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PAPER

Floating-Point Multiplier with Concurrent Error Detection
Capability by Partial Duplication

Nobutaka KITO†a), Member, Kazushi AKIMOTO††, Nonmember, and Naofumi TAKAGI††, Senior Member

SUMMARY A floating-point multiplier with concurrent error detection
capability by partial duplication is proposed. It uses a truncated multiplier
for checking of the significand (mantissa) multiplication instead of full du-
plication. The proposed multiplier can detect any erroneous output with
error larger than one unit in the last place (1 ulp) of the significand, which
may be overlooked by residue checking. Its circuit area is smaller than that
of a fully duplicated one. Area overhead of a single-precision multiplier is
about 78% and that of a double-precision one is about 65%.
key words: concurrent error detection, floating-point multiplier, duplica-
tion, truncated multiplier

1. Introduction

As aggressive scaling continues to push technology into
smaller feature sizes, various design robustness concerns,
such as faults by degradation [1]–[3] and soft errors due to
particle hits [4], continue to arise. Circuits with concurrent
error detection capability are crucial for development of reli-
able systems. In this paper, we propose a new floating-point
multiplier which can detect any erroneous output with mag-
nitude of error larger than one unit in the last place (1 ulp)
of the significand (mantissa) by partial duplication. It works
appropriately with any rounding mode defined in IEEE 754
floating-point standard [5].

For designing a reliable floating-point circuit, duplica-
tion and residue checking [6] have been used. Some proces-
sors which use full duplication for arithmetic units were re-
ported [7], [8]. Though floating-point multipliers using full
duplication achieve high capability of error detection, they
have large area overhead. Reliable floating-point arithmetic
units with residue checking were proposed [9] and selection
of the modulus for residue checking in IBM processors was
discussed in [10]. Though floating-point multipliers using
residue checking can achieve high error detection ratio with
smaller area overhead, they may overlook erroneous results
with large magnitude of error, which is a multiple of the
modulus. Furthermore, residue generation during residue
checking is timing-critical because the residue needs to be
generated after calculation of a result. Full duplication and
residue checking are generic methods for basic arithmetic
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operations, and they utilize and consider little of the nature
of floating-point arithmetic operation. Reliable floating-
point arithmetic circuits utilizing methods other than full
duplication and residue checking were proposed [11]–[14],
but, to the best of our knowledge, are not actually used.

Recently, reduced precision checking is proposed for
floating-point addition and floating-point multiplication in
[12] and [13], respectively. The technique uses a small sig-
nificand adder or a small significand multiplier for check-
ing of the result. It mainly considers detection of very
large errors, and does not treat rounding which is specific
to floating-point arithmetic. Error detection ratio based on
this technique reported in [13] is very low as the authors
have described. The multiplier based on the method will be
used for applications which need to detect only very large
errors. The potential applications are different from ones
of the multiplier to be proposed and ones of the traditional
duplication or residue checking.

The floating-point multiplier to be proposed is based
on the proven duplication method and utilizes the nature of
floating-point arithmetic. The multiplier consists of a circuit
for normal calculation and a circuit for checking as well as
a checker which compares the outputs of the two circuits.
The calculation sub-circuits of the sign bit and the expo-
nent are duplicated. For the circuit for checking, a truncated
multiplier is used for significand calculation instead of a full
multiplier. The proposed floating-point multiplier is smaller
than one using full duplication because a truncated multi-
plier sums up only about upper half of partial product bits.
The area overhead of the proposed single-precision multi-
plier and that of the double-precision one are estimated at
78% and 65%, respectively. The floating-point multiplier
detects any erroneous output with magnitude of error larger
than 1 ulp, which may be overlooked by residue checking.

The proposed multiplier is suitable for applications
which need reliability and tolerate small error. For exam-
ples, media processing, such as video and image process-
ing, and calculation of a neuron’s output in an neural net-
work tolerate small error. Though the calculation of those
applications tolerates small error, large error might lead to
an incorrect result. Media processing and neural networks
are used in various applications such as pedestrian detection
from camera images [15], and recognition of the scene [16]
for automotive safety or autonomous driving of cars. Re-
liability is crucial for automotive applications, and the pro-
posed multiplier is useful for those applications.

This paper is organized as follows. In the next sec-
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tion, we describe floating-point multiplication and notations
used in this paper. In Sect. 3, we propose a partially dupli-
cated floating-point multiplier. In Sect. 4, we evaluate the
proposed multiplier and compare it with designs using full
duplication and ones using residue checking. In Sect. 5, we
conclude this paper.

2. Floating-Point Multiplication

We consider IEEE 754 binary floating-point multiplication.
In IEEE 754 standard, a binary floating-point number X con-
sists of a sign bit xs, an exponent Xe, and a fraction part of
significand Xm. The bit width of the exponent is 8-bit for a
single-precision number, and 11-bit for a double-precision
number. The bit width of the fraction part of significand is
23-bit and 52-bit, respectively. We represent the bit width of
the fraction part of significand by l. We consider multipli-
cation of normalized numbers. A normalized floating-point
number X represents (−1)xs × [1.Xm] × 2Xe−bias. bias is 127
for single-precision, and 1023 for double-precision.

We let the multiplicand, the multiplier, and the resultant
product be X, Y , and Z, respectively. The sign bit and the
exponent of Z are calculated as follows:

zs = xs ⊕ ys

Ze = Xe + Ye − bias + δ

where δ is the increment from the significand calculation,
and is either 1 or 0. Let the product of the significands
[1.Xm] × [1.Ym] be U(= [u−1u0.u1 . . . u2l]). U is normalized
as

V =

⎧
⎪⎪⎨
⎪⎪⎩

[1.u0 · · · ul−1] (if u−1 = 1)

[1.u1 · · · ul] (otherwise).
(1)

After the normalization, rounding is performed by adding
rounding bit r to the least significant position of V , where r
is either 1 or 0. We represent the result of rounding V+r×2−l

as W(= [w−1w0.w1 . . .wl]). The resultant fraction part of the
significand is obtained as

Zm = [.w1 · · ·wl].

The increment δ is 1 when w−1 or u−1 is 1. δ is 0, other-
wise. Note that no special operation is necessary when W is
[10.0 · · · 0] because all the bits other than w−1 are 0.

In IEEE 754 standard, four rounding modes, i.e.,
Round ties to even, Round toward positive, Round toward
negative and Round toward zero, are defined for binary op-
erations. For Round toward zero, rounding bit r is 0. For the
other modes, it is obtained as follows.

• Round ties to even

r =

⎧
⎪⎪⎨
⎪⎪⎩

ul ∧ (ul−1 ∨ ul+1 ∨ st) (if u−1 = 1)

ul+1 ∧ (ul ∨ st) (otherwise)

Here, sticky bit st is ul+2 ∨ ul+3 ∨ · · · ∨ u2l.
• Round toward positive and round toward negative

r =

⎧
⎪⎪⎨
⎪⎪⎩

pol ∧ (ul ∨ ul+1 ∨ st) (if u−1 = 1)

pol ∧ (ul+1 ∨ st) (otherwise)

Here, pol is z̄s for round toward positive or zs for round
toward negative.

3. Floating-Point Multiplier with Concurrent Error
Detection Capability by Partial Duplication

We propose a floating-point multiplier which can detect any
erroneous output with magnitude of error larger than 1 ulp.

3.1 Overall Structure

Figure 1 shows a block diagram of the proposed floating-
point multiplier. The multiplier consists of three parts: the
normal calculation circuit, the calculation circuit for check-
ing, and the checker. In the figure, the left-half is for normal
calculation and the right-half is for checking. We use dupli-
cation for the sub-circuit for the sign bit and the sub-circuit
for the exponent because they are much smaller than the cir-
cuit for the significand. We use a special significand cal-
culation circuit for checking instead of full duplication. The
checker compares the normal result with the output from the
circuit for checking.

3.2 Significand Calculation Circuit for Checking

We focus on the significand calculation circuit for checking.
For the significand calculation circuit for checking, we use a
truncated multiplier. The significand calculation circuit for
checking is smaller than the normal significand calculation
circuit because a truncated multiplier sums up only upper
about half of partial product bits. The output from the trun-
cated multiplier is normalized, rounded and then, adjusted
by comparing its least significant bit with that of the result
from the normal significand calculation circuit.

Figure 2 shows a block diagram of the significand cal-
culation circuit for checking. It receives Xm and Ym, and the
least significant bit of the normal significand result wl. It
outputs fraction part of significand Z′m and increment δ′ for
checking. The significand calculation circuit consists of a
truncated multiplier, a normalizer, a rounding bit generator,
an incrementer, an adjuster, and an OR gate.

The truncated multiplier produces U′ which satisfies
the following inequalities.

U − 2−l < U′ ≤ U (2)

The normalizer normalizes U′ and produces V ′
(= [1.v′1 . . . v

′
l]) as formula (1). The rounding bit generator

calculates r′ as described in the previous section according
to the rounding mode. Incrementerm sums up rounding bit r′
and V ′, and produces W ′. W ′ may be different from W. The
adjuster generates the result W ′′(= [w′′−1w′′0 .w

′′
1 . . .w

′′
l ]) from

W ′ and the least significant bit of Zm, i.e., wl, as follows:
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Fig. 1 Floating-point multiplier with concurrent error detection capability by partial duplication

Fig. 2 Significand calculation circuit for checking

W ′′ =

⎧
⎪⎪⎨
⎪⎪⎩

W ′ (if wl = w′l)
W ′ + 2−l (otherwise)

where w′l is the least significant bit of W ′. If no error exists,
W ′′ is the same as W. The fraction part of significand Z′m for
checking is obtained as

Z′m = [.w′′1 · · ·w′′l ].

The significand calculation circuit sends increment
δ′(= u′−1 ∨ w′′−1) to the exponent sub-circuit for checking.
The normal result, i.e., zs, Ze, and Zm, and the output from
the circuit for checking, i.e., z′s, Z′e, and Z′m, are compared by
the checker.

Note that the adjuster works appropriately with any
rounding mode. W is equal to either W ′ or W ′ + 2−l re-

gardless of the rounding mode because of inequalities (2).
Therefore, we can obtain the adjusted result by increment-
ing W ′ when the least significant bits of W and W ′ are not
the same.

We use the least significant bit of Zm, i.e., wl, for ad-
justing the output of the truncated multiplier. The multiplier
may not detect an erroneous significand output only when
wl is inverted by an error because the adjuster generates the
same output to the incorrect Zm. In other words, it detects
any erroneous significand if it has an error larger than 1 ulp.
Note that, when wl is inverted by an error, the erroneous one
is chosen for W ′′. In this case, the both inputs of the checker
are erroneous. Even though the output of the normal sig-
nificand calculation circuit has error of 1 ulp, the checker
detects the error if the polarity of the two 1 ulp errors is dif-
ferent, i.e., one of the checker inputs is 1 ulp larger and the
other is 1 ulp smaller than the correct result. Therefore, half
cases of 1 ulp error of the final result are detected by the
checker.

3.3 A Design Consideration of the Significand Calculation
Circuit for Checking

We consider design of the significand calculation circuit for
checking in detail.

We show an example of the part of partial product bits
for a truncated multiplier for single-precision in Fig. 3. A
dot represents a partial product bit. Every output value of a
truncated multiplier for single-precision, which sums up the
dots surrounded by the broken lines, satisfies inequalities (2)
where l = 23. The truncated multiplier for double-precision
can be designed in a similar way. Because the truncated
multiplier sums up fewer bits than the normal one, it per-
forms calculation in shorter time and occupies smaller cir-
cuit area. Note that, the delay of the overall circuit is longer
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than the normal significand calculation circuit because the
checker output is obtained after two outputs.

We can shorten the critical path of the significand cal-
culation circuit for checking by designing the part of the cir-
cuit surrounded by the broken lines in Fig. 2 cleverly. This
part calculates W ′′ according to the values of r′, wl, and v′l
as follows:

W ′′ =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V ′ (if r′ = 0 ∧ wl = v′l)
V ′ + 2−l+1 (if r′ = 1 ∧ wl = v′l)
V ′ + 2−l (otherwise).

(3)

When V ′ + 2−l+1 is represented as T ′ = [t′−1t′0.t
′
1 · · · t′l ], V ′ +

2−l can be obtained from V ′ or T ′ as follows:

V ′ + 2−l =

⎧
⎪⎪⎨
⎪⎪⎩

[t′−1t′0.t
′
1 · · · t′l−1 0] (if v′l = 1)

[1.v′1 · · · v′l−1 1] (otherwise).
(4)

From (3) and (4), we can obtain W ′′ as follows:

W ′′ =

⎧
⎪⎪⎨
⎪⎪⎩

[t′−1t′0.t
′
1t′2 · · · t′l−1wl] (if selZ′ = 1)

[01.v′1v′2 · · · v′l−1wl] (otherwise)

where selZ′ = (wl ∧ v′l) ∨ (v′l ∧ r′) ∨ (r′ ∧wl). Therefore, we
can design this part as shown in Fig. 4. The design includes
only one incrementer, Incrementer’m, that calculates V ′ +
2−l+1. Note that a naive design includes two incrementers.
Though signal wl is fed from the output of the normal circuit,

Fig. 3 Example of partial product bits for a truncated multiplier in a
single-precision multiplier

Fig. 4 Alternative design of Incrementerm and Adjuster for the signifi-
cand calculation circuit for checking

influence of this part to the circuit delay of the overall circuit
is small because output delay of an integer multiplier and an
incrementer is not uniform at all positions, and the value
of wl is obtained earlier than the value of the latest delayed
position generally.

4. Evaluation

We estimated the circuit area, and evaluated the error de-
tection ratio and several metrics about error detection of the
proposed floating-point multiplier. For comparison, we con-
sidered three other multipliers: a fully duplicated multiplier
and two multipliers using residue checking based on [9]. For
the circuits using residue checking, we chose 3 or 15 as the
modulus. Modulo-3 checking is used widely [10], [17], and
modulo-15 checking is also used in IBM z196 microproces-
sor [10], [18]. We used duplication for checking of the sign
bit and the exponent for all the four multipliers to evaluate
error detectability and area of the significand calculation cir-
cuits fairly. We used the design in Sect. 3.3 for the proposed
multiplier. We used a two-rail checker as the checker.

We used Synopsys design compiler with NanGate

Fig. 5 Circuit area and delay time of single-precision floating-point mul-
tiplier designs

Fig. 6 Circuit area and delay time of double-precision floating-point
multiplier designs
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Table 1 Area overhead of floating-point multipliers

Single-precision (delay: 300 ps) Double-precision (delay: 400 ps)
Area [μm2] Overhead [%] Area [μm2] Overhead [%]

Normal 910.3 - 4298.4 -
Proposed 1615.5 77.5 7106.2 65.3

Full duplication 1875.1 105.9 8719.1 102.8
Residue (mod 3) 1228.8 35.0 4885.7 13.7
Residue (mod 15) 1379.1 51.5 5344.6 24.3

Table 2 Evaluation results of error detections

Error detection Average magnitude of Ratio of errors FP ratio
ratio [%] overlooked error [ulp] in exponent bits [%] [%]

Proposed 91.2 1 (exact) 0.0 (no error) 55.1
Full duplication 100.0 (no error) 0 (no error) - 54.1
Residue (mod 3) 98.7 119545 9.1 52.7

Residue (mod 15) 99.2 5275 28.0 57.5

15nm open cell library [19] to synthesize the designs. We
synthesized the designs with various timing constraints.
Figures 5 and 6 show circuit area of single-precision designs
and double-precision ones, respectively. Horizontal axis de-
notes delay time of the designs and vertical axis denotes
circuit area. In the figures, “Normal” denotes the multi-
plier without error detection capability, “Proposed” denotes
the proposed multiplier, “Full duplication” denotes the mul-
tiplier using full duplication, and “Residue (mod 3)” and
“Residue (mod 15)” denote the multipliers using residue
checking. The figures show that the proposed multiplier
has shorter delay time compared with the multipliers us-
ing residue checking. Residue checking is timing-critical
because residue generation is necessary after calculation of
the normal result and the output for checking. In the figures,
the shortest delay of the proposed multiplier is almost the
same as that of the full duplication. The adjuster parts of the
proposed multiplier have small influence to the circuit delay.

The circuit area and the area overhead are shown in
Table 1. We show the estimation of single-precision de-
signs synthesized with 300 ps delay constraint and double-
precision designs synthesized with 400 ps delay constraint.
The area overhead of the proposed multiplier is about
78% for the single-precision design and about 65% for the
double-precision design. The area overhead is smaller com-
pared with that of the multiplier using full duplication.

We evaluated the error detection ratio and other metrics
about error detection of the four multipliers. We consid-
ered error caused by a single stuck-at fault for evaluation.
We used Synopsys TetraMax for simulation of the multi-
pliers inserting a stuck-at fault. We carried out simulation
for single-precision multipliers synthesized with 300 ps de-
lay constraint with 50,000 random patterns for every single
stuck-at fault. The results are shown in Table 2.

The fault detection ratio of the proposed multiplier is
over 90%. The magnitude of any overlooked error of the
proposed multiplier is exactly 1 ulp. It is very small against
the average magnitude of overlooked error of the multipliers
using residue checking.

We show the ratio of erroneous outputs whose expo-
nent bits are erroneous in all overlooked ones. The ratio for

the proposed multiplier is 0%. The multiplier has two in-
crement signals δ and δ′ for the two exponent sub-circuits
and erroneous outputs caused by erroneous incrementation
on one of the two signals can be detected. On the other hand,
the ratios for the multipliers using residue checking are over
9%.

We also evaluated the fault positive ratio (FP ratio)
which is the ratio of correct outputs when the checker in-
dicates error. Results of the four multipliers are almost the
same.

5. Conclusion

We have proposed a floating-point multiplier with concur-
rent error detection capability by partial duplication. It de-
tects any erroneous output with magnitude of error larger
than 1 ulp which may be overlooked by residue checking.
It works appropriately with any rounding mode defined in
IEEE 754 floating-point standard. Area overhead of the pro-
posed multiplier is small compared with the multiplier using
full duplication.

The proposed multiplier utilizes the idea of tolerating
overlooked small errors, considering the nature of floating-
point multiplication. Further researches about trade-off be-
tween area overhead and magnitude of detectable error will
be interesting.
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