 and c(t), z(t) € C([0,T]) N C((0,T)) such that

c(0)=co, z(0)=0, sup |e(t) —col <61,
t€[0,7]

and that ve defined by (3.11) satisfies the orthogonality conditions (3.7) and (3.8) for
t € [0,T]. Moreover, if T is finite and

sup [y + v2(t) = @eoll L2 < do,
t€[0,T)

then T' is not mazimal.
Proof. Let X be a Banach space with the norm [ul|x = |[(co — 82) ?ul|r2. Then

G defined by (3.10) is a smooth mapping from X x R, x R to R%. Thus by the implicit
function theorem there exist an X-neighborhood Uy of 0 and an R2-neighborhood U,
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of (0,¢o) such that for any w € Up, there exists a unique (v,c¢) € Uy satisfying (3.9).
Moreover, the mapping Uy 3 w — ®(w) = (v, ¢) € U is smooth. Since

a(t) = u(t) — 51(t) € C([0,00); L2) N CY((0, 00); X)

by Lemma 3.1 and (1.1), we have (z(t), c(t)) = ®(@(t)) is C! on (0,T). The other part
of the proof is exactly the same as the proof of [29, Proposition 9.3]. O

In order to prove stability of 1-solitons, we will estimate the following quantities in
the subsequent sections. Let

1/2

1/2
w|w = (/R e—za'w'wz(x)dx) , Nwllwy = (Jwllfy + 10w]3y) "

and let

My (T) = sup |loa(t)|z2 + llvi(®)lz2(0,7mw7) »
te[0,77]

su va(t + ||v 2y if p =2,
Mo (T) = Peefo,r lv2(Dllzz + [[vallz2(0,7;02) if p

supseo,r lv2(®)llzz + lv2llz20,7;m1) if p = 3,

M,(T) = sup [[v(t)|72, M(T)= sup |e(t) —col,
0<t<T te[0,T]

M, (T) = sup |(t) —c(t)], My(T)= sup |§(t) —c(t)],
t€[0,T te[0,T]

My (T) + Ma(T) + M, (T) + M (T) + M, (T) if p = 2,

Mtot(T) = M, (T) + M, (T) + M, (T) + MC(T) + M»Y(T) it p=3,

where ~y(t) is a function which shall be introduced in Lemma 4.2. We remark that
|lv1 (t)]|w, measures the interaction between the solitary wave and v .

§4. Modulation equations on the speed and the phase shift

In this section, we will derive modulation equations on the speed parameter c¢(t)
and the phase shift parameter x(t).

Differentiating (3.7) and (3.8) with respect to ¢ and substituting (3.4) into the
resulting equation, we have for ¢ = 1 and 2,

d .
0= E(’UQ(t)a Coqt))

= —(0a(t), LiyChny) — (6 Coy) + Elva s BeClipy) — (& — ) vz, 0yClipy) + (N, DyClny) -
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By (2.4) and (3.8), we have (va(t), E:(t)cz(t)) =0 for ¢ =1, 2. Hence it follows that

c(t) — () (N, 9y c(t)>
-y A“)( ot ) (<N a<c<t>>>

where
(03, ByCY) (2, L)
=] — .
A®) <<vz,ay<§> <v2,ac<§>>

The following lemma provides estimates for c¢(t) and x(t) in terms of the weighted L*-

norms of v; and vs.

Lemma 4.1. Letp =2 andcy > 0 and 0 < a < \/%/2. Then there exists a
positive constant 02 such that if the decomposition (3.11) satisfying (3.7) and (3.8) exists
on [0,T] and My(T) + My(T) + M. (T) < 2, then fort € [0,T],

()] + [2(t) = c(t)]

(4.2)
S lor@w + vzl zz (lor () lw + [[v2(E)]z2) -
Furthermore,
d 2 2
(43) 2 {elt) +0u(c®) (v1(t) wen)} = O (n @ + )3 ) -
(4.4) M(T) + Mo (T) S My (T) + My(T)? .

Lemma 4.2. Letp=3 and cog >0 and 0 < a < \/¢y/2. Suppose vy € H'(R).
Then there exists a positive constant 6 such that if the decomposition (3.11) satisfying
(3.7) and (3.8) exists on [0,T] and My (T) + Ma(T') + M, (T') + M.(T) < 02, then for
t € 0,77,

(4.5)
le@)] + [2(@) — ()] S [loa @) [lw + (||v1(t)||%v + ||vzll2Lg> (L + [loa @)z + [[v@) [ ze) -

Furthermore,

d 2
(4.6) = {e(®) +01(c(®) (v1(8), ey} } = O (lorllws + o2 )~
and there exists a C*-function y(t) such that v(0) = 0,

(A7) A = @(t) = O (e ®llw, + lea@lm)2(or @z + o(®)]122) -
(48) 3(t) = e(t) = O (Iloalw + w2113 )
(4.9) M (T) + M, (T) <My (T) + My (T)? .
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As we will see in Section 8, Lemmas 4.1 and 4.2 imply that the modulating speed
c(t) converges to a fixed speed as t — co. We will use (4.3) and (4.6) to show that c(t)
tends to a fixed speed speed ¢y as t — oc.

Proof of Lemma 4.1. If 09 is small enough, then 2a < y/c(t) for all ¢ € [0,T], and
it follows from (2.2) that for ¢ = 1 and 2, ||8CC2(t)||Lz_a and sup,cg 62“|y|8yg“2(t)(y) are
uniformly bounded on [0, T]. Thus we have for ¢ = 1 and 2,

|(v2, 0y CEep) | + [{v2, 0] S Hlvallzz < 02

Moreover,

(N1 By Ce) | S i @®)llw s (N2, 0y S lva®lwllvalizs s +lvallZz -

because N; = 6p.v; and Ny = 6vyvg + 31}%. Combining the above with (4.1), we obtain
(4.2). Moreover,

(t) =(N, 0,¢Z) (1+ O(lea(®)lz2)) + O (o (®)llzz [V, 8,¢)1)

(4.10)
=(N1,0,CC)) + Ollor (W) + llo2(®)172) -

Next we will rewrite (N1, 0,(2) as a sum of time derivative 61 (c(t))(vi(t, ), pe(r)) and
a remainder part which is integrable in time. Substituting (3.3) and integrating the
resulting equation by parts, we have

d ] |
(4.11) (01, @e) = éor s D) + (& = ) {on, L)
=(v1, @' —cpl) +3(vi , @) -

By (1.3) and (4.11),

(N1,0,¢2) =301(c) (v, 9y (7))
=01(c){v1, cop. — ;)

L @ + B4, o

+01(c){é{vr, Bege) — (& — ¢)(vr, @) +3(vT, Oype)}

Substituting (4.2) into the above, we have

d
(N1,0,¢) + = (1) {vr, o)) = Ol + [lvallZ2) -

Thus (4.3) follows from (4.10) and the above. Eq. (4.4) follows immediately from (4.2)
and (4.3). O
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Proof of Lemma 4.2. By the definition, we have

(4.12) N; = Nii + Nia, Nip=90%v1, Nip = 9907,
(4.13) Ny = Noy + Nao, Noy = 9p.v2(201 +v2),  Nag = 3v9(30% + 3vivs + v3),

and for i =1, 2,
(4.14) (N1, 0y )] S li@lw s 1[{N12, 0y S lor @)1y
(4.15) [(Na1, 8y S (lor @) llw + loa (8]l 22)?,

[(N22, 0y o) S (loa@®llw + vz (®)llz2)* o2 (8] =

in the same way as in the proof of Lemma 4.1. Combining the above with (4.1), we
have (4.5).

Next we will show (4.6). Since [9,¢’ ()] S e 2%, Lemma 9.2 implies that

()
@16) [0y Wl Eldy S ol ol fori=1.2
By (4.16) and the Holder inequality,
(4.17) [(Naz, 8y G| < (lor (@)l ez + lo(@)ll2) (i (B)llw, + vz ()ll2)?
whence
s (0] + 12(0) — (1)

Slor@llw + Q@+ lor @)z + 0@l =) (lor (@) lwy + [lv2(8)]]72)?
follows from (4.1), (4.14), (4.15) and (4.17).
As in the proof of Lemma 4.1, we have
d
(N11,0yCZ0y) + 7 (01(c)(v1, ¢c))

=01, 9} 01(E) + 03(0) {2lon,Dupe) — (& = ), ) + 3ok )}

=0 ((lorx®)lws + lo2(D)122)?) -

In the last line, we use (4.18) and the fact that

(4.19)

(07, oe] S i@z lvi®Fy, = llvollcz loa (®)], -

Combining (4.1), (4.14), (4.15), (4.17) and (4.19), we obtain (4.6).
Finally, we will show (4.7) and (4.8). Let v(t) be a C'-function satisfying

(N1 + Noy, 8yCcl(t)>> .

7(0) =0, c(t)—4(t) = (1,0)A(t)* ((Nl + N2178yC02(t)>
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The (4.8) follows from (4.14) and (4.15). In view of the definition of v and (4.1),

F(8) = & ST+ Nlollzz) Y N2z, 8,y

i=1,2

S+ lollze)(Nloallzz + vzl 2) (loallw + lJvzllz)* -

Eq. (4.9) immediately follows from (4.6), (4.7) and (4.8). Thus we complete the proof.
U

§5. The L?-estimate of v

In this section, we will estimate v by using the L?-conservation law of the gKdV
equation.

Lemma 5.1.  Suppose vg € L*>(R) if p = 2 and vo € HY(R) if p = 3. Then
there exist positive constants d3 and C such that if (3.11) satisfying (3.8) exists and
llvoll 2z +Ma(T) + M. (T') < 03 for a T € (0,00], then

M, (T) < C(M(T) + [|voll 22) -

Proof.  Since vy (t,x — z(t)) is a solution of (1.1) satisfying vy (0, z) = vo(z),

(5.1) [os(®)][ L2 = l[vollL2

as long as the decomposition (3.11) exists.
Let u(t) be a solution of (1.1) satisfying u(0) = ¢., + vo. By the L2-conservation
law,

(5.2) lu@®lIZ> = l0co +vollz2 = lpeollzz + Ollvollz2) -
Substituting (3.1) into the left hand side, we have

53 )12 = e I3 +2 [ euco(@)ott.y) dy+ Lo
By the orthogonality condition (3.8),

(5.4) /R pe( (Y)v(t,y) dy = /R Pe(y(Y)v1(t,y) dy -
Combining (5.1)—(5.4), we obtain

I3 < |l Ze = IeealF2qry| + Ollvoll2qey)

<le(t) — eol + ||vol| L2 -
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Thus we complete the proof. O

§6. The virial estimate of v,

In this section, we will show that ||v1(¢)|w, is square integrable in time by using
the virial identity.

Lemma 6.1.  Suppose p = 2 and vy € L*(R). There exist positive constants C
and &4 such that if Ma(T) + M (T) + M, (T) + |lvol|lzz < 04, then My (T) < C|lvo||zz2-

Lemma 6.2.  Suppose p =3 and vg € H'(R). There exist positive constants C
and 04 such that if Mi(T) + Ma(T') + M.(T') + M, (T) + |[vo||r2 < 94, then My (T') <
Cllvol|L2-

Let us recall the virial identity for the KdV equation which ensures that vy (t) €
L?(R; W1). Let xe(x) = 1+ tanhex, Z(t) be a C! function and

I, (t) = / Xe(x — Z(t) — 20)01(t, )% da .
R
Then we have the following.

Lemma 6.3.  Suppose vg € L*(R) if p = 2 and vo € H*(R) if p = 3. For any
c1 > 0, there exist positive constants g and § such that if infy &' (t) > ¢1, € € (0,e9) and
llvollL2 < 9, then for any xo € R,

¢
I, (t) + 1// / Xe(x — 2(s) — xo){(axf)l)Q + @%}(s, x)dxds < I,,(0),
o JR
where v = 2 min{3, ¢1}.

Proof of Lemmas 6.1 and 6.2. Lemma 6.1 is an immediate consequence of the
L?-conservation law (5.1) Lemma 6.3 with Z(t) = z(t) and zo = 0.
To prove Lemma 6.2, we apply Lemma 6.3 with Z(t) = v(¢) and 29 = 0. Then

/0 /R Ly + B(s))o (£ 9)? dyds < Juo2s
where h(t) = x(t) — v(t). By Lemma 4.2,
(6.1) Ih(t)] < / 6(8) — 4(0)] dt < My(T)? + Ma(T)?,

and there exists a positive constant p depending only on &4 such that xL(y) < puxL(y +
h(t)) for every y € R and t € [0, T]. Thus we complete the proof. O
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Proof of Lemma 6.3. Suppose that 91(t) is a smooth solution of (1.1). Then

/ Nz — () — 2 )2+ # (05 — — L 1L (¢ 2) da
vy 0 [ o= a0~ a0 {30007 + #1032 - Lot () d

By the definition of y.,

(6.3)  0<xL(z) <2exe(z), |X!(2)| <2exi(x), |XY(x)| <4e®*x.(x) for Vo € R.

Integrating (6.2) over [0,¢] and using Lemma 9.1, (5.1) and (6.3) to the resulting equa-
tion, we obtain

(6.4) L, (t) + 1//0 /Rxlg(a: — &(s) — xo) ((0x01)* + 07) (s, ) dads < I,,,(0)

provided & and §4 are sufficiently small. Since (1.1) is well-posed in L?(R) if p = 2
and in HY(R) if p = 3, we can verify (6.4) for any vy satisfying the assumption of
Lemma 6.3. (|

Corollary 6.4.  Under the conditions of Lemma 6.3, if there exists a positive
constant o such that infi>o @' (t) > ¢1 + o, then

/ Xel(x — Z()o1(t, 2)* dx < / Xe(x — #(0) — ot)vo(z)?dr — 0 ast — oc.
R R

Proof. Lett; > 0and Z1(t) = Z(t) —o(t—t1). Then Z1(t1) = Z(t1) and F(t) > 1
for every t > 0. Using Z;(¢) in place of Z(¢) in Lemma 6.3, we have

/ Xe(z — Z1(t1))01(%, z)?dx < / Xe(z — 21(0))01(0, z)?dx
R

R

=/ Xe(x — (0) — oty )vo(x)? de .
R

Thus we complete the proof. O

§7. The weighted estimate of vs

In this section, we will estimate |lva(f)||z2 by using the exponential stability prop-
erty of the linearized operator as in [25, 29, 34]. Thanks to the parabolic smoothing
effect of e'% on L2, we do not need re-centering argument as in [29] which is used to

a’

avoid a derivative loss caused by the term (& — ¢)0,v.
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Lemma 7.1. Let p = 2. There exist positive constants C' and 05 such that if
||’Uo||L2 + Mtot(T) S (55, then Mtot(T) S CH’U()HLZ.

Proof. To begin with, we deduce a priori bounds on My, M., M, and M, in terms
of ||vg||2 and My(T). Lemma 6.1 implies

(7.1) ML (T) S llvollz> -

By (4.4) and (7.1),

(7.2) M (T) + Mo (T) S |lvoll 2 + Ma(T)?,
and
(7.3) M, (T) < [lvollrz + Me(T) < [lvollrz + Ma(T)?

follows from Lemma 5.1 and (7.2). Hence it suffices to show My(7T) < ||vg| 2 to prove
Lemma 7.1.
Now we will estimate vo. Eq. (3.4) can be rewritten as

(7.4) Byvg + Legva + £(t) + By (N(t) + N(£)) =0,

where N (t) = (co — @(t)) vz + 6 (Pe(t) — Pey ) V2. Using the variation of constants for-
mula, we have

t
75 Quual) == [ 0 16) +0,(V() + N} ds.
0
Applying Proposition 2.2 and Corollary 2.3 to (7.5), we have
t
1Qesva®lzz S [ ez ds
0
t
(7.6) +/ e T (= )2 (N1 () ]|z + [N (5)]2) ds
0
t
+ / e b (t_s)(t — s)_3/4||N2(s)||L; ds.
0

Since Qc(ryve(t) = v2(t) and [|Qe(ry — Qoo llB(22) = O(|e(t) — col),
[v2(t) = Qeova2(t) |2 = O([e(t) — col)[lv2 ()]l 2 -
Hence for small d5, there exist positive constants d; and ds such that

dil|va(t)][z2 < [|Qeova(t)|lz < daflva(t)||lz  for t €[0,T].
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Let us prove

(7.7) N1l 2o 0,7522) + [ N1llz2(0,7:02) S llvollz2

(7.8) [ N2l zoo 0,7501) + V2l 22(0,7:01) S (lvo |15 + Mo (T))Ma(T) ,
(7.9) 1Nz o,7:22) + [Nl 220,:22) S (vl 2z + M2 (T)*)Ma(T),
(7.10) €]l Los 0,7:02) + €l L20,522) S llvoll e + Ma(T)?.

If 65 is sufficiently small, we have 2a < inf,c[o 77 1/c(s) and

(7.11) [N1(s)llrz < lloa(s)llw

follows from the definition of N;. Since |Na| < |va|(Jv1| + |v2]) and vo = v — vy, we have
for s € [0,T7,

[Na(s)l[ s Sllvz(s)llzz (v ()l 2z + [[va(s)lz2)

7.12
e SML(T) + My (T)2)|[va ()| 2 -

Combining (7.1)—(7.3) with (7.11) and (7.12), we obtain (7.7) and (7.8). Moreover,

[Nz < (i (s) = e(s)] + le(s) = col) [va(5)]l 22
S (lvollzz +Ms(T)?) flva(s)]lz -

By (4.2) and the definition of ¢,

1€(s)l[zz < lés)] + [2(s) — e(s)]
Slor(s)llw + llv2(s)lZz < lloa(s)llw + Ma(T)[va(s)] 2z -

Thus we prove (7.7)—(7.10). Since e~%*(1+t=3/%) € L'((0,00)), it follows from Young’s
inequality and (7.6)—(7.10) that

My (T) =llvall o 0,:22) + llvall 20,7522
Sllvollzz + (J[vol| 1> + Ma(T))Ma(T) .

Thus we have My(T') < |[|vg||pz provided 65 is sufficiently small. This completes the
proof of Lemma 7.1. O

Lemma 7.2. Let p = 3. There exists a positive constant o5 such that
. 3/4 1/4
if Mot (T) + w0 | 35" lvo| s < 05, then Miyor(T) < [|vol|ze-

To prove Lemma 7.2, we need the H'-bound of v; and v.
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Lemma 7.3. Let p = 3 and 07 be a solution of (1.1) satisfying ©1(0) = vy €
HY(R). Then

(7.13) 10271 ()22 < C ([9sv0llz2 + Jvollze) -
where C' is a constant independent of t and vg.

. 4 4
Proof. Since [|0,01]2, < 2E(v1) + 2|lor|[4. and |[or]|zs S o1 35110001150

10z01 (B)]| 72 < 2E(v1(t)) + %Haxvl(t)H%? +O0(lv(®)]z2) -

Combining the above with the L? conservation law and the energy conservation law, we
obtain (7.13). O

Lemma 7.4.  There exists a positive constant &' such that if ||vo||rz + Mo (T) +
M, (T') + M(T) < &', then

(7.14) lo(@®llzre < Cllvolla + lo@)[72 + le(t) = col) - for t € [0,T].

Proof. Let S(u) := E(u)+<%|ul|3.. Thanks to the energy and the L? conservation

laws,
S(¢eo + v0) =S(@ery +0)
(7.15) ) 1,.,
:S(ro(t)) + <S (@c(t)): 1)) + §<S (ro(t))va ’U> - R7
where 3
R= —/ (490(:(1&)?13 + v4) dy .
4 Jr
Since S'(¢¢,) = 0 by (1.3),
(7.16) S(Pe(t)) = S(wey) +O(|e(t) — col?) -

By (3.8), the fact that S"(¢c)) = (co — ¢(t))@e) and (5.1),

(7.17) (8" (pery); v) = (co — c(t))(v1, ewy) = O (le(t) — colllvollz2) -
Next, we will show that S”(¢.) is positive definite for vy. Let L = S" (¢.)+(c—co)I
and
v2 = ap; +bo+p, (pwz) = (p.pe) = 0.
Note that

(7.18) Lp? = —3cp?, Ly, =0,
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and that L is positive definite on *span{y? , .} by the Sturm-Liouville theorem. By
(7.18),
(Lva,va2) = (Lp,p) — 3ca® (L, ¢7) -

Since (ap? + p, pc) = (v2,0c) = 0 by (3.8) and d||p¢||72/dc > 0,
(Lvg,va) 2 lag? + pll7n

in exactly the same way as [14, Proof of Theorem 3.3]. Thanks to the orthogonality
condition (3.7), we have |b| < [lap? + p|| 1. Thus there exists a positive constant v such
that

(7.19) (8" (pc)vz, v2) = vlvallp

provided |c — o] is sufficiently small.
By (7.19) and Lemma 7.3,

v v
(7.20) (5" (eq))v,v) = §||vz(t)||%n = O(llr(®)7) > §||vz(t)||fm — O(J[voll7n) -
By the Sobolev imbedding theorem,
v
(7.21) |R| < g”amUHQL? +O([[o(®)]|72) -
Combining (7.15)—(7.17), (7.20) and (7.21), we obtain (7.14). O

Now we are in position to prove Lemma 7.2.

Proof of Lemma 7.2. By Lemmas 4.2, 5.1 and 6.2,
(7.22) My(T) < llvollzz » Me(T) + My (T) + My (T) < |lvollz2 +Ma(T)? .
Furthermore, it follows from (4.18) and (7.22) that

el o)+ 20,7y + 1E = ell o, 1)+ 22(0,7)

(7.23) , ;
SM(T) 4+ Ma(T)” < llvollpz + M (T)°.

Now we will estimate My (T"). Instead of vy, we will estimate its small translation.
Let 02(t,y) = v(t,y + h(t)). By (3.4),

(724 { B2 + LeyTa + Thyl(t) + dy(tny N(t) + N(t)) = 0,

B2(0,2) =0,

where 7, is a shift operator defined by 7,g(x) = g(x + h) and

N(t) = (co — 4(t)) Do + 9 (Th(t)SOg(t) - 9030) Uz
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Using the variation of constants formula, we have Q.,02(t) = va1(t) + vaa(t) + va3(t),
where

¢
vo1(t) = —/ e~ (t=8)Leo QeoTh(s)l(s) ds
0
t
’Ugg(t) = —/ 6_(t_s)£°0 QcoTh(s) (N(S) + N(S) — NQQ(S)) dS,
0
t
va3(t) = —/ e~ (t=9)Leq QeoTh(s)N22(s) ds .
0

Note that ||02(t)|| 1 S |Qco2(t)|| 2 as in the proof of Lemma 7.1. By Proposition 2.2,

(7.25) lo21(B)l[ 2 S /Ote_b(t_s)“Th(s)E(S)”H}L ds.

By (7.23), (6.1) and the definition of ¢,

(7.26) 7)) L0, 75m2 )+ 220, 75m2) S [lvollze + Mo (T)? .
Combining (7.25) and (7.26), we have

(7.27) lv21ll oo 0,7502) + V21l L2 07501y S Ilvollpz 4+ Ma(T)? .

Using Corollary 2.3, we can estimate sup,cjo 7 [[v22(¢)||z2 in the same way as the
proof of Lemma 7.1. Indeed,

t
ol S [ €= 5772 (g Naa(o) oz + 1§ ()12 ds
0

t

+/ e = (t — 8) 734 (|76  Ni2(8) 23 + (s Naa ()]l 21 ) ds.
0

(7.28)

Now we will estimate each term of the right hand side of (7.28). Since [N (s)| < (|4(s) —
c(s)| + |e(s) — col)|val, it follows from (7.22) and (6.1) that

17n() Nl Loe 0.7:L2) + 1Tn() N L2 01322
S(Me(T) + M (T)M2(T) < ([[vol 2 + M2 (T)*)Ma(T) .

Y

(7.29)

By (4.12), (4.13), (7.22) and (6.1),

(7.30) [ Th(s)N11llzoe 0,722y + [1Th(s) N1all 22 0,7:22) S Ma(T) S Jlvollz2
(7.31) 75y N2l Lo o.7522) S M(T)? S llvollZz

(7.32) 17h(s) N2t | o< (0,701 S My (T) (M (T) 4+ Mo (T)) < [lvoll72 + Ma(T)?.
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Combining (7.28)—(7.32) with Young’s inequality, we have
(7.33) [vaall L 0,122) S llvoll L2 +Ma(T)?.
Next we will estimate |[v2|p2(0,7;1)- By (9.2) in Lemma 9.2,

[ 7h(s)N12llLz0,7:2) + 1 Th(s)Na1llL20,7:22)
SM(T) (M (T) + M (T)) < llvollze +Ma(T)?.
Combining Corollary 2.3 with (7.29), (7.30) and (7.34), we have

(7.35) [va2[| o (0,7:112) S llvoll 22 + Ma(T)?.

(7.34)

Finally, we will estimate va3(t). By Corollary 2.3 and (6.1),

t
|23 (2) | L2 S,/ A (e 3)_1/2||Th(s)N22(8)||Lg ds
(7.36) 0

t
5/0 e (= 5) T2 ([wfva(s) ]l oz + 105 (s)ll22) ds .
Since || f|zs < ||f||3/4||a f||1/4 and |lvy(t)||zz = |lvollr2 is small, Lemma 7.3 implies
lor(®)z+ < llvoll 32" lvol :'- Hence by (9.2),
3/2 1/2 1/2 1/2

lofvallzz S loallZallvallee S ool llvoll e ool 2% oall s -
By the definition of My (7") with p = 3,
(7.37) lv3vallrqo.miz2) + I0Fvall oo ey S ool [lvo e Mia(T)
Lemmas 7.3 and 7.4, (5.1) and (7.22) imply
loa(®)llz2 < [0z + llor(®)llz2 < llvoll % +M(T)
[o2 ()]l < @)l + lor@) Lz S llvollmr + Mo (T)?
Combining (7.22), (7.38) and (9.1) in Section 9 with # = 5/7, we have

(7.38)

03]l 22 <|lv2 2 [|v3]| £
5/7 2/7 12/7 2/7
Sloall g ool 75" ol 22 llvall 7,
5/7 2/7 6/7 2/7
<ozl / o217 / (1ol 227 + Mo (T) /) ([|o | 747 + Mia (T)*7).

5/7 2/7

Since ||Ioa 57 o217 < Miy(T),
L2(0,T)NL14/5(0,T)
03 2o, T:L2) T ||Uz||L14/5(0 T;L2)
6/7 7
S(l[ooll 857 4+ Mo (T)2/7)([[wo |2 + Ma(T) ¥ 7)Miy(T)
(7.39) M (T) 6/7
6/7 2/7 2
ool lfwoll ( ) Ma(T)
llvoll L2

+ ”,UOHi/;Mz(T)ll/? + MQ(T)23/7 )
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Substituting (7.37) and (7.39) into (7.36) and using Young’s inequality, we have

orerr (Ma(T)2\ %7
(7.40) sup [oas(®)l 22 S S n+ vl 241 wollS% M (T),
te[0,1] llvollz2
1/2 3/2 2/7

Cllooll 2 + llvoll 777 llwol| 757 + lleoll 2" Ma ()47 + M (T)16/7.
On the other hand, applying Proposition 2.4 to va3(t), we have

/7
7 7 (Ma(T)*\°
(7.41) lo2a(®)ll20z:18) S {77+||UO||2/ oz (HUO(“; Ma(T).

Combining (7.27), (7.33), (7.35), (7.40) and (7.41), we obtain

where 1) = [|vo|[ ;7

My (T)?

[voll 2

6/7
2/7 6/7
My (T) < Jleolz2 + o2 luo 1% ( ) M, (T),

whence My (T') < ||vgl| 2 if J5 is sufficiently small. Thus we complete the proof.

8§8. Proof of Theorems 1.1 and 1.2

Now we are in position to complete the proof of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. By Lemma 3.3, the decomposition (3.11) satisfying the or-
thogonality conditions (3.7) and (3.8) exists on [0,T] for a T > 0. Moreover, Lemma 7.1

implies

1
< < =
Mot (T) < ||vol| 12 5 0211255

if ||vg|| L2 is sufficiently small. Hence it follows from Lemma 3.3 that the decomposition

(3.11) satisfying (3.7) and (3.8) persists on [0,00). Thus we may take T =
Lemma 4.1 and it follows that

(8.1) Miot(o0) < lvollz2
(8.2) igg(lC(t) —col +[&(t) — c(®)]) < llvollr2
and

u(t,-) = Peo (- — ()| 2 <l Peiry — Peollz2 + 0(E ) 22
Sle(t) = col + [[o(t, )2z < llvoll}s” -

Thus we prove (1.4).
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Next we will prove (1.5) and (1.6). By Corollary 6.4,

(8.3) lor (Ol < /R Xa()02(ty) dy — 0 as t — oc.

Integrating (4.3) with respect to ¢ and combining the resulting equation with (8.3) and
the fact that

[e.9]
/0 (lor ()15 + lv2(OIIZ2) dt S Mi(00)? + Miz(00)* < fluollZ2

we see that ¢y := lim;_, c(t) exists and

(8.4) et = col S llvollzz -

Moreover, applying the Holder inequality to (7.6) separately on the integral intervals
[0,¢/2] and [t/2,t] and using (7.7)—(7.10), we can show that

(85) Jim [lva(t) 23 = 0.

By (4.2), (8.3) and (8.5), we see that &(t) — ¢(t) — 0 as t — oo. Thus we prove (1.5).
Eq. (1.6) follows from (8.2) and (8.4).

Finally, we will prove (1.7). Since lim; oo [|0ot) — @c. ||z = 0, it suffices to prove
that as t — oo,

(8.6) [u(t, ) = ey (- = ()l L2@@>0t) = V() L2(y>0t—a()) = 0.
Note that (8.3) and (8.5) already imply

. 2 .
(8.7) Jim Rxa(y)v (t,y)=0.

We may write (3.2) as

(8.8) 8tv+8§v — &0yv + L + 0y f(v) + Oy N3(t) =0,

where N3(t) = f(%(t) + 1)) - f(gpc(t)) - f(?)) = 6900(t)7)~
Let ¢; € (0,0), t1 > 0 and y1(t) = c1(t — t1) — z(t) + x(¢1). Multiplying (8.8) by
2xa(y — y1(t))v(t,y) and integrating the resulting equation by parts, we have

d

= [ Xely—m ()v*(t, y) dy + / Xo(y — y1(8)){3(0yv)* + c1v® — g(v) } (¢, y) dy
(8.9) R R

- /sz:'(y — 5 ()0 () dy + (1),

where g(v) = 2f(v)v — 2 [, f(u)du and

J(t) = -2 /R Yaly — 1 (00t 9)(E(E) + 8, Na (1)) dy .



60 TETSU MIZUMACHI AND NIKOLAY TZVETKOV

Lemma 9.1 implies that

(8.10) / Valy — 1 ()30 + 10 — g} (t,y) dy > /R Xy — 1 (£)3(t, ) dy .

if a and ||v(t)|| 2 < M, (c0) is sufficiently small. Note that || < 4a?y/,.

a

By (4.18) and the fact that £ and N3 are exponentially localized by ¢.;) and its
derivatives, we have

(8.11) TS o), + lv2()]1F; -

and J € L1(0,00) by (8.1) and (8.11). Integrating (8.9) over [t;,t], we obtain

/Rxa(y—yl(t))vQ(t,y)dyS/Rxa(y)vQ(tl,y)dy+/oo J(s)ds.

t1

Let t > t; — oco. Then by (8.7) and the fact that J € L!(0, ),

t—o00

lim Rxa(y — () (t,y)dy =0.

Since ot —x(t) > y;(t) for t sufficiently larger than ¢;, we conclude (1.7). This completes
the proof of Theorem 1.1. O

Since Theorem 1.2 can be shown in exactly the same way as the proof of Theo-

rem 1.1, we omit the proof.

89. Appendix: Weighted Sobolev inequalities

In this section, we recollect weighted Sobolev estimates. To prove Lemma 6.3, we
use the following weighted inequality as in [31].

Lemma 9.1. Letp=1,2 or3 ande > 0. Let x.(x) = 1+ tanhex. Then for
every v € HY(R) and xo € R,

/ Xa(x 4 zo)v(x)P do
R

<1+ 25)(1)—1)/2”@”1;1 / Xe(z + 20) (v (2)* + v(2)?) do.
R

Proof. Since the case p = 1 is obvious and the case p = 2 follows from the cases
p =1 and p = 3, we only need to prove the case p = 3. Since lim, ,1., v(z) = 0 for
v € H(R),

xX

X + 20)(x)? = / (L + w0)o()?) dy
=/m x’é(y+xo)v(y)2dy+2/m Xt (y + zo)v(y)v'(y) dy .

— 00 —0o0
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Using the Schwarz inequality and the fact that 0 < x.(z) < 2ex.(z) and |[x/(z)| <
2exL(x) for every z € R, we have

21;& X (x 4+ z0)v(x)? < /RX/g(ﬂU + x0) ((1 + 2e)w(x)? + 1/(:13)2) dz .

Thus we have

<J|v[|72 sup XL (2 + zo)v(z)?
zeR

<Jloll2 /R Vol + ) (14 26)0(@)? + 0/ (2)2) dar.

/ XL (x + x)v* (x) da
R

Thus we complete the proof. O

Lemma 9.2. Let a > 0. Then

(9.1) lo?llzge < 2lwl|7e | 0sw] 12° | 0swllGa llwll 2 for 6 € 10,1],

(9-2) lwZee S llwllzzllwllms . e w?|ze S Jwlwlwlw, -

Proof of Lemma 9.2. It suffices to prove Lemma 9.2 for w € C§°(R). Since %" is

monotone increasing,

o0

u(a) = -2 [ Tyl () dy < 2 | el )y,

By the Schwarz inequality, we have

e uR (@) < 2wl gl e (@) < 2wz lwf e for any x € R

Interpolating the above inequalities, we have (9.1). We can prove (9.2) in the similar

way.
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